National Library of Energy BETA

Sample records for light truck fuel

  1. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  2. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  3. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  4. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect (OSTI)

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  5. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  6. Fuel Cell Powered Lift Truck

    SciTech Connect (OSTI)

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  7. Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in Thermoelectrical Energy Recovery from a Light Truck Exhaust Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_thacher.pdf (780.57 KB) More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy

  8. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  9. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  10. Hydrogen Fuel Cells and Electric Forklift Trucks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Electric Forklift Trucks Hydrogen Fuel Cells and Electric Forklift Trucks Presentation for Dec. 17, 2008 hydrogen bimonthly informational call and meeting series for ...

  11. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004_deer_stang2.pdf (257.78 KB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins/DOE Light Truck Diesel Engine Progress Report

  12. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC

  13. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  14. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Connecticut Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious

  15. Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are Unreformed CAFE standards for model years (MY) 2008 through 2010 using the same CAFE calculations as in the past, and there are Reformed CAFE standards

  16. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Electric Forklift Trucks Steve Medwin The Raymond Corporation December 10, 2008 Value Proposition and Fuel Cell Tax Credit * Federal fuel cell tax credit increased in "Bailout Bill" - $3000/kW or 30% of unit price whichever is less * Tax credits extended to 2016 * Has a significant impact on financial viability Sample Financial Analysis * Illustrate impact of key factors on value proposition - Tax credit - Labor rate - Battery change time - Productivity improvement *

  17. Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja ...

  18. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  19. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  20. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at

  1. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Eric Fluga

    2004-09-30

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle

  2. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  3. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  4. Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stop Electrification Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center:

  5. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the

  6. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  7. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  8. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_lambert.pdf (460.97 KB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  9. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  10. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  11. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  12. Fuel economy and emissions reduction of HD hybrid truck over...

    Broader source: Energy.gov (indexed) [DOE]

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and ...

  13. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  14. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  15. Ten Years of Development Experience with Advanced Light Truck Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Engines 2004_deer_stang1.pdf (49.18 KB) More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators = Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on

  16. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Office of Environmental Management (EM)

    ... Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans ...

  17. Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Indiana Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank

  18. Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly This report describes a test of an instrumented surrogate PWR fuel assembly on a truck trailer conducted to simulate normal conditions of truck transport. The purpose of the test was to measure strains and accelerations on a Zircaloy-4 fuel rod during the transport of the assembly on the truck. This test complements tests conducted

  19. World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport June 10, 2015 - 1:30pm Addthis World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport Sunita Satyapal Director, Fuel Cell Technologies Office What looks like a golf cart

  20. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  1. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  2. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  3. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  4. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  5. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection ...

  6. Design and Development of e-Turbo for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of e-Turbo for SUV and Light Truck Applications Design and Development of ... More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck ...

  7. Design & Development of e-TurboTM for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER ... More Documents & Publications Design and Development of e-Turbo for SUV and Light Truck ...

  8. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  9. Cummins/DOE Light Truck Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Diesel Engine Progress Report Cummins/DOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002_deer_stang.pdf (2.47 MB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

  10. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002deereberhardt.pdf More...

  11. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  12. EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memphis International Airport | Department of Energy Fuel Cell Cargo Trucks Deployed at Memphis International Airport EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm Addthis EERE Success Story—World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport Thanks to R&D funding from the Energy Department's Fuel Cell Technologies Office (FCTO), the Federal Express Hub at the Memphis International

  13. Cummins/DOE Light Truck Clean Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Clean Diesel Engine Progress Report Cummins/DOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003_deer_stang.pdf (168.78 KB) More Documents & Publications Cummins Light Truck Clean Diesel Cummins/DOE Light Truck Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US

  14. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 26, 2014 - 12:00am Addthis Pedestrians passing by the Energy Department headquarters in Washington, D.C., on February 19 saw quite a strange sight - an ultra-modern 18-wheeler, Class 8 tractor-trailer parked outside the headquarters building. This is no ordinary truck - €it' s called a SuperTruck, a demonstration vehicle that is part of the Energy Department's SuperTruck initiative. This program's

  15. Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  16. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  17. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  18. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: January 12, 2009 Market Share of New Cars vs. Light Trucks Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light trucks outsold cars. In recent years, however, consumers have shifted purchasing preferences back toward cars. Market Share of Cars and Light

  19. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  20. Design & Development of e-TurboTM for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Development of e-TurboTM for SUV and Light Truck Applications Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER Conference Presentation: Garrett Engine Boosting Systems 2003_deer_shahed.pdf (477.34 KB) More Documents & Publications Design and Development of e-Turbo for SUV and Light Truck Applications The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines SuperTurbocharger

  1. Design and Development of e-Turbo for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of e-Turbo for SUV and Light Truck Applications Design and Development of e-Turbo for SUV and Light Truck Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Honeywell Corporation 2004_deer_shahed.pdf (427.61 KB) More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck Applications SuperTurbocharger Electric Turbo Compounding...A Technology Who's Time Has Come

  2. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  3. Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: February 22, 2010 Top Ten Best Selling Cars and Light Trucks Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series outsold the Camry by about 50,000 units. The hybrid Toyota Prius was the tenth bestselling car in 2009. Top Ten Best Selling Cars, 2009 Graph

  4. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will ... Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next ...

  5. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck

    Broader source: Energy.gov [DOE]

    Summarizes progress toward development of a durable urea SCR system to meet Tier 2 Bin 5 on 3780 lb light truck

  6. Fuel economy and emissions reduction of HD hybrid truck over transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    driving cycles and interstate roads | Department of Energy economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12_gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis

  7. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Discussion - Heavy-Duty Truck Fuel Economy Policy Discussion - Heavy-Duty Truck Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy 2004_deer_kodjak.pdf (168.97 KB) More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 The Energy Efficiency Potential of Global Transport to 2050 Vehicle Technologies Office Merit Review 2014: DOE's Effort to

  8. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 7, 2010 Fuel Economy for Light and Heavy Vehicles Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population range from a high of 15 miles per gallon (mpg) for class 2b trucks to a low of 2.5 mpg for class 8a trucks. The chart below shows the range of fuel economy

  9. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  10. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  11. Fact #757: December 10, 2012 The U.S. Manufactures More Light Trucks than Cars

    Broader source: Energy.gov [DOE]

    Most of the 16 States that manufacture light vehicles dedicated at least two-thirds of total production to light trucks in 2011. Kansas, Mississippi, and Tennessee are the only States that produced...

  12. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program) | Department of Energy Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  13. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: November 1, 2010 Sales Shifting from Light Trucks to Cars Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among the major import brands than the domestic brands. Share of Car Sales by Selected Manufacturer Graph showing share of car sales from 2005 to 2009

  14. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  15. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_oehlerking_2013_o.pdf (2.41 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: SuperTruck - Development

  16. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  17. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  18. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  19. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Date: 10/04/2013 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Jim Alkire, Sara Dillich, Kristen Nawoj, Stephanie Byham Approved by: Sunita Satyapal and Rick Farmer Date: 10/15/2013 Item: Table 1: Number of fuel cell deployments (installed and on-order) for applications in material handling equipment (MHE). The successful deployment of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation

  20. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  1. Development of an ORC system to improve HD truck fuel efficiency

    Broader source: Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  2. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRIVING IN LABORATORY CONDITIONS | Department of Energy HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_erkkila.pdf (398.95 KB) More Documents & Publications Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty

  3. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 19, 2014 - 12:37pm Addthis This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by <a href="http://www.energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>, Energy Department This Class 8 tractor-trailer by

  4. DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS

    SciTech Connect (OSTI)

    Balis, C; Middlemass, C; Shahed, SM

    2003-08-24

    The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

  5. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  6. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  7. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  8. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  9. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  10. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  11. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  12. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  13. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  14. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect (OSTI)

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  15. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  16. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  17. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  18. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

    Broader source: Energy.gov [DOE]

    In a test sponsored by the U.S. Department of Energy, a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours.

  19. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Alternative Fuels in Trucking Volume 5, Number 4

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac-

  1. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  2. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 1 SuperTruck - Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303 This presentation does not contain any proprietary, confidential, or otherwise restricted information SuperTruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Systems DOE Contract: DE-EE0003303 NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar DOE MERIT REVIEW WASHINGTON, D.C. May 17th, 2012 National

  3. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis

  4. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full

  5. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test

  6. Electric Boosting System for Light Truck/SUV Application

    SciTech Connect (OSTI)

    Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions

  7. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect (OSTI)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  8. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  9. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  10. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  11. Cheyenne Light, Fuel and Power Company Smart Grid Project | Open...

    Open Energy Info (EERE)

    System Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  12. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  13. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  14. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  15. Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015

  16. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  17. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  18. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect (OSTI)

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  19. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  20. Making fuel from light: Argonne research sheds light on photosynthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel By Jo Napolitano * September 1, 2015 Tweet EmailPrint Refined by nature over a ...

  1. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, ...

  2. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Truck Engine Program PDF icon 2004deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions ...

  3. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large

  4. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  5. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  6. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  7. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling Protocols Webinar Slides (3.49 MB) More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Developing SAE Safety Standards for Hydrogen and

  8. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

  9. Sandia Energy - Optima: Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stakeholder and consumer value. The initiative will accelerate the widespread deployment of significantly improved fuels and vehicles (passenger to light truck to heavy-duty...

  10. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection

    Broader source: Energy.gov [DOE]

    Gasoline direct fuel injection (GDI) allows fuel to be injected directly into the cylinder so the timing and shape of the fuel mist can be controlled more precisely. The improved combustion and...

  11. Vehicle Technologies Office: 21st Century Truck Technical Goals

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership aims to improve fuel efficiency in heavy trucks through improvements in engine efficiency, aerodynamics, and rolling resistance.

  12. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells ...

  13. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  14. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect (OSTI)

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  15. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Energy Savers [EERE]

    Volvo SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  16. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition Goal North Carolina established a goal that at least 75% of new or replacement state government light-duty cars and trucks with a gross ...

  18. Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of

  19. Vehicle Technologies Office Merit Review 2016: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PPG at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  20. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  1. Fact #725: April 30, 2012 Cylinder Deactivation is More Prevalent in Light Trucks than Cars

    Broader source: Energy.gov [DOE]

    Cylinder deactivation is a fuel-saving technology that allows a vehicle to shut down some of its cylinders when extra power is not needed like when cruising down the highway at a constant speed....

  2. Analysis of Corporate Average Fuel Economy (CAFE) Standards for Light Trucks and Increased Alternative Fuel Use

    Reports and Publications (EIA)

    2002-01-01

    Sen. Frank Murkowski, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources requested an analysis of selected portions of Senate Bill 1766 (S. 1766, the Energy Policy Act of 2002), House Resolution 4 (the Securing America's Future Energy Act of 2001) and Senate Bill 517 (S. 517, the Energy Policy Act of 2002). In response, the Energy Information Administration (EIA) has prepared a series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  3. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect (OSTI)

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  4. New Truck Stop Electrification Station Maps Help Truckers Reduce...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities because reducing heavy-duty truck idling is an important step in reducing ... fuels and vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction

  5. EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed...

    Energy Savers [EERE]

    in Tennessee has a new 15-vehicle fleet of hydrogen fuel cell powered ground support equipment. ... FCTO, with a matching 2.5 million cost share from private sector partners . ...

  6. World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport

    Broader source: Energy.gov [DOE]

    Thanks to R&D funding from the Energy Departments Fuel Cell Technologies Office (FCTO), the Federal Express Hub at the Memphis International Airport in Tennessee has a new 15-vehicle fleet of...

  7. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  8. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  9. NREL: Transportation Research - NREL's Complete-Cab Truck Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-haul Class 8 trucks use approximately 7% of their fuel for rest period idling, ... 774 gallons of fuel used per truck for rest period air conditioning, with the ...

  10. Improving Light Water Reactor Fuel Reliability Via Flow-Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Light Water Reactor Fuel Reliability Via Flow-Indu... Failures of the fuel rod elements used to power U.S. nuclear ... and a recognized bottleneck to optimal fuel utilization. ...

  11. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect (OSTI)

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  12. Truckstop -- and Truck!-- Electrification

    SciTech Connect (OSTI)

    Skip Yeakel

    2001-12-13

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet

  13. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect (OSTI)

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  14. alternative fuel light-duty vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary

  15. UPS CNG Truck Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University

  16. Webinar: Fuel Cell Mobile Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile Lighting Webinar: Fuel Cell Mobile Lighting Above is the video recording for the webinar, "Fuel Cell Mobile Lighting," originally held on November 13, 2012. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  17. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer’s fleet of new cars or light trucks in a certain model year (MY). First enacted by...

  18. Light Weight, Low Cost PEM Fuel Cell Stacks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-weight, Low Cost PEM Fuel Cell Stacks Case Western Reserve University Endura Plastics Inc. This presentation does not contain any proprietary or confidential information. ...

  19. Sandia Energy - Patent Awarded for the Fuel Cell Mobile Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patent Awarded for the Fuel Cell Mobile Light Home Energy CRF Facilities Partnership News Energy Efficiency News & Events Systems Engineering Center for Infrastructure Research and...

  20. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  1. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  2. Hydrogen Industrial Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Trucks Hydrogen Industrial Trucks Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_harris.pdf (1.5 MB) More Documents & Publications Non-Metals Workshop Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  3. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  4. Lift truck safety review

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  6. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGRŽ System for Retrofit of In-UseŽ Trucks

    Broader source: Energy.gov [DOE]

    Reports on truck fleet emission test results obtained from retrofitting in-useŽ old class-8 trucks with IMETs GreenPower’ DPF-Hydrated-EGR system

  7. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Download the webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013. Hydrogen Refueling ...

  8. The Fuel Cell Mobile Light Project- A DOE Market Transformation Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the Fuel Cell Technologies Program webinar, Fuel Cell Mobile Lighting, held on November 13, 2012.

  9. Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck Freight Efficiency Improvement Project. arravt080_vss_rotz_2014_o.pdf (1.59 MB) More

  10. Sandia Energy - Fuel-Cell-Powered Mobile Lights Tested, Proven...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and in other applications. (Photo by Dino Vournas) Mobile lighting systems powered by hydrogen (H2) fuel cells are cleaner, quieter, and now have a proven track record in...

  11. Discovery sheds light on nuclear reactor fuel behavior during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery sheds light on nuclear reactor fuel behavior during a severe event By Angela Hardin * November 20, 2014 Tweet EmailPrint A new discovery about the atomic structure of...

  12. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck. vss081_amar_2015_o.pdf (2.12 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: Volvo

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  14. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  15. Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  16. Firm Uses DOE's Fastest Supercomputer to Streamline Long-Haul Trucks

    DOE R&D Accomplishments [OSTI]

    2011-03-28

    Sophisticated simulation on the world's fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

  17. Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    63 No. 8 * JOM 49 www.tms.org/jom.html Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance: Current Status, Challenges, and Future High Fidelity Modeling K. Edsinger, C.R. Stanek, and B.D. Wirth How would you... ...describe the overall signifcance of this paper? This paper provides a concise description of the nuclear fuel used in pressurized water nuclear reactors and the most commonly observed fuel failure mechanisms. ...describe this work to a materials

  18. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  19. Light-duty vehicle summary

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-07-01

    This document brings you up to date on the most recent fuel economy and market share data for the new light-duty vehicle fleet. Model year 1990 fuel economies are weighted based on the sales of the first six months of model year 1990 (from September 1989 to March 1990). Sales-weighted fuel economy of all new automobiles decreased in the first six months of model year 1990, from 28.0 mpg in model year 1989 to 27.7 mpg. The compact, midsize, and large size classes, which together claimed 75% of the new automobile market, each showed fuel economy declines of 0.4 mpg or more. Unlike automobiles, new 1990 light trucks showed an overall 0.4 mpg gain from model year 1989. This increase was primarily due to the increased fuel economy of the small van size class. In the first half of model year 1990, small van replaced small pickup as the second most popular light truck size class. Although the fuel economy of light trucks improved, the larger market share of automobiles in the light-duty vehicle market (automobiles and light trucks combined) and the decreased fuel economy in automobiles resulted in an overall reduction of 0.2 mpg for the entire light-duty vehicle fleet in the first half of model year 1990. Also, in the first half of model year 1990, light trucks claimed more than 33% of the light-duty vehicle market--a considerable increase from the 19.8% share in 1976. 9 figs., 18 tabs.

  20. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty

  1. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  2. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  3. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Weight, Low Cost PEM Fuel Cell Stacks Light Weight, Low Cost PEM Fuel Cell Stacks Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. ...

  4. Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own vehicles and report the results to EPA. EPA reviews the results and confirms a portion of them using their own testing facilities. To aid consumers shopping for new vehicles, EPA redesigned the fuel economy window sticker posted on all new cars and light trucks starting with Model Year 2013 vehicles to be easier to read and

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Use Requirement All diesel-powered motor vehicles, light trucks, and equipment owned or leased by a state agency must operate using diesel fuel that contains a minimum of 2% biodiesel (B2). For the purpose of this requirement, biodiesel includes renewable diesel and other renewable, biodegradable mono alkyl ester combustible fuel derived from biomass. Waivers to the B2 requirement for state agency vehicles may be granted if the fuel is not available in certain geographic areas, the

  7. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy

    Broader source: Energy.gov [DOE]

    The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

  8. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in 2011

    Broader source: Energy.gov [DOE]

    General Motors (GM), Ford, and Chrysler have produced many different models of flex-fuel vehicles (cars and light trucks) over the last five years. In 2011, the number of models offered by those...

  9. Vehicle Technologies Office Merit Review 2016: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  10. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  11. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck ... 2015: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics

  12. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  13. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Presentation given by Cummins at 2015 DOE Hydrogen and Fuel

  14. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Ultra-Low Sulfur diesel Update & Future Light Duty Diesel BiodieselFuelManagementBestPracticesReport.pdf Future Fuels: Issues and Opportunities

  15. Roadmap and technical white papers for the 21st century truck partnership

    SciTech Connect (OSTI)

    None, None

    2006-12-01

    21st Century Truck Partnership will support the development and implementation of technologies that will cut fuel use and emissions and enhance safety, affordability, and performance of trucks and buses.

  16. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  17. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Broader source: Energy.gov [DOE]

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  18. The new Mercedes-Benz OM 904 LA light heavy-duty diesel engine for class 6 trucks

    SciTech Connect (OSTI)

    Schittler, M.; Bergmann, H.; Flathmann, K.

    1996-09-01

    As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer--Mercedes-Benz AG--is step by step renewing its entire product range. This primarily refers to the heart of the vehicles--the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the US by DDC under the label Series 55, has had its premiere in Freightliner`s Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms multi-valve technology, high-pressure injection via unit pumps and electronic engine control. This small engine has several interesting features, which--up to now--were only known from class 8 engines. In addition to fulfilling increased customer demands with regard to long service life, easy maintenance, reliability and economy, great attention was paid during the design of the engine to not only fulfill the global regulations, but also account for sufficient potential to comply with further aggravations to be expected. The most important design features and the attained engine ratings are indicated and explained in detail.

  19. Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Presentation given by DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about class 8 truck freight efficiency improvement project. arravt080_vss_rotz_2015_o.pdf (2.28 MB) More Documents & Publications

  20. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Technologies for Efficiency Improvement | Department of Energy SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain technologies for efficiency improvement.

  1. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects p-10_edgar.pdf (364.34 KB) More Documents & Publications Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technical Workshop: Annual Merit Review Lessons Learned on Alternative Transportation

  2. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  3. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  4. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press

  5. Super Truck Program: Engine Project Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement deer11_sisken.pdf (2.17 MB) More Documents & Publications Super Truck Program: Engine Project Review High-Efficiency Engine Technologies Session Introduction Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies

  6. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  7. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  8. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Petroleum Reduction Requirements The California Department of General Services (DGS) is responsible for maintaining specifications and standards for passenger cars and light-duty trucks that are purchased or leased for state office, agency, and department use. These specifications include minimum vehicle emissions standards and encourage the purchase or lease of fuel-efficient and alternative fuel vehicles (AFVs). On an annual basis, DGS must compile information

  11. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  12. Apex nuclear fuel cycle for production of light water reactor fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Hiroshi, T.; Powell, J.R.

    1982-09-01

    The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of less than or equal to 1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X 10/sup 6/-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (..beta..-diketonate) and distillation of the organometallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment.

  13. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployed Fuel Cell Powered Lift Trucks | Department of Energy Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks. 13008_industry_lift_truck_deployments.pdf (296.11 KB) More Documents & Publications Early Markets: Fuel Cells for Material

  14. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  15. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Properties on Light-Duty Engine Performance and Emissions Impact of Fuel Properties on Light-Duty Engine Performance and Emissions Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels. deer08_koehler.pdf (1.58 MB) More Documents & Publications Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

  16. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  17. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious

  18. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Vehicles | Department of Energy Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles This document, revised in May 2015, describes the basis for the technical targets for onboard hydrogen storage for light-duty fuel cell vehicles in the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan and includes a detailed explanation of

  19. Sustainability Considerations in Spent Light-water Nuclear Fuel Retrievability

    SciTech Connect (OSTI)

    Wood, Thomas W.; Rothwell, Geoffrey

    2012-01-10

    This paper examines long-term cost differences between two competing Light Water Reactor (LWR) fuels: Uranium Oxide (UOX) and Mixed Uranium Oxide-Plutonium Oxide (MOX). Since these costs are calculated on a life-cycle basis, expected savings from lower future MOX fuel prices can be used to value the option of substituting MOX for UOX, including the value of maintaining access to the used UOX fuel that could be reprocessed to make MOX. The two most influential cost drivers are the price of natural uranium and the cost of reprocessing. Significant and sustained reductions in reprocessing costs and/or sustained increases in uranium prices are required to give positive value to the retrievability of Spent Nuclear Fuel. While this option has positive economic value, it might not be exercised for 50 to 200 years. Therefore, there are many years for a program during which reprocessing technology can be researched, developed, demonstrated, and deployed. Further research is required to determine whether the cost of such a program would yield positive net present value and/or increases the sustainability of LWR energy systems.

  20. Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams

    Broader source: Energy.gov [DOE]

    Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

  1. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045_ti_white_2012_o.pdf (517.25 KB) More Documents & Publications Heavy-Duty Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging the Gap

  2. The Increasing Role of Diesel Trucks in National Petroleum Use...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  3. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  4. NREL Highlight: Truck Platooning Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-21

    NREL's fleet test and evaluation team assesses the fuel savings potential of semi-automated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. In 2014, the team conducted track testing of three SmartWay tractor - two platooned tractors and one control tractor—at varying steady-state speeds, following distances, and gross vehicle weights. While platooning improved fuel economy at all speeds, travel at 55 mph resulted in the best overall miles per gallon. The lead truck demonstrated fuel savings up to 5.3% while the trailing truck saved up to 9.7%. A number of conditions impact the savings attainable, including ambient temperature, distance between lead and trailing truck, and payload weight. Future studies may look at ways to optimize system fuel efficiency and emissions reductions.

  5. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrate technologies to improve heavy-truck freight efficiency by more than 100 ... plug in hybrid vehicle powertrain that reduces fuel consumption by 50 percent. ...

  6. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck Aerodynamic Drag ...

  7. Vehicle Technologies Office Issues Notice of Intent for SuperTruck...

    Office of Environmental Management (EM)

    ... are "impressive" and will "significantly reduce the fuel consumption of Class 8 tractor-trailer vehicles." National Academy of Sciences Reviews 21st Century Truck Partnership

  8. Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Director, Fuel Cell Technologies Office What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers

  9. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or

  10. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  11. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect (OSTI)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002

  12. Light Weight, Low Cost PEM Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell stacks, was given at a February 2007 meeting on new fuel cell projects.

  13. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

  14. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  15. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  16. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy 7: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy since the Environmental Protection Agency (EPA) began recording new car fuel economy data in 1975. In addition, the 22.4

  17. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  18. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  19. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for CFL and LED light bulbs,...

  20. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  1. DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling January 29, 2004 Golden, Colo. - The U.S. Department of Energy's Advanced Vehicle Testing Activity has awarded separate project grants to Caterpillar Inc. and Schneider National Inc. to investigate technologies that reduce truck idling. According to industry experts, truck idling consumes more than 800 million gallons of fuel each year. Reducing the amount of fuel needed to support idling activities, such as

  2. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Fuel Cell Product CertificationListing Lessons Learned Market Transformation ...

  3. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Google Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Delicious Rank

  4. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  6. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  7. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  8. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  10. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.