National Library of Energy BETA

Sample records for light sources neutron

  1. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  2. Neutron producing target for accelerator based neutron source for

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    247 Neutron producing target for accelerator based neutron source for NCT V. Belov1 , S. Fadeev1, Russia Summary Neutron producing targets for novel accelerator based neutron source [1, 2] are presented Neutron producing target is one of the main elements of proposed accelerator based facility for neutron

  3. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  4. Research on fusion neutron sources

    SciTech Connect (OSTI)

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  5. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  6. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  7. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  8. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  9. Linac Coherent Light Source Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  10. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  11. Neutron Sources for Standard-Based Testing

    SciTech Connect (OSTI)

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  12. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  13. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this site SandiaSpallation Neutron

  14. The Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  15. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  16. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron...

  17. Light Source Effects

    E-Print Network [OSTI]

    Forbus, K.

    1977-05-01

    The perception of surface luster in achromatic single view images seems to depend on the existence of regions with source-like properties. These regions are due to the interaction of specular component of the surface's ...

  18. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  19. Aspects of a high intensity neutron source

    E-Print Network [OSTI]

    Chapman, Peter H. (Peter Henry)

    2010-01-01

    A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

  20. SNS | Spallation Neutron Source | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located...

  1. An Accelerator Neutron Source for BNCT

    SciTech Connect (OSTI)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  2. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  3. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01

    upgrade on the Advanced Light Source," Nucl. Instrum. Meth.n photoemission at the Advanced Light Source," Radiât. Phys.high-pressure studies at the Advanced Light Source w i t h a

  4. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    SciTech Connect (OSTI)

    Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-02-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

  5. A neutron producing target for BINP accelerator-based neutron source B. Bayanova

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    A neutron producing target for BINP accelerator-based neutron source B. Bayanova , E. Kashaeva b l e i n f o Keywords: Target Lithium Neutron capture therapy Epithermal neutrons a b s t r a c t An innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute

  6. National Synchrotron Light Source II

    ScienceCinema (OSTI)

    Steve Dierker

    2010-01-08

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  7. National Synchrotron Light Source Activity Report 1998

    SciTech Connect (OSTI)

    Rothman, Eva

    1999-05-01

    National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

  8. Supernova neutrino detection at spallation neutron sources

    E-Print Network [OSTI]

    Huang, Ming-Yang; Young, Bing-Lin

    2015-01-01

    With considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given.

  9. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  10. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  11. Light curves from rapidly rotating neutron stars

    E-Print Network [OSTI]

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  12. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

  13. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  14. Advanced Neutron Source (ANS) Project progress report FY 1992

    SciTech Connect (OSTI)

    Campbell, J.H. [ed.; Selby, D.L.; Harrington

    1993-01-01

    This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

  15. Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources

    SciTech Connect (OSTI)

    Tang, V; Morse, J; Meyer, G; Falabella, S; Guethlein, G; Kerr, P; Park, H G; Rusnak, B; Sampayan, S; Schmid, G; Spadaccini, C; Wang, L

    2008-08-08

    Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled [1-4]. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

  16. Di-neutron correlation in light neutron-rich nuclei

    E-Print Network [OSTI]

    K. Hagino; H. Sagawa; P. Schuck

    2008-12-03

    Using a three-body model with density-dependent contact interaction, we discuss the root mean square distance between the two valence neutrons in $^{11}$Li nuclues as a function of the center of mass of the neutrons relative to the core nucleus $^9$Li. We show that the mean distance takes a pronounced minimum around the surface of the nucleus, indicating a strong surface di-neutron correlation. We demonstrate that the pairing correlation plays an essential role in this behavior. We also discuss the di-neutron structure in the $^8$He nucleus.

  17. NEUTRON PRODUCTION BY NEUTRAL BEAM SOURCES

    E-Print Network [OSTI]

    Berkner, K.H.

    2010-01-01

    HORSE Code—A Hultigroup Neutron and Gamma-Say Honte CarloR. Smith, "A Tantalus Fast Neutron Integrator," UCRL-17051.FiS- 9 Neutron dose during 3 months of typical TSUI

  18. Novel neutron focusing mirrors for compact neutron sources

    E-Print Network [OSTI]

    Gubarev, M. V.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

  19. New Light Sources for Tomorrow's Lighting Designs 

    E-Print Network [OSTI]

    Krailo, D. A.

    1986-01-01

    and lighting systems. Table 2 shows the development of four-foot energy-saving retrofit lamps. By utilizing new cathode designed and different gas fills, 34-watt energy-saving lamps were developed that operate on existing rapid start ballasts and afford... of fluorescent lamps, two watts of system power are consumed in heating the lamp cath odes. The shedding of cathode heating wattage was the next lamp efficiency improvement to be introduced. One available sy tern dis connects the lamp cathodes from...

  20. Nuclear Physics: The Ultracold Neutron Source Kippen, Karen E...

    Office of Scientific and Technical Information (OSTI)

    Physics: The Ultracold Neutron Source Kippen, Karen E. Los Alamos National Laboratory Los Alamos National Laboratory; Clayton, Steven Los Alamos National Laboratory Los...

  1. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  2. Light production metrics of radiation sources

    E-Print Network [OSTI]

    C. Tannous

    2013-11-14

    Light production by a radiation source is evaluated and reviewed as an important concept of physics from the Black-Body point of view. The mechanical equivalent of the lumen, the unit of perceived light, is explained and evaluated using radiation physics arguments. The existence of an upper limit of luminous efficacy is illustrated for various sources and implications are highlighted.

  3. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  4. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  5. Compact neutron source development at LBNL

    E-Print Network [OSTI]

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-01-01

    used for lead and polyethylene shielding for the secondaryinside the lead/polyethylene shielding. The neutron yield

  6. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect (OSTI)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial reencapsulators domestically and internationally. Sealed {sup 252}Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of {sup 252}Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations.

  7. Advanced Light Source QUICK FACTS

    E-Print Network [OSTI]

    : Electrons with a nominal energy of 1.9 GeV ~0.20 mm × 0.02 mm (about the width of a human hair) Electrons and x-ray light that is directed down beamlines to experiment endstations. Size of Electron Beam: 35 around the storage ring, the electrons emit synchrotron radiation--energy in the form of photons

  8. Industry Group Learns About Light Source Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breakthrough required the use of light sources allowing them to understand the internal chemistry of a battery in real-time. Plexxikon-a Berkeley-based drug company-used Berkeley...

  9. National Synchrotron Light Source annual report 1988

    SciTech Connect (OSTI)

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  10. Advanced Light Source Activity Report 2000

    SciTech Connect (OSTI)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  11. Advanced Light Source Activity Report 2002

    SciTech Connect (OSTI)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  12. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  13. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect (OSTI)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  14. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    to inelastic neutron scattering, such studies providestudies have replaced neutron scattering as the technique ofusing spin-echo neutron scattering or quasi-elastic nuclear

  15. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  16. Slower, colder, longer : prospects for a very cold neutron source.

    SciTech Connect (OSTI)

    Micklich, B. J.; Carpenter, J. M.; Intense Pulsed Neutron Source

    2007-01-01

    The motivation for our study is to establish the prospects for a neutron source providing intense pulsed beams with spectra as cold as is realistic. The scientific motivation is to serve applications in nanoscience, biology and technology.

  17. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  18. Design and Demonstration of a Quasi-monoenergetic Neutron Source

    SciTech Connect (OSTI)

    Joshi, T.; Sangiorgio, Samuele; Mozin, Vladimir V.; Norman, E. B.; Sorensen, Peter F.; Foxe, Michael P.; Bench, G.; Bernstein, A.

    2014-03-05

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the 7Li(p,n)7Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative lters such as vanadium and manganese are also explored and the possibility of studying the response of di*erent materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  19. Haloes and Clustering in Light, Neutron-Rich Nuclei

    E-Print Network [OSTI]

    N. A. Orr

    2001-08-24

    Clustering is a relatively widespread phenomena which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain.

  20. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  1. Measuring the fusion of neutron-rich light nuclei at and below the

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Neutron Stars The crust of an accreting neutron star is a unique environment for nuclear reactions. FusionMeasuring the fusion of neutron-rich light nuclei at and below the Coulomb barrier SYLVIE HUDAN August , 2012 #12;Fusion of neutron-rich light nuclei at and below the Coulomb barrierSylvie Hudan

  2. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    E-Print Network [OSTI]

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  3. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  4. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  5. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  6. NRC Construction Light Source Flicker: What We

    E-Print Network [OSTI]

    California at Davis, University of

    NRC Construction Light Source Flicker: What We Need to Know, and Why You Should Care NRC Construction Jennifer A. Veitch, Ph.D. (c) 2013, National Research Council Canada #12;NRC Construction Handbook: Reference & Application (9th Ed.), 2000, p. 3-20 #12;NRC Construction Flicker Effects 1

  7. Future Synchrotron Light Sources Based on Ultimate Storage Rings...

    Office of Scientific and Technical Information (OSTI)

    ACCELERATORS; APERTURES; BRIGHTNESS; DIFFRACTION; ELECTRON BEAMS; ELECTRONS; ENERGY RECOVERY; LIFETIME; LIGHT SOURCES; LINEAR ACCELERATORS; OPTIMIZATION; PHOTONS;...

  8. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-$\\alpha$ Scattering, and Neutron Matter

    E-Print Network [OSTI]

    Lynn, J E; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2015-01-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-$\\alpha$ scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N$^2$LO). The two undetermined 3N low-energy couplings are fit to the $^4$He binding energy and, for the first time, to the spin-orbit splitting in the neutron-$\\alpha$ $P$-wave phase shifts. Furthermore, we investigate different choices of local 3N operator structures and find that chiral interactions at N$^2$LO are able to simultaneously reproduce the properties of $A=4,5$ systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  9. Backscatter absorption gas imaging systems and light sources therefore

    DOE Patents [OSTI]

    Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  10. Linac Coherent Light SourCe

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONtoLighting SystemLinac Coherent Light SourCe

  11. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    Permanent-Magnet Mi- crowave Ion Source for a Compact High-Yield Neutron Generator,Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generatorgenerator. Microwave ion sources, however, A permanent-magnet

  12. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  13. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  14. Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes

    SciTech Connect (OSTI)

    Tang, Kuo-Hsiang [Washington Univ., St. Louis, MO (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States)

    2011-06-28

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.

  15. Light Source Interpolation for Sparsely Sampled Reflectance Fields

    E-Print Network [OSTI]

    Stanford University

    Light Source Interpolation for Sparsely Sampled Reflectance Fields Billy Chen, Hendrik P. A. Lensch present a technique that approximates the correct result of relighting from intermediate light source resolution in the light source positions is rather lim- ited. As a consequence, smoothly moving high- lights

  16. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  17. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    S. Kar; A. Green; H. Ahmed; A. Alejo; A. P. L. Robinson; M. Cerchez; R. Clarke; D. Doria; S. Dorkings; J. Fernandez; S. R. Mirfyazi; P. McKenna; K. Naughton; D. Neely; P. Norreys; C. Peth; H. Powell; J. A. Ruiz; J. Swain; O. Willi; M. Borghesi

    2015-07-16

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  18. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  19. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

    E-Print Network [OSTI]

    Wu, Ying

    2010-01-01

    compact RF-driven neutron generator Los Alamos NationalSource for a Neutron Generator Used For Associated Particleprototype compact neutron generator for associated particle

  20. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    E-Print Network [OSTI]

    M. Lantz; D. Gorelov; A. Jokinen; V. S. Kolhinen; A. Mattera; H. Penttilä; S. Pomp; V. Rakopoulos; S. Rinta-Antila; A. Solders

    2013-04-09

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.

  1. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  2. Neutron Stars with a Stable, Light Supersymmetric Baryon

    E-Print Network [OSTI]

    Shmuel Balberg; Glennys R. Farrar; Tsvi Piran

    2001-04-10

    If a light gluino exists, the lightest gluino-containing baryon, the \\OSO, is a possible candidate for self-interacting dark matter. In this scenario, the simplest explanation for the observed ratio $\\Omega_{dm}/\\Omega_b \\approx 6-10$ is that $m_{S^0} \\sim 900$\\MeVcs; this is not at present excluded by particle physics. Such an \\OSO could be present in neutron stars, with hyperon formation serving as an intermediate stage. We calculate equilibrium compositions and equation of state for high density matter with the \\OSO, and find that for a wide range of parameters the properties of neutron stars with the \\OSO are consistent with observations. In particular, the maximum mass of a nonrotating star is $1.7-1.8 M_\\odot$, and the presence of the \\OSO is helpful in reconciling observed cooling rates with hyperon formation.

  3. Superbend upgrade of the Advanced Light Source

    SciTech Connect (OSTI)

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  4. Plasma-based EUV light source

    DOE Patents [OSTI]

    Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  5. Development of an LED reference light source for calibration of radiographic imaging detectors

    E-Print Network [OSTI]

    M. Weierganz; D. Bar; B. Bromberger; V. Dangendorf; G. Feldman; M. B. Goldberg; M. Lindemann; I. Mor; K. Tittelmeier; D. Vartsky

    2010-02-08

    A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the LED light is transported to the image plane of the camera and provides a stable reference exposure. This is used to normalize the images during off-line image processing. We have investigated parameters influencing the stability of LEDs and developed procedures and criteria to prepare and select LEDs suitable for delivering stable light outputs for several 100 h of operation.

  6. Aalborg Universitet Current-voltage model of LED light sources

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    Aalborg Universitet Current-voltage model of LED light sources Beczkowski, Szymon; Munk version (APA): Beczkowski, S., & Munk-Nielsen, S. (2012). Current-voltage model of LED light sources from vbn.aau.dk on: juli 06, 2015 #12;Current-voltage model of LED light sources Szymon Bczkowski, Stig

  7. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect (OSTI)

    Milanese, M.; Moroso, R.; Barbaglia, M.; Universidad del Centro de la Provincia de Buenos Aires , Pinto 399, Tandil 7000, Buenos Aires ; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  8. Laser Probing of Neutron-Rich Nuclei in Light Atoms

    E-Print Network [OSTI]

    Z. -T. Lu; P. Mueller; G. W. F. Drake; W. Noertershaeuser; Steven C. Pieper; Z. -C. Yan

    2013-07-10

    The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  9. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    permanent-magnet microwave ion source for the high-yield neutron generator.Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron GeneratorPermanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator ?

  10. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOE Patents [OSTI]

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  11. Status of the SAGA Light Source

    SciTech Connect (OSTI)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2010-06-23

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

  12. Are there good probes for the di-neutron correlation in light neutron-rich nuclei?

    E-Print Network [OSTI]

    Hagino, K

    2015-01-01

    The di-neutron correlation is a spatial correlation with which two valence neutrons are located at a similar position inside a nucleus. We discuss possible experimental probes for the di-neutron correlation. This includes the Coulomb breakup and the pair transfer reactions of neutron-rich nuclei, and the direct two-neutron decays of nuclei beyond the neutron drip-line.

  13. An ALS (Advanced Light Source) handbook

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    This booklet aims to provide the prospective user of the Advanced Light Source with a concise description of the radiation a researcher might expect at his or her experimental station. The focus is therefore on the characteristics of the light that emerges from insertion devices and bending magnets and on how components of the beam lines further alter the properties of the radiation. The specifications and operating parameters of the ALS injection system and storage ring are of only peripheral interest. To this end, Sections 3 and 5 and most of Section 4 are devoted to summary presentations, by means of performance plots and tabular compilations, of radiation characteristics at the ALS--spectral brightness, flux, coherent power, resolution, time structure, etc.--assuming a representative set of four undulators and one wiggler and a corresponding set of five beam lines. As a complement to these performance summaries, Section 1 is a general introductory discussion of synchrotron radiation and the ALS, and Section 2 provides a compendious introduction to the characteristics of synchrotron radiation from bending magnets, wigglers, and undulators. In addition, Section 4 briefly introduces the theory of diffraction grating and crystal monochromators. 15 refs., 28 figs., 5 tabs.

  14. Performance of a Clad Tungsten Rod Spallation Neutron Source Target

    SciTech Connect (OSTI)

    Sommer, Walter F. [Los Alamos National Laboratory (United States); Maloy, Stuart A. [Los Alamos National Laboratory (United States); Louthan, McIntyre R. [Savannah River National Laboratory (United States); Willcutt, Gordon J. [Los Alamos National Laboratory (United States); Ferguson, Phillip D. [Oak Ridge National Laboratory (United States); James, Michael R. [Los Alamos National Laboratory (United States)

    2005-09-15

    Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of {approx}4 x 10{sup 21} p/cm{sup 2}. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm{sup 3}. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271 deg. C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.

  15. $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

    E-Print Network [OSTI]

    Gallino, R; Husti, L; Käppeler, F; Cristallo, S; Straniero, O

    2006-01-01

    $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

  16. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect (OSTI)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work explaining how one class of proteins helps to generate nerve impulses.

  17. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect (OSTI)

    Lisin, V. A.; Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 ; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  18. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator O. Waldmanna-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable with an optimized magnetic field. Keywords: Neutron generator, Microwave ion source, Active interroga- tion PACS: 29

  19. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  20. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  1. Homegrown solution for synchrotron light source | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and powerful facility. Concerned that this would leave him without the low-energy light source he needed to study the electronic properties of new materials, he improvised,...

  2. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect (OSTI)

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

  3. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect (OSTI)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

  4. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  5. SPALLATION NEUTRON SOURCE RING-DESIGN AND CONSTRUCTION SUMMARY.

    SciTech Connect (OSTI)

    WEI,J.

    2005-05-16

    After six years, the delivery of components for the Spallation Neutron Source (SNS) accumulator ring (AR) and the transport lines was completed in Spring 2005. Designed to deliver 1.5 MW beam power (1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures were implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the design, R&D, and construction of the ring and transport systems.

  6. A compact neutron generator using a field ionization source

    SciTech Connect (OSTI)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2011-10-31

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  7. A compact neutron generator using a field ionization source

    E-Print Network [OSTI]

    Persaud, Arun

    2012-01-01

    Handbook of Fast Neutron Generators Volume I (CRC Press,A compact neutron generator using a ?eld ionization sourcewell logging with neutron generators. 2 Due to the harsh en-

  8. Demonstration of a solid deuterium source of ultra-cold neutrons

    E-Print Network [OSTI]

    A. Saunders; J. M. Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. E. Hill; M. Hino; S. Hoedl; G. E. Hogan; T. M. Ito; K. W. Jones; T. Kawai; K. Kirch; S. K. Lamoreaux; C. -Y. Liu; M. Makela; L. J. Marek; J. W. Martin; C. L. Morris; R. N. Mortensen; A. Pichlmaier; S. J. Seestrom; A. Serebrov; D. Smith; W. Teasdale; B. Tipton; R. B. Vogelaar; A. R. Young; J. Yuan

    2003-12-18

    Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.

  9. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  10. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  11. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  12. Experimental and numerical characterization of the neutron field produced in the n@BTF Frascati photo-neutron source

    E-Print Network [OSTI]

    Bedogni, R.; Buonomo, B.; Esposito, A.; Mazzitelli, G.; Foggetta, L.; Gomez Ros. J.M.; 10.1016/j.nima.2011.08.032

    2011-01-01

    A photo-neutron irradiation facility is going to be established at the Frascati National Laboratories of INFN on the base of the successful results of the n@BTF experiment. The photoneutron source is obtained by an electron or positron pulsed beam, tunable in energy, current and in time structure, impinging on an optimized tungsten target located in a polyethylene-lead shielding assembly. The resulting neutron field, through selectable collimated apertures at different angles, is released into a 100 m2 irradiation room. The neutron beam, characterized by an evaporation spectrum peaked at about 1 MeV, can be used in nuclear physics, calibration of neutron detectors, material

  13. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  14. Thermal neutron steady-state spectra in light water reactor fuel assemblies poisoned with various non-1/v absorbers of different concentrations

    SciTech Connect (OSTI)

    Swaminathan, K.; Chandra, S.; Jha, R.C.; Tewari, S.P. )

    1991-07-01

    This paper reports on the thermal neutron scattering kernel that explicitly incorporates the presence of chemical binding energy and the collective oscillations in the dynamics of water, the steady-state thermal neutron spectra in light water reactor fuel assemblies poisoned with non-1/v absorbers, such as cadmium, samarium, erbium, and gadolinium, in various concentrations have been computed at 298 K. The calculated spectra are in reasonable agreement with the corresponding experimental spectra for realistic source terms.

  15. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  16. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect (OSTI)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  17. Probing neutrino magnetic moments at Spallation Neutron Source facilities

    E-Print Network [OSTI]

    T. S. Kosmas; O. G. Miranda; D. K. Papoulias; M. Tortola; J. W. F. Valle

    2015-07-15

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a chi^2 analysis employing realistic nuclear structure calculations in the context of the quasi-particle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for Standard Model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge-radius. We illustrate our results for various choices of experimental setup and target material.

  18. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect (OSTI)

    Stout, Daniel S [ORNL] [ORNL; Assadi, Saeed [ORNL] [ORNL; Campisi, Isidoro E [ORNL] [ORNL; Casagrande, Fabio [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; DeVan, Bill [ORNL] [ORNL; Hardek, Thomas W [ORNL] [ORNL; Henderson, Stuart D [ORNL] [ORNL; Howell, Matthew P [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Stone Jr, William C [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Williams, Derrick C [ORNL] [ORNL; Wright, Paul Alan [ORNL] [ORNL

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  19. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    COHERENT Collaboration; D. Akimov; P. An; C. Awe; P. S. Barbeau; P. Barton; B. Becker; V. Below; A. Bolozdynya; A. Burenkov; B. Cabrera-Palmer; J. I. Collar; R. J. Cooper; R. L. Cooper; C. Cuesta; D. Dean; J. Detwiler; Y. Efremenko; S. R. Elliott; N. Fields; W. Fox; A. Galindo-Uribarri; M. Green; M. Heath; S. Hedges; N. Herman; D. Hornback; E. B. Iverson; L. Kaufman; S. R. Klein; A. Khromov; A. Konovalev; A. Kumpan; C. Leadbetter; L. Li; W. Lu; A. Melikyan; D. Markoff; K. Miller; M. Middlebrook; P. Mueller; P. Naumov; J. Newby; D. Parno; S. Penttila; G. Perumpilly; D. Radford; H. Ray; J. Raybern; D. Reyna; G. C. Rich; D. Rimal; D. Rudik; K. Scholberg; B. Scholz; W. M. Snow; A. Sosnovchev; A. Shakirov; S. Suchyta; B. Suh; R. Tayloe; R. T. Thornton; A. Tolstukhin; K. Vetter; C. H. Yu

    2015-09-29

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  20. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01

    on the construction of LCLS, the first hard x-ray laser, towith storage-ring sources and LCLS will extend this down todown to sub-microseconds and LCLS will cover the range from

  1. Designing subwavelength-structured light sources

    E-Print Network [OSTI]

    Chua, Song Liang

    2013-01-01

    The laser has long been established as the best possible optical source for fundamental studies and applications requiring high field intensity, single mode operation, a high degree of coherence, a narrow linewidth and ...

  2. Studies of light neutron-excess systems from bounds to continuum

    SciTech Connect (OSTI)

    Ito, Makoto; Otsu, Hideaki

    2012-10-20

    The generalized two-center cluster model (GTCM), which can handle various single particle configurations in general two center systems, is applied to the light neutron-rich system, {sup 12}Be = {alpha}+{alpha}+4N. We discuss the change of the neutrons' configuration around two {alpha}-cores as a variation of an excitation energy. We show that the excess neutrons form various chemical-bondinglike configurations around two {alpha} cores in the unbound region above the {alpha} decay threshold. The possibility of the {alpha} cluster formation in the heavier neutron-excess system, {sup 28}Ne, is also discussed.

  3. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  4. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  5. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  6. ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT

    E-Print Network [OSTI]

    ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and waste); and environmental permits and management criteria (resource conservation, pollution prevention and waste

  7. Synchronization System for Next Generation Light Sources

    SciTech Connect (OSTI)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  8. New Directions in X-Ray Light Sources

    ScienceCinema (OSTI)

    Falcone, Roger

    2010-01-08

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  9. Absolute Calibration of a Large-diameter Light Source

    E-Print Network [OSTI]

    Brack, J T; Dorofeev, A; Gookin, B; Harton, J L; Petrov, Y; Rovero, A C

    2013-01-01

    A method of absolute calibration for large aperture optical systems is presented, using the example of the Pierre Auger Observatory fluorescence detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm.

  10. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    Akimov, D; Awe, C; Barbeau, P S; Barton, P; Becker, B; Below, V; Bolozdynya, A; Burenkov, A; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Dean, D; Detwiler, J; Efremenko, Y; Elliott, S R; Fields, N; Fox, W; Galindo-Uribarri, A; Green, M; Heath, M; Hedges, S; Herman, N; Hornback, D; Iverson, E B; Kaufman, L; Klein, S R; Khromov, A; Konovalev, A; Kumpan, A; Leadbetter, C; Li, L; Lu, W; Melikyan, A; Markoff, D; Miller, K; Middlebrook, M; Mueller, P; Naumov, P; Newby, J; Parno, D; Penttila, S; Perumpilly, G; Radford, D; Ray, H; Raybern, J; Reyna, D; Rich, G C; Rimal, D; Rudik, D; Scholberg, K; Scholz, B; Snow, W M; Sosnovchev, A; Shakirov, A; Suchyta, S; Suh, B; Tayloe, R; Thornton, R T; Tolstukhin, A; Vetter, K; Yu, C H

    2015-01-01

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT...

  11. The Neutron Energy Spectrum Study from the Phase II Solid Methane Moderator at the LENS Neutron Source

    E-Print Network [OSTI]

    Yunchang Shin; W. Mike Snow; Christopher M. Lavelle; David V. Baxter; Xin Tong; Haiyang Yan; Mark Leuschner

    2007-11-19

    Neutron energy spectrum measurements from a solid methane moderator were performed at the Low Energy Neutron Source (LENS) at Indiana University Cyclotron Facility (IUCF) to verify our neutron scattering model of solid methane. The time-of-flight method was used to measure the energy spectrum of the moderator in the energy range of 0.1$meV\\sim$ 1$eV$. Neutrons were counted with a high efficiency $^{3}{He}$ detector. The solid methane moderator was operated in phase II temperature and the energy spectra were measured at the temperatures of 20K and 4K. We have also tested our newly-developed scattering kernels for phase II solid methane by calculating the neutron spectral intensity expected from the methane moderator at the LENS neutron source using MCNP (Monte Carlo N-particle Transport Code). Within the expected accuracy of our approximate approach, our model predicts both the neutron spectral intensity and the optimal thickness of the moderator at both temperatures. The predictions are compared to the measured energy spectra. The simulations agree with the measurement data at both temperatures.

  12. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  13. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stöhr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  14. Sub-Barrier Fusion Cross-Sections of Neutron-Rich Light Nuclei Indiana University, GANIL, Western Michigan Univ., Michigan State Univ.

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    . Horowitz) Physics Motivations: Neutron Star Crust Fusion Dynamics EOS The crust of an accreting neutron star is a unique environment for pycnonuclear (density driven) fusion of neutron-rich light nuclei of neutron star merger is influenced by EOS. #12;IU: Sub-Barrier Fusion Cross-Sections of Neutron-Rich Light

  15. Transportation Channel with Uniform Electron Distribution for the Kharkov Neutron Source based on Subcritical Assembly Driven with Linear Accelerator

    E-Print Network [OSTI]

    Zelinsky, A Y

    2008-01-01

    Transportation Channel with Uniform Electron Distribution for the Kharkov Neutron Source based on Subcritical Assembly Driven with Linear Accelerator

  16. National Synchrotron Light Source annual report 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  17. Light source employing laser-produced plasma

    DOE Patents [OSTI]

    Tao, Yezheng; Tillack, Mark S

    2013-09-17

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  18. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect (OSTI)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  19. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G. (Glenville, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY); Gregurech, Steve (Scotia, NY)

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  20. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  1. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  2. Generating polarization controllable FELs at Dalian coherent light source

    E-Print Network [OSTI]

    Zhang, T; Wang, D; Zhao, Z T; Zhang, W Q; Wu, G R; Dai, D X; Yang, X M

    2013-01-01

    The property of the FEL polarization is of great importance to the user community. FEL pulses with ultra-high intensity and flexible polarization control ability will absolutely open up new scientific realms. In this paper, several polarization control approaches are presented to investigate the great potential on Dalian coherent light source, which is a government-approved novel FEL user facility with the capability of wavelength continuously tunable in the EUV regime of 50-150 nm. The numerical simulations show that both circularly polarized FELs with highly modulating frequency and 100 microjoule level pulse energy could be generated at Dalian coherent light source.

  3. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  4. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  5. The Influence of Reprocessing in the Column on the Light Curves of Accretion Powered Neutron Stars

    E-Print Network [OSTI]

    Miljenko Cemeljic; Tomasz Bulik

    1998-01-16

    Flow of matter onto strongly magnetized neutron stars in X-ray binaries proceeds through accretion funnels that roughly follow geometry of the magnetic field. X-rays originate near surface of the neutron star, and it may happen that the accretion flow passes through the line of sight as the star rotates. We consider the effects of such accretion flow eclipses on the X-ray light curves of accretion powered pulsars, and present a set of X-ray light-curves measured by BATSE for A0535+262 for which this phenomenon is very likely to take place.

  6. Proceedings of the 10th meeting of the international collaboration on advanced neutron sources

    SciTech Connect (OSTI)

    Hyer, D.K.

    1989-03-01

    This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

  7. Designing and testing the neutron source deployment system and calibration plan for a dark matter detector

    E-Print Network [OSTI]

    Westerdale, Shawn (Shawn S.)

    2011-01-01

    In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

  8. Polygonal Light Source Estimation Dirk Schnieders, Kwan-Yee K. Wong, and Zhenwen Dai

    E-Print Network [OSTI]

    Wong, Kenneth K.Y.

    Polygonal Light Source Estimation Dirk Schnieders, Kwan-Yee K. Wong, and Zhenwen Dai Department,kykwong,zwdai]@cs.hku.hk Abstract. This paper studies the problem of light estimation using a specular sphere. Most existing work on light estimation assumes distant point light sources, while this work considers an area light source

  9. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect (OSTI)

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  10. Compact X-ray Light Source Workshop Report

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  11. Source Attribution of Light Absorbing Aerosol in Arctic Snow

    E-Print Network [OSTI]

    Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008 Biomass/poll. Factor: all data Pollution factor: depth data #12;2009 Data set for receptor modeling with limited analytes Factor 1: biomass Factor 2: pollution Factor 3: marine Factor 4: biomass #12;Factor

  12. Surface-electrode ion trap with integrated light source

    E-Print Network [OSTI]

    Kim, Tony Hyun

    An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupolequbit transition of ...

  13. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect (OSTI)

    Damian, J. I. Marquez; Granada, J. R. [Neutron Physics Department and Instituto Balseiro, Centro Atomico Bariloche, CNEA (Argentina); Malaspina, D. C. [Department of Biomedical Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  14. Development of a Time-tagged Neutron Source for SNM Detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; Waldron, Will; Tinsley, Jim

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore »extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  15. Probing Halo and Molecular States in Light, Neutron-Rich Nuclei

    E-Print Network [OSTI]

    N. A. Orr

    2002-02-05

    Selected topics on halo and molecular states in light, neutron-rich nuclei are discussed. In particular, work on $x\\alpha$:X$n$ structures is briefly reviewed. The use of proton radiative capture as a probe of clustering is also presented through the example provided by the $^6$He(p,$\\gamma$) reaction.

  16. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    SciTech Connect (OSTI)

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert [Alameda Applied Sciences Corporation, 3077 Teagarden Street, San Leandro, CA 94577 (United States); Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Lane, Stephen [NSF Center for Biophotonics and School of Medicine, University of California Davis, Sacramento CA, 95817 (United States)

    2011-12-13

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at {approx}10-50 Hz and emits {approx}10{sup 6}n/pulse at a peak current of 100 kA. Both sources emit 2.45{+-}0.1 MeV(DD) neutron pulses of {approx}25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm{sup 3} in volume.

  17. Near and Sub-Barrier Fusion of Neutron-Rich Light Nuclei J. P. Schmidt, T. K. Steinbach, B. B. Wiggins, J. Vadas,

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    environment for density driven fusion of neutron- rich light nuclei. Accreting neutron stars have been of the detector. The temperature of the neutron star crust, however, is too low for 12C fusion to occur. FusionBeam B E Near and Sub-Barrier Fusion of Neutron-Rich Light Nuclei J. P. Schmidt, T. K. Steinbach, B

  18. A TARGETED SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration101; and others

    2014-07-10

    A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine ''target sets'', in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.

  19. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    SciTech Connect (OSTI)

    Gheisari, R.; Firoozabadi, M. M.; Mohammadi, H.

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (? ? z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79?×?10{sup 6} cm{sup ?2}s{sup ?1} and 2.20 ×10{sup 5} cm{sup ?3}s{sup ?1}, respectively.

  20. A proposed search for new light bosons using a table-top neutron Ramsey apparatus

    E-Print Network [OSTI]

    F. M. Piegsa; G. Pignol

    2011-11-08

    If a new light boson existed, it would mediate a new force between ordinary fermions, like neutrons. In general such a new force is described by the Compton wavelength $\\lambda_c$ of the associated boson and a set of dimensionless coupling constants. For light boson masses of about $10^-4$ eV, $\\lambda_c$ is of the order millimeters. Here, we propose a table-top particle physics experiment which provides the possibility to set limits on the strength of the coupling constants of light bosons with spin-velocity coupling. It utilises Ramsey's technique of separated oscillating fields to measure the pseudo-magnetic effect on neutron spins passing by a massive sample.

  1. Cathode R&D for Future Light Sources

    SciTech Connect (OSTI)

    Dowell, D.H.; Bazarov, I.; Dunham, B.; Harkay, K.; Hernandez-Garcia; Legg, R.; Padmore, H.; Rao, T.; Smedley, J.; Wan, W.

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  2. The Development of the Linac Coherent Light Source RF Gun

    E-Print Network [OSTI]

    Dowell, David H; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling

    2015-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL). In addition to many other stringent requirements, the LCLS XFEL requires extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. This paper describes the analysis and design improvements of the BNL/SLAC/UCLA s-band gun leading to achievement of the LCLS performance goals.

  3. X-ray detectors at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore »generation of cameras under development at SLAC, is introduced.« less

  4. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect (OSTI)

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ?16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ?}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ?500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ?} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (?200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ?} = 190-336 eV) and a shorter e-folding time (?160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  5. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect (OSTI)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  6. Light source comprising a common substrate, a first led device and a second led device

    DOE Patents [OSTI]

    Choong, Vi-En (Carlsbad, CA)

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  7. First Data Acquired on the EQ-SANS Diffractometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Liu, Dazhi [ORNL; Hong, Kunlun [ORNL; Gao, Carrie Y [ORNL; Melnichenko, Yuri B [ORNL; Littrell, Ken [ORNL; Smith, Greg [ORNL; Zhao, Jinkui [ORNL

    2011-01-01

    The measurement of the conformation of a Generation-8 Polyamidoamine dendrimer is reported as an initial experiment using the Extended Q-range Small Angle Neutron Scattering (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory (ORNL). The conformation parameters (radius of gyration, thickness of the soft shell etc.) are extracted by model fitting. The results are compared with data collected at the General-Purpose Small Angle Neutron Scattering at the High Flux Isotopic Reactor at ORNL. The comparison shows that the EQ-SANS diffractometer has comparable data statistics and Q resolution with shorter counting time over the measured Q-range.

  8. Calibration of Time Of Flight Detectors Using Laser-driven Neutron Source

    E-Print Network [OSTI]

    S. R. Mirfayzi; S. Kar; H. Ahmed; A. G. Krygier; A. Green; A. Alejo; R. Clarke; R. R. Freeman; J. Fuchs; D. Jung; A. Kleinschmidt; J. T. Morrison; Z. Najmudin; H. Nakamura; P. Norreys; M. Oliver; M. Roth; L. Vassura; M. Zepf; M. Borghesi

    2015-06-15

    Calibration of three scintillators (EJ232Q, BC422Q and EJ410) in a time-of-flight (TOF) arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors are shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  9. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect (OSTI)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  10. Noise reduction for the infrared beamline at the Advanced Light Source

    E-Print Network [OSTI]

    Noise reduction for the infrared beamline at the Advanced Light Source J. M. Byrd, M. Chin, M, California 94720 ABSTRACT Significant reductions in the noise of the infrared light have been made at Beamline 1.4.3 infrared source at the Advanced Light Source (ALS). The primary source of vibrational noise

  11. Ideas for a Future PEP-X Light Source

    SciTech Connect (OSTI)

    Hettel, R.O.; Bane, K.L.F.; Bentson, L.D.; Bertsche, Kirk J.; Brennan, S.M.; Cai, Y.; Chao, A.; DeBarger, S.; Dolgashev, V.A.; Huang, X.; Huang, Z.; Kharakh, D.; Nosochkov, Y.; Rabedeau, T.; Safranek, J.A.; Seeman, J.; Stohr, J.; Stupakov, G.V.; Tantawi, S.G.; Wang, L.; Wang, M.H.; /SLAC /Stanford U., Phys. Dept. /UCLA

    2011-11-02

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing synchrotron source -- PEP-X -- a new storage ring that would occupy the existing PEP-II tunnel and support two experimental halls, each containing 16 x-ray beam lines. Operating at 4.5 GeV and 1.5 A with a horizontal emittance of 0.14 nm-rad, reached using 90 m of damping wigglers, PEP-X would have an order of magnitude higher average brightness and flux in the 1-{angstrom} x-ray range than any existing or planned future storage ring sources. Higher brightness in the soft x-ray regime might be reached with partial lasing in long undulators, and high peak brightness could be reached with seeded FEL emission. The status of preliminary studies of PEP-X is presented.

  12. The linac coherent light source single particle imaging road map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore »laser sources.« less

  13. SOURCES 4A: A Code for Calculating (alpha,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra

    SciTech Connect (OSTI)

    Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.

    1999-09-01

    SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.

  14. Neutron source detection with high pressure capillary arrays. (Conference)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron| SciTech

  15. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    SciTech Connect (OSTI)

    Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  16. Structure of Light Neutron-rich Nuclei Studied with Transfer Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wuosmaa, A. H.

    2015-01-01

    Transfer reactions have been used for many years to understand the shell structure of nuclei. Recent studies with rare-isotope beams extend this work and make it possible to probe the evolution of shell structure far beyond the valley of stability, requiring measurements in inverse kinematics. We present a novel technical approach to measurements in inverse kinematics, and apply this method to different transfer reactions, each of which probes different properties of light, neutron-rich nuclei.

  17. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOE Patents [OSTI]

    Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY)

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  18. GEANT4 and PHITS simulations of the shielding of neutrons from $^{252}$Cf source

    E-Print Network [OSTI]

    Shin, Jae Won

    2014-01-01

    Neutron shielding simulations by using GEANT4 and PHITS code are performed. As a neutron source, $^{252}$Cf is considered and the energy distribution of the neutrons emitted from $^{252}$Cf is assumed the Watt fission spectrum. The neutron dose equivalent rates with and without the shield are estimated for shielding materials such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. For the neutron shielding simulations by using GEANT4, high precision (G4HP) model with G4NDL 4.2 based on ENDF-VII data are used. And for PHITS simulations, JENDL-4.0 library are used for the same purpose. It is found that differences between the shielding calculations by using GEANT4 with G4NDL 4.2 and PHITS with JENDL-4.0 library are not significant for all cases considered in this work. We investigate the accuracy of the neutron dose equivalent rates obtained from GEANT4 and PHITS by comparing our simulation results with experimental data and other values calculated earlier. Calculated neutron dose equivalent rates agree w...

  19. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore »is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  20. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect (OSTI)

    Rees, Lawrence B. [Brigham Young University, Provo, UT (United States); Czirr, J. Bart [Brigham Young University, Provo, UT (United States)

    2012-11-01

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  1. Passive decoy state quantum key distribution with practical light sources

    E-Print Network [OSTI]

    Marcos Curty; Xiongfeng Ma; Bing Qi; Tobias Moroder

    2009-11-14

    Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. While active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty {\\it et al.}, Opt. Lett. {\\bf 34}, 3238 (2009).] This proposal requires only linear optics together with a simple threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy state setup with an infinite number of decoy settings. In this paper we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photo-detectors. In particular, we consider sources emitting thermal states, phase randomized WCP, and strong coherent light in combination with several types of photo-detectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photo-detectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret ket rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.

  2. Ultrabright Laser-based MeV-class Light Source

    SciTech Connect (OSTI)

    Albert, F; Anderson, G; Anderson, S; Bayramian, A; Berry, B; Betts, S; Dawson, J; Ebbers, C; Gibson, D; Hagmann, C; Hall, J; Hartemann, F; Hartouni, E; Heebner, J; Hernandez, J; Johnson, M; Messerly, M; McNabb, D; Phan, H; Pruet, J; Semenov, V; Shverdin, M; Sridharan, A; Tremaine, A; Siders, C W; Barty, C J

    2008-04-02

    We report first light from a novel, new source of 10-ps 0.776-MeV gamma-ray pulses known as T-REX (Thomson-Radiated Extreme X-rays). The MeV-class radiation produced by TREX is unique in the world with respect to its brightness, spectral purity, tunability, pulse duration and laser-like beam character. With T-REX, one can use photons to efficiently probe and excite the isotope-dependent resonant structure of atomic nucleus. This ability will be enabling to an entirely new class of isotope-specific, high resolution imaging and detection capabilities.

  3. Optical laser systems at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  4. Broadband visible light source based on AllnGaN light emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  5. Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech Connect NeutronSciTech(Conference)

  6. Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies Indiana University: M in the outer crust · Superbursts observed for accreting neutron stars · Fusion of neutron-rich light nuclei as a possible heat source in neutron star crust Fusion cross-section · Dynamics of fusion reaction with neutron

  7. Theory and Analysis of the Feynman-Alpha Method for Deterministically and Randomly Pulsed Neutron Sources

    E-Print Network [OSTI]

    Pázsit, Imre

    planned accelerator-driven subcritical systems, as well as in some recent related experiments, the neutron difference between an ADS and a traditional subcritical system with a source will be that the accelerator-driven in the European Community­supported project MUSE. I. INTRODUCTION Accelerator-driven subcritical reactors ~ADS

  8. GDT-based neutron source with multiple-mirror end plugs

    SciTech Connect (OSTI)

    Beklemishev, A.; Anikeev, A.; Burdakov, A.; Ivanov, A.; Ivanov, I.; Postupaev, V.; Sinitsky, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2012-06-19

    We present a new linear trap to be built at the Budker Institute. It combines gasdynamictype central cell with sloshing ions for beam fusion and the multiple-mirror end plugs for improved axial confinement. Thus it is designed as an efficient neutron source and a testbed for future development of mirror-based fusion reactors.

  9. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10²more »MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  10. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Anderson, I. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carpenter, J. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Festa, G. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Gorini, G. [Universita' degli Studi di Milano - Bicocca, Milano (Italy); Loong, C. -K. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Senesi, R. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy)

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  11. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect (OSTI)

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  12. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  13. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore »scattering angle component out of the equatorial plane.« less

  14. HEATING DISTRIBUTIONS IN THE TARGET OF THE SPALLATION NEUTRON SOURCE

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom the BuildingHASL-258 IN

  15. Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design

    E-Print Network [OSTI]

    Boyer, Edmond

    Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

  16. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect (OSTI)

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  17. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    E-Print Network [OSTI]

    2007-01-01

    LBNL-62514 MICROWAVE ION SOURCE AND BEAM INJECTION FOR ANAbstract An over-dense microwave driven ion source capableregion. Matching of the microwave power from the waveguide

  18. Laser fusion neutron source employing compression with short pulse lasers

    DOE Patents [OSTI]

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  19. FEL Polarization Control Studies on Dalian Coherent Light Source

    E-Print Network [OSTI]

    Zhang, Tong; Zhang, Wei-Qing; Wu, Guo-Rong; Dai, Dong-Xu; Wang, Dong; Yang, Xue-Ming; Zhao, Zhen-Tang

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. And the elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeds 100 $\\mu$J co...

  20. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  1. Research and Development of Compact Neutron Sources based on Inertial Electrostatic Confinement Fusion

    SciTech Connect (OSTI)

    Masuda, Kai; Yoshikawa, Kiyoshi; Nagasaki, Kazunobu [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Takamatsu, Teruhisa; Fujimoto, Takeshi; Nakagawa, Tomoya; Kajiwara, Taiju [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Misawa, Tsuyoshi; Shiroya, Seiji; Takahashi, Yoshiyuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-03-10

    Recent progress is described in the research and development of an inertial-electrostatic confinement fusion (IECF) device. Use of a water-cooling jacket with non-uniform thickness shows promising success for landmine detection application, such as effective channeling of neutron flux toward the target and a very stable dc yield in excess of 10{sup 7} D-D neutrons/sec. Addition of an ion source to the conventional glow-discharge-driven IECF enhances the converging deuterium ion energy distribution by allowing a lower operating gas pressure. Improvement in normalized neutron yield, which corresponds to the fusion cross-section averaged over the device radius, by a factor often has been observed.

  2. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  3. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    by a service oriented architecture for functional implementation. KEY WORDS: Portal, Neutron Scattering, TeraGrid, Science Gateway, Service Architecture, Grid 1. INTRODUCTION Neutron Science: Neutron scattering is used, earth science, and fundamental physics [3]. As a diagnostic tool, neutron scattering provides unique

  4. Neutron light output and detector efficiency (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron light output and

  5. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect (OSTI)

    Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1998-01-01

    To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

  6. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  7. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  8. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  9. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect (OSTI)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  10. Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications

    E-Print Network [OSTI]

    Mills, Evan

    2007-01-01

    lamp. Off-grid lighting products using the poorer LEDs wouldLED products encountered in the market by firms designing and assembling complete lightingLED) light sources have recently attained levels of efficiency and cost that allow them to compete with fluorescent lighting

  11. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect (OSTI)

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  12. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  13. The Development of the Linac Coherent Light Source RF Gun

    SciTech Connect (OSTI)

    Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

    2008-09-24

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of the emittance compensation solenoid are discussed in Section 1.1.7. The novel feature of the LCLS solenoid is the embedded quadrupole correctors. The thermo-mechanical engineering of the LCLS gun is discussed in Section 1.1.8, and the cold and hot RF tests are described in Section 1.1.9. The results of this work are summarized and concluding remarks are given in Section 1.1.10.

  14. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  15. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  16. Phys. Med. Biol. 43 (1998) 24072412. Printed in the UK PII: S0031-9155(98)90934-4 Effects of read-out light sources and ambient light on

    E-Print Network [OSTI]

    Yu, Peter K.N.

    1998-01-01

    laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose

  17. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    SciTech Connect (OSTI)

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  18. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

  19. 1989 neutron and gamma personnel dosimetry intercomparison study using RADCAL (Radiation Calibration Laboratory) sources

    SciTech Connect (OSTI)

    Sims, C.S.; Casson, W.H.; Patterson, G.R. ); Murakami, H. . Dept. of Health Physics); Liu, J.C. )

    1990-10-01

    The fourteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 14) was conducted during May 1-5, 1989. A total of 48 organizations (33 from the US and 15 from abroad) participated in PDIS 14. Participants submitted by mail a total of 1,302 neutron and gamma dosimeters for this mixed field study. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (40%), direct interaction TLD (22%), track (20%), film (7%), combination (7%), and bubble detectors (4%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: TLD (84%) and film (16%). Radiation sources used in the six PDIS 14 exposures included {sup 252}Cf moderated by 15-cm D{sub 2}O, {sup 252}Cf moderated by 15-cm polyethylene (gamma-enhanced with {sup 137}Cs), and {sup 238}PuBe. Neutron dose equivalents ranged from 0.44--2.63 mSv and gamma doses ranged from 0. 01-1.85 mSv. One {sup 252}Cf(D{sub 2}O) exposure was performed at a 60{degree} angle of incidence (most performance tests are at perpendicular incidence). The average neutron dosimeter response for this exposure was 70% of that at normal incidence. The average gamma dosimeter response was 96% of that at normal incidence. A total of 70% of individual reported neutron dosimeter measurements were within {plus minus}50% of reference values. If the 0.01 mSv data are omitted, approximately 90% of the individual reported gamma measurements were within {plus minus}50% of reference values. 33 refs., 9 figs., 27 tabs.

  20. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, Matthew B [ORNL; Niedziela, Jennifer L [ORNL; Abernathy, Douglas L [ORNL; Debeer-Schmitt, Lisa M [ORNL; Garlea, Vasile O [ORNL; Granroth, Garrett E [ORNL; Graves-Brook, Melissa K [ORNL; Ehlers, Georg [ORNL; Kolesnikov, Alexander I [ORNL; Podlesnyak, Andrey A [ORNL; Winn, Barry L [ORNL

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  1. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Granroth, G. E. [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kolesnikov, A. I. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  2. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  3. Advanced Light Source activity report 1996/97

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  4. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  5. Recovery of {sup 241}Am/Be neutron sources, Wooster, Ohio

    SciTech Connect (OSTI)

    Tompkins, J.A.; Wannigman, D.; Hatler, V.

    1998-07-01

    In August 1997, the Nuclear Regulatory Commission (NRC) submitted to the US Department of Energy (DOE) a partial list of licensed radioactive sealed sources to be recovered under a pilot project initiating Radioactive Source Recovery Program (RSRP) operations. The first of the pilot project recoveries was scheduled for September 1997 at Eastern Well Surveys in Wooster, Ohio, a company with five unwanted sealed sources on the NRC list. The sources were neutron emitters, each containing {sup 241}Am/Be with activities ranging from 2.49 to 3.0 Ci. A prior radiological survey had established that one of these sources, a Gulf Nuclear Model 71-1 containing 3 Ci of {sup 241}Am, was contaminated with {sup 241}Am and might be leaking. The other four sources were obsolete and could no longer be used by Eastern Well Surveys for their intended application in well-logging applications due to NRC decertification of these sources. All of the sources exceeded the limits established for Class C waste under 10 CFR 61.55 and, as a result, are the ultimate responsibility of the DOE under the provisions of PL 99-240. This report describes the cooperative effort between the DOE and NRC to recover the sources and transport them to Los Alamos National Laboratory (LANL) for deactivation under the RSRP. This operation alleviated any potential risk to the public health and safety from the site which might result from the leaking neutron sources or the potential mismanagement of unwanted sources. The on-site recovery occurred on September 23, 1997, and was performed by personnel from LANL and its contractor and was observed by staff from the Region III office of the NRC. All aspects of the recovery were successfully accomplished, and the sources were received at LANL on September 29, 1997. Experience gained during this operation will be used to formulate operational poilicies and procedures which will contribute to the eventual routine recovery operations of a full-scale RSRP.

  6. Verification of the content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen

    2005-08-29

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu-Be neutron sources has been developed. It is also shown that the isotopic composition and the age of plutonium (Pu) can be determined in the intensive neutron field of these sources by the ``Multi-Group Analysis'' method. Gamma spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The isotopic composition and the age of Pu were determined using a commercial implementation of the Multi-Group Analysis algorithm. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector parallel to each other. The determination of the specific neutron yields and the problem of neutron damage to the detector are also discussed.

  7. Light deflection in Kerr field for off-equatorial source

    E-Print Network [OSTI]

    Sarani Chakraborty; A. K. Sen

    2015-04-13

    Deflection angle for a light ray travelling in the equatorial plane of a rotating Kerr mass has been already calculated by various investigators. Considering the light ray to be travelling only slightly above the equatorial plane, calculations have been made for such a ray for its deflection angle. In this paper, we calculate deflection angles for the light ray at various heights, which are small compared to the impact parameter and derive corresponding analytical expressions for deflection angle.

  8. Polymer and small molecule based hybrid light source

    DOE Patents [OSTI]

    Choong, Vi-En (Carlsbad, CA); Choulis, Stelios (Nuremberg, DE); Krummacher, Benjamin Claus (Regensburg, DE); Mathai, Mathew (Monroeville, PA); So, Franky (Gainesville, FL)

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  9. Light-ion production in the interaction of 96 MeV neutrons with carbon

    SciTech Connect (OSTI)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Blomgren, J.; Gustavsson, C.; Klug, J.; Oesterlund, M.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.; Jonsson, O.; Prokofiev, A. V.; Renberg, P.-U.; Corcalciuc, V.; Watanabe, Y.; Koning, A. J.

    2009-06-15

    Double-differential cross sections for light-ion (p, d, t, {sup 3}He, and {alpha}) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Experimental techniques are presented as well as procedures for data taking and data reduction. Deduced energy-differential, angle-differential, and production cross sections are reported. Experimental cross sections are compared with theoretical reaction model calculations and experimental data in the literature. The measured particle data show marked discrepancies from the results of the model calculations in spectral shape and magnitude. The measured production cross sections for protons, deuterons, tritons, {sup 3}He, and {alpha} particles support the trends suggested by data at lower energies.

  10. Homegrown solution for synchrotron light source | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    called angle-resolved photoemission spectroscopy (ARPES) in which light energy (photons) is directed at a sample being studied. The photons cause electrons in the sample to...

  11. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  12. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  13. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  14. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  15. spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer

    E-Print Network [OSTI]

    spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

  16. Solar Influences Light from the Sun is the largest source of energy for Earth's

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Influences Light from the Sun is the largest source of energy for Earth's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts with the Earth) · How and why light from the Sun varies in time from seconds to months to years to centuries · How solar

  17. Scattering Theory When an x-ray beam (or neutron or light) passes through a material with

    E-Print Network [OSTI]

    Beaucage, Gregory

    Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x of scattered radiation resulting from this process bears a direct relationship to the structure (the pattern

  18. New Nuclear Reaction Flow during r-Process Nucleosynthesis in Supernovae: Critical Role of Light Neutron-Rich Nuclei

    E-Print Network [OSTI]

    M. Terasawa; K. Sumiyoshi; T. Kajino; G. J. Mathews; I. Tanihata

    2001-07-19

    We study the role of light neutron-rich nuclei during r-process nucleosynthesis in supernovae. Most previous studies of the r-process have concentrated on the reaction flow of heavy unstable nuclei. Although the nuclear reaction network includes a few thousand heavy nuclei, only limited reaction flow through light-mass nuclei near the stability line has been used in those studies. However, in a viable scenario of the r-process in neutrino-driven winds, the initial condition is a high-entropy hot plasma consisting of neutrons, protons, and electron-positron pairs experiencing an intense flux of neutrinos. In such environments light-mass nuclei as well as heavy nuclei are expected to play important roles in the production of seed nuclei and r-process elements. Thus, we have extended our fully implicit nuclear reaction network so that it includes all nuclei up to the neutron drip line for Z $ \\leq 10$, in addition to a larger network for Z $ \\geq 10$. In the present nucleosynthesis study, we utilize a wind model of massive SNeII explosions to study the effects of this extended network. We find that a new nuclear-reaction flow path opens in the very light neutron-rich region. This new nuclear reaction flow can change the final heavy-element abundances by as much as an order of magnitude.

  19. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (more »RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  20. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    SciTech Connect (OSTI)

    Kurennoy, S. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garnett, R. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rybarcyk, L. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108 /s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  1. Light Well: ATunable Free-Electron Light Source on a Chip K. F. MacDonald,1,* Y. H. Fu,2

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Light Well: ATunable Free-Electron Light Source on a Chip G. Adamo,1 K. F. MacDonald,1,* Y. H. Fu,2 metal-dielectric structure creates a new type of tunable, nanoscale radiation source--a ``light well''. In the reported demonstration, tunable light is generated at an intensity of $200 W=cm2 as electrons with energies

  2. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network

    E-Print Network [OSTI]

    Pun, Chun Shing Jason; Leung, Wai Yan; Wong, Chung Fai

    2014-01-01

    Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey, for...

  3. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  4. Neutron Stars as Sources of High Energy Particles - the case of RPP

    E-Print Network [OSTI]

    B. Rudak

    2001-01-09

    Highly magnetised rapidly spinning neutron stars are widely considered to be natural sites for acceleration of charged particles. Powerful acceleration mechanism due to unipolar induction is thought to operate in the magnetospheres of isolated neutron stars, bringing the particles to ultrarelativistic energies at the expense of the neutron star rotational energy, with inevitable emission of high energy photons. The aim of this review is to present basic ingredients of modern models of magnetospheric activity of rotation powered pulsars in the context of high-energy radiation from these objects. Several aspects of pulsar activity are addressed and related to spectacular results of pulsar observations with two major satellite missions of the past - CGRO and ROSAT. It is then argued that high sensitivity experiments of the future - GLAST, VERITAS and MAGIC - will be vital for a progress in our understanding of pulsar magnetospheric processes. In a conservative approach rotation powered pulsars are not expected to be the sources of UHE Cosmic Rays. However, several scenarios have been proposed recently to explain the UHECR events above the GZK limit with the help of acceleration processes in the immediate surrounding of newly born pulsars. Major features of these scenarios are reviewed along with references to contemporary models of magnetospheric activity.

  5. Development of an isotropic optical light source for testing nuclear instruments

    E-Print Network [OSTI]

    Yokley, Zachary W; Vogelaar, R Bruce

    2015-01-01

    Nuclear instruments that require precise characterization and calibration of their optical components need well-characterized optical light sources with the desired wavelength, intensity, and directivity. This paper presents a novel technique for determining the performance of optical components by producing an isotropic-like source with a robotically positioned LED. The theory of operation for this light source, results of Monte Carlo validation studies, and experimental results are presented.

  6. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    SciTech Connect (OSTI)

    Rothrock, Benjamin G [ORNL] [ORNL; Farrar, Mike B [ORNL] [ORNL

    2009-01-01

    This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  7. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    a Compact High-Yield Neutron Generator O. Waldmann 1 , B.Compact High-Yield Neutron Generator ? O. Waldmann a and B.yield compact neutron generator for active interrogation

  8. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    SciTech Connect (OSTI)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  9. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Guler, N.; Volegov, P.; Danly, C. R.; Grim, G. P.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-10-15

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  10. In situ calibration of a light source in a sensor device

    DOE Patents [OSTI]

    Okandan, Murat; Serkland, Darwin K.; Merchand, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  11. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect (OSTI)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)

  12. Equations of State and Maximum Mass of Neutron Stars in Light of PSR J1614-2230

    E-Print Network [OSTI]

    Carlos Daniel Xu

    2012-10-31

    We shall examine various types of equations of state for neutron stars, which determine the structure of neutron stars. In particular, the relation between mass and radius of neutron stars is of primary consideration. By combining an equation of state (EOS) with the Tolmann-Oppenheimer-Volkoff structure equations, we can determine the theoretical maximum mass of a neutron star for a given equation of state. One question we seek to answer is whether quark matter can exist in the core of a neutron star. In light of the discovery of pulsar PSR J1614-2230, the mass of which is observed to be 1.97 solar masses, a valid equation of state must achieve a maximum mass that is greater than 2 solar masses. To try to solve this problem, we experiment with different sets of parameters for the quark matter to try to meet the lower limit 2-solar-mass criterion. It is found that certain parameters contribute significantly to the maximum mass of a neutron star.

  13. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect (OSTI)

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  14. The neutrino-induced neutron source in helium shell and r-process nucleosynthesis

    E-Print Network [OSTI]

    D. K. Nadyozhin; I. V. Panov; S. I. Blinnikov

    1998-07-06

    The huge neutrino pulse that occurs during the collapse of a massive stellar core, is expected to contribute to the origination of a number of isotopes both of light chemical elements and heavy ones. It is shown that, in general, the heating of stellar matter due to the neutrino scattering off electrons and the heat released from the neutrino-helium breakup followed by the thermonuclear reactions should be taken into account. On the base of kinetic network, using all the important reactions up to Z=8, the main features and the time-dependent character of the neutrino- driven neutron flux are investigated. The time-dependent densities of free neutrons produced in helium breakup, Y_n(t), were used to calculate the r-process nucleosynthesis with another full kinetic network for 3200 nuclides. It was found that in the case of metal-deficient stars, Z neutrons seems to be high enough to drive the r-process efficiently under favorable conditions. But it is impossible to obtain a sufficient amount of heavy nuclei in neutrino-induced r-process in a helium shell at radii R > R_cr \\approx 10^9 cm. We speculate that to make the neutrino-induced r-process work efficiently in the shell, one has to invoke nonstandard presupernova models in which helium hopefully is closer to the collapsed core owing, for instance, to a large scale mixing or/and rotation and magnetic fields. Apart from this exotic possibility, the neutrino-induced nucleosynthesis in the helium shell is certainly not strong enough to explain the observed solar r-process abundances.

  15. The importance of $^{22}$Ne($\\alpha$, n)$^{25}$Mg as s-process neutron source and the s-process thermometer $^{151}$Sm

    E-Print Network [OSTI]

    CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Andriamonje, Samuel A; Angelopoulos, P; Assimakopoulos, P A; Audouin, L; Badurek, G; Bakos, G A; Bauge, E; Baumann, P; Beer, H; Benlliure, J; Benlloch, J M; Boffi, S; Boiano, A; Borcea, C; Brusegan, A; Buono, S; Calviño, F; Cambronero, C F; Cano-Ott, D; Cennini, P; Charpak, Georges; Chepel, V Yu; Colonna, N; Cortés, G; Corvi, F; Cura, J L; Czajkowski, S; Dasso, C H; David, S; De Blas, A; De Poli, M; Del Moral, R; Delaroche, J P; Della Mea, G; Derré, J; Díez, S; Dolfini, R; Durán, I; Eleftheriadis, C; Embid-Segura, M; Farget, F; Ferreira-Marques, R; Ferrari, A; Furman, W I; Gadea, A; Garzón, J A; Giomataris, Ioanis; Giusti, C; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Grudzevich, O; Guber, K H; Gundrorin, N; Gunsing, F; Hage-Ali, M; Haight, B; Harissopoulos, S V; Heil, M; Ioannides, K G; Ioannou, P; Isaev, S; Jastrzebski, J J; Jericha, E; Kadi, Y; Käppeler, F K; Kalfas, C A; Karamis, D; Kazakov, L; Kelic, A; Ketlerov, V; Kitis, G; Köhler, P E; Konovalov, V; Kopach, Yu N; Kossionides, E; Lacoste, V; Lavielle, B; Leal, L C; Leeb, H; Leprêtre, A; Lopes, M; Lozano, M; Martínez-Val, J M; Mastinu, P F; Matteucci, M F; Matveev, D V; Mengoni, A; Meunier, R; Milazzo, P M; Mínguez-Torres, E; Mitrofanov, V P; Molina, A; Mordenti, R; Mutti, P; Napiorkowski, P J; Nicolis, N G; Nolte, R; Oberhummer, Heinz; Ordine, A; Ortega, R; Pacati, F D; Pakou, A A; Papadopoulos, I M; Papaevangelou, T; Paradelis, T; Pavlik, A; Pavlopoulos, P; Perlado, J M; Piera, M; Piksaikin, V M; Plag, R; Plompen, A; Poch, A; Policarpo, Armando; Popov, A; Popov, Yu; Pretel, C; Quaranta, A; Quesada, J M; Radermacher, E; Radici, M; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rigato, V; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Rundberg, B; Sakelliou, L; Saldaña, F; Santos, D M; Sanz, J; Savvidis, S; Schuhmacher, H; Sedyshev, P V; Sergent, C; Serov, D; Simonoff, M; Stéphan, C; Tagliente, G; Taín, J L; Tapia, C; Tassan-Got, L; Terrani, M; Terchychnyi, R; Tsagas, N; Tzima, A; Vardaci, E; Ventura, A; Villamarín, D; Vlachoudis, V; Voinov, A V; Voss, F; Weigmann, H; Wendler, H; Wiescher, M C; Wisshak, K; Zeinalov, S S; INTC

    2000-01-01

    The importance of $^{22}$Ne($\\alpha$, n)$^{25}$Mg as s-process neutron source and the s-process thermometer $^{151}$Sm

  16. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  17. Fast Pb-glass neutron-to-light converter for ICF (inertial confinement fusion) target burn history measurements

    SciTech Connect (OSTI)

    Lerche, R.A.; Cable, M.D.; Phillion, D.W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7-MeV gamma ray emitted in the T(d,{gamma}){sup 5}He fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (<10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10{sup 13} D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7-MeV gamma rays for burn time measurements.

  18. Final Report US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources

    SciTech Connect (OSTI)

    Miley, George, H.

    2008-06-04

    Abstract The history of IEC development will be briefly described, and some speculation about future directions will be offered. The origin of IEC is due to the brilliance of Phil Farnsworth, inventor of electronic TV in the US. Early experiments were pioneered in the late 1960s by Robert Hirsch who later became head of the DOE fusion program. At that time studies of IEC physics quickly followed at the University of Illinois and at Penn State University. However, despite many successes in this early work, IEC research died as DOE funding stopped in the mid 1980s. In the early 90’s, R. W. Bussard of EMC revived work with a new major project based on a magnetic assisted IEC. While doing supportive studies for that project, G. Miley proposed a grided “STAR mode” IEC as a neutron source for NAA. This concept was later used commercially by Daimler- Benz in Germany to analysis impurities in incoming ores. This represented a first practical application of the IEC. During this period other research groups at LANL, U of Wisconsin and Kyoto University entered IEC research with innovative new concepts and approaches to IEC physics and applications. Much of this work is documented in the present and in past US-Japan Workshops. At present we stand on the threshold of a new area of IEC applications as neutron source, for isotope production, and as a plasma source. These applications provide a way to continue IEC understanding and technology development with the ultimate goal being a fusion power plant. Indeed, a distinguishing feature of the IEC vs. other fusion confinement approaches is the unique opportunity for “spin off” applications along the way to a power producing plant.

  19. Project planning workshop 6-GeV synchrotron light source: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A series of work sheets, graphs, and printouts are given which detail the work breakdown structure, cost, and manpower requirements for the 6 GeV Synchrotron Light Source. (LEW)

  20. Mid-IR Fiber-Based Light Sources (~2 to 6.5 microns)

    E-Print Network [OSTI]

    Cafarella, Michael J.

    1 Mid-IR Fiber-Based Light Sources (~2 to 6.5 microns) Prof. Mohammed N. Islam Department) Combustion Monitoring Infr (Cha Cone Penetrometer Contaminated Soil In L SCAPS* truck * (Site

  1. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  2. Recent advances in reflective optics for EUV/x-ray light sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent advances in reflective optics for EUVx-ray light sources Wednesday, June 24, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Regina Soufli, LLNL Program...

  3. Light Sources Help Discover New Drug Against Melanoma | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto CommercializationLight My Fire...Or

  4. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    2012-07-01

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

  5. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  6. Volume-scalable high-brightness three-dimensional visible light source

    DOE Patents [OSTI]

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  7. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    E-Print Network [OSTI]

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  8. Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution

    E-Print Network [OSTI]

    Sutter, Marc

    2006-10-25

    Static Light Scattering and Small-Angle Neutron Scattering Study on Aggregated Recombinant Gelatin in Aqueous Solution A. Ramzi 1, M. Sutter 2, W.E. Hennink 1, W. Jiskoot 1,2 1 Department of Pharmaceutics, UIPS, Utrecht University, The Netherlands... 2 Department of Drug Delivery Technology, LACDR, Leiden University, The Netherlands Recombinant Gelatins ? Recombinant gelatins are currently being evaluated as pharmaceutical excipients. ? Behavior of recombinant gelatins in solution is not well...

  9. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect (OSTI)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  10. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  11. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  12. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  13. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect (OSTI)

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  14. Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train wheels and potential methods of

    E-Print Network [OSTI]

    Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train with a great business idea. For more information about how your business could benefit from access to ISIS: Tel: +44 (0)1925 603708 Email: innovations@stfc.ac.uk Twitter: @STFC_B2B Using ISIS to optimise train wheel

  15. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    Compact High-Yield Neutron Generator, AIP Conf. Proc. 1336 (a Sealed-Tube Neutron Generator O. Waldmann ? B. Ludewigtthrough a 60 · 6 mm 2 tron generator. When operated with a

  16. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  17. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS configurations have a resolution of 7 microns or better. The 28 m LOS with a 7 x 7 array of 100-micron mini-penumbral apertures or 50-micron square pinholes meets the design requirements and is a very good design alternative.

  18. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  19. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, George R. (Williamsburg, VA)

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  20. Constraints on Neutron Star Parameters from Burst Oscillation Light Curves of the Accreting Millisecond Pulsar XTE J1814-338

    E-Print Network [OSTI]

    Sudip Bhattacharyya; Tod E. Strohmayer; M. Coleman Miller; Craig B. Markwardt

    2004-10-11

    Detailed modeling of the millisecond brightness oscillations during thermonuclear bursts from low mass X-ray binaries can provide important information about neutron star structure. Until now the implementation of this idea has not been entirely successful, largely because of the negligible harmonic content in burst oscillation lightcurves. However, the recent discovery of non-sinusoidal burst oscillation lightcurves from the accreting millisecond pulsar XTE J1814-338 has changed this situation. We, therefore, for the first time, make use of this opportunity to constrain neutron star parameters. In our detailed study of the lightcurves of 22 bursts, we fit the burst oscillation lightcurves with fully general relativistic models that include light-bending and frame-dragging for lightcurve calculation, and compute numerically the structure of neutron stars using realistic equations of state. We find that for our model and parameter grid values, at the 90% confidence level, Rc^2/GM > 4.2 for the neutron star in XTE J1814-338. We also find that the photons from the thermonuclear flash come out through the layers of accreted matter under conditions consistent with Thomson scattering, and show that the secondary companion is a hydrogen burning main sequence star, with possible bloating (probably due to X-ray heating).

  1. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    SciTech Connect (OSTI)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s ..mu..m in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ greater than or equal to 10/sup 19/ n/s) to provide uncollided neutron fluxes in excess of I/sub ..omega../ = 5--10 MW/m/sup 2/ over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10/sup 5/--10/sup 6/, its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10/sup 19/ n/s, with neutron currents I/sub ..omega../ /approx lt/ 10 MW/m/sup 2/ over volumes V/sub exp/ greater than or equal to 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs.

  2. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect (OSTI)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  3. GAMMA-RAY COMPTON LIGHT SOURCE DEVELOPMENT AT LLNL

    SciTech Connect (OSTI)

    Hartemann, F V; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Jovanovic, I; Messerly, M J; Pruet, J A; Shverdin, M Y; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-08-15

    A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions.

  4. Results of the Development of Humanitarian Landmine Detection System by a Compact Fusion Neutron Source and Dual Sensors

    SciTech Connect (OSTI)

    Yoshikawa, Kiyoshi; Masuda, Kai; Takamatsu, Teruhisa; Yamamoto, Yasushi; Toku, Hisayuki; Fujimoto, Takashi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hotta, Eiki; Yamauchi, Kunihito [Department of Energy Sciences, Tokyo Institute of Technology, 4259-G3-36 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8502 (Japan); Ohnishi, Masami; Osawa, Hodaka [Department of Electrical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Shiroya, Seiji; Misawa, Tsuyoshi; Takahashi, Yoshiyuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kubo, Yoshikazu; Doi, Toshiro [JGC Corporation, Minato-Mirai, Nishi-ku, Yokohama, Kanagawa (Japan)

    2009-03-10

    A 5-year task is described on the research and development of the advanced humanitarian landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) device and 3 dual sensors made of BGO and NaI(Tl). With 10{sup 7} D-D neutrons/s stably produced in steady-state mode, H-2.2 MeV, N-5.3, 10.8 MeV {gamma} rays from (n,{gamma}) reaction with hydrogen and nitrogen atoms in the explosives are measured for two kinds of explosives (TNT, RDX), under the conditions of three different buried depths, and soil moistures each. Final probabilities of detection for arid soil are found to be 100% in the present tests. The neutron backscattering method is also found to be efficient.

  5. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    SciTech Connect (OSTI)

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (?1? in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (?2?). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ? 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ?}) SNII.

  6. Probing astrophysically important states in $^{26}$Mg nucleus to study neutron sources for the $s$-Process

    E-Print Network [OSTI]

    Talwar, R; Berg, G P A; Bin, L; Bisterzo, S; Couder, M; deBoer, R J; Fang, X; Fujita, H; Fujita, Y; Gorres, J; Hatanaka, K; Itoh, T; Kadoya, T; Long, A; Miki, K; Patel, D; Pignatari, M; Shimbara, Y; Tamii, A; Wiescher, M; Yamamoto, T; Yosoi, M

    2015-01-01

    The $^{22}$Ne($\\alpha$,n)$^{25}$Mg reaction is the dominant neutron source for the slow neutron capture process ($s$-process) in massive stars and contributes, together with the $^{13}$C($\\alpha$,n)$^{16}$O, to the production of neutrons for the $s$-process in Asymptotic Giant Branch (AGB) stars. However, the reaction is endothermic and competes directly with the $^{22}$Ne($\\alpha,\\gamma)^{26}$Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of $^{26}$Mg near the alpha and neutron separation energies. These uncertainties are affecting the s-process nucleosynthesis calculations in theoretical stellar models. Indirect studies in the past have been successful in determining the energies, $\\gamma$-ray and neutron widths of the $^{26}$Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the $\\alpha$-widths for these states. The goal of the present...

  7. Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source

    E-Print Network [OSTI]

    M. Angelone; M. Pillon; R. Faccini; D. Pinci; W. Baldini; R. Calabrese; G. Cibinetto; A. Cotta Ramusino; R. Malaguti; M. Pozzati

    2010-06-08

    We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.

  8. Imaging of Diesel Particulate Filters using a High-Flux Neutron Source

    Broader source: Energy.gov [DOE]

    Detailed images of deposits identified inside automotive DPFs using neutrons show how the deposits of soot, ash, and washcoat occurs within the filter.

  9. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    SciTech Connect (OSTI)

    Buchanan, J.R.; Dumont, J.N.; Kendrick, C.M.; Row, T.H.; Thompson, P.B.; West, C.D.; Marchaterre, J.F.; Muhlheim, M.D.; McBee, M.R.

    1988-12-01

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants.

  10. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  11. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station

    SciTech Connect (OSTI)

    Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.

    2013-10-15

    The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ?0.7 ?s. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ?1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

  12. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1982-03-23

    A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

  13. Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings

    DOE Patents [OSTI]

    Frank, A.M.; Edwards, W.R.

    1983-10-11

    A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

  14. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    SciTech Connect (OSTI)

    Phillips, R. E.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)] [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-07-15

    A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  15. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009LienertProducts, Part a

  16. White lighting LEDs are fast replacing conventional lighting because not only are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high-speed wireless communication, especially for indoor applications.

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Background White lighting LEDs are fast replacing conventional lighting because not only by using ceiling mounted white lighting LEDs Jiun Bin Choong Supervisor : Prof. Jean Armstrong A B F 1 2 1 are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high

  17. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  18. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40?mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (?2?cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  19. The measurement and analysis of the magnetic field of a synchrotron light source magnet 

    E-Print Network [OSTI]

    Graf, Udo Werner

    1994-01-01

    In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

  20. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect (OSTI)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  1. Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination

    SciTech Connect (OSTI)

    Ian Ferguson

    2006-07-31

    This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

  2. Results from the Commissioning of the n-TOF Spallation Neutron Source at CERN

    E-Print Network [OSTI]

    Borcea, C; Dahlfors, M; Ferrari, A; García-Muñoz, G; Haefner, P; Herrera-Martínez, A; Kadi, Y; Lacoste, V; Radermacher, E; Saldaña, F; Vlachoudis, V; Zanini, L; Rubbia, Carlo; Buoni, S; Dangendorf, V; Nolte, R; Weierganz, M

    2003-01-01

    The new neutron time-of-flight facility (n_TOF) has been built at CERN and is now operational. The facility is intended for the measurement of neutron induced cross sections of relevance to Accelerator Driven Systems (ADS) and to fundamental physics. Neutrons are produced by spallation of the 20 GeV/c proton beam, delivered by the Proton Synchrotron (PS), on a massive target of pure lead. A measuring station is placed at about 185 m from the neutron producing target, allowing high-resolution measurements. The facility was successfully commissioned with two campaigns of measurements, in Nov. 2000 and Apr. 2001. The main interest was concentrated in the physical parameters of the installation (neutron flux and resolution function), along with the target behavior and various safety-related aspects. These measurements confirmed the expectations from Monte Carlo simulations of the facility, thus allowing to initiate the foreseen physics program.

  3. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  4. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    E-Print Network [OSTI]

    Wu, Ying

    2009-01-01

    Neutron Generators . . . . . . . . . . . . . 1.5 ThesisFor Compact Neutron Generators Background of Ion Sourcethe prototype neutron generator. The generator is attached

  5. Simulation studies on laser pulse stability for Dalian Coherent Light Source

    E-Print Network [OSTI]

    Deng, Haixiao; Gu, Duan; Liu, Bo; Gu, Qiang; Wang, Dong

    2013-01-01

    Dalian Coherent Light Source will use a 300MeV LINAC to produce fully coherent photon pulses in the wavelength range between 150-50nm by high gain harmonic generation free electron laser (FEL) scheme. To generate stable FEL pulses, stringent tolerance budget is required for the LINAC output parameters, such as the mean beam energy stability, electron bunch arrival time jitter, peak current variation and the transverse beam position offset. In order to provide guidance for the design of the Dalian Coherent Light Source, in this paper, the sensitivity of FEL pulse energy fluctuation to various error sources of the electron bunch was performed using intensive start-to-end FEL simulations.

  6. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  7. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect (OSTI)

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this early design stage. The ring and transfer lines are being designed for hands-on maintenance. The SNS beam loss criteria, which determine radiation dose design, are a factor of {approx}30 lower than the lowest that has been achieved at any existing proton synchrotron and accumulator rings. This demonstrates that ALARA considerations are an important part of SNS design. A noteworthy example of the ALARA principal being incorporated into the SNS is the hybrid ring lattice design recently approved by the SNS change control process. The new lattice design increases calculated acceptance by about 50% and improves the expected collimator efficiency from 80 to 95%. As a result, the expected calculated beam loss rate, and resulting radiation dose rates, are significantly improved. Another major design change with ALARA implications was the change from an alpha to an omega configuration for the high-energy beam transport (HEBT) system, ring, and ring-to-target beam transport (RTBT) system. Because of this change, the ring and transfer lines will have crane coverage, eliminating the need for personnel to be near activated equipment for repair and removal. By using the crane, extensive shielding can be placed around highly radioactive equipment (e.g., collimators), and the equipment can be moved by remote control. As part of the change from an alpha to omega configuration, the tunnel width was increased by 2 ft. This increased width will allow easier access to failed equipment, reducing radiation exposure time to workers during maintenance and repair. In addition, a personnel entrance was added to the ring between the HEBT and RTBT so that personnel will not have to enter this area directly through the HEBT or RTBT. This addition will shorten the travel distance, and therefore the time, that personnel performing maintenance work on radioactive equipment will need to be in the area, reducing potential dose. In the RTBT beam line, a hatchway will be placed above the collimators and quad doublet magnets near the target to facilitate their removal. This design was chosen in lieu

  8. Development of a compact neutron source based on field ionization processes

    SciTech Connect (OSTI)

    Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali

    2010-11-25

    The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed.

  9. On the comparison of energy sources: feasibility of radio frequency and ambient light harvesting

    E-Print Network [OSTI]

    Korotkevich, Alexander O; Lavrova, Olga; Coutsias, Evangelos

    2015-01-01

    With growing interest in multi source energy harvesting including integrated microchips we propose a comparison of radio frequency (RF) and solar energy sources in a typical city. Harvesting devices for RF and solar energy will be competing for space of a compact micro or nano device as well as for orientation with respect to the energy source. This is why it is important to investigate importance of every source of energy and make a decision whether it will be worthwhile to include such harvesters. We considered theoretically possible irradiance by RF signal in different situations, typical for the modern urban environment and compared it with ambient solar energy sources available through the night, including moon light. Our estimations show that solar light energy dominates by far margin practically all the time, even during the night, if there is a full moon in the absence of clouds. At the same time, in the closed compartments or at the new moon RF harvesting can be beneficial as a source of "free" energ...

  10. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOE Patents [OSTI]

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  11. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  12. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOE Patents [OSTI]

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  13. An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About of Physics An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

  14. EUV light source with high brightness at 13.5 nm

    SciTech Connect (OSTI)

    Borisov, V M; Prokof'ev, A V; Khristoforov, O B [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation); Koshelev, K N [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Khadzhiyskiy, F Yu [EUV Labs, Ltd., Troitsk, Moscow (Russian Federation)

    2014-11-30

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm{sup 2} sr){sup -1}] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2? at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge. (laser applications and other topics in quantum electronics)

  15. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  17. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect (OSTI)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  18. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect (OSTI)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  19. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  20. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  1. Development of the IES method for evaluating the color rendition of light sources

    SciTech Connect (OSTI)

    David, Aurelien [Soraa Inc., Fremont CA (United States); Fini, Paul T. [Cree Inc., Goleta, CA (United States); Houser, Kevin W. [Dept. of Architectural Engineering, Penn State University, State College, PA (United States); Ohno, Yoshi [National Institute of Standards and Technology, Gaithersburg, MD (United States); Royer, Michael P. [Pacific Northwest National Laboratory; Richland Washington USA; Smet, Kevin A. G. [Light& Lighting Laboratory/ESAT, KU Leuven, 3000 Ghent, Belgium; Wei, Minchen [Dept. of Architectural Engineering, Penn State University, State College, PA (United States); Whitehead, Lorne [Department of Physics and Astronomy, University of British Columbia, Vancouver Canada

    2015-01-01

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of the CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).

  2. Development of the IES method for evaluating the color rendition of light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; Ohno, Yoshi; Royer, Michael P.; USA, Richland Washington; Smet, Kevin A. G.; Wei, Minchen; Whitehead, Lorne

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score Rf is an improved version of themore »CIE color rendering index. The color gamut score Rg is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  3. Near and Sub-Barrier Fusion of Neutron-Rich Light Nuclei A. Elias, J. Lane, A. Liao, J. P. Schmidt, T. K. Steinbach, B. Wiggins, S. Hudan, R.T. de Souza

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    of the neutron star crust is too low for fusion of 12C. Fusion of neutron rich light nuclei has been hypothesizedNear and Sub-Barrier Fusion of Neutron-Rich Light Nuclei A. Elias, J. Lane, A. Liao, J. P. Schmidt://nuchem.iucf.indiana.edu IU Dept of Chemistry: http://chem.indiana.edu Demonstrate the feasibility to measure the fusion cross

  4. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    A Permanent-Magnet Microwave Ion Source for a Compact High-A Permanent-Magnet Microwave Ion Source for a Compact High-on the development of a microwave ion source that will be

  5. On the efficiency of stochastic volume sources for the determination of light meson masses

    E-Print Network [OSTI]

    E. Endress; A. Jüttner; H. Wittig

    2011-11-25

    We investigate the efficiency of single timeslice stochastic sources for the calculation of light meson masses on the lattice as one varies the quark mass. Simulations are carried out with Nf = 2 flavours of non-perturbatively O(a) improved Wilson fermions for pion masses in the range of 450 - 760 MeV. Results for pseudoscalar and vector meson two-point correlation functions computed using stochastic as well as point sources are presented and compared. At fixed computational cost the stochastic approach reduces the variance considerably in the pseudoscalar channel for all simulated quark masses. The vector channel is more affected by the intrinsic stochastic noise. In order to obtain stable estimates of the statistical errors and a more pronounced plateau for the effective vector meson mass, a relatively large number of stochastic sources must be used.

  6. Probing astrophysically important states in $^{26}$Mg nucleus to study neutron sources for the $s$-Process

    E-Print Network [OSTI]

    R. Talwar; T. Adachi; G. P. A. Berg; L. Bin; S. Bisterzo; M. Couder; R. J. deBoer; X. Fang; H. Fujita; Y. Fujita; J. Gorres; K. Hatanaka; T. Itoh; T. Kadoya; A. Long; K. Miki; D. Patel; M. Pignatari; Y. Shimbara; A. Tamii; M. Wiescher; T. Yamamoto; M. Yosoi

    2015-08-23

    The $^{22}$Ne($\\alpha$,n)$^{25}$Mg reaction is the dominant neutron source for the slow neutron capture process ($s$-process) in massive stars and contributes, together with the $^{13}$C($\\alpha$,n)$^{16}$O, to the production of neutrons for the $s$-process in Asymptotic Giant Branch (AGB) stars. However, the reaction is endothermic and competes directly with the $^{22}$Ne($\\alpha,\\gamma)^{26}$Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of $^{26}$Mg near the alpha and neutron separation energies. These uncertainties are affecting the s-process nucleosynthesis calculations in theoretical stellar models. Indirect studies in the past have been successful in determining the energies, $\\gamma$-ray and neutron widths of the $^{26}$Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the $\\alpha$-widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the $\\alpha$-widths by $\\alpha$ transfer techniques . Hence, the $\\alpha$-inelastic scattering and $\\alpha$-transfer measurements were performed on a solid $^{26}$Mg target and a $^{22}$Ne gas target, respectively, using the Grand Raiden Spectrometer at RCNP, Osaka, Japan. Six levels (E$_x$ = 10717 keV , 10822 keV, 10951 keV, 11085 keV, 11167 keV and 11317 keV) have been observed above the $\\alpha$-threshold in the region of interest (10.61 - 11.32 MeV). The rates are dominated in both reaction channels by the resonance contributions of the states at E$_x$ = 10951, 11167 and 11317 keV. The E$_x$ =11167 keV has the most appreciable impact on the ($\\alpha,\\gamma$) rate and therefore plays an important role for the prediction of the neutron production in s-process environments.

  7. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect (OSTI)

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  8. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect (OSTI)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  9. Characterization of a Be(p,xn) neutron source for fission yields measurements

    E-Print Network [OSTI]

    A. Mattera; P. Andersson; A. Hjalmarsson; M. Lantz; S. Pomp; V. Rakopoulos; A. Solders; J. Valldor-Blücher; D. Gorelov; H. Penttilä; S. Rinta-Antila; A. V. Prokofiev; E. Passoth; R. Bedogni; A. Gentile; D. Bortot; A. Esposito; M. V. Introini; A. Pola

    2013-04-02

    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\\"askyl\\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.

  10. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOE Patents [OSTI]

    Steinberg, Meyer (Huntington Station, NY); Powell, James R. (Shoreham, NY); Takahashi, Hiroshi (Setauket, NY); Grand, Pierre (Blue Point, NY); Kouts, Herbert (Brookhaven, NY)

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  11. Lattice Design for PEP-X Ultimate Storage Ring Light Source

    SciTech Connect (OSTI)

    Bane, K.L.F.; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; Hettel, R.O.; /SLAC

    2011-12-13

    SLAC expertise in designing and operating high current storage rings and the availability of the 2.2-km PEP-II tunnel present an opportunity for building a next generation light source - PEP-X - that would replace the SPEAR3 storage ring in the future. The PEP-X 'baseline' design, with 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. As a next step, a so-called 'ultimate' PEP-X lattice, reducing the emittance to 11 pm-rad at zero current, has been designed. This emittance approaches the diffraction limited photon emittance for multi-keV photons, providing near maximum photon brightness and high coherence. It is achieved by using 7-bend achromat cells in the ring arcs and a 90-m damping wiggler in one of the 6 long straight sections. Details of the lattice design, dynamic aperture, and calculations of the intra-beam scattering effect and Touschek lifetime at a nominal 0.2 A current are presented. Accelerator-based light sources are in high demand for many experimental applications. The availability of the 2.2-km PEP-II tunnel at SLAC presents an opportunity for building a next generation light source - PEP-X - that would replace the existing SPEAR3 light source in the future. The PEP-X study started in 2008, and the 'baseline' design, yielding 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. This relatively conservative design can be built using existing technology. However, for a long term future, it is natural to investigate a more aggressive, so-called 'ultimate' ring design. The goal is to reduce the electron emittance in both x and y planes to near the diffraction limited photon emittance of 8 pm-rad at hard X-ray photon wavelength of 0.1 nm. This would provide a near maximum photon brightness and significant increase in photon coherence. This study was motivated by the advances in low emittance design at MAX-IV. The latter was used as a starting point for the PEP-X arc lattice, however new features were included into the design for better tuning capabilities and compensation of non-linear optics effects. Further emittance reduction is achieved with a 90-m damping wiggler. Finally, intra-beam scattering (IBS) and Touschek lifetime effects were estimated and cross-checked using various codes.

  12. Philips Light Sources & Electronics is Developing an Efficient, Smaller, Cost-Effective Family of LED Drivers

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Light Sources & Electronics is developing a new family of LED drivers that are more efficient and cost-effective as well as smaller in size than currently available drivers. The new drivers are switch-mode power supplies that are similar to today's drivers, but with an improved design. In addition, they have a different topology—boost plus LLC—for wattages of 40W and above, but they retain the commonly used flyback topology at lower wattages.

  13. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  14. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    SciTech Connect (OSTI)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  15. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; et al

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  16. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  17. National synchrotron light source annual report 1987: For the period of October 1, 1986--September 30, 1987

    SciTech Connect (OSTI)

    White-DePace, S.; Gmur, N.F.; Thomlinson, W.

    1987-10-01

    This report contains the reports and operational information of the National Synchrotron Light source facility for 1987. The reports are grouped mainly under VUV research and x-ray research. (LSP)

  18. EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the facilities of the U.S. Department of Energy's National Synchrotron Light Source Complex, namely the National Synchrotron...

  19. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field (CEF) Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7. The precise ground state (GS) of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, ? 2%, of the nonmagnetic Ti4+ sites are occupied by excess Yb3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7, as well as amore »crushed single crystal with weak stuffing and an approximate composition of Yb2+xTi2–xO7+y with x = 0.046. All samples display three CEF transitions out of the GS, and the GS doublet itself is identified as primarily composed of mJ = ±1/2, as expected. However, stuffing at low temperatures in Yb2+xTi2–xO7+y induces a similar finite CEF lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random CEF environments in the lightly stuffed Yb2+xTi2–xO7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different CEF eigenvalues and eigenvectors.« less

  20. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  1. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect (OSTI)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  2. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    E-Print Network [OSTI]

    Wu, Ying

    2009-01-01

    compact neutron generators, semiconductor manufacturing, and neutral beam diagnostics and heating in fusion

  3. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    SciTech Connect (OSTI)

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-15

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  4. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect (OSTI)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  5. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect (OSTI)

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  6. Measurement of coherence length and incoherent source size of hard x-ray undulator beamline at Pohang Light Source-II

    SciTech Connect (OSTI)

    Park, So Yeong; Hong, Chung Ki [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)] [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Lim, Jun, E-mail: limjun@postech.ac.kr [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)] [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-04-15

    We measured the spatial coherence length and incoherent source size of a hard x-ray undulator beamline at Pohang Light Source-II, the stored electron energy of which has been increased from 2.5 GeV to 3 GeV. The coherence length was determined by single-slit measurement of the visibility of the Fresnel diffraction pattern. The correlated incoherent source size was cross-checked for three different optics: the single slit, beryllium parabolic compound refractive lenses, and the Fresnel zone plate. We concluded that the undulator beamline has an effective incoherent source size (FWHM) of 540 ?m (horizontal) × 50 ?m (vertical)

  7. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  8. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect (OSTI)

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  9. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    E-Print Network [OSTI]

    Arenholz, Elke

    2008-01-01

    technique such as neutron scattering. B. Key Types ofARPES and inelastic neutron scattering (INS), which measuresextensively via neutron scattering, the critical behavior of

  10. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Zhu, Diling, E-mail: dlzhu@slac.stanford.edu; Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stoupin, Stanislav; Shvyd'ko, Yuri V. [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Terentyev, Sergey A.; Blank, Vladimir D. [Technological Institute of Superhard and Novel Carbon Materials, Tsentralnaya str. 7a, Troitsk, Moscow 142190 (Russian Federation); Driel, Tim B. van [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Center for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ?100 ?m to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 ?m thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  11. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect (OSTI)

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  12. Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Alonso-Mori, R.; Barends, T. R. M.; Blank, V. D.; Botha, S.; Chollet, M.; Damiani, D. S.; Doak, R. B.; Glownia, J. M.; Koglin, J. M.; et al

    2015-04-10

    Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using amore »dedicated beam, with no significant differences in quality.« less

  13. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore »experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  14. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    SciTech Connect (OSTI)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  15. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    E-Print Network [OSTI]

    Sy, Amy

    2013-01-01

    Accelerator-based neutron generators . . 1.3.1 D-D and D-Tyields . . . 1.4 Compact API generator components . . 2based neutron generator. . . . . D-D and D-T fusion reaction

  16. Impact of Minority Carrier Lifetime on the Performance of Strained Ge Light Sources

    E-Print Network [OSTI]

    Sukhdeo, David S; Birendra,; Dutt,; Nam, Donguk

    2015-01-01

    We theoretically investigate the impact of the defect-limited carrier lifetime on the performance of germanium (Ge) light sources, specifically LEDs and lasers. For Ge LEDs, we show that improving the material quality can offer even greater enhancements than techniques such as tensile strain, the leading approach for enhancing Ge light emission. Even for Ge that is so heavily strained that it becomes a direct bandgap semiconductor, the ~1 ns defect-limited carrier lifetime of typical epitaxial Ge limits the LED internal quantum efficiency to less than 10%. In contrast, if the epitaxial Ge carrier lifetime can be increased to its bulk value, internal quantum efficiencies exceeding 90% become possible. For Ge lasers, we show that the defect-limited lifetime becomes increasing important as tensile strain is introduced, and that this defect-limited lifetime must be improved if the full benefits of strain are to be realized. We conversely show that improving the material quality supersedes much of the utility of n...

  17. An ALS handbook: A summary of the capabilities and characteristics of the advanced light source

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    This booklet aims to provide the prospective user of the Advanced Light Source with a concise description of the radiation a researcher might expect at his or her experimental station. The focus is therefore on the characteristics of the light that emerges from insertion devices and bending magnets and on how components of the beam lines further alter the properties of the radiation. The few specifications and operating parameters of the ALS storage ring that are of interest are those that directly determine the radiation characteristics. Sections 4 through 5 are primarily devoted to summary presentations, by means of performance plots and tabular compilations, of radiation characteristics at the ALS--spectral brightness, flux, coherent power, resolution, etc.--assuming a representative set of three undulators and one wiggler and a corresponding set of four beam lines. As a complement to these performance summaries, Section 1 is a general introductory discussion of synchrotron radiation and the ALS, and Section 2 discusses the properties of the stored electron beam that affect the radiation. Section 3 then provides an introduction to the characteristics of synchrotron radiation from bending magnets, wigglers, and undulators. In addition, Section 5 briefly introduces the theory of diffraction-grating and crystal monochromators. As compared with previous editions of this booklet, the performance plots and tabular compilations of the ALS radiation characteristics are now based on conservative engineering designs rather than preliminary physics designs.

  18. Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications

    E-Print Network [OSTI]

    Mills, Evan

    2007-01-01

    with fluorescent lighting for off-grid applications in theProject includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions for

  19. Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei; P. Davis; B. Woltman; F. Gray

    2013-06-12

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron-gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  20. Evidence of a halo formation mechanism in the Spallation Neutron Source

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting HostDISCLAIMERlinac (Journal Article)

  1. Reich-Moore Parameterization of ({alpha},n) Reactions on Light...

    Office of Scientific and Technical Information (OSTI)

    Reactions on Light Nuclei: Impact on a Neutron Source Calculation in an Oxide Fuel Citation Details In-Document Search Title: Reich-Moore Parameterization of (alpha,n)...

  2. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  3. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    SciTech Connect (OSTI)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  4. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  5. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  6. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    SciTech Connect (OSTI)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  7. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  8. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Jurani?, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; et al

    2014-01-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray opticalmore »elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.« less

  9. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

  10. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar tomore »the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  11. Tunable blue light source by intracavity frequency doubling of a Cr-LiSrAIF6 laser

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Tunable blue light source by intracavity frequency doubling of a Cr- LiSrAIF6 laser Franqois-switched operation at 10 kHz was intracavity frequency doubled by using a LiIOl crystal. The 230 ns tunable blue lasers emitting in the blue-green wavelength range are expected to be the key components for optical

  12. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    E-Print Network [OSTI]

    Sy, Amy

    2013-01-01

    Compact Permanent Magnet Microwave-Driven Neutron Generator.generator. The planned replacement of this electromagnet with a permanent-magnet

  13. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  14. Light emission of very low density hydrogen excited by an extremely hot light source; applications in astrophysics

    E-Print Network [OSTI]

    Jacques Moret-Bailly

    2008-07-19

    Stromgren studied the action of an extremely hot source on a diluted pure hydrogen cloud; a very ionized, spherical hydrogen plasma surrounded by neutral atomic hydrogen is formed. A relatively thin intermediate, partially ionized, hydrogen shell, is cooled by the radiation of the atoms. Stromgren was unaware of that this plasma, similar to the plasma of a gas laser, can be superradiant at several eigen frequencies of atomic hydrogen; the superradiant rays emitted tangentially with the sphere appear resulting from a discontinuous ring because of the competition of optical modes. The superradiance intensely depopulates the excited levels, including the continuum of proton-electron collisions, by cascades of transitions combined into resonant multiphotonic transitions so that the gas is cooled brutally beyond the radius of the Stromgren sphere. The extreme brightness of the rays emitted by the source allows a multiphotonic non-resonant absorption leading in stationary states or the ionization continuum. This absorption combines with the superradiant emissions in a multiphotonic diffusion induced by the superradiant rays. Although its brightness remains higher than that of the superradiant rays, the source becomes invisible if it is observed through a small solid angle. The lines emitted inside the sphere are all the more weak as they arrive of an internal area, lower in atoms, and more reddened also by a parametric transfer of energy towards the thermal radiation catalyzed by excited atomic hydrogen present in the sphere only. The Stromgren sphere appears to help to simply explain the appearance and the spectrum of supernova 1987A.

  15. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect (OSTI)

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  17. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  18. Detecting an extended light source through a lens This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Gay, Timothy J.

    Detecting an extended light source through a lens This article has been downloaded from IOPscience to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience #12;IOP.1088/0143-0807/32/4/023 Detecting an extended light source through a lens E T Litaker, J R Machacek1 and T J Gay Department

  19. Abstract: Coalescing stellar mass compact objects (binary neutron stars and black holes) are promising sources for the direct detection of gravitational waves by Advanced LIGO and Virgo in the next few years. Maximizing the scientific return from such a d

    E-Print Network [OSTI]

    Richmond, Michael W.

    ) are promising sources for the direct detection of gravitational waves by Advanced LIGO and Virgo in the next few of a centrifugally supported torus onto the central black hole. Neutron star mergers are also accompanied

  20. Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source

    Broader source: Energy.gov [DOE]

    General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

  1. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect (OSTI)

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  2. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  3. Development of a CW Superconducting RF Booster Cryomodule for Future Light Sources

    SciTech Connect (OSTI)

    Grimm, Terry L; Bogle, Andrew; Deimling, Brian; Hollister, Jerry; II, Randall Jecks; Kolka, Ahren; Romel, Chandra

    2009-04-13

    Future light sources based on seeded free electron lasers (FEL) have the potential to increase the soft xray flux by several orders of magnitude with short bunch lengths to probe electron structure and dynamics. A low emittance, high rep-rate radio frequency (RF) photocathode electron gun will generate the electron beam that will require very stringent beam control and manipulation through the superconducting linear accelerator to maintain the high brightness required for an x-ray FEL. The initial or booster cavities of the superconducting radio frequency (SRF) linear accelerator will require stringent control of transverse kicks and higher order modes (HOM) during the beam manipulation and conditioning that is needed for emittance exchange and bunch compression. This SBIR proposal will develop, fabricate and test a continuous-wave SRF booster cryomodule specifically for this application. Phase I demonstrated the technical feasibility of the project by completing the preliminary SRF cavity and cryomodule design and its integration into an R&D test stand for beam studies at Lawrence Berkeley National Laboratory (LBNL). The five-cell bulk niobium cavities operate at 750 MHz, and generate 10 MV each with strong HOM damping and special care to eliminate transverse kicks due to couplers. Due to continuous-wave operation at fairly modest beam currents and accelerating gradients the complexity of the two cavity cryomodule is greatly reduced compared to an ILC type system. Phase II will finalize the design, and fabricate and test the booster cryomodule. The cryomodule consists of two five-cell cavities that will accelerate megahertz bunch trains with nano-coulomb charge. The accelerating gradient is a very modest 10 MV/m with peak surface fields of 20 MV/m and 42.6 mT. The cryogenic system operates at 2 K with a design dynamic load of 20 W and total required cryogenic capacity of 45 W. The average beam current of up to 1 mA corresponds to a beam power of 10 kW per 5- cell cavity and will require 20 kW of RF power for transmission, control and regulation. The RF power will be supplied by a commercial tetrode. Cryogenic tests will be carried out at LBNL to make use of their test facilities, cryogenics and laser systems, and for future use with beam. Demonstration of this new type of booster cryomodule will open many new applications of SRF linear accelerators.

  4. How Argonne's Intense Pulsed Neutron Source came to life and gained its niche : the view from an ecosystem perspective.

    SciTech Connect (OSTI)

    Westfall, C.; Office of The Director

    2008-02-25

    At first glance the story of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory (ANL) appears to have followed a puzzling course. When researchers first proposed their ideas for an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, the project seemed so promising that both Argonne managers and officials at the laboratory's funding agency, the Department of Energy (DOE), suggested that it be made larger and more expensive. But then, even though prototype building, testing, and initial construction went well a group of prominent DOE reviewers recommended in fall 1980 that it be killed, just months before it had been slated to begin operation, and DOE promptly accepted the recommendation. In response, Argonne's leadership declared the project was the laboratory's top priority and rallied to save it. In late 1982, thanks to another review panel led by the same scientist who had chaired the panel that had delivered the death sentence, the project was granted a reprieve. However, by the late 1980s, the IPNS was no longer top priority within the international materials science community, at Argonne, or within the DOE budget because prospects for another, larger materials science accelerator emerged. At just this point, the facility started to produce exciting scientific results. For the next two decades, the IPNS, its research, and its experts became valued resources at Argonne, within the U.S. national laboratory system, and within the international materials science community. Why did this Argonne project prosper and then almost suffer premature death, even though it promised (and later delivered) good science? How was it saved and how did it go on to have a long, prosperous life for more than a quarter of a century? In particular, what did an expert assessment of the quality of IPNS science have to do with its fate? Getting answers to such questions is important. The U.S. government spends a lot of money to produce science and technology at multipurpose laboratories like Argonne. For example, in the mid-1990s, about the time the IPNS's fortunes were secured, DOE spent more than $6 billion a year to fund nine such facilities, with Argonne's share totaling $500 million. And an important justification for funding these expensive laboratories is that they operate expensive but powerful scientific tools like the IPNS, generally considered too large to be built and managed by universities. Clearly, 'life and death' decision making has a lot to tell us about how the considerable U.S. federal investment in science and technology at national laboratories is actually transacted and, indeed, how a path is cleared or blocked for good science to be produced. Because forces within Argonne, DOE, and the materials science community obviously dictated the changing fortunes of the IPNS, it makes sense to probe the interactions binding these three environments for an understanding of how the IPNS was threatened and how it survived. In other words, sorting out what happened requires analyzing the system that includes all three environments. In an attempt to find a better way to understand its twists and turns, I will view the life-and-death IPNS story through the lens of an ecological metaphor. Employing the ideas and terms that ecologists use to describe what happens in a system of shared resources, that is, an ecosystem, I will describe the IPNS as an organism that vied with competitors for resources to find a niche in the interrelated environments of Argonne, DOE, and the materials science community. I will start with an explanation of the Argonne 'ecosystem' before the advent of the IPNS and then describe how the project struggled to emerge in the 1970s, how it scratched its way to a fragile niche in the early 1980s, and how it adapted and matured through the turn of the 21st century. The paper will conclude with a summary of what the ecosystem perspective shows about the life and death struggle of the IPNS and reflect on what that perspective reveals about how researc

  5. Evidence of a halo formation mechanism in the Spallation Neutron...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evidence of a halo formation mechanism in the Spallation Neutron Source linac Title: Evidence of a halo formation mechanism in the Spallation Neutron Source...

  6. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13,CenterCenterLighting Sign In

  7. NEUTRON INTERFEROMETRY Neutron Interferometry

    E-Print Network [OSTI]

    Jeanjean, Louis

    #12;NEUTRON INTERFEROMETRY #12;#12;Neutron Interferometry Lessons in Experimental Quantum Mechanics of the modern quantum mechanical literature. Neutron interferometry is a mature technique in experimental of many isotopes is given in Chapter 3. Very accurate measurements of the neutron scattering lengths

  8. Materials science and design for germanium monolithic light source on silicon

    E-Print Network [OSTI]

    Cai, Yan, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Germanium (Ge) is an optically active material with the advantages of Si-CMOS compatibility and monolithic integration. It has great potential to be used as the light emitter for Si photonics. Tensile strain and n-type ...

  9. Measurement of Neutron Background at the Pyhasalmi mine for CUPP Project, Finland

    E-Print Network [OSTI]

    J. N. Abdurashitov; V. N. Gavrin; V. L. Matushko; A. A. Shikhin; V. E. Yants; J. Peltoniemi; T. Keranen

    2006-07-20

    A natural neutron flux is one of significant kind of background in high-sensitive underground experiments. Therefore, when scheduling a delicate underground measurements one needs to measure neutron background. Deep underground the most significant source of neutrons are the U-Th natural radioactive chains giving a fission spectrum with the temperature of 2-3 MeV. Another source is the U-Th alpha-reactions on light nuclei of mine rock giving neutrons with different spectra in the 1-15 MeV energy region. Normal basalt mine rocks contain 1 ppm g/g of U-238 and less. Deep underground those rocks produce natural neutron fluxes of 10^{-7} - 10^{-6} cm^{-2}s^{-1} above 1 MeV. To measure such a background one needs a special techniques. In the Institute for Nuclear Research, Moscow, the neutron spectrometer was developed and built which is sensitive to such a low neutron fluxes. At the end of 2001 the collection of neutron data at the Pyhasalmi mine was started for the CUPP project. During 2002 the background and rough energy spectra of neutron at underground levels 410, 660, 990 and 1410 m were measured. The result of the measurement of the neutron background at different levels of the Pyhasalmi mine is presented and discussed. Data analysis is performed in different energy ranges from thermal neutrons up to 25 MeV and above.

  10. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  11. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  12. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%?±?1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.×?nm sources.

  13. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  14. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    E-Print Network [OSTI]

    M. C. Chen; P. Arpin; T. Popmintchev; M. Gerrity; B. Zhang; M. Seaberg; M. M. Murnane; H. C. Kapteyn

    2010-06-20

    We demonstrate fully phase matched high-order harmonic generation with emission spanning the water window spectral region important for bio- and nano-imaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth (~300eV) to date obtained from any light source, small or large. The harmonic photon flux at 0.5 keV is 10^3 higher than demonstrated previously, making it possible for the first time to demonstrate spatial coherence in the water window. The continuum emission is consistent with a single attosecond burst, that extends bright attosecond pulses into the soft x-ray region.

  15. Two-mode single-atom laser as a source of entangled light RID A-5077-2009 

    E-Print Network [OSTI]

    Kiffner, M.; Zubairy, M. Suhail; Evers, J.; Keitel, C. H.

    2007-01-01

    -mode single-atom laser as a source of entangled light M. Kiffner,1,* M. S. Zubairy,1,2,3,? J. Evers,1,? and C. H. Keitel1,? 1Max-Planck-Institut f?r Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 2Institute for Quantum Studies and Department....033816 PACS number?s?: 42.50.Dv, 03.67.Mn, 42.50.Pq I. INTRODUCTION Quantum entanglement is known to be the key resource in many applications of quantum information and quantum computing ?1?. These phenomena range from quantum tele- portation ?2...

  16. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm?¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  17. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Falcone, Roger

    2011-04-28

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  18. UNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    maintain an archive for all the solar ir- radiance data sets measured by our instruments. In addition of computer models. Solar UV radiation is a primary energy input to Earth's atmosphere. High variability and Climate Solar radiation is the Earth's primary source of energy, exceeding by four orders of magnitude

  19. Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source

    SciTech Connect (OSTI)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?neutron flux. The final neutron flux is estimated to be 5?×?10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.

  20. A new storage-ring light source (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL(Technicalentanglements for linearA new storage-ring light

  1. Deploying quantum light sources on nanosatellites I: lessons and perspectives on the optical system

    E-Print Network [OSTI]

    Rakhitha Chandrasekara; Tang Zhongkan; Tan Yue Chuan; Cliff Cheng; Brigitta Septriani; Kadir Durak; James Anthony Grieve; Alexander Ling

    2015-08-28

    The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10cm x 10cm x 3cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab facility within the International Space Station. The first mission is to understand the different environmental conditions that may affect the operation of an entangled photon source in low Earth orbit. This understanding is crucial for the construction of cost-effective entanglement based experiments that utilize nanosatellite architecture. We will discuss the challenges and lessons we have learned over three years of development and testing of the integrated optical platform and review the perspectives for future advanced experiments.

  2. Deploying quantum light sources on nanosatellites II: lessons and perspectives on CubeSat spacecraft

    E-Print Network [OSTI]

    Robert Bedington; Edward Truong-Cao; Tan Yue Chuan; Cliff Cheng; Kadir Durak; James Anthony Grieve; Jesper Larsen; Daniel Oi; Alexander Ling

    2015-08-28

    To enable space-based quantum key distribution proposals the Centre for Quantum Technologies is developing a source of entangled photons ruggedized to survive deployment in space and greatly miniaturised so that it conforms to the strict form factor and power requirements of a 1U CubeSat. The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10 cm x 10 cm x 3 cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab structure aboard the International Space Station. We will discuss the challenges and future prospects of CubeSat-based missions.

  3. Deploying quantum light sources on nanosatellites II: lessons and perspectives on CubeSat spacecraft

    E-Print Network [OSTI]

    Bedington, Robert; Chuan, Tan Yue; Cheng, Cliff; Durak, Kadir; Grieve, James Anthony; Larsen, Jesper; Oi, Daniel; Ling, Alexander

    2015-01-01

    To enable space-based quantum key distribution proposals the Centre for Quantum Technologies is developing a source of entangled photons ruggedized to survive deployment in space and greatly miniaturised so that it conforms to the strict form factor and power requirements of a 1U CubeSat. The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10 cm x 10 cm x 3 cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab structure aboard the International Space Station. We will discuss the challenges and future prospects of CubeSat-based missions.

  4. LUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M. Bessire, P. Betinelli, F. Bouvet, A. Buteau, L. Cassinari,

    E-Print Network [OSTI]

    Boyer, Edmond

    LUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M is a new Free Electron Laser (FEL) source project aimed at delivering short and coherent X-ray pulses seeded FEL operations aiming at producing higher coherence and energetic X-rays for the pilot user

  5. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  6. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  7. Design of a High Power Continuous Source of Broadband Down-Converted Light

    E-Print Network [OSTI]

    Avi Pe'er; Yaron Silberberg; Barak Dayan; Asher A. Friesem

    2006-08-29

    We present the design and experimental proof of principle of a low threshold optical parametric oscillator (OPO) that continuously oscillates over a large bandwidth allowed by phase matching. The large oscillation bandwidth is achieved with a selective two-photon loss that suppresses the inherent mode competition, which tends to narrow the bandwidth in conventional OPOs. Our design performs pairwise mode-locking of many frequency pairs, in direct equivalence to passive mode-locking of ultrashort pulsed lasers. The ability to obtain high powers of continuous \\textit{and} broadband down-converted light enables the optimal exploitation of the correlations within the down-converted spectrum, thereby strongly affecting two-photon interactions even at classically high power levels, and opening new venues for applications such as two-photon spectroscopy and microscopy and optical spread spectrum communication.

  8. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; et al

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  9. Advanced Light Source (ALS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life ofASCRLight Source (ALS) Scientific

  10. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore »its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  11. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  12. REVIEW OF SCIENTIFIC INSTRUMENTS 83, 02B309 (2012) Novel methods for improvement of a Penning ion source for neutron

    E-Print Network [OSTI]

    2012-01-01

    for improving source performance, including optimization of wall materials and electrode geometry, ad- vanced configurations on proton fraction and beam current to be observed. II. METHODS A. Wall material optimization fraction in hydro- gen ion sources due to its low hydrogen atom recombina- tion coefficient.5 An ideal

  13. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  14. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    SciTech Connect (OSTI)

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

  15. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

    SciTech Connect (OSTI)

    Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2010-12-10

    We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

  16. THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE

    SciTech Connect (OSTI)

    Estalella, Robert; Lopez, Rosario; Riera, Angels; Anglada, Guillem; Carrasco-Gonzalez, Carlos

    2012-08-15

    We present new [S II] images of the Herbig-Haro (HH) 30 jet and counterjet observed in 2006, 2007, and 2010 that, combined with previous data, allowed us to measure with improved accuracy the positions and proper motions of the jet and counterjet knots. Our results show that the motion of the knots is essentially ballistic, with the exception of the farthest knots, which trace the large-scale 'C'-shape bending of the jet. The observed bending of the jet can be produced by a relative motion of the HH 30 star with respect to its surrounding environment, caused either by a possible proper motion of the HH 30 star, or by the entrainment of environment gas by the red lobe of the nearby L1551-IRS5 outflow. Alternatively, the bending can be produced by the stellar wind from a nearby classical T Tauri star, identified in the Two Micron All Sky Survey catalog as J04314418+181047. The proper motion velocities of the knots of the counterjet show more variations than those of the jet. In particular, we identify two knots of the counterjet that have the same kinematic age but whose velocities differ by almost a factor of two. Thus, it appears from our observations that counterjet knots launched simultaneously can be ejected with very different velocities. We confirm that the observed wiggling of the jet and counterjet arises from the orbital motion of the jet source in a binary system. Precession, if present at all, is of secondary importance in shaping the jet. We derive an orbital period of {tau}{sub o} = 114 {+-} 2 yr and a mass function of m{mu}{sup 3}{sub c} = 0.014 {+-} 0.006 M{sub Sun }. For a mass of the system of m = 0.45 {+-} 0.04 M{sub Sun} (the value inferred from observations of the CO kinematics of the disk), we obtain a mass of m{sub j} = 0.31 {+-} 0.04 M{sub Sun} for the jet source, a mass of m{sub c} = 0.14 {+-} 0.03 M{sub Sun} for the companion, and a binary separation of a = 18.0 {+-} 0.6 AU. This binary separation coincides with the value required to account for the size of the inner hole observed in the disk, which has been attributed to tidal truncation in a binary system.

  17. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOE Patents [OSTI]

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  18. Secondary neutrons in clinical proton radiotherapy: A charged issue

    E-Print Network [OSTI]

    Brenner, David Jonathan

    . However, the clinical significance of this whole-body low-dose neutron exposure has remained controversial on passive scattering. In this light, and in light of the signif- icant carcinogenicity of low-dose neutron high-en- ergy neutron doses in a mixed radiation field, and it is still harder to make neutron me

  19. Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

  20. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    SciTech Connect (OSTI)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (~;;150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.

  1. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  2. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  3. Neutron Imaging by Boric Acid

    E-Print Network [OSTI]

    Fabio Cardone; Giovanni Cherubini; Walter Perconti; Andrea Petrucci; Alberto Rosada

    2013-02-22

    In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source; a TRIGA type nuclear reactor; and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.

  4. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  5. Wolter mirror microscope : novel neutron focussing and imaging optic

    E-Print Network [OSTI]

    Bagdasarova, Yelena S. (Yelena Sergeyevna)

    2010-01-01

    In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

  6. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies | Blandine JeromeSC5 -Imaging

  7. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this siteSearch Go!The World's

  8. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCenter (LMI-EFRC) ProximityCenter (LMI-EFRC) - Xiang

  9. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1NEWS MEDIA16,30879543332 -3

  10. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    SciTech Connect (OSTI)

    Eakins, D. E. Chapman, D. J.

    2014-12-15

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  11. Time-Resolved Imaging of the Microbunching Instability and Energy Spread at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D.; Behrens, C.; Deutsches Elektronen-Synchrotron DESY, Hamburg; Ding, Y.; Huang, Z.; Marinelli, A.; Maxwell, T.; Zhou, F.

    2015-03-01

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore »comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  12. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect (OSTI)

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  13. Time-Resolved Imaging of the Microbunching Instability and Energy Spread at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Behrens, C. [SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Ding, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zhou, F. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2015-03-01

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete a comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.

  14. One-dimensional array of point-like light sources based on gold nanoparticles and tetracene: Preparation and possible operation mechanisms

    SciTech Connect (OSTI)

    Cherepanov, V. V.; Fedorovich, R. D.; Kiyayev, O. E.; Naumovets, A. G.; Nechytaylo, V. B. Tomchuk, P. M.; Viduta, L. V.

    2014-11-10

    A method of preparation of a linear close-packed array of point-like light sources based on a nanocomposite of gold nanoparticles and tetracene is proposed. Ordered system of microleads to the light sources with packing density up to 1000?mm{sup ?1} consists of linear conducting chains of cobalt nanoparticles self-assembled in a magnetic field. The electroluminescence from the gold-tetracene nanocomposite occurs in the visible range typical of organic light-emitting field-effect transistors based on tetracene. A theoretical substantiation of the possibility of excitation of tetracene molecules by hot electrons emitted from the gold nanoparticles is suggested and compared with other possible physical mechanisms.

  15. Spin in the Neutron | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Neutron NEWPORT NEWS, Va. - Puzzling out the source of proton and neutron spin is part of the ongoing experimental effort at Jefferson Lab to understand their structure and...

  16. ECE 466: LED Lighting Systems -Incandescent lightings rise and

    E-Print Network [OSTI]

    Connors, Daniel A.

    ECE 466: LED Lighting Systems - Incandescent lightings rise and demise via government policy - Alternative Fluorescent light sources and compact fluorescent lights (CFL) to incandescents - Alternative LED light sources - Color index as well as Watts to Lumens efficiency available from all three light sources

  17. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  18. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Interference-induced enhancement of intensity and energy of a multimode quantum optical field by a subwavelength array of coherent light sources

    E-Print Network [OSTI]

    S. V. Kukhlevsky

    2008-06-13

    Recently, we have showed a mechanism that could provide a great transmission enhancement of the light waves passed through subwavelength aperture arrays in thin metal films not by the plasmon-polariton waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. We now present a quantum reformulation of the model. The Hamiltonian describing the interference-induced enhancement of the intensity and energy of a multimode quantum optical field is derived. Such a field can be produced, for instance, by a subwavelength array of coherent light sources.

  20. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    E-Print Network [OSTI]

    Ashenfelter, J; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bowes, A; Brodsky, J P; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Commeford, K; Davee, D; Dean, D; Deichert, G; Diwan, M V; Dolinski, M J; Dolph, J; Dwyer, D A; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Goddard, B W; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Langford, T J; Littlejohn, B R; Caicedo, D A Martinez; McKeown, R D; Mendenhall, M P; Mueller, P; Mumm, H P; Napolitano, J; Neilson, R; Norcini, D; Pushin, D; Qian, X; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Sheets, S; Stemen, N T; Surukuchi, P T; Varner, R L; Viren, B; Wang, W; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zangakis, G; Zhang, C; Zhang, X

    2015-01-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  1. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    E-Print Network [OSTI]

    J. Ashenfelter; B. Balantekin; H. R. Band; G. Barclay; C. D. Bass; D. Berish; N. S. Bowden; A. Bowes; J. P. Brodsky; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; K. Commeford; D. Davee; D. Dean; G. Deichert; M. V. Diwan; M. J. Dolinski; J. Dolph; D. A. Dwyer; J. K. Gaison; A. Galindo-Uribarri; K. Gilje; A. Glenn; B. W. Goddard; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; D. E. Jaffe; T. J. Langford; B. R. Littlejohn; D. A. Martinez Caicedo; R. D. McKeown; M. P. Mendenhall; P. Mueller; H. P. Mumm; J. Napolitano; R. Neilson; D. Norcini; D. Pushin; X. Qian; E. Romero; R. Rosero; L. Saldana; B. S. Seilhan; R. Sharma; S. Sheets; N. T Stemen; P. T. Surukuchi; R. L. Varner; B. Viren; W. Wang; B. White; C. White; J. Wilhelmi; C. Williams; T. Wise; H. Yao; M. Yeh; Y. -R. Yen; G. Zangakis; C. Zhang; X. Zhang

    2015-08-26

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  2. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    E-Print Network [OSTI]

    D. Habs; M. Gross; P. G. Thirolf; P. Böni

    2010-09-30

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

  3. Experimental quantum state engineering with time-separated heraldings from a continuous-wave light source: a temporal-mode analysis

    E-Print Network [OSTI]

    K. Huang; H. Le Jeannic; V. B. Verma; M. D. Shaw; F. Marsili; S. W. Nam; E Wu; H. Zeng; O. Morin; J. Laurat

    2015-11-06

    Conditional preparation is a well-established technique for quantum state engineering of light. A general trend is to increase the number of heralding detection events in such realization to reach larger photon-number states or their arbitrary superpositions. In contrast to pulsed implementations, where detections only occur within the pulse window, for continuous-wave light the temporal separation of the conditioning detections is an additional degree of freedom and a critical parameter. Based on the theoretical study by A.E.B. Nielsen and K. Molmer and on a continuous-wave two-mode squeezed vacuum from a nondegenerate optical parametric oscillator, we experimentally investigate the generation of two-photon state with tunable delay between the heralding events. The present work illustrates the temporal multimode features in play for conditional state generation based on continuous-wave light sources.

  4. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  5. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    E-Print Network [OSTI]

    Xiao-Tao He; F. J. Fattoyev; Bao-An Li; W. G. Newton

    2015-10-14

    A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS) of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope $L$ of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope $L$ or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  9. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    E-Print Network [OSTI]

    He, Xiao-Tao; Li, Bao-An; Newton, W G

    2015-01-01

    A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS) of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope $L$ of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope $L$ or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  10. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  11. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  12. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions

    SciTech Connect (OSTI)

    Styron, J. D., E-mail: jdstyro@sandia.gov; Cooper, G. W.; Carpenter, Ken; Bonura, M. A. [Department of Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Hahn, K. D.; Chandler, G. A.; Nelson, A. J.; Torres, J. A.; McWatters, B. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-11-15

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  13. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    SciTech Connect (OSTI)

    Salay, Michael; Gauntt, Randall O.; Lee, Richard Y.; Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  14. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  15. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  16. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  17. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  18. Light Curves of Core-Collapse Supernovae with Substantial Mass Loss using the New Open-Source SuperNova Explosion Code (SNEC)

    E-Print Network [OSTI]

    Morozova, V; Renzo, M; Ott, C D; Clausen, D; Couch, S M; Ellis, J; Roberts, L F

    2015-01-01

    We present the SuperNova Explosion Code SNEC, an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different wavelength bands assuming black body emission. As a first application of SNEC, we consider the explosions of a grid of 15 Msun (at zero-age main sequence) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ~20-100 days if >~1.5-2 Msun of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. The shorter plateau lengths are unlike the Type IIP supernova light curves typically observed in nature. This suggests that, at least for zero-age main sequence masses <~ 20 Msun, hydrogen mass l...

  19. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  20. Detecting fission from special nuclear material sources

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  1. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  2. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  3. X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

    SciTech Connect (OSTI)

    Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Gorkhover, T. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Rolles, D. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. med. Forschung, Jahnstr. 29, 69120 Heidelberg (Germany); Rouzee, A. [Max-Born-Institut, Max-Born-Str. 2, 12489 Berlin (Germany)

    2012-03-19

    X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

  4. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  5. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  6. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    McMahan, M.A.

    2008-01-01

    Cross Section (mb/MeV/sr) Neutron Energy (MeV) 29 MeV, Tiand Technology 2007 DOI: Neutron beams from deuteron breakupUSA Abstract. Accelerator-based neutron sources offer many

  7. Light-ion production in the interaction of 175 MeV quasi-mono-energetic neutrons with iron and with bismuth

    E-Print Network [OSTI]

    Bevilacqua, R; Pomp, S; Andersson, P; Blomgren, J; Gustavsson, C; Hjalmarsson, A; Simutkin, V D; Österlund, M; Koning, A J; Prokofiev, A V; Hayashi, M; Hirayama, S; Naitou, Y; Watanabe, Y; Tippawan, U; Mashnik, S G; Kerby, L M; Lecolley, F -R; Marie, N; David, J -C; Leray, S

    2014-01-01

    Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $\\alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^\\circ$ and 160$^\\circ$ were used. Medley uses the $\\Delta E$-$\\Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bism...

  8. Light-ion production in the interaction of 175 MeV quasi-mono-energetic neutrons with iron and with bismuth

    E-Print Network [OSTI]

    R. Bevilacqua; K. Jansson; S. Pomp; P. Andersson; J. Blomgren; C. Gustavsson; A. Hjalmarsson; V. D. Simutkin; M. Österlund; A. J. Koning; A. V. Prokofiev; M. Hayashi; S. Hirayama; Y. Naitou; Y. Watanabe; U. Tippawan; S. G. Mashnik; L. M. Kerby; F. -R. Lecolley; N. Marie; J. -C. David; S. Leray

    2014-11-12

    Nuclear data for neutron-induced reactions in the intermediate energy range of 20 to 200 MeV are of great importance for the development of nuclear reaction codes since little data exist in that range. Also several different applications benefit from such data, notably accelerator-driven incineration of nuclear waste. The Medley setup was used for a series of measurements of p, d, t, $^3$He and $\\alpha$-particle production by 175 MeV quasi-mono-energetic neutrons on various target nuclei. The measurements were performed at the The Svedberg Laboratory in Uppsala, Sweden. Eight detector telescopes placed at angles between 20$^\\circ$ and 160$^\\circ$ were used. Medley uses the $\\Delta E$-$\\Delta E$-$E$ technique to discriminate among the particle types and is able to measure double-differential cross sections over a wide range of particle energies. This paper briefly describes the experimental setup, summarizes the data analysis and reports on recent changes in the previously reported preliminary data set on bismuth. Experimental data are compared with INCL4.5-Abla07, MCNP6 using CEM03.03, TALYS and PHITS model calculations as well as with nuclear data evaluations. The models agree fairly well overall but in some cases systematic differences are found.

  9. Simulation of Neutron Backscattering applied to organic material detection

    SciTech Connect (OSTI)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-10-26

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied.0.

  10. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  11. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B?+?n?????+?{sup 7}Li, with ? and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T?=?8?K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40?mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  12. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect (OSTI)

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  13. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting LED technology is rapidly becoming competitive with high-intensity discharge light sources for outdoor area lighting. This document reviews the major design...

  14. Delayed neutrons from the neutron irradiation of ²³?U 

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10

    two 235U samples, an array of three 3He cylindrical neutron detectors, signal processing circuitry, the PTS, a reactor core sensor and a computerized control system. A. Fissile Material Isotope Products Laboratories produced the two 235U samples... stream_source_info Heinrich.pdf.txt stream_content_type text/plain stream_size 107692 Content-Encoding UTF-8 stream_name Heinrich.pdf.txt Content-Type text/plain; charset=UTF-8 DELAYED NEUTRONS FROM THE NEUTRON...

  15. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  16. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  17. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  18. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect (OSTI)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  19. High-resolution beamline 9.3.2 in the energy range 30{endash}1500 eV at the Advanced Light Source: Design and performance

    SciTech Connect (OSTI)

    Hussain, Z.; Huff, W.; Kellar, S.; Moler, E.; Heimann, P.; McKinney, W.; Cummings, C.; Lauritzen, T.; McKean, J.; Palomares, F.; Wu, H.; Zheng, Y.; Young, A.; Padmore, H.; Fadley, C.; Shirley, D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); [The University of California, Dept. of Chemistry, Berkeley, CA 94720 (United States); [The University of California, Dept. of Physics, Davis, CA 95616 (United States); [The Pennsylvania State University, Dept. of Chemistry and Physics, University Park, PA 16802 (United States)

    1996-09-01

    Bending magnet beamline 9.3.2 at the Advanced Light Source (ALS) was designed for high resolution spectroscopy with the capability for delivering circularly polarized light in the soft x-ray energy region using three gratings. The monochromator is a fixed included-angle spherical grating monochromator (SGM) and was originally used at SSRL as a prototype for later insertion-device-based monochromators for the ALS. For operation at the ALS, the toroidal pre-mirror used at SSRL was replaced by a horizontally focusing and a vertically focusing mirror in the Kirkpatrick-Baez configuration. Circularly polarized radiation is obtained by inserting a water-cooled movable aperture in front of the vertically focusing mirror to allow selecting the beam either above or below the horizontal plane. To maintain a stable beam intensity through the entrance slit, the photocurrent signals from the upper and lower jaws of the entrance slit are utilized to set a feedback loop with the vertically deflecting mirror piezoelectric drive. The beamline end station has a movable platform that accommodates two experimental chambers enabling the synchrotron radiation to be directed to either one of the two experimental chambers without breaking the vacuum. {copyright} {ital 1996 American Institute of Physics.}

  20. High-resolution beamline 9.3.2 in the energy range 30-1500 eV at the advanced light source: Design and performance

    SciTech Connect (OSTI)

    Hussain, Z.; Heimann, P.A.; McKinney, W. [and others

    1995-12-01

    Bending magnet beamline 9.3.2 at the Advanced Light Source (ALS) was designed for high resolution spectroscopy with capability for delivering circularly polarized light in the soft X-ray energy region using three gratings. The monochromator is a fixed included angle spherical grating monochromator (SGM) and was originally used at SSRL as a prototype for later insertion device based monochromators for the ALS, For operation at the ALS, the toroidal pre-mirror used at SSRL was replaced by a horizontally focusing and a vertically focusing mirrors in the Kirkpatrick-Baez configuration. Circularly polarized radiation is obtained by inserting a water-cooled movable aperture in front of the vertically focusing mirror to allow selecting the beam either above or below the horizontal plane. To maintain a stable beam intensity through the entrance slit, the photocurrent signals from the upper and lower jaws of the entrance slit are utilized to set a feedback loop with the vertically deflecting mirror piezoelectric drive. The beamline end station has a movable platform that accommodates two experimental chambers enabling the synchrotron radiation to be directed to either one of the two experimental chambers without breaking the vacuum.

  1. On the simulation of limit thresholds for ISOLDE decay station neutron detector

    E-Print Network [OSTI]

    Arce Gamboa, José Rafael

    2015-01-01

    The recently comissioned ISOLDE decay station neutron detector (IDSN) efficiency was calibrated with a standard 252Cf neutron source, using lower threshold limits set at 0, 31 keV and 59.5 keV, and upper threhold of 3840 keV. Geant4 simulations were run to compare with the experimental efficiency where new detector limits were sought to fit the experimental data. Suitable values of limit thresholds were found that properly fit the simulation with experimental lower neutron energies, below 1 MeV, but strongly departs from data above it. It is concluded that the simulation is incomplete at this point, and so a review must be done on the nuclear physics and scintillation light Geant4 packages in order to properly reproduce the detector properties.

  2. CONNECTED LIGHTING SYSTEMS MEETING

    Office of Energy Efficiency and Renewable Energy (EERE)

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  3. A SECOND NEUTRON STAR IN M4?

    SciTech Connect (OSTI)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W. [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Thompson, Ian B. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  4. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  5. Light Source Notes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnet Cooling Water J. A. Jendrzejczyk and R. K. Smith LS-81 Evaluation of Amplitude and Frequency Response Characteristics of the Teac Model MR-30 Tape Recorder J. A....

  6. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  7. Neutron position-sensitive scintillation detector

    DOE Patents [OSTI]

    Strauss, Michael G. (Downers Grove, IL); Brenner, Raul (Woodridge, IL)

    1984-01-01

    A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.

  8. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  9. Energy Conservation in Industrial Lighting 

    E-Print Network [OSTI]

    Meharg, E.

    1979-01-01

    were identified. Savings in power and cost were quantified for typical examples as follows: Task lighting, high light source efficacy, high luminaire mounting height, efficient luminaires, surroundings painted a light color, regular luminaire cleaning...

  10. Neutron Scattering User Program | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program SHARE Neutron Scattering Can Benefit Your Research Neutron scattering has applications in almost every technical and scientific field, from biology and chemistry to...

  11. Welcome to Linac Coherent Light Source | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProject AssessmentWeWeird quantumCareerWelcome to

  12. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator 1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  13. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  14. Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS M.E. Hagen(1), S.M. Shapiro(2 Neutron Source, Oak Ridge National Lab., P.O. Box 2008, Oak Ridge, TN 37831, U.S.A (2)Dept. of Condensed spectrometer that utilizes Bragg focusing optics to obtain a high intensity at the sample position for neutron

  15. Neutron scattering at high pressure D. B. McWhan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    715 Neutron scattering at high pressure D. B. McWhan Room 1D-234, Murray Hill, New Jersey 07974, U scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X

  16. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  17. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Greenberg, Albert

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  18. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Cold Neutron Triple-Axis Spectrometer CallforProposals neutrons.ornl.gov Neutron Scattering Science Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EDT, (NOON

  19. Ultra-short ion and neutron pulse production

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  20. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruary 2015 ESH&S Newsletter -NovemberNext