Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Phase I MX Beamlines at Diamond Light Source  

SciTech Connect (OSTI)

Three beamlines dedicated to macromolecular crystallography, I02, I03 and I04 at Diamond Light Source are presented. These beamlines formed the life science component of Phase 1 of Diamond Light Source. The article provides details of the design and the current status of the beamlines.

Duke, E. M. H.; Evans, G.; Flaig, R.; Hall, D. R.; Latchem, M.; McAuley, K. E.; Sandy, D. J.; Sorensen, T. L-M.; Waterman, D.; Johnson, L. N. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon. OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

2

A Test Beamline on Diamond Light Source  

SciTech Connect (OSTI)

A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire-OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

3

Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source  

Science Journals Connector (OSTI)

Beamline 2.1, a transmission soft X-ray microscope at the Advanced Light Source of Lawrence Berkeley National Laboratory, is described.

Le Gros, M.A.

2014-10-01T23:59:59.000Z

4

New Soft X-ray Beamline (BL10) at the SAGA Light Source  

SciTech Connect (OSTI)

A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

Yoshimura, D.; Setoyama, H.; Okajima, T. [Beamline group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

5

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

6

Optical design and performance of the inelastic scattering beamline at the National Synchrotron Light Source  

SciTech Connect (OSTI)

Phase I of the X21 beamline at the National Synchrotron Light Source was commissioned during 1993. The research program at the X21 beamline is focused on the study of electronic excitations in condensed matter with total energy resolution of 0.1 eV to 1.0 eV. The source is a 27 pole hybrid wiggler. A water-cooled horizontal focusing Si(220) monochromator and a spherically bent Si(444) analyzer were installed and commissioned. At 8 keV the energy resolution of the monochromator is about 0.7 eV, and the energy resolution of the analyzer is about 0.1 eV. Results from several selected experiments are also discussed.

Kao, C.C.; Siddons, D.P.; Oversluizen, T.; Hastings, J.B. [Brookhaven National Lab., Upton, NY (United States); Hamalainen, K. [Helsinki Univ. (Finland). Dept. of Physics; Krisch, M. [European Synchrotron Radiation Facility, 38 - Grenoble (France)

1994-12-31T23:59:59.000Z

7

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U3C  

E-Print Network [OSTI]

gloves Enclosed shoes Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Visible light Y Y Covers Warning

Ohta, Shigemi

8

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect (OSTI)

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

9

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect (OSTI)

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

10

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network [OSTI]

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

11

Higher Order Suppressor (HOS) for the PolLux Microspectroscope Beamline at the Swiss Light Source SLS  

SciTech Connect (OSTI)

The mechanical design and performance of a device to suppress higher orders of a spherical grating monochromator at a constant deviation angle is described. The higher order suppressor (HOS) is used for a scanning transmission x-ray microspectroscope beamline (PolLux) at a bending magnet of the Swiss Light Source (SLS). The instruments allow microspectroscopy in polymer science, of biological samples in the water window as well as the study of magnetic materials with circular or linear polarized light in a photon energy range of 200 eV to 1400 eV. The HOS uses three mirrors acting as a low pass filter for soft x-rays to improve the absorption spectroscopy of carbon, oxygen and nitrogen 1s core levels. The successful installation and operation of the HOS located after the monochromator is reported. First results obtained using samples from materials research and environmental sciences exemplify the improved spectroscopy capabilities of the instrument.

Frommherz, U.; Stefani, R.; Ellenberger, U. [Paul Scherrer Institut, Division of Mechanical Engineering Sciences, 5232 Villigen PSI (Switzerland); Raabe, J.; Watts, B. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

12

National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition  

SciTech Connect (OSTI)

This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

1989-01-01T23:59:59.000Z

13

Find a Beamline | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Find a Beamline Find a Beamline The Advanced Photon Source consists of 34 sectors; each sector contains one or more beamlines. There are several resources available to help you find information about APS sectors and beamlines. Maps: Interactive Map Clicking on the link above or the picture below will take you to a page where you can see which APS beamlines are operational and relevant to your scientific interests. sectors map thumb Beamlines Map Clicking on the link above or the picture below will take you to a detailed bird's eye view of every beamline at the APS. beamline map thumb Directories: Beamlines Directory The complete listing of all APS beamlines' contacts, specifications, and status. Techniques Directory An explanation of the various research techniques in use at the APS, and a

14

Transportation Beamline at the Advanced Photon Source | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

15

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Beamlines Directory Filter by: L bracket Discipline: All Atomic Physics Chemistry Environmental Science GeoScience Life Sciences Materials Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL2/3 level Coherent x-ray scattering Diffraction anomalous fine structure Diffuse x-ray scattering Energy dispersive X-ray diffraction Fiber diffraction Fluorescence spectroscopy General diffraction Grazing incidence diffraction Grazing incidence small-angle scattering High-energy x-ray diffraction High-pressure diamond anvil cell High-pressure multi-anvil press Inelastic x-ray scattering Inelastic x-ray scattering (1 eV resolution) Intensity fluctuation spectroscopy Large unit cell crystallography Laue

16

Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Beamlines Beamlines Print Beamlines Directory List of ALS beamlines, techniques, energy ranges, beamline scientists' contact information, and individual beamline schedules. The ALS Beamclock and links to the ALS Energy-Related Beamlines poster and beamclock are also available. Beam Status Current status of the ALS accelerator, updated every minute. Instructions on how to get beam status updates via Twitter @ALSRingStatus or text messages, and request form for beam history information. Research Techniques Research techniques and the corresponding beamlines where they are available (under construction). Schedules Weekly user schedule, current and upcoming long-term operating schedules; individual beamline long-term schedules can be found on the ALS Beamlines Directory.

17

APS Beamline Questionnaire Form | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS Beamline Motor Drive Questionnaire Form APS Beamline Motor Drive Questionnaire Form * indicates required field Please send a separate email to Thomas Barkalow with an attached beamline drawing or sketch showing where the groups are located and the distances they are apart. First Name*: Middle Initial/Name: Last Name*: Beamline Designation*: What is the total number of driver units with makes and models?: How are driver units grouped together and each group's location within the beamline?: What number of driver units are in use simultaneously for each group?: What is the maximum amperage setting actually used for each unit?: What is the number of groups in use simultaneously and which groups are they?: Verification: We need to make sure you are a human. Please solve the challenge below, and click the I'm a Human button to get a confirmation code. To make this

18

Beamline Phone Numbers| Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

19

Measuring The Source Brilliance at An Undulator Beamline  

SciTech Connect (OSTI)

Third-generation X-ray synchrotrons like the European Synchrotron Radiation Facility (ESRF) are optimized to produce intense undulator radiation. Insertion devices, such as undulators, ensure the highest possible brilliance--the key parameter for the success of e.g. coherent scattering, which is one of the main techniques employed at ESRF's TROIKA beamline. Nowadays, the constant efforts to reduce the emittance and improve the stability of the electron beam allow using small-gap insertion devices and increase the brilliance. Obviously, it is important to have an experimental technique for evaluating the performance of the undulator source. Here we present a method based on measuring the diffuse scattering from a light amorphous material by a photon counting detector. The measured spectral intensities show a very good agreement with the simulated spectra, demonstrating the high brilliance (above 10{sup 20} ph/s/0.1%bw/mrad{sup 2}/mm{sup 2}) achieved at modern facilities.

Zontone, Federico; Madsen, Anders; Konovalov, Oleg [European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

20

Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about how nif works Beamline Every NIF beam starts at the master oscillator. The low-energy beam is amplified in the preamplifier module and then in the power amplifier, the main...

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

22

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

23

NSLS II: The Future National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Call for Beamline Development Proposals 2011 Call for Beamline Development Proposals National Synchrotron Light Source II February 16, 2011 NSLS-II Rendering Critical Dates Call for proposal issued Thursday, February 17, 2011 Letter of Intent due Monday, March 28, 2011 (submitted LOIs) Beamline development workshops April-June 2011 Beamline proposal due Monday, July 25, 2011 Related Materials Proposal template NSLS-II Beamline Development Policy NSLS-II Source Properties NSLS-II User Access Policy Project Beamlines Background Beamline Information Approved Proposals From 2010 The National Synchrotron Light Source II (NSLS-II), currently under construction at the U.S. Department of Energys Brookhaven National Laboratory on Long Island, NY, is pleased to announce the 2011 Call for Beamline Development Proposals for experimental facilities to be implemented at NSLS-II.

24

Beamline standard component designs for the Advanced Photon Source  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings.

Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

1994-12-01T23:59:59.000Z

25

Photon Sciences | NSLS-II Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

26

Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Beryllium windows, 100 m and 120 m. Distance source point - mask plane 10.35 meter. DEX 02 scanner, from Jenoptik GmbH. Micromachining II (XRLM2), Port 2B, 10 mrad...

27

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

28

Advanced Light Source: Activity report 1993  

SciTech Connect (OSTI)

The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

Not Available

1994-11-01T23:59:59.000Z

29

Fundamental Neutron Physics Beamline at the Spallation Neutron Source at ORNL  

E-Print Network [OSTI]

We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

N. Fomin; G. L. Greene; R. Allen; V. Cianciolo; C. Crawford; T. Ito; P. R. Huffman; E. B. Iverson; R. Mahurin; W. M. Snow

2014-08-04T23:59:59.000Z

30

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Beamlines Directory ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

31

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

32

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

33

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

34

ALS Beamlines Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

35

Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure  

SciTech Connect (OSTI)

ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

Huff, W.R.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States)

1996-02-01T23:59:59.000Z

36

7-GeV advanced photon source beamline initiative: Conceptual design report  

SciTech Connect (OSTI)

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

37

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect (OSTI)

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

38

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

39

High-resolution VUV spectroscopy: New results from the Advanced Light Source  

SciTech Connect (OSTI)

Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

Schlachter, F.; Bozek, J.

1996-06-01T23:59:59.000Z

40

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

42

Design of the angiography beamline for the Argonne Advanced Photon Source  

Science Journals Connector (OSTI)

The angiography beamline planned for the Argonne Advanced Photon Source (APS) is a very special beamline dedicated to medical imaging. It is especially designed to enhance the art of digital subtraction angiography. It is different from the angiography beamlines presently in operation that scan the X-ray picture line by line, in that it will take both the high and low energy angiography X-ray pixtures simultaneously as full frame pictures. Pictures with 0.25 mm resolution and good signal to noise will be possible with 2 ms exposure times. This is possible because of the increase in flux that is available at the APS. The source of the 33 keV photons is a special high intensity wiggler. The photon beam is separated into two parts, spread out in the vertical direction, and monochro- matized with two convex bent crystals. These two crystals are bent in a non-uniform way that allows one to both make the photon flux uniform over the 15 cm 15 cm examining area and stabilize the shape of the surface of the diffraction crystal against distortion caused by the heat load on the crystal. Most of the energy of the photon beam is absorbed by a fast shutter placed in front of the crystals. The two images at the two different energies are recorded in two large position-sensitive detectors.

Robert K. Smither; Edwin M. Westbrook

1988-01-01T23:59:59.000Z

43

Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source  

E-Print Network [OSTI]

A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

2014-01-01T23:59:59.000Z

44

Time-Resolved Research at the Advanced Photon Source Beamline 7-ID  

SciTech Connect (OSTI)

The Sector 7 undulator beamline (7-ID) of the Advanced Photon Source (APS) is dedicated to time-resolved x-ray research and is capable of ultrafast measurements on the order of 100 ps. Beamline 7-ID has a laser laboratory featuring a Ti:Sapphire system (average power of 2.5W, pulse duration <50 fs, repetition rate 1-5 kHz) that can be synchronized to the bunch pattern of the storage ring. The laser is deliverable to x-ray enclosures, which contain diffractometers, as well as motorized optical tables for table-top experiments. Beamline 7-ID has a single APS Undulator A and uses a diamond (111) double-crystal monochromator, providing good energy resolution over a range of 6-24 keV. Available optics include Kirkpatrick-Baez (KB) mirrors to microfocus the x-ray beam. A variety of time-resolved diffraction and spectroscopy research is available at 7-ID, with experiments being done in the atomic, molecular, optical, chemistry, and solid state (bulk and surface) fields.

Dufresne, Eric M.; Adams, Bernhard; Arms, Dohn A.; Chollet, Matthieu; Landahl, Eric C.; Li, Yuelin; Walko, Donald A.; Wang, Jin

2010-08-02T23:59:59.000Z

45

Final Beamline Design Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Beamline Design Report Final Beamline Design Report Guidelines and Review Criteria (SCD 1.20.95) 6.0 Final Beamline Design Report (FDR) Overview The Final Beamline Design Report is part of the Advanced Photon Source (APS) beamline review process and should be planned for when approximately 90% of the total beamline design has been completed. Fifteen copies of the FDR are to be submitted to the APS Users Office. Approval of the Collaborative Access Team's (CAT) designs described in the report is required prior to installation of beamline components in the APS Experiment Hall. Components that have a long lead time for design or procurement can be reviewed separately from the remainder of the beamline, but enough information must be provided so that the reviewer can understand the

46

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

47

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Document Index Document Index A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Assessment Tracking System (ATS) Institutional ATS NSLS Family ATS NSLS Family ATS Instructions B Beamline Safety Review Beamline Safety Checklist C Calibration Calibration procedure NSLS Controlled Measuring Test Equipment Calibration List Caution Tags Coaxial cables & connectors Conduct of Operations Manual Cryogenic safety Cryogenic Liquids: Storage, Usage and Handling D Design (see engineering design) Document Control drawings (also refer to Engineer Design) procedures, & policies Approving, Distributing; List of NSLS Active Controlled Documents Periodic Review; Preparing; Reviewing; specification (distribution) specification (preparation) Document list - Active Controlled Documents

48

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Authorization Documents Authorization Documents Environmental Assessment for NSLS, ATF & SDL NSLS Safety Assessment Document Accelerator Safety Envelope Fire Hazard Analysis Conduct of Operations NSLS-II Environmental Assessment (2006) Finding of No Significant Impact (2006) Comparison of NSLS-II Environmental Assessment with NSLS-II Title II Design Specifications (2008) "NEXT" Beamlines Environmental Evaluation Notification Form and Approval Memo (2011) Linac Commissioning Safety Assessment Document (2011) NSLS-II USI Determination #1 NSLS-II USI Determination #2 NSLS-II USI Determination #3 NSLS-II USI Determination #4 NSLS-II USI Determination #5 Linac Commissioning Accelerator Safety Envelope (2011) Linac Commissioning Plan (2011) Booster Commissioning Safety Assessment Document (2011)

49

National synchrotron light source. Activity report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

Rothman, E.Z.; Hastings, J. [eds.

1996-05-01T23:59:59.000Z

50

(SUNY beamline facilities at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report contains short discussions on the following topics which mainly deal with superconductors: crystallography; surface structure; scattering and EXAFS studies; small angle scattering of x-rays. (LSP)

Coppens, P.

1992-01-01T23:59:59.000Z

51

THE FIRST SYNCHROTRON INFRARED BEAMLINES AT THE ADVANCED LIGHT SOURCE  

E-Print Network [OSTI]

, M2, and finally a third flat mirror, M3, all in ultra high vacuum (UHV). The UHV ends with a wedged

52

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

53

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Job Risk Assessments (JRAs) Job Risk Assessments (JRAs) JRA Blank Form Word Completed JRAs Accelerator Operations PS-JRA-0030 Accelerator or Beam Line Commissioning and Fault Studies PS-JRA-0028 Accelerator or Beam Line Components, Mechanical Assembly PS-JRA-0006 Using a Beamline PS-JRA-0029 Cable Pulling PS-JRA-0042 Chemical Use (Routine Chemicals) PS-JRA-0021 Chemical Work (Hazardous Chemicals) PS-JRA-0020 Chemicals and Radioactive Materials Transport PS-JRA-0022 Compressed Gas Cylinders and Systems Work PS-JRA-0009 Cooling Water Systems Work PS-JRA-0012 Cryogenic Work (General Cryogens) LS-JRA-0010 Driving Electrical and Electronic Shop Work PS-JRA-0001 Electrical Equipment (Zero Energy State) Work PS-JRA-0002 Electrical Equipment, Energized (Troubleshooting in Range >=50V and <=240V) PS-JRA-0003

54

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X7B  

E-Print Network [OSTI]

shoes Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y Warning signs Training High pressure Y Y Warning signs Training Cutting/razor blades Be aware of hand

Ohta, Shigemi

55

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X8A  

E-Print Network [OSTI]

concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics a designated area, periodically clean surfaces Cutting/razor blades Y Y Be aware of hand positioning Use safety

Ohta, Shigemi

56

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X22B  

E-Print Network [OSTI]

glasses, nitrile gloves Soldering Y Y Use a designated area, periodically clean surfaces High temperature Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

57

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X6B  

E-Print Network [OSTI]

check gas lines Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Beryllium use Y Y Handle articles

Ohta, Shigemi

58

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18A  

E-Print Network [OSTI]

Laser registration, warning signs Soldering Y N Use a designated area, periodically clean surfaces High OpCo if damaged Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible

Ohta, Shigemi

59

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X14A  

E-Print Network [OSTI]

-out, turbo pump set- up, set-up displex Y Y Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area, periodically clean surfaces High temperature ­ furnace with beryllium OpCo if damaged Material Handling/Crane Y N Training Cutting/razor blades Y Y Be aware of hand

Ohta, Shigemi

60

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X27C  

E-Print Network [OSTI]

/lifting ­ detector has to be moved often (~ 40 lbs) Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures ­ moving detector Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces High temperature ­ heat stage Y Y BLOSA

Ohta, Shigemi

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U4B  

E-Print Network [OSTI]

guidance/checklist from PRM 5.1.0 Soldering Y Y Use a designated area, periodically clean surfaces High Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

62

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X24C  

E-Print Network [OSTI]

cryogens (pockets, cuffs) Cryogen or heavy gloves Enclosed shoes Soldering Y N Use a designated area Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider

Ohta, Shigemi

63

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18B  

E-Print Network [OSTI]

, warning signs Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant

Ohta, Shigemi

64

Brookhaven National Laboratory National Synchrotron Light Source Beamline Hazard Analysis Beamline X23A2  

E-Print Network [OSTI]

cotton liners · Enclosed shoes · Use tongs or tools whenever possible Soldering Y N · Use a designated area, periodically clean surfaces Working at heights Y N · Be aware of body posture, training

Ohta, Shigemi

65

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X19A  

E-Print Network [OSTI]

Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area fixed, or HEPA filtered exhaust Cutting/razor blades Y Y Be aware of hand positioning Use safety knife

Ohta, Shigemi

66

Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source  

Science Journals Connector (OSTI)

The design of an undulator beamline at the Advanced Photon Source optimized for performing coherent small-angle X-ray scattering is described. The beamline has been characterized by measuring and analysing static speckle patterns from isotropically disordered samples. The measured speckle widths and amplitudes are compared with a theory described herein and found to be in good agreement with its predictions.

Sandy, A.R.

1999-11-01T23:59:59.000Z

67

Light Sources Directorate Strategic Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Sources Directorate Light Sources Directorate Strategic Plan December 2009 Light Sources Directorate Strategic Plan December 2009 ii | Vision and Mission Light Sources Directorate Strategic Plan The VISION of the Light Sources Directorate is: to be a provider of choice for world-class photon science and facilities that deliver outstanding scientific productivity and impact, and to be recognized as a leader in developing innovative techniques and ap- plications of photon science Our MISSION is defined by the set of activities that are required to realize this vision: to advance scientific knowledge and to solve critical problems through the design, construction, operation, and use of premier photon science facilities | Table of Contents Light Sources Directorate Strategic Plan

68

Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next >> Next >> Visitors Access to the ALS Gate Access guest-house Guest House lab-shuttles Lab Shuttles maps-and-directions Maps and Directions Parking Safety Safety for Users safety-for-staff Safety for Staff In Case of Emergency Resources Acronyms Multimedia Employment staff-intranet Staff Intranet Site Map Contact Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: ALSBerkeleyLab YouTube: AdvancedLightSource January 2014 Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Recent Science Highlights Minding the Gap Makes for More Efficient Solar Cells Using novel materials to develop thin, flexible, and more efficient photovoltaic cells is one of the hottest topics in current materials research. A class of transition metals undergo a dramatic change that makes them ideal for solar energy applications.

69

Presentation: Synchrotron Radiation Light Sources  

Broader source: Energy.gov [DOE]

A briefing to the Secretary's Energy Advisory Board on Synchrotron Radiation Light Sources delivered by Patricia Dehmer, U.S. Department of Energy

70

Linac Coherent Light Source Overview  

ScienceCinema (OSTI)

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

None

2013-05-29T23:59:59.000Z

71

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect (OSTI)

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

72

Fusion pumped light source  

DOE Patents [OSTI]

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

73

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.3.1 0.3.1 Beamline 10.3.1 Print Tuesday, 20 October 2009 09:14 X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format

74

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

75

Fourth Generation Light Source Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Workshop on Scientific Opportunities for Fourth Generation Light The Workshop on Scientific Opportunities for Fourth Generation Light Sources October 27 to 29, 1997 at the Advanced Photon Source at Argonne National Laboratory. This workshop is being co-hosted by APS, NSLS, SSRL and TJNAF. FGLSlogo This workshop will explore the phenomenology of interactions with ultra-high-power, -brilliance, and -coherence light sources in the DUV, soft x-ray, and x-ray regimes, as well as the scientific opportunities they provide. The workshop will begin with tutorials on the generation and properties of these sources and identify issues in their use in experimentation. Also included will be an overview of current efforts to develop these sources and a review of the scientific opportunities defined by previous research and workshops. These background talks will be followed

76

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Source...

77

LightSource Renewables | Open Energy Information  

Open Energy Info (EERE)

LightSource Renewables Jump to: navigation, search Name: LightSource Renewables Place: San Diego, California Zip: 92121 Sector: Wind energy Product: Wind project developer...

78

Status and Prospects of Coherent Light Source Developments at UVSOR-II  

SciTech Connect (OSTI)

We are developing coherent light sources at the UVSOR-II electron storage ring. We have developed a resonator type free electron laser in the visible to the deep UV range, coherent harmonic generation source in VUV range and coherent synchrotron radiation source in the terahertz range. A new five year plan has been started from FY2008, where a new 4m straight section will be created by moving the beam injection point, a new optical klystron type undulator will be installed and dedicated beam-lines will be constructed. Great advances on the coherent light source developments at the new straight section are expected.

Adachi, Masahiro; Katoh, Masahiro; Zen, Heishun; Tanikawa, Takanori [UVSOR Facility, Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, 444-8585 (Japan); School of Physical Sciences, Graduate University for Advanced Sciences, Okazaki, 444-8585 (Japan); Hosaka, Masahito; Takashima, Yoshifumi; Yamamoto, Naoto; Taira, Yoshitaka [Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 (Japan)

2010-06-23T23:59:59.000Z

79

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

80

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. (eds.)

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical Chemistry, Catalysis, & Photosynthesis Thurs. Aug. 23 - Fri. Aug 24, 2012 Quantum Materials, Magnetism & Spin Dynamics Mon. Aug. 27 - Tues. Aug 28, 2012 Materials & Bio-imaging at the Nanoscale Thurs. Aug. 30 - Fri. Aug 31, 2012 Further information is available on the workshop website:

82

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS/TB-44 Rev. 4 APS/TB-44 Rev. 4 Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source Revision 4 Advanced Photon Source About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

83

Science and Technology of Future Light Sources  

E-Print Network [OSTI]

and Technology of Future Light Sources Far from Equilibrium Chemical Processes in a Functional Solar Cellsolar cell (DSSC). [Source: Michael Graetzel, Swiss Federal Institute of Technology,

Bergmann, Uwe

2009-01-01T23:59:59.000Z

84

Shedding Light on Protein Drug Interactions | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Shedding Light on Protein Drug Interactions JANUARY 23, 2008 Bookmark and Share In this e-coli cell, the proteins (shown in blue) crowd around ribosomes (purple). These regions have a high concentration of protein, typically greater than 30 percent, which limits the ensemble of states into which the proteins can bend themselves. Download hi-res image.) Proteins, the biological molecules that are involved in virtually every action of every organism, may themselves move in surprising ways, according to a recent study carried out at the Biophysics Collaborative Access Team x-ray beamline 18-ID at the Advanced Photon Source, a national user

85

1993 CAT workshop on beamline optical designs  

SciTech Connect (OSTI)

An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

Not Available

1993-11-01T23:59:59.000Z

86

NGLS: Next Generation Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab masthead Berkeley Lab A-Z Index Phone Book Careers Search DOE logo Lab masthead Berkeley Lab A-Z Index Phone Book Careers Search DOE logo NGLS logo NGLS Science NGLS Technology Seminars Workshop/Reports Related Links Further Info NGLS Facility Combustion Photosynthesis Photosynthesis Photosynthesis Today is a golden age for light sources. Storage ring-based synchrotrons routinely provide X-ray beams exploited by thousands of scientists annually to answer fundamental questions in diverse fields including human health, energy, and electronics and information processing. MORE > NGLS Science Science section chart NGLS CD-0 Proposal NGLS Technology Technology section chart Seminars Science section chart Workshops Science section chart Last updated 06/21/2013 Top A U.S. Department of Energy National Laboratory Operated by the University

87

Performance measurements at the SLS SIM beamline  

SciTech Connect (OSTI)

The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

88

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 12.2.2 Beamline 12.2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure

89

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

90

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

91

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

92

Beamline 10.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

93

Photon Statistics of Semiconductor Light Sources.  

E-Print Network [OSTI]

??In recent years, semiconductor light sources have become more and more interesting in terms of applications due to their high efficiency and low cost. Advanced (more)

Amann, Marc

2010-01-01T23:59:59.000Z

94

Building the World's Most Advanced Light Source  

SciTech Connect (OSTI)

View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

None

2012-08-03T23:59:59.000Z

95

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X17B2  

E-Print Network [OSTI]

/3a laser Y Y Laser registration, warning signs Soldering Y N Use a designated area, periodically is being moved Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when

Ohta, Shigemi

96

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

97

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

98

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

99

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

100

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

102

Beamline 9.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

103

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

104

Beamline 3.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

105

BNL | ATF Beamline Descriptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Simulation Data and Control Panel Displays Beamline Simulation Data and Control Panel Displays Beamline 0 Beamline 1 Beamline 2 Beamline 0 is directly downstream of the linac and serves to transport the beam from the linac to any one of the three experimental beamlines. Beamline 0 is modeled using MAD. Shown below is a summary of the MAD simulation results. Beamline control system panel (PDF) Transport line control system panel (PDF) MAD input deck Raw output beamline 0 This beam line currently serves the Plasma Acceleration, Current Filamentation Instability and Compton scattering experiments. A summary of the MAD simulation results is shown below. MAD input deck | Output of optical functions | Beamline control system panel (PDF) beamline 1 output ATF beamline 2 previously served the IFEL experiment, the SASE experiment

106

SLAC Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the U.S. Department of Energy by Stanford University. As the world's most powerful X-ray laser, the LCLS creates unique light that can see details down to the size of atoms...

107

Personnel Safety System for the beamlines at the Advanced Photon Source  

Science Journals Connector (OSTI)

The Personnel Safety System (PSS) at the Advanced Photon Source is a high reliability fail?safe redundant engineered safety system that provides personnel access control to prevent inadvertent entry into experimental stations when hazardous radiation conditions exist and warns personnel of changes in safe operating conditions inside these stations. Single fault tolerant access control is provided by two independent interlock chains implemented via programmable logic controllers (PLCs). Reduction of common mode failures is accomplished by different hardware and software platforms for the two chains. The system design is presented.

J. Hawkins; C. Seaver; J. Stein; J. Stoffel; N. Friedman

1996-01-01T23:59:59.000Z

108

Terahertz Light Source and User Area at FACET  

SciTech Connect (OSTI)

FACET at SLAC provides high charge, high peak current, low emittance electron beam that is bunched at THz wavelength scale during its normal operation. A THz light source based coherent transition radiation (CTR) from this beam would potentially be the brightest short-pulse THz source ever constructed. Efforts have been put into building this photon source together with a user area, to provide a platform to utilize this unique THz radiation for novel nonlinear and ultrafast phenomena researches and experiments. Being a long-time underutilized portion of the electromagnetic spectrum, terahertz (100 GHz {approx} 10 THz) spectral range is experiencing a renaissance in recent years, with broad interests from chemical and biological imaging, material science, telecommunication, semiconductor and superconductor research, etc. Nevertheless, the paucity of THz sources especially strong THz radiation hinders both its commercial applications and nonlinear processes research. FACET - Facilities for Accelerator science and Experimental Test beams at SLAC - provides 23 GeV electron beam with peak currents of {approx} 20 kA that can be focused down to 100 {mu}m{sup 2} transversely. Such an intense electron beam, when compressed to sub-picosecond longitudinal bunch length, coherently radiates high intensity EM fields well within THz frequency range that are orders of magnitude stronger than those available from laboratory tabletop THz sources, which will enable a wide variety of THz related research opportunities. Together with a description of the FACET beamline and electron beam parameters, this paper will report FACET THz radiation generation via coherent transition radiation and calculated photon yield and power spectrum. A user table is being set up along the THz radiation extraction sites, and equipped with various signal diagnostics including THz power detector, Michelson interferometer, sample stages, and sets of motorized optical components. This setup will also be presented. Potential THz research areas including studies of magnetism, ferroelectric switching dynamics, semiconductor devices and chemical reaction controls have already been proposed for the FACET THz area.

Wu, Z.; Li, S.Z.; Litos, M.; Fisher, A.D.; Hogan, M.J.; /SLAC

2011-11-08T23:59:59.000Z

109

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

110

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

111

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

112

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

113

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

114

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

115

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

116

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

117

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.0.1 Print 7.0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

118

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

119

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

120

Beamline 7.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Light Source Activity Report 2002  

SciTech Connect (OSTI)

This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

2003-06-12T23:59:59.000Z

122

National Synchrotron Light Source annual report 1988  

SciTech Connect (OSTI)

This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

1988-01-01T23:59:59.000Z

123

Single-layer mirrors for advanced research light sources  

SciTech Connect (OSTI)

X-ray mirrors are needed for beam guidance, beam alignment and monochromatisation at third-generation synchrotron light sources (PETRA III) and forthcoming Free-Electron Lasers (LCLS, European XFEL). Amorphous carbon coatings are currently used as total reflection mirrors at FLASH to guide the photon beam to the various beamlines. These coatings were prepared by means of magnetron sputtering. The new GKSS sputtering facility for the deposition of single and multilayer mirrors with a length of up to 1500 mm and a width of up to 120 mm is in operation. In this contribution we present the results of this new deposition system. A major advantage is that it is now possible to prepare one, two or more mirrors with similar properties over the whole deposition length. The mirror properties were investigated by means of X-ray reflectometry and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness and surface roughness. The uniformity of these properties over the whole deposition length of 1500 mm is demonstrated. The results obtained will be discussed and compared with former results.

Stoermer, M.; Horstmann, C. [GKSS Research Centre Geesthacht GmbH, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Siewert, F. [Helmholtz Zentrum Berlin / BESSY-II, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Scholze, F.; Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hertlein, F.; Matiaske, M.; Wiesmann, J. [Incoatec GmbH, Max-Planck-Str. 2, D-21502 Geesthacht (Germany); Gaudin, J. [European XFEL, DESY, 22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

124

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

125

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

126

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

127

Beamline 7.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

128

Compact X-Ray Light Source Workshop | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compact X-Ray Light Source Workshop Compact X-Ray Light Source Workshop Teller R, Terminello L, Thevuthasan T, Moncton D. 2012. "Compact X-Ray Light Source Workshop Report."...

129

APS Beamline 6-ID-B,C  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B,C Home B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. Research on this beamline centers on general x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights LSMO pictures Searching for Next-Generation Electronic Materials December 14, 2009 A new class of layered oxide materials discovered thanks to research at the beamline 6-ID-B offers scientists unprecedented opportunities for creating the next generation of electronic devices. Local Contact: Phil Ryan Local Contacts: Philip Ryan (Surface Diffraction) 630.252.0252 ryan@aps.anl.gov

130

Light sources based on semiconductor current filaments  

DOE Patents [OSTI]

The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

2003-01-01T23:59:59.000Z

131

Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

132

The Linac Coherent Light Source is  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coherent Light Source is Coherent Light Source is a revolution in x-ray science. Just as the invention of x-ray machines a century ago astonishingly revealed the inside of our bodies and began new sciences, the world's first x-ray laser will open up unprecedented opportunities. Pioneering experiments will advance our understand ing of everything from the hidden physics inside planets, to how proteins function as the engines of life, to building nanotechnology devices for the backbone of future industry and technology. The applications are legion: medicine, electronics, biology, solid-state physics, nanotechnology, energy production, industry and fields that do not yet exist. Linac Coherent Light Source New Tools Create New Science The LCLS is dramatically different from any x-ray

133

The Design of Superconducting Wiggler Beamline BL7 at SAGA-LS  

SciTech Connect (OSTI)

A new hard X-ray beamline has been designed at Saga Light Source. The beamline, named BL7, uses a newly developed 4-Tesla superconducting wiggler as a light source in order to cover a wide energy range to 30 keV. This beamline has a simple optics: a double-crystal monochromator and a Rh-coated bent-cylindrical mirror and can supply a focused beam with a photon flux about 1x10{sup 10} photons/s and a sub-millimeter size. Several experiments will be performed in the experimental station: e.g. protein crystallography; X-ray micro computed tomography; X-ray absorption fine structure measurement.

Kawamoto, M.; Sumitani, K.; Okajima, T. [Beamline Group, Kyushu Synchrotron Light Research Center, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

134

Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY  

SciTech Connect (OSTI)

I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

Wagner, Ulrich H. [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Rau, Christoph [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Northwestern University, Chicago (United States)

2010-06-23T23:59:59.000Z

135

NRC Construction Light Source Flicker: What We  

E-Print Network [OSTI]

frequency] (CFF) ·Health - World Health Organization (1947): · ...a state of complete physical, mental Handbook: Reference & Application (9th Ed.), 2000, p. 3-20 #12;NRC Construction Flicker Effects 1;NRC Construction Flicker Problem 2 ·Does it matter what light source produces the flicker

California at Davis, University of

136

Overview of the SPring-8 Diagnostics Beamlines  

SciTech Connect (OSTI)

We present an overview of the two SPring-8 diagnostics beamlines, the beamline I (dipole magnet source) and II (insertion device source). At the beamline I, synchrotron radiation (SR) in both the X-ray and the visible bands is exploited for characterizations of the electron beam. At the beamline II, by observing the spectral, spatial, and temporal characteristics of X-ray SR of the insertion device (ID), new techniques for accelerator diagnostics are investigated. Irradiation experiments with the ID to develop accelerator components such as photon absorbers, and production of intensive 10 MeV {gamma}-rays by backward Compton scattering of external far infrared (FIR) laser photons are being prepared at the beamline II.

Takano, S.; Masaki, M.; Tamura, K.; Mochihashi, A.; Nakamura, T.; Suzuki, S.; Oishi, M.; Shoji, M.; Taniuchi, Y.; Okayasu, Y.; Ohkuma, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); Okajima, S. [Center of Advanced Metrology, Chubu University, Kasugai, Aichi, 487-8501 (Japan)

2010-06-23T23:59:59.000Z

137

AFRD - Advanced Light Source Accelerator Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Accelerator Physics ALS Accelerator Physics Home Organization Outreach and Diversity News Highlights Safety Links Intramural FPO Accelerator Physics Group This page and the Group's own site emphasize the continuing effort to improve the performance and versatility of the accelerator-related systems of the ALS. If you want to start with a nontechnical explanation of what synchrotron light is, how scientists use it, and how the Advanced Light Source works, try About the ALS. The research performed using beams from the ALS is a vast topic that spans many scientific disciplines; a good overview with in-depth links is available at the ALS Science Briefs page. The ALS is a “” synchrotron light source based on a low-emittance electron storage ring with a nominal energy of 1.9 GeV. Since the machine

138

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

139

Dielectric Wakefield Accelerator to drive the future FEL Light Source.  

SciTech Connect (OSTI)

X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

2011-04-20T23:59:59.000Z

140

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2

142

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

143

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

144

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

145

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating

146

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

147

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 5.0.1 Print Tuesday, 20 October 2009 08:32 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules

148

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

149

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

150

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

151

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

152

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

153

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

154

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.1 3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

155

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

156

Beamline 10.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

157

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.3.1 2.3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

158

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

159

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

160

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.0.2 5.0.2 Beamline 5.0.2 Print Tuesday, 20 October 2009 08:35 Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.3.2 9.3.2 Beamline 9.3.2 Print Tuesday, 20 October 2009 09:06 Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

162

Beamline 12.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

163

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

164

Backscatter absorption gas imaging systems and light sources therefore  

DOE Patents [OSTI]

The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

2006-12-19T23:59:59.000Z

165

Linac Coherent Light SourCe  

Broader source: Energy.gov (indexed) [DOE]

Linac Linac Coherent Light SourCe after the Stanford Linear Accelerator Center (now the SLAC National Accelerator Laboratory) developed its two- mile-long linear accelerator (linac), it received approval from the Department of Energy to construct the Linac Coherent Light Source (LCLS), the first free electron laser (FEL) facility that would be able to produce x-rays short and bright enough that individual molecules could be imaged in their natural states. 40 years Genesis of the idea In 1992, Dr. Claudio Pellegrini, a professor at UCLA, first developed a proposal for a facility that would eventually become LCLS. The idea generated interest within the scientific community, and a design study report conducted by SLAC in the late 1990s led to the first

166

Rf capacitively-coupled electrodeless light source  

DOE Patents [OSTI]

An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA); Fugitt, Jock A. (Livingston, TX)

2000-01-01T23:59:59.000Z

167

The upgraded scheme of Hefei Light Source  

SciTech Connect (OSTI)

To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao [National Synchrotron Radiation Laboratory of University of Science and Technology of China, Anhui (China)

2010-06-23T23:59:59.000Z

168

APS Beamline 6-ID-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights LuFeO Unlikely route to ferroelectricity May 16, 2012 A new type of ferroelectric, LuO2Fe4, has been investigated at the APS by a research team from Julich research center. XAS & XMCD studies on beamline 4-ID-C determined the Fe magnetism and valence, while single crystal x-ray scattering measurements at 6-ID-B & 6-ID-D probed the associated structural and charge ordering.

169

APS Beamline 6-ID-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D Home D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights A New Family of Quasicrystals A New Family of Quasicrystals June 24, 2013 Scientists from the U.S. Department of Energy's Ames Laboratory and Iowa State University have used the high energy x-rays available on beamline 6-ID-D, to confirm the structure of the only known magnetic rare earth icosahedral binary quasicrystals. Contacts: Alan Goldman & Paul Canfield - Iowa State Univ. & Ames Lab Local Contacts:

170

The JLab high power ERL light source  

SciTech Connect (OSTI)

A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

2005-03-19T23:59:59.000Z

171

Beamline 29-ID  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEX Milestones(4/29/2013) IEX Milestones(4/29/2013) • Spring 2012 ✓ Completion of the IEX EM-VPU insertion device (photos) ✓ Installation of EM-VPU in the storage ring (photo1, photo2) ✓ Installation of high heat-load mirrors M0/M1 (photo) • Summer 2012 ✓ Testing of various polarization mode of EM-VPU with stored beam ✓ Installation of vacuum transport, support tables and diagnostic component; implementation of beamline controls and safety systems (cleanroom, FOE progress, FOE progress2) • Fall 2012 ✓ FDR approval (October 15) ✓ Installation of first optical enclosure components (photo) ✓ First light and testing of white/pink beam components (photo1, photo2) • Winter/Spring 2013 - White beam commissioning ✓ Alignment of mirrors with synchrotron beam ✓ Installation and alignment of support tables (photo)

172

Real Time Tomography at the Swiss Light Source  

SciTech Connect (OSTI)

The penetrating power of X-rays coupled with the high flux of 3rd generation synchrotron sources makes X-ray tomography to excel among fast imaging methods . To exploit this asset of synchrotron sources is the motivation for setting up an ultra-fast tomography endstation at the TOMCAT beamline. The state of the art instruments at synchrotron sources offer routinely a temporal resolution of tens of seconds in tomography. For a number of applications, for example biomedical studies, the relevant time scales (breathing, heartbeat) are rather in the range of 0.5-2 seconds. To overcome motion artifacts when imaging such systems a new ultra-fast tomographic data acquisition scheme is being developed at the TOMCAT beamline. We can acquire a full set of projections at sub-second timescale in monochromatic or white-beam configuration. We present a feasibility study with the ultimate aim to achieve sub-second temporal resolution in 3D without significant deterioration of the spatial resolution. For the first time, the 3D dynamics of the very early stages of a quickly aging liquid foam can be visualised with high quality and sufficiently large field of view.

Mokso, R.; Marone, F. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, Zurich (Switzerland)

2010-06-23T23:59:59.000Z

173

SLAC Linac Coherent Light Source User Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome to the LCLS User Resources Site Welcome to the LCLS User Resources Site User Portal | Agreements | Data Collection & Analysis | Logistics | Policies | Proposals | Safety | Schedules | Shipping The Linac Coherent Light Source (LCLS) encourages scientists from diverse fields to submit proposals for experiments that utilize the LCLS's unique capabilities. Interested scientists are encouraged to learn more about the latest developments by contacting LCLS staff scientists and by reviewing the instrument descriptions. Step-By-Step Instructions to Working at LCLS Review LCLS Policies Review Machine FAQ & Parameters Register and Submit Proposals Confirm User Agreement Reserve Accommodations Complete Safety Training Request Computer Account Establish User Account Ship Samples/Equipment Review Check-in Procedures

174

X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source  

Science Journals Connector (OSTI)

Advances in synchrotron beamlines bring opportunities with accompanying challenges for the study of soft condensed (biological) matter. This article describes improvements to the BioCAT beamline that include micro-focus, scanning and cryo-cooling of soft connective tissues yielding X-ray data from whole rat-tail tendons to better than 4 ?.

Barrea, R.A.

2014-08-08T23:59:59.000Z

175

APS 7-BM Beamline: Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

176

Diagnostic X-Multi-Axis Beamline  

SciTech Connect (OSTI)

Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.

Paul, A C

2000-04-05T23:59:59.000Z

177

The 4th Generation Light Source at Jefferson Lab  

SciTech Connect (OSTI)

A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

2007-04-25T23:59:59.000Z

178

Status of the SAGA Light Source  

SciTech Connect (OSTI)

The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installed in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.

Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S. [SAGA Light Sources, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

179

Energy Sources and Light Curves of Macronovae  

E-Print Network [OSTI]

A macronova (kilonova) was discovered with short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of $r$-process elements synthesized in the ejecta of a neutron star binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or neutron star, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we analytically formulate the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and better fit to observations than the $r$-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of central engine and $r$-process nucleosynthesis.

Kisaka, Shota; Takami, Hajime

2014-01-01T23:59:59.000Z

180

Ideas for Future Synchrotron Light Sources  

E-Print Network [OSTI]

of very-high-brightness electron sources, it is anticipatedcharacteristics for the electron source, given in u_ble 1.Table 1 Electron Source Characteristics Characteristic f

Jackson, A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

182

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

183

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

184

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

185

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

186

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

187

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

188

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

189

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

190

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

191

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

192

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

193

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.4.1 5.4.1 Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

194

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

195

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 Print 0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

196

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

197

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

198

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

199

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

200

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

202

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

203

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

204

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

205

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

206

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

207

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 9.0.2 Beamline 9.0.2 Print Tuesday, 20 October 2009 08:59 Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm

208

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

209

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

210

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

211

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

212

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

213

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

214

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

215

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

216

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

217

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

218

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

219

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

220

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

222

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

223

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

224

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

225

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

226

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

227

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

228

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

229

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

230

Beamline 7.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

231

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

232

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

233

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

234

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

235

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

236

Beamline 7.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

237

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

238

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

239

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

240

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

242

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

243

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

244

Beamline 5.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

245

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

246

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

247

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

248

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

249

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

250

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

251

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

252

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

253

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

254

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

255

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

256

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

257

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

258

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

259

Beamline 4.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

260

Beamline 8.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

262

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

263

Beamline 5.0.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

264

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

265

Beamline 9.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

266

Beamline 8.2.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

267

Beamline 8.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.1 Print 3.1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

268

Beamline 1.4.3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

269

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

270

Beamline 12.3.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.3.1 Print 12.3.1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

271

Beamline 12.2.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

272

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

273

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

274

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

275

Beamline 1.4.4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

276

Beamline 5.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

277

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.2 Print 2.0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

278

Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline  

SciTech Connect (OSTI)

Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a 'photon hungry' technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the microsecond time scales. In general, the 10-fold increase in brightness of the NSLS-II, compared to other sources, will allow for measurements of dynamics on time-scales that are two orders of magnitude faster than what is currently possible. We also conclude that the common approximations used in evaluating the transverse coherence length would not be sufficiently accurate for the calculation of the coherent properties of an undulator-based beamline, and a thorough beamline optimization at a low-emittance source such as the NSLS-II requires a realistic wave-front propagation analysis.

Fluerasu A.; Chubar, O.; Kaznatcheev, K.; Baltser, J.; Wiegart, Lutz; Evans-Lutterodt, K.; Carlucci-Dayton, M.; Berman, L.

2011-08-21T23:59:59.000Z

279

Lighting Group: Sources and Ballasts: HID Lighting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

280

Photon Sciences | Operating the National Synchrotron Light Source,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Coordinator Program Coordinator Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Science and Instrumentation for the Linac Coherent Light Source...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the proposed Linac Coherent Light Source (LCLS): subpicosecond time-structure, coherence and unprecedented high averagepeak brightness in the angstrom spectral region. The...

282

Installing a Light Source 'Racetrack' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' March 22, 2011 - 10:42am Addthis Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Kendra Snyder This month, workers at Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), the half-mile electron racetrack for one of the world's most advanced light sources, will begin filling the facility's steel and concrete shell. In 2015, NSLS-II will open its doors - and its ultra-bright beams of x-ray, infrared and ultraviolet light - to thousands of researchers around the world, enabling the detailed exploration of everything from

283

Installing a Light Source 'Racetrack' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' Installing a Light Source 'Racetrack' March 22, 2011 - 10:42am Addthis Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Brookhaven National Lab's NSLS II Construction Site | Photo Courtesy of Brookhaven National Lab Kendra Snyder This month, workers at Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II), the half-mile electron racetrack for one of the world's most advanced light sources, will begin filling the facility's steel and concrete shell. In 2015, NSLS-II will open its doors - and its ultra-bright beams of x-ray, infrared and ultraviolet light - to thousands of researchers around the world, enabling the detailed exploration of everything from

284

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

285

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

286

A Web Site about the International Light Source Community  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Web Site about the International Light Source Community A Web Site about the International Light Source Community On February 17, 2005, the international light source community, including the Advanced Photon Source at Argonne National Laboratory, launched the first website dedicated to providing the media, general public, and scientific community with the latest news and information about and from the world's accelerator-driven light sources (synchrotrons and free-electron lasers) and about the science carried out by users of these facilities. The web site - www.lightsources.org - was developed and is jointly maintained by the lightsource.org Collaboration, whose members represent the world's light source facilities in Europe, North America, and Asia. Support for the project is provided by science funding agencies of many

287

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents [OSTI]

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

1994-01-01T23:59:59.000Z

288

Hutch for CSX Beamlines  

ScienceCinema (OSTI)

NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

Ed Haas

2013-07-17T23:59:59.000Z

289

Linac Coherent Light Source Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Linac Coherent Light Source Overview Linac Coherent Light Source Overview Linac Coherent Light Source Overview Addthis Description Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall. Duration 5:50 Topic Physics Credit Energy Department Video MR. : The SLAC National Accelerator Laboratory is located in the heart of California's beautiful San Francisco Bay Area. Operated by Stanford University for the U.S. Department of Energy, SLAC has been home to the world's longest particle accelerator for nearly 50 years. In 2009 SLAC ushered in a new era in its long history of physics research with a new kind of laser called the Linac Coherent Light Source, or LCLS. The LCLS is the first laser in the world to produce hard X-rays, which can

290

Second and Third Harmonic Measurements at the Linac Coherent Light Source  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) started user commissioning in October of 2009, producing Free Electron Laser (FEL) radiation between 800 eV and 8 keV [1]. The fundamental wavelength of the FEL dominates radiation in the beamlines, but the beam also produces nonnegligible levels of radiation at higher harmonics. The harmonics may be desirable as a source of harder X-rays, but may also contribute backgrounds to user experiments. In this paper we present preliminary measurements of the second and third harmonic content in the FEL. We also measure the photon energy cutoff of the soft X-ray mirrors to determine the extent to which higher harmonics reach the experimental stations. We present preliminary second and third harmonic measurements for LCLS. At low energies (below 1 keV fundamental) we measure less than 0.1% second harmonic content. The second harmonic will be present in the soft X-ray beam line for fundamental photon energies below approximately 1.1 keV. At low and high energies, we measure third harmonic content ranging from 0.5% to 3%, which is consistent with expectations. For both second and third harmonics, experimental work is ongoing. More rigorous analysis of the data will be completed soon.

Ratner, D.; /Stanford U., Phys. Dept.; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Huang, Z.; Hering, P.; Iverson, R.; Krzywinski, J.; Loos, H.; Messerschmidt, M.; Nuhn, H.D.; Smith, T.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

2011-01-03T23:59:59.000Z

291

Photon Sciences | About the National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Source NSLS One of the world's most widely used scientific research facilities, the National Synchrotron Light Source (NSLS) is host each year to 2,400 researchers from more than 400 universities, laboratories, and companies. Research conducted at the NSLS has yielded advances in biology, physics, chemistry, geophysics, medicine, and materials science. Synchrotron light is produced by electrons when they are forced to move in a curved path at nearly the speed of light. At the NSLS, beams of light in the x-ray, ultraviolet, and infrared wavelengths are produced by two synchrotrons for use in experiments. Powerful Light, Diverse Research Since the intensity of synchrotron light can be 10,000 times greater than conventional beams generated in a laboratory, scientists can use these

292

Lighting Group: Sources and Ballasts: OLED Cathodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OLED Cathodes OLED Cathodes Development of New Cathodes for OLED's Objective The objective of this project is to develop improved cathodes for use in organic light emitting diodes (OLEDs). Approach A major challenge for organic light emitting diode (OLED) technology is to improve electron injection into the organic electroluminescent layer, which limits the efficiency of the device and the luminous flux per unit area. This project aims at overcoming such barriers by developing “structured cathodes” based on functional materials (nanotubes and nanoclusters) with characteristic size smaller than the optical wavelength. The incorporation of such nanostructured cathodes in OLEDs can significantly improve device efficiency by lowering operating voltage, and increase device stability and light extraction.

293

Designing subwavelength-structured light sources  

E-Print Network [OSTI]

The laser has long been established as the best possible optical source for fundamental studies and applications requiring high field intensity, single mode operation, a high degree of coherence, a narrow linewidth and ...

Chua, Song Liang

2013-01-01T23:59:59.000Z

294

1-ID: Sector 1, Insertion Device Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-ID beamline schematic 1-ID beamline schematic ID on-axis brilliance values 1-ID - Sector 1, Insertion Device Beamline Responsible Scientists Jon Almer, phone: (630) 252-1049, e-mail: almer@aps.anl.gov Sarvjit Shastri, phone: (630) 252-0129, e-mail: shastri@aps.anl.gov John Okasinski, phone: (630) 252-0162, e-mail: okasinski@aps.anl.gov Peter Kenesei, phone: (630) 252-0133, e-mail: kenesei@aps.anl.gov Scientific Programs Coupled high-energy SAXS/WAXS studies (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Single-grain studies Stress/strain/texture studies Pair-distribution function (PDF) measurements High-energy fluorescence Source Characteristics Upstream insertion device: APS Undulator A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device

295

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL23 level...

296

Lighting system combining daylight concentrators and an artificial source  

DOE Patents [OSTI]

A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

1985-01-01T23:59:59.000Z

297

Synchronization System for Next Generation Light Sources  

SciTech Connect (OSTI)

An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

Zavriyev, Anton

2014-03-27T23:59:59.000Z

298

Large area, surface discharge pumped, vacuum ultraviolet light source  

DOE Patents [OSTI]

Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

Sze, R.C.; Quigley, G.P.

1996-12-17T23:59:59.000Z

299

National Synchrotron Light Source II Project Progress Report  

E-Print Network [OSTI]

, power supply procurement, BPM electronics testing, and controls system design. With details of technical'S ASSESSMENT FEBRUARY 2010 OVERALL ASSESSMENT The National Synchrotron Light Source II project maintained excellent technical progress and satisfactory cost and schedule performance. The DOE Independent Project

Ohta, Shigemi

300

Microsoft Word - Science and Technology of Future Light Sources...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0839 BNL-81895-2008 LBNL-1090E-2009 SLAC-R-917 Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL, BNL, LBNL and SLAC. The...

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

302

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

303

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

304

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

305

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.0.2 Print 4.0.2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

306

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

307

Beamline 4.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

308

A Next Generation Light Source Facility at LBNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Next Generation Light Source Facility at LBNL A Next Generation Light Source Facility at LBNL Author: Corlett, J.N. Publication Date: 04-12-2011 Publication Info: Lawrence Berkeley National Laboratory Permalink: http://escholarship.org/uc/item/81t3h97w Keywords: NGLS, FEL, 2 GeV superconducting linear accelerator, high-brightness, highrepetition- rate, high- repetition-rate (1 MHz) Local Identifier: LBNL Paper LBNL-4391E Preferred Citation:

309

New Directions in X-Ray Light Sources  

ScienceCinema (OSTI)

July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

Roger Falcone

2010-01-08T23:59:59.000Z

310

Comparative study of energy saving light sources  

Science Journals Connector (OSTI)

Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23W CFL, 21W EEFL, 18W fluorescent tube or 15W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of ?20CLED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems.

N. Khan; N. Abas

2011-01-01T23:59:59.000Z

311

Advanced Photon Source, Canadian Light Source Strengthen Ties, Expand X-ray  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rose of APS and CNM One of Four DOE Early Career Award Winners Rose of APS and CNM One of Four DOE Early Career Award Winners Scientists Close-In on Artificial Spider Silk Ekiert Earns 2012 APSUO Franklin Award for Studies of Influenza Virus Clever Apes on WBEZ: Breaking the Fossil Record Gerig to Chair Particle Accelerator School Board APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Advanced Photon Source, Canadian Light Source Strengthen Ties, Expand X-ray Technology and Research JUNE 18, 2012 Bookmark and Share The interiors of the Canadian Light Source (top) and Advanced Photon Source experiment halls. (CLS photo courtesy of Canadian Light Source) Seeking to solve some of today's greatest global problems, scientists using x-ray light source facilities at national research laboratories in

312

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

313

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

314

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

315

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

316

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

317

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

318

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

319

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

320

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

322

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

323

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

324

Beamline 8.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

325

Source Attribution of Light Absorbing Aerosol in Arctic Snow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Attribution of Light Absorbing Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008-2009 data) Outline * Receptor modeling overview * Results from 2007 data set * New goals arising from analysis of 2007 data * New data for 2008 * New data for 2009 * Tentative conclusions * Future analysis i Factor profiles from 2007 analysis Source attribution of Black Carbon from 2007 analysis Goals/Issues suggested by the analysis of the 2007 data set * Are there seasonal differences in the source strengths? * Are there other LAA chemical components besides black carbon. What are their sources? * Can the various data sets available (e.g., 2007, 2008, 2009) be combined in a single large PMF analysis 2008 Data Set For Receptor Analysis * 42 samples from Eastern Siberia including 4 depth profiles

326

Advanced Light Source (ALS) | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

327

National Syncrotron Light Source (NSLS-II) | U.S. DOE Office...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

328

Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

329

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

330

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect (OSTI)

The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2011-09-09T23:59:59.000Z

331

APS 7-BM Beamline: Beamline Controls and Data Handling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Controls and Data Acquisition Beamline Controls and Data Acquisition Beamline controls operate through EPICS, with the standard MEDM graphical interface. When needed, Python is used for scripting, based on the PyEpics implementation written by CARS. The beamline workstation has access to the Enthought Python Distribution, which includes many common Python packages, such as numpy, scipy, h5py, and others. Data formats Time resolved data collected at the beamline are typically stored in a locally-defined binary data file. For distribution to users, these files are converted to HDF5, a widely used, hierarchical binary data format that can be accessed using tools in a wide variety of programming languages. Other formats can potentially be accommodated upon request; please contact beamline staff prior to your beamtime if a different format is needed.

332

The Advanced Photon Source looks to the future.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne National Laboratory is in its 12th year since producing first light. With an eye on the next 10 years, facility management have developed plans that address priorities for new and/or improved beamlines over the next 5-10 years with a strong evolution toward a greater number of dedicated beamlines. In addition, options, including an energy-recovery linac, are being evaluated for a planned upgrade of the APS.

Fenner, R. B; Gerig, R. E.; Gibson, J. M.; Gluskin, E.; Long, G. G.; Mills, D. M.; Ruzicka, W. G.

2007-11-11T23:59:59.000Z

333

Theoretical investigation of a tunable free-electron light source  

SciTech Connect (OSTI)

The concept and experimental results of a light source given in a recent paper by Adamo et al.[Phys. Rev. Lett. 103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics, and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency regimes.

Liu Shenggang; Hu Min; Zhang Yaxin; Liu Weihao; Zhang Ping; Zhou Jun [Terahertz Research Center, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2011-06-15T23:59:59.000Z

334

Theoretical investigation of a tunable free-electron light source  

Science Journals Connector (OSTI)

The concept and experimental results of a light source given in a recent paper by Adamo et al. [Phys. Rev. Lett. 103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics, and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency regimes.

Shenggang Liu; Min Hu; Yaxin Zhang; Weihao Liu; Ping Zhang; Jun Zhou

2011-06-30T23:59:59.000Z

335

Light Sources Help Discover New Drug Against Melanoma | Department of  

Broader source: Energy.gov (indexed) [DOE]

Light Sources Help Discover New Drug Against Melanoma Light Sources Help Discover New Drug Against Melanoma Light Sources Help Discover New Drug Against Melanoma July 18, 2011 - 12:07pm Addthis The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four dotted red lines show where it attaches to a target area in the mutated enzyme, disabling it from promoting the growth of tumors. | Image courtesy of Plexxikon Inc. The new anti-cancer drug, vemurafenib, is the green honeycomb structure at middle left. Four dotted red lines show where it attaches to a target area in the mutated enzyme, disabling it from promoting the growth of tumors. | Image courtesy of Plexxikon Inc. Mike Ross Science Writer at SLAC National Accelerator Laboratory What does this mean for me? A new drug designed to fight melanoma was discovered thanks to the

336

GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery  

Office of Science (SC) Website

GE Uses DOE Advanced Light Sources to Develop GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery Technology Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 06.13.11 GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery Technology Company is constructing a new battery factory in Upstate New York that is expected to create 300+ jobs. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo GE's new Image courtesy of GE GE's new "Durathon(tm)" sodium metal halide battery. The story of American manufacturing over the past two decades has too often been a tale of outsourcing, off-shoring, and downsizing-not least in

337

Structural biology research at the National Synchroton Light Source  

SciTech Connect (OSTI)

The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

NONE

1996-05-01T23:59:59.000Z

338

BNL | ATF Beamline Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline Parameters Beamline Parameters Electron beam energy: 25 to 76 MeV Temporal structure: Macropulse length: 3 microseconds Macropulse repetition rate from under 1 PPS to 3 PPS. Micropulse repetition period 12.25 ns or 24.5 ns. Micropulse length variable from about 1 ps FWHM to 10 ps FWHM. Electron beam charge: continuously variable. Single micropulse charge from zero to a few nanoculombs. Bunch train charge up to about 10 nanoculombs. Emittance: depends on various conditions, e.g. peak current, gun field, microbunch length etc. At 1 nC we have measured the emittance at 2.6 mm mrad (rms normalized) at a bunch length of 10 ps FWHM. The local emittance (Slice Emittance) is smaller, measured 1.4 mm mrad for a slice out of the 1 nC bunch. Stability: (approx.) 1 ps in short term phase, 1% of beam diameter

339

Photon Sciences | Operating the National Synchrotron Light Source,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accessing NSLS Accessing NSLS NSLS strongly advises industrial users to first consult with the Industrial Program Coordinator, Jun Wang (junwang@bnl.gov or 631-344-2661), before beginning the beam time application process. She will discuss your proposed research with you, guiding you to the most appropriate beamline and synchrotron research technique. From there, you will be contacted by the beamline staff at your target beamline. They will work with you to develop the best possible beam time proposal, which you will need to formally apply for beam time. For new users, it is often beneficial to start your NSLS experience by collaborating with seasoned users. Dr. Wang can help establish these collaborations. Whether you decide to consult with the Industrial Program Coordinator or

340

Synchrotron radiation as a light source in confocal microscopy  

Science Journals Connector (OSTI)

The optical properties of a confocal scanning microscope that was designed to utilize a synchrotron as light source are presented. The usable spectral range is from 200 nm up to 700 nm. Using 325?nm laser light it is shown that the lateral resolution is about 125 nm and the axial resolution better than 250 nm. After transport of the microscope from Utrecht to the Daresbury Synchrotron Source 200?nm excitation can be applied and the lateral resolution will drop to below 100 nm.

C. J. R. van der Oord; H. C. Gerritsen; Y. K. Levine; W. J. Myring; G. R. Jones; I. H. Munro

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source  

E-Print Network [OSTI]

bases is controlled with a Peltier module. The heat flowsthe flexural assembly to the Peltier thus stabilizing thecrystal is cooled through a Peltier element, which in turn

Kunz, Martin; Advanced Light Source

2009-01-01T23:59:59.000Z

342

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

343

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

344

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

345

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

346

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

347

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

348

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

349

Beamline 9.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

350

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

351

Beamline 5.4.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

352

APS Safety Guidelines for Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

353

Advanced Light Source Activity Report 1997/1998  

SciTech Connect (OSTI)

This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

Greiner, Annette (ed.)

1999-03-01T23:59:59.000Z

354

Superconducting RF Linac Technology for ERL Light Sources  

SciTech Connect (OSTI)

Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity???????¢????????????????s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

Chris Tennant

2005-08-01T23:59:59.000Z

355

Photonic crystal fibre-based light source for STED lithography  

SciTech Connect (OSTI)

A light source having a relative noise level in the order of 10{sup -6} and sufficient stability for application in STED lithography has been obtained using the generation of Cherenkov peaks in a supercontinuum spectrum. (laser applications and other topics in quantum electronics)

Glubokov, D A; Sychev, V V; Vitukhnovsky, Alexey G; Korol'kov, A E

2013-06-30T23:59:59.000Z

356

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

357

Photon Sciences | Operating the National Synchrotron Light Source,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Collaborators Industrial Collaborators The National Synchrotron Light Source (NSLS) and its future successor, NSLS-II, can help companies large and small solve research and manufacturing problems, generate new technologies and products, and stay competitive. The Photon Sciences Directorate would like to encourage greater use of its facilities by industrial researchers and facilitate collaborations between industry and NSLS staff, as well as government and academic institutions. Synchrotron Use by Industry What is a synchrotron? A synchrotron light source is a large machine that produces intense beams of infrared, ultraviolet, and x-ray light for the study of substances at very small scales, from looking at the molecular structure of proteins to probing the electronic properties of the next generation of computer-chip

358

National Synchrotron Light Source annual report 1991. Volume 2, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. [eds.

1992-04-01T23:59:59.000Z

359

Lighting Group: Sources and Ballasts: LED Reflector Lamp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LED Reflector Lamp LED Reflector Lamp LED Reflector Lamp Objective LED reflector lamp The goal of this project is to develop a revolutionary new reflector lamp which offers many advantages over current incandescent reflector lamps, including: three times greater efficiency ten times the rated life greater optical and performance properties use of light emitting diodes (LEDs) to generate the light. Although LEDs have been commercially available since the late 1960’s, recent dramatic improvements in LED technology have led to white light devices with efficiencies that meet or exceed those of a standard incandescent lamp. This project will build upon these improvements to develop a new type of source for focusing light. Contact Information For more information on this project, please contact:

360

The advanced light source: America`s brightest light for science and industry  

SciTech Connect (OSTI)

America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

Cross, J.; Lawler, G.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X-ray Experiments for Students at the SLS Optics Beamline  

SciTech Connect (OSTI)

We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

Flechsig, U.; Jaggi, A.; Krempasky, J.; Oberta, P.; Spielmann, S.; Veen, J. F. van der [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Als-Nielsen, J. [University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen (Denmark)

2010-06-23T23:59:59.000Z

362

Insertion devices for the Advanced Light Source at LBL  

SciTech Connect (OSTI)

The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

1989-03-01T23:59:59.000Z

363

Photon Sciences Directorate | 2010 Annual Report | Beamline & Optics R&D:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Qun Shen "Synchrotron sources have quickly become an essential tool for a wide spectrum of research. All the action takes place at beamlines, each one consisting of a suite of sophisticated scientific instruments. The robust beamlines at NSLS produce remarkable science, and we made excellent progress on developing NSLS-II beamlines and associated science programs." - Qun Shen Director, Photon Division While keeping the existing ring and beamline mechanical systems running, Photon Sciences staff completed a number of R&D projects this year that will improve the tools of researchers at NSLS and, in the near future, NSLS-II. One of the major accomplishments was the installation and commissioning of

364

BEAMLINE 2-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 CURRENT STATUS: Open with limited support SUPPORTED TECHNIQUES: White light station MAIN SCIENTIFIC DISCIPLINES: X-ray optics characterization and development % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bend Magnet Side Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance unfocused 1000-40000 eV NA 4.0 x 8.0 mm NA 0.4 mrad OPTICS: None MONOCHROMATOR: None (white beam) ABSORPTION: 673 microns Be, 12.4 meters He, 15.2 microns C INSTRUMENTATION: X-Y stages, ion chambers, PMT DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send an email to M$SPEC@ssrl.slac.stanford.edu SUPER

365

E-Print Network 3.0 - aps wiggler beamline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPX BEAMLINES The crab cavity scheme (sections 3.5 and 6... .1), offers a unique tunable high average flux source of 1ps x-rays. We propose to develop two ... Source:...

366

The BEAR Beamline at Elettra  

SciTech Connect (OSTI)

The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation.

Nannarone, S.; Pasquali, L.; Selvaggi, G. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy); Mahne, N. [TASC-INFM, Universita di Trieste, Trieste (Italy); Naletto, G.; Pelizzo, M.G.; Tondello, G. [LUXOR-INFM, Universita di Padova, Padua (Italy)

2004-05-12T23:59:59.000Z

367

6 GeV light source project cost estimating procedure  

SciTech Connect (OSTI)

To maintain uniformity in estimating the cost requirements of the various components of the 6 GeV Light Source, the following procedure will be used by all the task groups. The procedure uses a Work Breakdown Structure (VBS) to break down the project into manageable, easy to estimate, components. The project is first broken down into major tasks or categories. Then each major division is continuously subdivided until the desired level of detail is achieved. This can be shown best by using the example of the WBS of the Aladdin Upgrade Project, excerpts of which are included in Appendix A.

NONE

1985-10-23T23:59:59.000Z

368

Energy Secretary Moniz Dedicates the Worlds Brightest Synchrotron Light Source  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE) Secretary Ernest Moniz today dedicated the worlds most advanced light source, the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL).

369

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

370

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

371

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

372

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

373

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

374

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

375

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

376

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

377

Inverse free electron laser accelerator for advanced light sources  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

Duris, J. P.; Musumeci, P.; Li, R. K.

2012-06-01T23:59:59.000Z

378

Metrology and Tests beamline at SOLEIL Design and first results  

SciTech Connect (OSTI)

The objectives of this project is install at the 2.75 GeV SOLEIL synchrotron radiation source a calibration and metrology test facility for the R and D of optical components and detectors. We have build, on a bending magnet, two branches to cover an energy range from few eV to 28 keV and give access to white beam. This installation will first address the needs of the SOLEIL experimental groups(Optics and Detectors)and will be used by a large community. This beamline will also be valuable as a general-purpose beamline to prepare, test and set up a wide range of experiments in the field of Astrophysics, laser plasma etc...A complementary important aspect of this installation is the realization of primary standard: the metrology beamline of SOLEIL could become the national primary standard source in collaboration with the Laboratoire National d'Essais(LNE)and help in the design and characterization of several diagnostics for the Megajoule Laser in Bordeaux in collaboration with the CEA DIF. The beamline has been designed to provide great flexibility. In this paper, we describe the beamline design, the end station instrumentation and give also some preliminary results.

Idir, Mourad; Mercere, Pascal; Moreno, Thierry; Delmotte, Aurelien; Dasilva, Paulo; Modi, Mohammed H. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48 91192 GIF-sur-YVETTE CEDEX (France)

2010-06-23T23:59:59.000Z

379

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE *  

E-Print Network [OSTI]

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE * Ilan Ben of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering limitations. First, the emittance of a storage ring based light source is proportional to the energy

Brookhaven National Laboratory

380

NSLS II: The Future National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning for Life Sciences at NSLS-II: A Chronology Planning for Life Sciences at NSLS-II: A Chronology Since 2007, through workshops, trips to Washington, white papers, and other activities, NSLS-II planners have been steadily mapping out what promises to be a rich life sciences research program at the new facility. July 17-18, 2007 - Brookhaven Lab hosts the first NSLS-II user workshop, which was attended by over 450 participants, including many members of the life sciences user community and representatives from the National Institutes of Health (NIH) and the Department of Energy's (DOE) Office of Biological and Environmental Research (BER). January 15-16, 2008 - A scientific strategic planning workshop at Brookhaven Lab marked the beginning of plans for life sciences research and beamlines at NSLS-II. The goal of this workshop was to generate a detailed white paper that presented a vision of Life Sciences research, beamlines, and facilities at NSLS-II and describes the path forward and timeline toward achieving this goal.

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Synchrotron Light Source A View of Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

managed for the U.S. Department of Energy managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle National Synchrotron Light Source A View of Brookhaven Brookhaven National Laboratory is a multipurpose re- search laboratory funded by the U.S. Department of En- ergy. Located on a 5,300-acre site on Long Island, New York, the Laboratory operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and advanced technology. Brookhaven's 2,600 scientists, engineers, and support staff are joined each year by more than 5,000 visiting research- ers from around the world.

382

Workshop on scientific applications of short wavelength coherent light sources  

SciTech Connect (OSTI)

This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses ; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

Spicer, W.; Arthur, J.; Winick, H.

1993-02-01T23:59:59.000Z

383

Workshop on scientific applications of short wavelength coherent light sources  

SciTech Connect (OSTI)

This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS` Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region.

Spicer, W.; Arthur, J.; Winick, H.

1993-02-01T23:59:59.000Z

384

Linac Coherent Light Source Undulator RF BPM System  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; /Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; /SLAC

2007-04-17T23:59:59.000Z

385

Compact light source performance in recessed type luminaires  

SciTech Connect (OSTI)

Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

Hammer, E.E.

1998-11-01T23:59:59.000Z

386

U2B Beamline | Photon Sciences | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BNL People BNL People Photon SciencesInfrared Programs PS Home Infrared Home Beamlines U2A U2B U4IR U10A U10B U12IR Publications User Info Useful Sites Beamline U2B Home Publications Equipment Schedule Beamtime Instrument Spectrometer endstation: Thermo Nicolet Magna 860 Step-Scan FTIR and Continuum IR microscope Frequency Range (cm-1): 500 - 4000 Spectral resolution (cm-1): 4.0 Spatial resolution: diffraction-limit (i.e. ~ 3 to 10 microns) Brightness (compared to a black body): 100x to 1000x Smallest practical targeting aperture size: 3 microns square Beamline angular acceptance: (milliradians): 40H x 40V (100% vertical collection down to 240 cm-1) Optical Configuration A two-mirror system (M1 and M2) collects and re-images the synchrotron infrared source at a point just outside of the storage ring's UHV. M1 is a

387

APS Preliminary Beamline Design Report Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PRELIMINARY BEAMLINE DESIGN REPORT PRELIMINARY BEAMLINE DESIGN REPORT December 5, 1994 5.1 Preliminary Beamline Design: General Guidelines The Preliminary Design of the beamline represents an approximately 30% design level of each of the beamline components. This level of design permits the CAT to develop cost estimates for the construction of the beamline, as well as a realistic timeline for completion of the construction tasks. A committee from the APS has been charged with reviewing the Preliminary Design Reports and has established the evaluation criteria described below. The Preliminary Beamline Report is expected to expand upon the Conceptual Design Report in the following areas: Beamline Layout Component Design Work Breakdown Structure Cost and Schedule Additional Operational Requirements

388

A syncrhronized FIR/VUV light source at Jefferson Lab  

SciTech Connect (OSTI)

This slide show presents an introduction to Free-Electron Lasers (FELs) and what makes the JLab FELs unique. Ways of exploring the nature of matter with the FEL are shown, including applications in the THz, IR, UV, and VUV. The Jefferson Lab FEL Facility is unique in its high average brightness in the THz, and IR -- VUV spectral regions and Sub ps-pulses at MHz repetition rates. With an installation of a rebuilt 'F100' cryomodule the linac energy will increase to > 150MeV. This will permit lasing further into the UV and extend VUV. With the swap of our CEBAF-style cryounit for an improved booster, we could lase in the VUV. Addition of a wiggler and optical cavity slightly canted from the UV beamline would allow simultaneous lasing of UV and THz for high E-field 2 color experiments.

Shinn, Michelle D. [JLAB, Newport News, VA (United States)

2013-05-31T23:59:59.000Z

389

National Synchrotron Light Source guidelines for the conduct of operations  

SciTech Connect (OSTI)

To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

1998-01-01T23:59:59.000Z

390

Electron-beam-driven nanoscale metamaterial light sources  

Science Journals Connector (OSTI)

We show experimentally that beams of free electrons can induce light emission from nanoscale planar photonic metamaterials. Wavelengths of emitted light are determined by both the...

Adamo, Giorgio; Ou, Jun-Yu; MacDonald, Kevin; De Angelis, Francesco; Di Fabrizio, Enzo; Zheludev, Nikolay

391

UNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy  

E-Print Network [OSTI]

's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts · How solar light affects Earth's climate and atmosphere · The ways solar light affects space weatherUNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy for Earth

Mojzsis, Stephen J.

392

The Development of the Linac Coherent Light Source RF Gun  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. Section 1.1.5 describes the modeling used to compute and correct the gun RF fields and Section 1.1.6 describes the use of these fields in the electron beam simulations. The magnetic design and measurements of the emittance compensation solenoid are discussed in Section 1.1.7. The novel feature of the LCLS solenoid is the embedded quadrupole correctors. The thermo-mechanical engineering of the LCLS gun is discussed in Section 1.1.8, and the cold and hot RF tests are described in Section 1.1.9. The results of this work are summarized and concluding remarks are given in Section 1.1.10.

Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling; /SLAC

2008-09-24T23:59:59.000Z

393

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X-Ray Light Sources X-Ray Light Sources Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities X-Ray Light Sources Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports the operation of five DOE light sources. The unique properties of synchrotron radiation include its continuous spectrum, high flux and brightness, and in the case of the Linac Coherent Light Source, high coherence, which makes it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions

394

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect (OSTI)

The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

2010-08-30T23:59:59.000Z

395

Beam-based Feedback for the Linac Coherent Light Source  

SciTech Connect (OSTI)

Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

2010-02-11T23:59:59.000Z

396

Vacuum system for the LBL advanced light source (ALS)  

SciTech Connect (OSTI)

A 1.5 to 1.9 GeV synchrotron light source is being built at LBL. The vacuum system is designed to permit all synchrotron photons on the median plane to escape the electron channel and go into an antechamber through a 10 mm high slot. This slot offers effective RF isolation between the electron duct and the antechamber. All unused synchrotron photons within a few mrad of the median plane will be stopped by 96 nearly horizontal absorbers located in the antechamber. The gas, generated by the photons hitting the absorbers, will be directed down to reactive titanium surfaces. Twelve 10 meter long vessels constitute the vacuum chambers for all the lattice magnets. Each chamber will be machined from two thick plates of 5083-H321 aluminum and welded at the perimeter. The nominal wall thickness of the vacuum chamber is 40 mm, which makes it possible to machine a flange into the chamber without the use of welding. 5 refs., 5 figs.

Kennedy, K.

1988-05-01T23:59:59.000Z

397

Final Report, Photocathodes for High Repetition Rate Light Sources  

SciTech Connect (OSTI)

This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

Ben-Zvi, Ilan [Stony Brook University

2014-04-20T23:59:59.000Z

398

A multi purpose source chamber at the PLEIADES beamline at SOLEIL for spectroscopic studies of isolated species: Cold molecules, clusters, and nanoparticles  

SciTech Connect (OSTI)

This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO{sub 2}) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.

Lindblad, Andreas; Sderstrm, Johan; Nicolas, Christophe; Robert, Emmanuel; Miron, Catalin [Synchrotron SOLEIL, LOrme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France)] [Synchrotron SOLEIL, LOrme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France)

2013-11-15T23:59:59.000Z

399

Energy Recovered Light Source Technology at TJNAF | U.S. DOE...  

Office of Science (SC) Website

Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

400

The light-emitting diode (LED) is an fairly new kind of light source found currently in  

E-Print Network [OSTI]

this technology an ideal replacement for less efficient incandescent light sources, particularly in applications elevator lighting has the potential to achieve 25 percent greater efficiency than current incandescent ILLUMINATION LEVELS SIMILAR TO THOSE OF INCANDESCENT FIXTURES WHILE CUTTING ENERGY USE 45 PERCENT. ELEVATOR

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Doppler effects of a light source on a metamaterial slab: a rigorous Green's function approach  

Science Journals Connector (OSTI)

We apply a (rigorous) Green's function theory to study the Doppler effects of a light source placed on top of a metamaterial slab. When the receiver is in motion with the source and...

Wang, Weihua; Huang, Xueqin; Zhou, Lei; Chan, C T

2008-01-01T23:59:59.000Z

402

High-Efficiency Nitride-Based Photonic Crystal Light Sources  

Broader source: Energy.gov [DOE]

The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

403

Polymer and small molecule based hybrid light source  

DOE Patents [OSTI]

An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

Choong, Vi-En (Carlsbad, CA); Choulis, Stelios (Nuremberg, DE); Krummacher, Benjamin Claus (Regensburg, DE); Mathai, Mathew (Monroeville, PA); So, Franky (Gainesville, FL)

2010-03-16T23:59:59.000Z

404

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

405

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

406

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

407

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

408

Design of the LBNE Beamline  

E-Print Network [OSTI]

The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is desi...

Papadimitriou, V; Hylen, J; Kobilarcik, T; Marchionni, A; Moore, C D; Schlabach, P; Tariq, S

2015-01-01T23:59:59.000Z

409

Current-voltage model of LED light sources Szymon Bczkowski, Stig Munk-Nielsen  

E-Print Network [OSTI]

Current-voltage model of LED light sources Szymon Bczkowski, Stig Munk-Nielsen Department of Energy shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity radiation into visible light, are gradually being replaced by light-emitting diodes. The invention of LEDs

Munk-Nielsen, Stig

410

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources for  

E-Print Network [OSTI]

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources) microchannel waveguides with liquid cores containing fluorescent dyes, excited by incident light from an external halogen bulb. Simultaneous use of multiple fluorophores in a common solution, in a single L2 light

Prentiss, Mara

411

Solar Influences Light from the Sun is the largest source of energy for Earth's  

E-Print Network [OSTI]

Solar Influences Light from the Sun is the largest source of energy for Earth's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts with the Earth) · How and why light from the Sun varies in time from seconds to months to years to centuries · How solar

Mojzsis, Stephen J.

412

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Broader source: Energy.gov (indexed) [DOE]

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

413

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Broader source: Energy.gov (indexed) [DOE]

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

414

ANL/APS/TB-14 APS Beamline Design and Construction Requirements:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 14 APS Beamline Design and Construction Requirements: A Reference Manual for Designers and Builders Version 1.0 May 1994 iii TABLE OF CONTENTS SECTION I DEFINITIONS, GUIDELINES, AND REVIEW CRITERIA ............................1 1. Introduction (July 21, 1998) ...............................................................................................1 1.1 About the Advanced Photon Source ...........................................................................1 1.2 About this Manual.......................................................................................................1 2. Beamline Definitions and Responsibilities (July 21, 1998) .................................................2 2.1 Definitions...................................................................................................................2

415

Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network  

E-Print Network [OSTI]

Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey, for...

Pun, Chun Shing Jason; Leung, Wai Yan; Wong, Chung Fai

2014-01-01T23:59:59.000Z

416

High-speed low-voltage ultraviolet light source  

Science Journals Connector (OSTI)

A novel quasi-spark gap has been designed and constructed with high-speed and low-spark voltage characteristics. Ultraviolet light generating sparks can be operated at a rate of up to...

Huang, L; Hsu, S C; Kwok, H S

1984-01-01T23:59:59.000Z

417

BEAMLINE 4-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray Absorption Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Environmental / Materials / Chemistry / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler, 0.75 mrad, side station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance unfocused 5,500-38,000eV 10-4 4x18mm 0.75 mrad OPTICS: M0 mirror: Flat, bent vertically collimating, 1 m, Si, Rh-coated, cutoff 9-23 keV, LN2-cooled monochromator. Energies over 22keV are run with the mirror out. MONOCHROMATOR: Si(220) f=0° or Si(220) f=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library

418

BEAMLINE 8-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Photoemission spectroscopy MAIN SCIENTIFIC DISCIPLINES: BL8-1a: Materials / Surface Chemistry BL8-1b: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bending magnet station (vacuum ultraviolet) BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size (FWHM) flux angular acceptance focused 15 - 185 eV ~1 x 10-3 0.1 mm2 8.0 mrad OPTICS: M0 mirror: Cylindrical, SiC M1 mirror: Spherical, Fused Silica MONOCHROMATOR: 6m toroidal grating monochromator (TGM) Grating Monochromator References Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL support staff.

419

BEAMLINE 4-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Biological Small Angle X-ray Scattering/Diffraction Macromolecular solution x-ray scattering Lipid membrane diffraction Fiber diffraction Time-resolved x-ray scattering/diffraction Small-angle single crystal diffraction Ultra small-angle x-ray scattering (under development) MAIN SCIENTIFIC DISCIPLINES: Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance focused (crystal) 6000-18000 eV ~5 x 10-4 ~0.2 x 1.0mm < 1.0 mrad focused (multilayers) 8000-12000 eV ~3 x 10-2 ~0.2 x 1.0mm < 1.0 mrad

420

BEAMLINE 9-3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9-3 9-3 CURRENT STATUS: Closed (Down-pending mirror repair) SUPPORTED TECHNIQUES: X-ray absorption spectroscopy Single crystal x-ray absorption spectroscopy MAIN SCIENTIFIC DISCIPLINES: Structural Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 16-pole, 2-Tesla wiggler, 2 mrad beam BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size (fwhm) flux* angular acceptance focused 5000-30000 eV 1 x 10-4 0.4 x 3 mm2 ~2 x 1012 2.0 mrad *ph/sec @100 mA / 9 keV w 1x4 mm aperture OPTICS: M0 mirror: Flat, bent, vertically collimating, 1 m, Si, Rh-coated, LN2-cooled monochromator M1 mirror: Bent, cylindrical, 1.2 m, Zerodur, Rh-coated MONOCHROMATOR: Si(220) phi=0°, Si(220) phi=90° double-crystal,

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BEAMLINE 1-4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-4 -4 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Small angle x-ray scattering MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bend magnet BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 7100-9000 eV 4.0 x 10-3 0.25 x 1.0 mm ~1010 2.0 mrad OPTICS: MONOCHROMATOR: Bent crystal; Si ABSORPTION: NA INSTRUMENTATION: Small/Low Angle X-ray Scattering Camera System w/CCD Detector DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send an email to M$SPEC@ssrl.slac.stanford.edu RESPONSIBLE STAFF: Chris Tassone, 650-926-3124 BEAM LINE PHONE NUMBER: 650-926-5214

422

BEAMLINE 13-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 CURRENT STATUS Open RESPONSIBLE STAFF: Dan Brehmer Hirohito Ogasawara EXPERIMENTS: Photoemission; NEXAFS (see also: Spectroscopic Techniques) SCHEDULING: BL13 Schedules Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Elliptically polarized undulator OPTICS: M0 vertical deflecting spherical, water-cooled M2 horizontal deflecting spherical M3 vertical deflecting elliptical MONOCHROMATOR: Spherical Grating Monochromator (SGM) SLITS : 0-1000 µm. Entrance slit cooled and movable ± 200 mm along optical axis GRATINGS : 3 water-cooled interchangeable HORIZONTAL ANGULAR ACCEPTANCE : 0.25 mrad ENERGY RANGE : 300 l/mm: 150 - 400 E/DE 10000 600 l/mm: 250 - 700 E/DE 10000 1100 l/mm: 500 - 1200 E/DE 10000 SPOT SIZE : 0.01 x 0.075 mm2

423

BEAMLINE 8-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray absorption spectroscopy, near edge Photoemission spectroscopy MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bending magnet station (soft x-ray) BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size (FWHM) flux angular acceptance focused 100 - 1300 eV ~4 x 10-4 >0.1 mm2 4.0 mrad OPTICS: M0 mirror: toroidal SiC MONOCHROMATOR: 6m spherical grating monochromator (TGM) Grating Monochromator References ABSORPTION: NA INSTRUMENTATION: User Chambers on VUV Lines DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send

424

BEAMLINE 2-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Powder diffraction Thin film diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 1.3 Tesla Bend Magnet BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4000-14500 eV ~5 x 10-4 .20 x 0.45 mm 1.5 mrad OPTICS: Bent cylinder, single-crystal Si, Rh-coated mirror Radii: 2900 m (adjustable) x 52 mm Mean angle of incidence: 4.2 milliradians Cut off energy: 14.5 keV, Magnification: 1.1 MONOCHROMATOR: Si(111), Si(220) Si(400), upward reflecting, double-crystal Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

425

BEAMLINE 7-3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray absorption spectroscopy MAIN SCIENTIFIC DISCIPLINES: Structural Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2-Tesla wiggler, 0.8 mrad beam, side station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size (fwhm) flux* angular acceptance unfocused 4600-37000 eV 1 x 10-4 2 x 15 mm2 ~1 x 1012 0.8 mrad *ph/sec @100 mA / 9 keV w 2x15 mm aperture OPTICS: M0 mirror: Flat, bent, vertically collimating, 1 m, Si, Rh-coated, LN2-cooled monochromator MONOCHROMATOR: Si(220) phi=0°, Si(220) phi=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

426

BEAMLINE 13-3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EXPERIMENTAL STATION 13-3 EXPERIMENTAL STATION 13-3 CURRENT STATUS Open RESPONSIBLE STAFF Bart Johnson EXPERIMENTS Soft X-ray Coherent Scattering: Resonant, Polarization-dependent; Lensless Imaging: X-ray Holography, MAD phasing; X-ray Photon Correlation Spectroscopy SCHEDULING Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE EPU, Linear and Circular Polarization MONOCHROMATOR SGM, Rowland Circle Spherical Grating 300l/mm 600l/mm 1100l/mm Energy Range 150-400eV 350-750eV 600-1200eV Entrance Slit: 5-20 microns (typical), movable along beam path Exit Slit: 30-100 microns (typical) FOCUSING OPTICS 1313M1 Spherical Mirror, Horizontal Demag. 3:1 133M2 Spherical Mirror, Vertical Demag. 3:2 Spot Size on Sample (min) 24 microns (vertical) x 240 microns (horizontal)

427

BEAMLINE 7-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-2 7-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray scattering X-ray diffraction MAIN SCIENTIFIC DISCIPLINES: Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4600 - 16500 eV 0.12 x 0.50 mm 0.4 mrad OPTICS: Bent cylinder, single crystal Si, Rh-coated M0 mirror Radii: 2945 m (adjustable) x 56.1 mm Mean angle of incidence: 3.81 mrad Cut off energy: 17.7 keV Magnification: 1.0 MONOCHROMATOR: LN2-cooled, sagitally focusing, double crystal Si(111) Upward reflecting Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

428

BEAMLINE 10-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-2 0-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: 10-2a: X-ray absorption spectroscopy; XAS imaging 10-2b: X-ray scattering MAIN SCIENTIFIC DISCIPLINES: Biology / Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 30-pole, 1.45-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused 4500 - 30000 eV 0.2 x .43 mm 1.5 mrad unfocused 4500 - 45000 eV 2.0 x 20.0 mm 1.5 mrad OPTICS: Bent cylinder, Rh-coated, single crystal Si, M0 mirror Radii: 1500 m (adjustable) x 32.9 mm Cut off energy: 22 keV, Mean angle of incidence: 2.7 mrad MONOCHROMATOR: Si(111) f=90° or Si(220) f=90° Liquid nitrogen-cooled,

429

BEAMLINE 6-2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6-2 6-2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: BL6-2a: Rapid-scanning xRF imaging Advanced x-ray spectroscopy (XES, XRS, RIXS) XES: Resonant and non-resonant x-ray emission spectroscopy XRS: Non-resonant x-ray Raman scattering BL6-2b: Rapid-scanning xRF imaging Advanced x-ray spectroscopy (XES, XRS, RIXS) XES: Resonant and non-resonant x-ray emission spectroscopy XRS: Non-resonant x-ray Raman scattering BL6-2c: Transmission X-ray Microscopy MAIN SCIENTIFIC DISCIPLINES: Biology / Materials / Environmental % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 56-pole, 0.9-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance

430

BEAMLINE 4-3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4-3 4-3 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray Absorption Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Environmental / Materials / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla wiggler, 0.75 mrad, side station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance unfocused 2400-14000 eV 10-4 3 x 16 mm 0.75 mrad OPTICS: M0 mirror: Flat, bent vertically collimating, 1 m, Si, Rh-coated, cutoff 4-14 keV, LN2-cooled monochromator MONOCHROMATOR: Si(111) f=0° or Si(111) f=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL

431

An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional  

E-Print Network [OSTI]

experimental setups. This paper presents a method to control the brightness of a high-power light emitting

Daniel A. Wagenaar

432

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network [OSTI]

and collimated underwater incandescent projector. The laser-collimated underwater incandescent projector used for beamBY SUBMERGED LASERS and Incandescent Sources DESCRIPTIVE

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

433

Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II  

SciTech Connect (OSTI)

The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

2011-08-21T23:59:59.000Z

434

BEAMLINE 5-4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5-4 5-4 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Very High Energy Resolution; Photoemission Angle-Resolved Photoelectron Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 10-period undulator, maximum field 0.61 T BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance focused 7-40 eV 1700 l/mm: 7-18 eV, E/DE > 10000 2800 l/mm: 16-32 eV, E/DE> 10000 3600 l/mm: 20-40 eV, E/DE> 10000 ≥1 x 10-4 0.5 x 0.6 mm2 ~1011 >1.5 mrad OPTICS: M0: horizontal deflecting, flat, water-cooled M1: vertical focusing 10:1, elliptically cylinder M3: horizontal refocusing 1:1, cylinder M4: vertical refocusing 1:1, cylinder

435

ANL/APS/TB-21 Radiation Shielding of Insertion Device Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Radiation Shielding of Insertion Device Beamlines Using a Mirror as the First Optical Element W. Yun, B. Lai, K. J. Randall, S. Davey, D. R. Haeffner, P. K. Job, and D. Shu February 1995 Abstract The radiation shielding for an Advanced Photon Source (APS) insertion device beamline using a mirror as the first optical component is discussed. The beamline layout for a specific Synchrotron Radiation Instrumentation Collaborative Access Team beamline (sector 2 of SRI CAT) is described, and the methodology used to determine the radiation shielding is presented. Results indicate that, by using a x-ray mirror with a critical energy of 32 keV for total reflection, an undulator beam containing nearly all x-rays in the 0 - 32 keV spectral range can be delivered

436

Science at the Speed of Light: Advanced Photon Source  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

Murray Gibson

2010-01-08T23:59:59.000Z

437

Science at the Speed of Light: Advanced Photon Source  

SciTech Connect (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

Murray Gibson

2009-06-03T23:59:59.000Z

438

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

439

APS 7-BM Beamline: 7-BM Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of the 7-BM beamline Overview of the 7-BM beamline The 7-BM beamline is dedicated to time-resolved measurements of complex fluid flowfields using x-ray radiography and fluorescence spectroscopy. Funding for the final commissioning of 7-BM was provided by the DOE Office of Energy Efficiency and Renewable Energy. Commissioning was completed at the end of FY2012. The beamline is currently operated by the X-Ray Science Division of the APS. Major Areas of Research Fuel sprays from automotive fuel injectors, both diesel and gasoline. See more on the X-Ray Fuel Spray web page from Argonne's Energy Systems Division. Sprays for air-breathing propulsion. Fuel injection for rocket injectors. Gas-phase fuel injection and mixing. Beamline Performance Total flux: 4 x 1011 ph/s at 8 keV Energy range: 5.5 - 11 keV, 1.4% ΔE/E

440

Dynamics of laser-produced Sn microplasma for a high-brightness extreme ultraviolet light source  

E-Print Network [OSTI]

EUV light source is excessive in terms of power, cost, and size foot- print . An HVM lithography etendue on the order of 0.03 mm2 sr , and bright several watts of power . This means that the focal spot

Najmabadi, Farrokh

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High-Precision Fluorimetry with a Light-Emitting Diode Source  

Science Journals Connector (OSTI)

A simple fluorimeter which uses a light-emitting diode as a source of excitation and a photodiode as a detector has been constructed and evaluated. The exceptional stability of both...

Smith, B W; Jones, B T; Winefordner, J D

1988-01-01T23:59:59.000Z

442

Heat power capacity of the internal source in light-transparent coatings of planar solar collectors  

Science Journals Connector (OSTI)

The results are presented of numerical determination of the heat power capacity of the internal source in light-transparent coatings of planar solar collectors; the power results from partial absorption ... of th...

R. R. Avezov; N. R. Avezova; S. L. Lutpullaev; K. A. Samiev

2007-09-01T23:59:59.000Z

443

Quantum Cascade Lasers: New Resonant Tunnelling Light Sources for the Mid-Infrared  

Science Journals Connector (OSTI)

15 October 1996 research-article Quantum Cascade Lasers: New Resonant Tunnelling Light Sources...Hutchinson A. Y. Cho Recent results on quantum cascade lasers are reviewed. In these quantum devices based on resonant tunnelling the...

1996-01-01T23:59:59.000Z

444

Light source and CO2 concentration affect growth and anthocyanin content of lettuce under controlled environment  

Science Journals Connector (OSTI)

The effect of light source and CO2 concentration on the growth and anthocyanin content of lettuce (Lactuca sativa L. Seonhong Jeokchukmyeon) grown in growth chambers was examined. The plant was grown under 140 ...

Yoo Gyeong Park; Ji Eun Park

2012-12-01T23:59:59.000Z

445

Long-Distance FBG Sensor System Using High-Speed Swept-Wavelength Light Source  

Science Journals Connector (OSTI)

A long-distance FBG sensor system using a power controlled high-speed swept-wavelength light source is proposed and demonstrated. This system can measure FBGs reflection wavelengths...

Saitoh, Takanori; Nakamura, Kenichi; Takahashi, Yoshifumi; Iida, Hiroyuki; Iki, Yoshimitsu; Miyagi, Koichiro

446

Investigation of pin-post monochromators for a wiggler beamline  

SciTech Connect (OSTI)

Three water-cooled pin-post monochromators, to be used on a wiggler beamline at the Advanced Photon Source (APS), were built with the heat exchanger engineered to provide very high heat transfer. The geometry of the heat exchanger as well as calculated data on the heat transfer will be presented. Before using the monochromators on the beamline, they were checked by x-ray diffraction topography. Reflections (333) and (220) in Bragg case were utilized. In all crystals, similar patterns of strain in the diffracting silicon layers were revealed, which can be attributed to the geometry of the heat exchangers, the bonding technology, and the thickness of the top layer. Conclusions about construction of future pin-post monochromators have been drawn.

Krasnicki, S.; Maj, J. [Argonne National Lab., IL (United States); Schildkamp, W. [Univ. of Chicago, IL (United States); Tonnessen, T. [Boeing North American, Albuquerque, NM (United States). Albuquerque Operations

1998-12-31T23:59:59.000Z

447

Environmental Assessment for the National Synchrotron Light Source II at Brookhaven National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

NATIONAL SYNCHROTRON LIGHT SOURCE-II NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK U. S. Department Of Energy Brookhaven Site Office September 2006 DOE/EA-1558 i TABLE OF CONTENTS 1.0 PREFACE....................................................................................................................1 2.0 SUMMARY .................................................................................................................2 3.0 PURPOSE AND NEED ............................................................................................10 4.0 DESCRIPTION OF ALTERNATIVES, INCLUDING THE PROPOSED ACTION.....................................................................................................................11

448

Volume-scalable high-brightness three-dimensional visible light source  

DOE Patents [OSTI]

A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

2014-02-18T23:59:59.000Z

449

Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay  

SciTech Connect (OSTI)

One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

Delferriere, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O. [Commissariat a l'Energie Atomique, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France)

2012-02-15T23:59:59.000Z

450

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

Frank, Alan M. (Livermore, CA); Edwards, William R. (Modesto, CA)

1983-01-01T23:59:59.000Z

451

New Light on Improving Engine Efficiencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Crystal Structure of a Meta-stable Intermediate Particle in Virus The Crystal Structure of a Meta-stable Intermediate Particle in Virus Assembly Increasing Magnetic Response of Ferromagnetic Semiconductors under High Pressure Better Switching Through Chemistry in Thin Ferroelectrics First Molecular-Level Enzyme Images Could Improve Breast-Cancer Therapy Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Light on Improving Engine Efficiencies MARCH 3, 2009 Bookmark and Share The DOE, as part of its Clean Coal & Natural Gas Power Systems initiative, has a "Turbines of Tomorrow" program with the Program Performance Goal to: "By 2010, develop turbine technology that is capable of efficiently

452

Photon Sciences | Operating the National Synchrotron Light Source,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Highlights Science Highlights high-resolution scanning transmission electron microscopy image Nanocrystal Catalyst Transforms Impure Hydrogen into Electricity September 18, 2013 Brookhaven Lab scientists use simple, 'green' process to create novel core-shell catalyst that tolerates carbon monoxide in fuel cells and opens new, inexpensive pathways for zero-emission vehicles. Organic Solar Cells Shedding New Light on the 'Electron Highways' of Organic Solar Cells August 30, 2013 Researchers at Brookhaven Lab and Stony Brook University have developed a way to map out the degree of "traffic congestion" on the electron highways within the photoactive layer of organic solar cells. Li-ion Batteries For Better Li-ion Batteries, Scientists Watch One at Work August 29, 2013

453

Imaging spectroscopic analysis at the Advanced Light Source  

SciTech Connect (OSTI)

One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

1999-05-12T23:59:59.000Z

454

Luminescent light source for laser pumping and laser system containing same  

DOE Patents [OSTI]

The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

Hamil, Roy A. (Tijeras, NM); Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

455

The Nanofocus Endstation of the MINAXS Beamline of PETRA III  

SciTech Connect (OSTI)

The Micro- and Nanofocus X-ray Scattering Beamline (MINAXS) of the new 3rd generation source PETRA III is equipped with two endstations, out of which the farthest from the high beta undulator source is designed to provide a high flux, monochromatic X-ray beam focused to a size in the order of 100 nmx100 nm routinely used for microdiffraction experiments (nanofocus endstation). This contribution presents an overview on the current status of the nanofocus endstation and outlines the to-be-used experimental setup.

Krywka, C. A. [IEAP, Christian-Albrechts-Universitaet zu Kiel, Leibnizstrasse 19, D-24098 Kiel (Germany); Doehrmann, R.; Roth, S. V. [DESY, Notkestrasse 85, D-22063 Hamburg (Germany); Mueller, M. [GKSS Forschungszentrum Geesthacht, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2010-06-23T23:59:59.000Z

456

White lighting LEDs are fast replacing conventional lighting because not only are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high-speed wireless communication, especially for indoor applications.  

E-Print Network [OSTI]

are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high-speedBackground White lighting LEDs are fast replacing conventional lighting because not only wireless communication, especially for indoor applications. Moreover, using visible light as the source

Sekercioglu, Y. Ahmet

457

Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary  

SciTech Connect (OSTI)

The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

Kuzay, T.M. [Argonne National Lab., IL (United States); Warwick, T. [Lawrence Berkeley Lab., CA (United States)

1995-12-31T23:59:59.000Z

458

Intrinsic Lorentz violation in Doppler effect from a moving point light source  

E-Print Network [OSTI]

Einstein's Doppler formula is not applicable when a moving point light source is close enough to the observer; for example, it may break down or cannot specify a determinate value when the point source and the observer overlap. In this paper, Doppler effect for a moving point light source is analyzed, and it is found that the principle of relativity allows the existence of intrinsic Lorentz violation. A conceptual scheme to experimentally test the point-source Doppler effect is proposed, and such a test could lead to an unexpected result that the frequency of a photon may change during propagation, which questions the constancy of Planck constant since the energy conservation in Einstein's light-quantum hypothesis must hold.

Changbiao Wang

2010-07-06T23:59:59.000Z

459

Application of Partially coherent Wavefront Propagation Calculations for Design of Coherence-Preserving Synchrotron Radiation Beamlines  

SciTech Connect (OSTI)

Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. 'Extraction' of 'coherent portion' of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using 'Synchrotron Radiation Workshop' (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

O Chubar; Y Chu; K Kaznatcheev; h Yan

2011-12-31T23:59:59.000Z

460

CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams  

SciTech Connect (OSTI)

The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

NONE

1999-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "light source beamline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Light Well: ATunable Free-Electron Light Source on a Chip K. F. MacDonald,1,* Y. H. Fu,2  

E-Print Network [OSTI]

Light Well: ATunable Free-Electron Light Source on a Chip G. Adamo,1 K. F. MacDonald,1,* Y. H. Fu,2 and surface plasmon-polariton sources [1­5]. Electron- beam-induced radiation emission [6­8] is of particular-emitter displays [12]. The light well belongs to a broad family of free-electron- driven radiation sources wherein

Zheludev, Nikolay

462

Apparatus and method for compensating for electron beam emittance in synchronizing light sources  

DOE Patents [OSTI]

A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

Neil, G.R.

1996-07-30T23:59:59.000Z

463

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

464

6 GeV LIGHT SOURCE PROJECT COST ESTIMATING PROCEDURE LS-34  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GeV LIGHT SOURCE PROJECT GeV LIGHT SOURCE PROJECT COST ESTIMATING PROCEDURE LS-34 October 23, 1985 YC/AVR To maintain uniformity in estimating the cost requirements of the various components of the 6 GeV Light Source, the following procedure will be used by all the task groups. The procedure uses a Work Breakdown Structure (WBS) to break down the project into manageable, easy to estimate, components. The project is first broken down into major tasks or categories. Then each major division is continuously subdivided until the desired level of detail is achieved. This can be shown best by using the example of the WBS of the Aladdin Upgrade Project, excerpts of which are included in Appendix A. As shown in the example, the project is first divided into: 1.1 Project Management and Administration

465

Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of  

Office of Science (SC) Website

Energy Recovered Light Source Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Energy Recovered Light Source Technology at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Energy-recovered linac/TJNAF Free Electron Laser Developed at: Thomas Jefferson National Accelerator Facility, Brookhaven National

466

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

467

Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications  

SciTech Connect (OSTI)

Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

Rack, Alexander; Weitkamp, Timm [Institute for Synchrotron Radiation-ANKA, Forschungszentrum Karlsruhe/K.I.T., Postfach 3640, D-76021 Karlsruhe (Germany); European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Helfen, Lukas; Simon, Rolf; Luebbert, Daniel; Baumbach, Tilo [Institute for Synchrotron Radiation-ANKA, Forschungszentrum Karlsruhe/K.I.T., Postfach 3640, D-76021 Karlsruhe (Germany); Danilewsky, Andreas N. [Crystallographic Institute, University Freiburg, Hermann-Herder-Str. 5, D-79104 Freiburg (Germany)

2009-03-10T23:59:59.000Z

468

The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron  

SciTech Connect (OSTI)

The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

Cowie, B. C. C.; Tadich, A.; Thomsen, L. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria (Australia)

2010-06-23T23:59:59.000Z

469

Watching an uniformly moving source of light using a telescope and a frequency-meter  

E-Print Network [OSTI]

We propose a scenario that involves a stationary observer who detects a point like source of light moving with constant velocity at a constant altitude, using a telescope and a frequency-meter. We derive a formula for the angular velocity at which we should rotate the axis of the telescope and a formula that relates the proper period at which the source emits successive wave crests and the proper period at which the stationary observer receives them

Bernhard Rothenstein; Ioan Damian

2005-04-04T23:59:59.000Z

470

Breaking symmetry through speed-induced beam-deflection via centrifugation of the light source  

E-Print Network [OSTI]

The experiment proposed aims to evidence and to measure the deflection of light rays induced by the source speed upon emission, and to discern it from the aberration of light rays induced by the observer speed. The method stands in creating a speed asymmetry between that of the source and that of the observer, and relies on the centrifugation of a light source at ultrahigh speed. When source and observer have the same speed, such as when being both on the same inertial system, the deflection and the aberration compensate and their net effect is null. So, in order to circumscribe the odds of inertial systems and to isolate these speed-induced effects it has instead been appealed to a centrifugal system, since it allows infringing symmetry between the source and the observer speeds. Three cases are considered. (a) Centrifugation of the source fixed at one end of the rotor arm, while the detector is fixed on the rotor axis. This configuration of the experiment aims to unveil that due to the peripheral speed of the source the beam is deflected forward, so it impinges on the centric detector slightly shifted from its position when the system was not rotating. (b) The positions of the source and the detector are interchanged, so the source peripheral speed is then null and thus no speed-induced deflection ensues, but due to the observer peripheral speed there is a speed-induced aberration since during the beam time-of-flight the detector has slightly moved side-way. However, this time the spot shifts in opposite direction and hence the effect of centrifugation is not reciprocal. (c) The source and the detector are fixed at the two ends of the rotor arms. In this case the beam deflection and aberration add, since their speed vectors have opposite directions and each shift of the spot on the detector is double since the time-of-flight is double.

G. Sardin

2004-05-22T23:59:59.000Z

471

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tomography Interest Group Contact: Robert Winarski, Center for Nanoscale Materials winarski@anl.gov Contact: Francesco De Carlo, Advanced Photon Source decarlo@aps.anl.gov The tomography special interest group of the Advanced Photon Source (APS) at Argonne National Laboratory has been created to promote awareness of the tomography facilities at the APS and to foster communications between the various research groups. Through this group, we believe we can build a strong user community for tomography. The following beamlines have active tomography research programs: 2-BM-B (XOR) http://www.aps.anl.gov/Xray_Science_Division/Xray_Microscopy_and_Imaging/Science_and_Research/Techniques/Tomography/index.html Information about the beamline: http://beam.aps.anl.gov/pls/apsweb/beamline_display_pkg.display_beamline?p_beamline_num_c=31

472

Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

traditionally done on very small scale resources. BES software landscape is largely ad-hoc and relies heavily on a limited number of experts to handle analysis. Diversity at...

473

The measurement and analysis of the magnetic field of a synchrotron light source magnet  

E-Print Network [OSTI]

In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

Graf, Udo Werner

2012-06-07T23:59:59.000Z

474

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect (OSTI)

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

475

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network [OSTI]

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must procedure for removal of solder wasteSolder B CLOSE OUT Secure the beamline and disable shutter/beam before for this beamline:I understand the instructions given to me on beamline operations and safety awareness. Date UAdm

Ohta, Shigemi

476

Thermophysical properties of saturated light and heavy water for advanced neutron source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

477

Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

478

Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2  

SciTech Connect (OSTI)

The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

Prasad, T. T.; Modi, M. H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Ultilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

479

LENGTH OF BEAMLINES AND WIDTH OF THE LS-37  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LENGTH OF BEAMLINES AND WIDTH OF THE LENGTH OF BEAMLINES AND WIDTH OF THE LS-37 November 10, 1985 G. K. Shenoy G. S. Knapp EXPERIMENTAL HALL AT A 6-GeV SYNCHROTRON FACILITY The width of the experimental hall at a 6-GeV facility is closely related to the length of the beamlines. This note addresses this aspect in some de tail. In general, no two beamlines will have identical lengths or the placement of various optical elements. Hence fixing the beamline lengths prior to their assignment to specific experiments is difficult. In spite of this fact, a few general conclusions are made. 1. At least 25m of all the beamlines will be behind the shielding wall. Within this length many beamline components can be accommodated as shown in Fig. 1. 2. For most beamlines on bending magnets (BM), the first optical element will

480

Beamline Safety Design Review Steering Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Minutes internal link Meeting Minutes internal link Reviews internal link Beamline Safety Design Review Steering Committee (BSDRSC) 1. Purpose The Beamline Safety Design Review Steering Committee (BSDRSC) oversees the review of all safety aspects related to beamline and critical component design, regardless of who generated the design, and includes facility operational issues when reviewing non-APS generated designs. 2. Membership Members appointed by the APS Division Directors will be comprised of a pre-selected standing committee with membership chosen by function. The following functions will be included: AES User Technical Interface (Committee Chair) AES Technical Operations Specialist APS Electrical / Electronics Technical Representative AES QA Engineering Specialist APS Radiation Safety Shielding Committee Chair