Sample records for light extraction layers

  1. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

    2010-11-16T23:59:59.000Z

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  2. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer (Mountain View, CA), Krummacher; Benjamin Claus (Regensburg, DE)

    2008-01-22T23:59:59.000Z

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  3. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect (OSTI)

    Rothberg, Lewis

    2012-11-30T23:59:59.000Z

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  4. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01T23:59:59.000Z

    and J. K. Kim, “Solid-state light sources getting smart,”power phosphor-converted light-emitting diodes based on III-for phosphor- based white-light-emitting diodes,” Appl.

  5. Effects of metallic absorption and the corrugated layer on the optical extraction efficiency of organic light-emitting diodes

    E-Print Network [OSTI]

    Lee, Baek-Woon

    2011-01-01T23:59:59.000Z

    The absorption of a metallic cathode in OLEDs is analyzed by using FDTD calculation. As the light propagates parallel to the layer, the intensity of Ez polarization decreases rapidly. The intensity at 2.0 um from the dipole is less than a quarter of that at 0.5 um. The strong absorption by a cathode can be a critical factor when considering the increase of optical extraction by means of bending the optical layers. The calculation indicates that the corrugation of layers helps the guided light escape the guiding layer, but also increases the absorption into a metallic cathode. The final optical output power of the corrugated OLED can be smaller than that of the flat OLED. On the contrary, the corrugated structure with a non-absorptive cathode increases the optical extraction by nearly two times.

  6. Organic electroluminescent devices having improved light extraction

    DOE Patents [OSTI]

    Shiang, Joseph John (Niskayuna, NY)

    2007-07-17T23:59:59.000Z

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  7. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  8. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOE Patents [OSTI]

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19T23:59:59.000Z

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  9. Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with

    E-Print Network [OSTI]

    Gilchrist, James F.

    Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes@lehigh.edu Abstract: Improvement of light extraction efficiency of InGaN light emitting diodes (LEDs) using microstructures on the light extraction efficiency of III-Nitride LEDs was studied. Depending on the size

  10. Organic light emitting device having multiple separate emissive layers

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI)

    2012-03-27T23:59:59.000Z

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  11. Improved light extraction from white organic light-emitting devices using a binary random phase array

    SciTech Connect (OSTI)

    Inada, Yasuhisa, E-mail: inada.yasuhisa@jp.panasonic.com; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki [R and D Division, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501 (Japan); Matsuzaki, Jumpei [Device Development Center, Eco Solutions Company, Panasonic Corporation, 1048 Kadoma, Osaka 571-8686 Japan (Japan)

    2014-02-10T23:59:59.000Z

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs.

  12. Light extraction analysis and enhancement in a quantum dot light emitting diode

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Light extraction analysis and enhancement in a quantum dot light emitting diode Ruidong Zhu outcoupling and angular performance of quantum dot light emitting diode (QLED). To illustrate the design principles, we use a red QLED as an example and compare its performance with an organic light emitting diode

  13. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06T23:59:59.000Z

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  14. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    SciTech Connect (OSTI)

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03T23:59:59.000Z

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  15. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs

    SciTech Connect (OSTI)

    Matioli, Elison; Weisbuch, Claude

    2010-01-01T23:59:59.000Z

    The enhancement of the extraction efficiency in light emitting diodes (LEDs) through the use of photonic crystals (PhCs) requires a structure design that optimizes the interaction of the guided modes with the PhCs. The main optimization parameters are related to the vertical structure of the LED, such as the thickness of layers, depth of the PhCs, position of the quantum wells as well as the PhC period and fill factor. We review the impact of the vertical design of different approaches of PhC LEDs through a theoretical and experimental standpoint, assessing quantitatively the competing mechanisms that act over each guided mode. Three approaches are described to overcome the main limitation of LEDs with surface PhCs, i.e. the insufficient interaction of low order guided modes with the PhCs. The introduction of an AlGaN confining layer in such structure is shown to be effective in extracting a fraction of the optical energy of low order modes; however, this approach is limited by the growth of the lattice mismatched AlGaN layer on GaN. The second approach, based on thin-film LEDs with PhCs, is limited by the presence of an absorbing reflective metal layer close to the guided modes that plays a major role in the competition between PhC extraction and metal dissipation. Finally, we demonstrate both experimentally and theoretically the superior extraction of the guided light in embedded PhC LEDs due to the higher interaction between all optical modes and the PhCs, which resulted in a close to unity extraction efficiency for this device. The use of high-resolution angle-resolved measurements to experimentally determine the PhC extraction parameters was an essential tool for corroborating the theoretical models and quantifying the competing absorption and extraction mechanisms in LEDs.

  16. High Extraction Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Chris Summers; Hisham Menkara; Brent Wagner

    2011-09-30T23:59:59.000Z

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the â??anti-quenchingâ? behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, â??largeâ? nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

  17. Numerical analysis of nanostructures for enhanced light extraction from OLEDs

    E-Print Network [OSTI]

    Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

    2013-01-01T23:59:59.000Z

    Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

  18. Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Hwang, Sung Woo

    acrylate layer and MS-31 (MgO : SiO2 ¼ 3 : 1 wt %) layer was adopted in organic light emitting diode (OLED the penetrations of oxygen and moisture. [DOI: 10.1143/JJAP.45.5970] KEYWORDS: organic light emitting diode (OLED. Introduction As a next generation display, the organic light emitting diode (OLED) has to great performances

  19. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11T23:59:59.000Z

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  20. A fluctuational electrodynamics model for the optimization of light-extraction efficiency in thin-film light-emitting diodes

    SciTech Connect (OSTI)

    Heikkilä, Oskari, E-mail: oskari.heikkila@aalto.fi; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University, Helsinki (Finland)

    2013-12-14T23:59:59.000Z

    The rapid development of thin film light-emitting diodes (LEDs) has enabled the enhancement of the light extraction beyond geometrical limits but more quantitative understanding of the underlying optical processes is required to fully optimize the extraction. We present first-principle calculations of the light extraction efficiency and optical energy flow in thin-film LEDs. The presented model generalizes the methods of fluctuational electrodynamics to excited semiconductors and simultaneously accounts for wave optical effects, e.g., interference and near-field coupling as well as the internal absorption of the light-emitting material in determining the rate of light emission and internal dissipation in the optical cavity formed by a planar LED. The calculations show that in structures with a metallic mirror, the emissivity of the active region can approach unity at selected wavelengths, even when the nominal emissivity of the active region is only moderate. However, the results also show that near-field coupling of emission from the active region to the mirror can provide a substantial non-radiative loss channel reducing the maximum light extraction efficiency to 0.67 in our example setup. These losses can be partly compensated by the efficient photon recycling enabled by thick active regions that quench emission to confined modes and thereby reduce parasitic absorption.

  1. Polarization fields: dynamic light field display using multi-layer LCDs

    E-Print Network [OSTI]

    Lanman, Douglas

    We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of ...

  2. Improved light extraction with nano-particles offering directional radiation diagrams

    SciTech Connect (OSTI)

    Jouanin, A., E-mail: anthony.jouanin@institutoptique.fr [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ. Paris Sud 11, 2, Avenue Augustin Fresnel 91127 Palaiseau Cedex (France); Saint-Gobain Recherche, Quai Lucien Lefranc, 93303 Aubervilliers (France); Hugonin, J. P.; Besbes, M. [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ. Paris Sud 11, 2, Avenue Augustin Fresnel 91127 Palaiseau Cedex (France); Lalanne, P. [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ. Paris Sud 11, 2, Avenue Augustin Fresnel 91127 Palaiseau Cedex (France); Laboratoire Photonique Numérique et Nanosciences, Institut d'Optique d'Aquitaine, Université Bordeaux, CNRS, 33405 Talence (France)

    2014-01-13T23:59:59.000Z

    We propose a unique approach for light extraction, using engineered nano-particles to efficiently decouple the light guided in transverse-magnetic guided modes into free-space radiation modes that leak out normally to the thin-film stacks. The underlying mechanism takes advantage of a small electric field variation at the nano-particle scale and induces a “polarization conversion,” which renders the induced dipole moment perpendicular to the polarization of the incident light. Our analysis is supported by 2D fully vectorial computational results. Potential applications for light emitting or photovoltaic devices are outlined.

  3. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOE Patents [OSTI]

    Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

    2009-08-25T23:59:59.000Z

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  4. Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells

    SciTech Connect (OSTI)

    Gao, Zhi; Qu, Bo, E-mail: bqu@pku.edu.cn; Xiao, Lixin; Chen, Zhijian [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); New Display Device and System Integration Collaborative Innovation Center of the West Coast of the Taiwan Strait, Fuzhou 350002 (China); Zhang, Lipei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-03-10T23:59:59.000Z

    Inexpensive and non-toxic sodium bromide (NaBr) was introduced into polymer solar cells (PSCs) as the cathode buffer layer (CBL) and the electron extraction characteristics of the NaBr CBL were investigated in detail. The PSCs based on NaBr CBL with different thicknesses (i.e., 0?nm, 0.5?nm, 1?nm, and 1.5?nm) were prepared and studied. The optimal thickness of NaBr was 1?nm according to the photovoltaic data of PSCs. The open-circuit voltage (V{sub oc}), short-circuit current density (J{sub sc}), fill factor (FF), and power conversion efficiency (PCE) of the PSC with 1?nm NaBr were evaluated to be 0.58?V, 7.36?mA/cm{sup 2}, 0.63, and 2.70%, respectively, which were comparable to those of the reference device with the commonly used LiF. The optimized photovoltaic performance of PSC with 1?nm NaBr was ascribed to the improved electron transport and extraction capability of 1?nm NaBr in PSCs. In addition, the NaBr CBL could prevent the diffusion of oxygen and water vapor into the active layer and prolong the lifetime of the devices to some extent. Therefore, NaBr layer could be considered as a promising non-toxic CBL for PSCs in future.

  5. Design and fabrication of high-index-contrast self-assembled texture for light extraction enhancement in LEDs

    E-Print Network [OSTI]

    Sheng, Xing

    We developed a high-index-contrast photonic structure for improving the light extraction efficiency of light-emitting diodes (LEDs) by a self-assembly approach. In this approach, a two-dimensional grating can be ...

  6. TILTED LAYER-BASED MODELING FOR ENHANCED LIGHT-FIELD PROCESSING AND IMAGE BASED RENDERING

    E-Print Network [OSTI]

    Dragotti, Pier Luigi

    TILTED LAYER-BASED MODELING FOR ENHANCED LIGHT-FIELD PROCESSING AND IMAGE BASED RENDERING James, UK {j.pearson09, marcovs, mike.brookes, p.dragotti}@imperial.ac.uk ABSTRACT Image based rendering- torealistic results. However for successful rendering, geometric pri- ors about the structure of the scene

  7. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOE Patents [OSTI]

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10T23:59:59.000Z

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  8. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting (Ventura, CA)

    2011-04-26T23:59:59.000Z

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  9. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13T23:59:59.000Z

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  10. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect (OSTI)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun, E-mail: tongjun@pku.edu.cn; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2014-03-07T23:59:59.000Z

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  11. An optimal light-extracting overlayer, inspired by the lantern of a Photuris firefly, to improve the external efficiency of existing light-emitting diodes

    E-Print Network [OSTI]

    Bay, Annick; Sarrazin, Michael; Belarouci, Ali; Aimez, Vincent; Francis, Laurent A; Vigneron, Jean Pol

    2012-01-01T23:59:59.000Z

    Actual light emission diodes (LED) have most often good internal efficiencies but poor external efficiencies due to total internal reflection at the air interface. In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is investigated. The purpose of this overlayer is to improve light extraction into air, after the photons have been generated in the diode's high refractive-index active material. The layer design is inspired by the microstructure found in the firefly Photuris sp., described by Bay et al. : a surface with an asymmetrical triangular profile (a "factory-roof" shape), developed on the scale of a few micrometers, thus somewhat larger than usually suggested in the related literature. The profile of the overlayer corrugated surface of the coating film was copied from the natural model. Yet, the actual dimensions and material composition have been optimized to take into account the high refractive index of the GaN diode stack. The optimization proc...

  12. Nanostructured GaN Nucleation Layer for Light-Emitting Diodes

    SciTech Connect (OSTI)

    Narayan, Jagdish [North Carolina State University; Pant, Punam [North Carolina State University; Wei, Wei [North Carolina State University; Narayan, Roger [University of North Carolina, Chapel Hill; Budai, John D [ORNL

    2007-01-01T23:59:59.000Z

    This paper addresses the formation of nanostructured gallium nitride nucleation (NL) or initial layer (IL), which is necessary to obtain a smooth surface morphology and reduce defects in h-GaN layers for light-emitting diodes and lasers. From detailed X-ray and HR-TEM studies, researchers determined that this layer consists of nanostructured grains with average grain size of 25 nm, which are separated by small-angle grain boundaries (with misorientation 1 ), known as subgrain boundaries. Thus NL is considered to be single-crystal layer with mosaicity of about 1 . These nc grains are mostly faulted cubic GaN (c-GaN) and a small fraction of unfaulted c-GaN. This unfaulted Zinc-blende c-GaN, which is considered a nonequilibrium phase, often appears as embedded or occluded within the faulted c-GaN. The NL layer contained in-plane tensile strain, presumably arising from defects due to island coalescence during Volmer-Weber growth. The 10L X-ray scans showed c-GaN fraction to be over 63% and the rest h-GaN. The NL layer grows epitaxially with the (0001) sapphire substrate by domain matching epitaxy, and this epitaxial relationship is remarkably maintained when c-GaN converts into h-GaN during high-temperature growth.

  13. Numerical Modelling of Light Emission and Propagation in (Organic) LEDs with the Green's Tensor

    E-Print Network [OSTI]

    Floreano, Dario

    light emitting diodes, light emission, light extraction, dipole radiation, stratified media, layered surpasses incandescent sources by a factor of 2 and with further improvements light emitting diodes could on light extraction techniques from inorganic light emitting diodes we recommend chapter 5 in 1 . Organic

  14. Calcium chloride electron injection/extraction layers in organic electronic devices

    SciTech Connect (OSTI)

    Qu, Bo, E-mail: bqu@pku.edu.cn, E-mail: qhgong@pku.edu.cn; Gao, Zhi; Yang, Hongsheng; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang, E-mail: bqu@pku.edu.cn, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2014-01-27T23:59:59.000Z

    Nontoxic calcium chloride (CaCl{sub 2}) was introduced into organic electronic devices as cathode buffer layer (CBL). The turn-on voltage and maximum luminance of organic light-emitting diode (OLED) with 1.5?nm CaCl{sub 2} was 3.5?V and 21 960?cd/m{sup 2}, respectively. OLED with 1.5?nm CaCl{sub 2} possessed comparable electroluminescent characteristics to that of the commonly used LiF. Moreover, the performance of the organic photovoltaic device with 0.5?nm CaCl{sub 2} was comparable to that of the control device with LiF. Therefore, CaCl{sub 2} has the potential to be used as the CBL for organic electronic devices.

  15. Extracting Periodic Transit Signals from Noisy Light Curves using Fourier Series

    E-Print Network [OSTI]

    Samsing, Johan

    2015-01-01T23:59:59.000Z

    We present a simple and powerful method for extracting a transit signal from noisy light curves. Assuming the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies, by only using data from inside a time window which is matched to the main planet transits. This results in a reconstruction of the signal which on average is unbiased, despite that no prior knowledge of either the noise or the transit signal itself is used in the analysis. The method has therefore clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we extract the full 360 degree transit signal simultaneously, and Kepler like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our p...

  16. White organic light-emitting diodes with an ultra-thin premixed emitting layer

    E-Print Network [OSTI]

    Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

    2014-01-01T23:59:59.000Z

    We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

  17. Top-emitting Organic Light-Emitting Diode with a Cap Layer Chengfeng Qiu, Huajun Peng, Haiying Chen, Zhilang Xie,

    E-Print Network [OSTI]

    Kwok, Hoi S.

    , Kowloon, Hong Kong, China ABSTRACT For top emitting Organic Light-Emitting Diodes (OLED), the study of top layer is very important aiming to acquire good device performance. In this report, Pt as anode for Cu coated on glass as anode, copper (II) phthalocyanine (CuPc) as organic buffer layer, N,N'- diphenyl

  18. Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures

    SciTech Connect (OSTI)

    Liu, D.-S.; Lin, T.-W.; Huang, B.-W.; Juang, F.-S.; Lei, P.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 63201, Taiwan (China); Hu, C.-Z. [Chilin Technology Co. Ltd., Tainan County 71758, Taiwan (China)

    2009-04-06T23:59:59.000Z

    Amorphous titanium oxide (a-TiO{sub x}:OH) films prepared by plasma-enhanced chemical-vapor deposition at 200 and 25 deg. C are in turn deposited onto the GaN-based light-emitting diode (LED) to enhance the associated light extraction efficiency. The refractive index, porosity, and photocatalytic effect of the deposited films are correlated strongly with the deposition temperatures. The efficiency is enhanced by a factor of {approx}1.31 over that of the uncoated LEDs and exhibited an excellent photocatalytic property after an external UV light irradiation. The increase in the light extraction is related to the reduction in the Fresnel transmission loss and the enhancement of the light scattering into the escape cone by using the graded-refractive-index a-TiO{sub x}:OH film with porous structures.

  19. Amorphous silicon as electron transport layer for colloidal semiconductor nanocrystals light emitting diode

    SciTech Connect (OSTI)

    Song Tao; Shen Xiaojuan; Sun Baoquan [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123 (China); Zhang Fute [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou 215123 (China); Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China); Zhang Xiaohong [Nano-Organic Photoelectronic Laboratory and Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhu Xiulin [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123 (China)

    2009-12-07T23:59:59.000Z

    We demonstrate the fabrication of light-emitting diodes (LEDs) made from all-inorganic colloidal semiconducting nanocrystals (NCs). The diode utilizes a sandwich structure formed by placing CdSe/CdS NCs between two layers of Si and Ag{sub x}O, which act as electron- and hole-transporting materials, respectively. The photoluminescence properties of NCs are rendered less dependent upon surface chemistry and chemical environment by growing a thick CdS shell. It also enhances stability of the NCs during the process of magnetron sputtering for silicon deposition. The resulting LED device exhibits a low turn-on voltage of 2.5 V and the maximum external quantum efficiency of nearly 0.08%.

  20. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations

    SciTech Connect (OSTI)

    Singh, Aarti, E-mail: aarti.singh@namlab.com; Schröder, Uwe [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany)] [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany)] [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)] [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany); Mikolajick, Thomas [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany) [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)

    2013-12-02T23:59:59.000Z

    The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15?s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

  1. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect (OSTI)

    Jan Talbot; Kailash Mishra

    2007-12-31T23:59:59.000Z

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples codoped with (Eu{sup 3+} ,Tb{sup 3+} ) and (Dy{sup 3+}, Tm{sup 3+}); and (9) white emission from AlN codoped with Dy{sup 3+} and Tm{sup 3+}. We also extensively studied the stabilities of rare earth ions in GaN, and the nature of oxygen defects in GaN and its impact on the optical properties of the host material, using first principles method. Results from these theoretical calculations together with fluorescence measurements from the materials essentially proved the underlying concepts for generating white light using RE{sup 3+}-activated nitrides. For this project, we successfully built a horizontal MOVPE reactor and used it to deposit thin films of undoped and doped nitrides of GaN and InGaN, which is a very significant achievement. Since this reactor was designed and built by in-house experts, it could be easily modified and reassembled for specific research purposes. During this study, it was successfully modified for homogeneous distribution of rare earth ions in a deposited film. It will be an ideal tool for future research involving novel thin film material concepts. We examined carefully the suitability of various metal organic precursors for incorporating RE{sup 3+}. In order to avoid oxygen contamination, several oxygen-free RE{sup 3+} precursors were identified. Both oxygen-free and oxygen- containing metal organic precursors were used for certain rare earth ions (Eu{sup 3+}, Tb{sup 3+} and Er{sup 3+}). However, the suitability of any particular type of precursor for MOVPE deposition was not established during this study, and further study is needed. More intensive research in the future is needed to improve the film quality, and eliminate the separation of rare earth oxide phases during the deposition of thin films by MOVPE. The literature in the area of the chemistry of rare earth ions in nitrides is almost nonexistent, in spite of the significant research on luminescence of RE{sup 3+} in nitrides. Consequently, MOVPE as a method of deposition of RE{sup 3+}-activated nitrides is relatively unexplored. In the following sections of this report, the ou

  2. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26T23:59:59.000Z

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  3. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect (OSTI)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07T23:59:59.000Z

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  4. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03T23:59:59.000Z

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  5. Light extraction in individual GaN nanowires on Si for LEDs

    E-Print Network [OSTI]

    Zhou, Xiang

    GaN-based nanowires hold great promise for solid state lighting applications because of their waveguiding properties and the ability to grow nonpolar GaN nanowire-based heterostructures, which could lead to increased light ...

  6. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills.

  7. Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer

    E-Print Network [OSTI]

    Liu, Deang; Fina, Michael; Ren, Li; Mao, Samuel S.

    2009-01-01T23:59:59.000Z

    electron injection and luminance characteristics. The small009-5199-x Enhanced luminance of organic light-emittinglayer. Improved current and luminance characteristics were

  8. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  9. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer 

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  10. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01T23:59:59.000Z

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  11. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    SciTech Connect (OSTI)

    Grover, Rakhi, E-mail: grover.rakhi@gmail.com [Amity Institute of Advanced Research and Studies (Materials and Devices), Amity University, Noida, Uttar Pradesh 201303 (India); Srivastava, Ritu, E-mail: ritu@mail.nplindia.org; Dagar, Janardan; Kamalasanan, M. N. [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mehta, D. S. [Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2014-08-14T23:59:59.000Z

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3?nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  12. Pressure-assisted fabrication of organic light emitting diodes with MoO{sub 3} hole-injection layer materials

    SciTech Connect (OSTI)

    Du, J. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Anye, V. C.; Vodah, E. O. [Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria); Tong, T. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Zebaze Kana, M. G. [Physics Advanced Laboratory, Sheda Science and Technology Complex, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Kwara State (Nigeria); Soboyejo, W. O. [The Princeton Institute for the Science and Technology of Materials (PRISM), Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Federal Capital Territory (Nigeria)

    2014-06-21T23:59:59.000Z

    In this study, pressures of ?5 to ?8?MPa were applied to organic light emitting diodes containing either evaporated molybdenum trioxide (MoO{sub 3}) or spin-coated poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) hole-injection layers (HILs). The threshold voltages for both devices were reduced by about half, after the application of pressure. Furthermore, in an effort to understand the effects of pressure treatment, finite element simulations were used to study the evolution of surface contact between the HIL and emissive layer (EML) under pressure. The blister area due to interfacial impurities was also calculated. This was shown to reduce by about half, when the applied pressures were between ?5 and 8?MPa. The finite element simulations used Young's modulus measurements of MoO{sub 3} that were measured using the nanoindentation technique. They also incorporated measurements of the adhesion energy between the HIL and EML (measured by force microscopy during atomic force microscopy). Within a fracture mechanics framework, the implications of the results are then discussed for the pressure-assisted fabrication of robust organic electronic devices.

  13. Light Cone Dynamics and EMC Effects in the Extraction of F_{2n} at Large Bjorken x

    E-Print Network [OSTI]

    Misak M Sargsian

    2011-01-29T23:59:59.000Z

    We discuss theoretical issues related to the extraction of deep inelastic~(DIS) structure function of neutron from inclusive DIS scattering off the deuteron at large Bjorken x. Theoretical justification is given to the consideration of only $pn$ component of the deuteron wave function and consistency with both the baryonic number and light-cone momentum conservation sum rules. Next we discuss the EMC type effects and argue that in all cases relevant to the nuclear DIS reactions at large x the main issue is the medium modification of the properties of bound nucleon rather than the non-nucleonic components like pions. We give brief description of the color screening model of EMC and within this model we estimate uncertainties in the extraction of the neutron DIS structure function at large x. We emphasize also that these uncertainties are rather "model independent" since any theoretical framework accounting for the medium modification is proportional to the magnitude of the virtuality of bound nucleon which increases with an increase of x.

  14. Light Cone Dynamics and EMC Effects in the Extraction of F{sub 2n} at Large Bjorken x

    SciTech Connect (OSTI)

    Sargsian, Misak M. [Department of Physics, Florida International University, Miami, FL 33199 (United States)

    2011-09-21T23:59:59.000Z

    We discuss theoretical issues related to the extraction of deep inelastic (DIS) structure function of neutron from inclusive DIS scattering off the deuteron at large Bjorken x. Theoretical justification is given to the consideration of only pn component of the deuteron wave function and consistency with both the baryonic number and light-cone momentum conservation sum rules. Next we discuss the EMC type effects and argue that in all cases relevant to the nuclear DIS reactions at large x the main issue is the medium modification of the properties of bound nucleon rather than the non-nucleonic components like pions. We give brief description of the color screening model of EMC and within this model we estimate uncertainties in the extraction of the neutron DIS structure function at large x. We emphasize also that these uncertainties are rather ''model independent'' since any theoretical framework accounting for the medium modification is proportional to the magnitude of the virtuality of bound nucleon which increases with an increase of x.

  15. Unsupervised extraction of coherent regions for image based rendering

    E-Print Network [OSTI]

    Dragotti, Pier Luigi

    Unsupervised extraction of coherent regions for image based rendering Jesse Berent and Pier Luigi, UK {jesse.berent, p.dragotti}@imperial.ac.uk Abstract Image based rendering using undersampled light information. In pop-up light field rendering [18], the scene is segmented into coherent layers, usually

  16. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2012-08-07T23:59:59.000Z

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  17. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2011-10-11T23:59:59.000Z

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  18. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    SciTech Connect (OSTI)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue, E-mail: yhao@xidian.edu.cn [State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, No. 2 South Taibai Road, Xi'an 710071 (China)

    2014-06-16T23:59:59.000Z

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150?°C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100?°C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  19. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01T23:59:59.000Z

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  20. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

    E-Print Network [OSTI]

    Wetzstein, Gordon

    We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated ...

  1. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  2. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    SciTech Connect (OSTI)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Changchun 130022 (China); Zhao, Yongbiao [Luminous Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Zhang, Hongmei [Department of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2014-06-28T23:59:59.000Z

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000?cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2?lm/W, 59.3?cd/A, and 23.1%, which slightly shift to 53.4?lm/W, 57.1?cd/A, and 22.2% at 1000?cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thin non-doped orange emission layer in WOLEDs.

  3. White LED with High Package Extraction Efficiency

    SciTech Connect (OSTI)

    Yi Zheng; Matthew Stough

    2008-09-30T23:59:59.000Z

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  4. Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer

  5. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space

    SciTech Connect (OSTI)

    Richman, Eric E.

    2001-06-14T23:59:59.000Z

    An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

  6. New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing

    E-Print Network [OSTI]

    cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function the solar cell, free electrons tend to resonate (or"wiggle") within a TCO, which can degrade a PV device into the infrared, where the solar cell is not designed to respond. NREL scientists believe that improved TCO films

  7. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect (OSTI)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21T23:59:59.000Z

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  8. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

    SciTech Connect (OSTI)

    Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong [College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 (China)

    2014-04-28T23:59:59.000Z

    Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (?{sub n}) is equal to the hole injection barrier (?{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ?{sub n}?>??{sub p} under the condition of electron mobility (?{sub 0n}) > hole mobility (?{sub 0p}), whereas the result for the case of ?{sub 0n}?

  9. On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes

    SciTech Connect (OSTI)

    Sheng Xia, Chang, E-mail: xiachsh@crosslight.com.cn; Simon Li, Z. M.; Sheng, Yang [Crosslight Software Inc., China Branch, Suite 906, Building JieDi, 2790 Zhongshan Bei Road, Shanghai 200063 (China)] [Crosslight Software Inc., China Branch, Suite 906, Building JieDi, 2790 Zhongshan Bei Road, Shanghai 200063 (China)

    2013-12-02T23:59:59.000Z

    There has been confusion regarding the usefulness of AlGaN electron blocking layer (EBL) in GaN-based light-emitting diodes (LEDs) with some published experimental data indicating that the LEDs without EBL performed better than those with it. InGaN/GaN LEDs have been investigated numerically to analyze its actual effect in these devices. Simulation results show that hole blocking effect of EBL mainly determines the effectiveness of using it which is more sensitive to its Al composition, band offset ratio, and polarization charges. It is found that the choice of Al composition is critical for EBL to improve the optical performance of GaN-based LEDs.

  10. Light emitting diode with porous SiC substrate and method for fabricating

    DOE Patents [OSTI]

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06T23:59:59.000Z

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  11. Charge Profiling of the p-AlGaN Electron Blocking Layer in AlGaInN Light Emitting Diode Structures

    E-Print Network [OSTI]

    Wetzel, Christian M.

    -layers. Placement, doping, and dimensions thereof are deemed critical to the stabilization of the injection-3 . A spacer layer of 20 ­ 100 nm separates the n-side and the quantum well region. Like the barrier

  12. Photovoltaic device having light transmitting electrically conductive stacked films

    DOE Patents [OSTI]

    Weber, Michael F. (St. Paul, MN); Tran, Nang T. (St. Paul, MN); Jeffrey, Frank R. (St. Paul, MN); Gilbert, James R. (St. Paul, MN); Aspen, Frank E. (St. Paul, MN)

    1990-07-10T23:59:59.000Z

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  13. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Al tahtamouni, T. M., E-mail: talal@yu.edu.jo [Department of Physics, Yarmouk University, Irbid 21163 (Jordan); Lin, J. Y.; Jiang, H. X. [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-15T23:59:59.000Z

    Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

  14. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  15. Removal of carbon tetrachloride from a layered porous medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water Removal of carbon tetrachloride from a layered porous medium...

  16. Removal of Carbon Tetrachloride from a Layered Porous Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Removal of Carbon Tetrachloride from a Layered Porous Medium...

  17. Polymer and small molecule based hybrid light source

    DOE Patents [OSTI]

    Choong, Vi-En (Carlsbad, CA); Choulis, Stelios (Nuremberg, DE); Krummacher, Benjamin Claus (Regensburg, DE); Mathai, Mathew (Monroeville, PA); So, Franky (Gainesville, FL)

    2010-03-16T23:59:59.000Z

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  18. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO{sub 4}:Eu{sup 3+} down-shifting nano-phosphor layer in organometal halide perovskite solar cells

    SciTech Connect (OSTI)

    Chander, Nikhil; Chandrasekhar, P. S.; Thouti, Eshwar; Swami, Sanjay Kumar; Dutta, Viresh; Komarala, Vamsi K. [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Khan, A. F., E-mail: khanafk@gmail.com [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Department of Electronics and Information Technology, Ministry of Communications and Information Technology, Government of India, New Delhi 110003 (India)

    2014-07-21T23:59:59.000Z

    We report a simple method to mitigate ultra-violet (UV) degradation in TiO{sub 2} based perovskite solar cells (PSC) using a transparent luminescent down-shifting (DS) YVO{sub 4}:Eu{sup 3+} nano-phosphor layer. The PSC coated with DS phosphor showed an improvement in stability under prolonged illumination retaining more than 50% of its initial efficiency, whereas PSC without the phosphor layer degraded to ?35% of its initial value. The phosphor layer also provided ?8.5% enhancement in photocurrent due to DS of incident UV photons into additional red photons. YVO{sub 4}:Eu{sup 3+} layer thus served a bi-functional role in PSC by reducing photo-degradation as well as enhancing energy conversion efficiency.

  19. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11T23:59:59.000Z

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  20. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11T23:59:59.000Z

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  1. Atomic layer deposition of photoactive CoO/SrTiO{sub 3} and CoO/TiO{sub 2} on Si(001) for visible light driven photoelectrochemical water oxidation

    SciTech Connect (OSTI)

    Ngo, Thong Q.; Hoang, Son; McDaniel, Martin D.; Buddie Mullins, C.; Ekerdt, John G. [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Seo, Hosung; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Utess, Dirk; Triyoso, Dina H. [GLOBALFOUNDRIES Dresden, Wilschdorfer Landstrasse 101, Dresden DE-01109 (Germany)] [GLOBALFOUNDRIES Dresden, Wilschdorfer Landstrasse 101, Dresden DE-01109 (Germany)

    2013-08-28T23:59:59.000Z

    Cobalt oxide (CoO) films are grown epitaxially on Si(001) by atomic layer deposition (ALD) using a thin (1.6 nm) buffer layer of strontium titanate (STO) grown by molecular beam epitaxy. The ALD growth of CoO films is done at low temperature (170–180 °C), using cobalt bis(diisopropylacetamidinate) and water as co-reactants. Reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy are performed to characterize the crystalline structure of the films. The CoO films are found to be crystalline as-deposited even at the low growth temperature with no evidence of Co diffusion into Si. The STO-buffered Si (001) is used as a template for ALD growth of relatively thicker epitaxial STO and TiO{sub 2} films. Epitaxial and polycrystalline CoO films are then grown by ALD on the STO and TiO{sub 2} layers, respectively, creating thin-film heterostructures for photoelectrochemical testing. Both types of heterostructures, CoO/STO/Si and CoO/TiO{sub 2}/STO/Si, demonstrate water photooxidation activity under visible light illumination. In-situ X-ray photoelectron spectroscopy is used to measure the band alignment of the two heterojunctions, CoO/STO and CoO/TiO{sub 2}. The experimental band alignment is compared to electronic structure calculations using density functional theory.

  2. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    SciTech Connect (OSTI)

    Lo Savio, R.; Galli, M.; Liscidini, M.; Andreani, L. C. [Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Franzò, G.; Iacona, F.; Miritello, M. [MATIS-IMM CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Irrera, A. [CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina (Italy); Sanfilippo, D.; Piana, A. [ST Microelectronics, Stradale Primosole 50, 95121 Catania (Italy); Priolo, F. [MATIS-IMM CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2014-03-24T23:59:59.000Z

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54??m, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission in a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.

  3. Method of making organic light emitting devices

    DOE Patents [OSTI]

    Shiang, Joseph John (Niskayuna, NY); Janora, Kevin Henry (Schenectady, NY); Parthasarathy, Gautam (Saratoga Springs, NY); Cella, James Anthony (Clifton Park, NY); Chichak, Kelly Scott (Clifton Park, NY)

    2011-03-22T23:59:59.000Z

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  4. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15T23:59:59.000Z

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  5. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH)

    2010-02-23T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  6. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-10-04T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  7. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-02-01T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  8. Enhanced coupling of light from organic light emitting diodes using nanoporous films

    E-Print Network [OSTI]

    Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

  9. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30T23:59:59.000Z

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  10. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Effect of Gallium Nitride Template Layer Strain on the Growth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallium Nitride Template Layer Strain on the Growth of InxGa1-xNGaN Multiple Quantum Well Light Emitting Diodes. Effect of Gallium Nitride Template Layer Strain on the Growth of...

  12. Enhanced Light Extraction from Organic Light Emitting Diodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption SurveyEnergyphysicistEngineeringRI/FSSystems

  13. Extractant composition

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  14. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    E-Print Network [OSTI]

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01T23:59:59.000Z

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  15. Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Broader source: Energy.gov (indexed) [DOE]

    Lens Placement NP * LED Structure with Enhanced Mirror Reflectivity NP, PCT * Light Emitting Diode With High Aspect Ratio Submicron Roughness for Light Extraction and Methods of...

  16. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  17. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  18. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  19. Metal extraction

    SciTech Connect (OSTI)

    Covington, J.W.; Whittemore, R.G.

    1980-10-21T23:59:59.000Z

    In a process according to the present invention uranium is extracted into solution from its ore by leaching with an aqueous solution containing peroxomonosulphuric acid, the peroxoacid oxidizing the uranium through to its hexavalent state. Preferably the leaching is carried out at a temperature in the range of 50* to 100* C. The leach liquor can initially contain additional amounts of sulphuric acid or merely that present by virtue of the method of making the peroxomonosulphuric acid. In a preferred method of operation, the peroxoacid is introduced progressively into the leach liquor during the course of the leaching so as to maintain an electrochemical potential in the range of 450 to 650 mV. By use of the process, uranium is cleanly extracted into solution.

  20. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    E-Print Network [OSTI]

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01T23:59:59.000Z

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  1. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  2. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  3. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14T23:59:59.000Z

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  4. Symmetry Breaking in Few Layer Graphene Films

    SciTech Connect (OSTI)

    Bostwick, A.; Ohta, T.; McChesney, J.L.; Emtsev, K.; Seyller,Th.; Horn, K.; Rotenberg, E.

    2007-05-25T23:59:59.000Z

    Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.

  5. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  6. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01T23:59:59.000Z

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  7. We study the continuous extractive distillation of minimum and maximum boiling azeotropic mixtures A-B with a heavy or a light entrainer E, intending to assess its feasibility based on thermodynamic insights.

    E-Print Network [OSTI]

    Mailhes, Corinne

    #12;#12;Abstract We study the continuous extractive distillation of minimum and maximum boiling on operating parameters: distillate product purity and recovery, reflux ratio R and entrainer ­ feed flow rate. For the 1.0-2 class both A and B can be distillated. For one of them there exists a maximum entrainer - feed

  8. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2007-10-30T23:59:59.000Z

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  9. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  10. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31T23:59:59.000Z

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  11. Photovoltaic device with increased light absorption and method for its manufacture

    DOE Patents [OSTI]

    Glatfelter, Troy (Royal Oak, MI); Vogeli, Craig (New Baltimore, MI); Call, Jon (Royal Oak, MI); Hammond, Ginger (Imlay City, MI)

    1993-07-20T23:59:59.000Z

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  12. Stable blue phosphorescent organic light emitting devices

    DOE Patents [OSTI]

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26T23:59:59.000Z

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  13. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19T23:59:59.000Z

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  14. Effect of plasmonic losses on light emission enhancement in quantum-wells coupled to metallic gratings

    SciTech Connect (OSTI)

    Sadi, Toufik; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Sciences, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2013-12-14T23:59:59.000Z

    Recent experimental work has shown significant luminescence enhancement from near-surface quantum-well (QW) structures using metallic grating to convert surface plasmon (SP) modes into radiative modes. This work introduces a detailed theoretical study of plasmonic losses and the role of SPs in improving light extraction from grated light-emitting QW structures, using the fluctuational electrodynamics method. The method explains experimental results demonstrating emission enhancement, light scattering, and plasmonic coupling in the structures. We study these effects in angle-resolved reflectometry and luminescence setups in InGaN QW structures with silver grating. In contrast to experiments, our model allows direct calculation of the optical losses. The model predicts that the plasmonic coupling and scattering increases light emission by a factor of up to three compared to a flat semiconductor structure. This corresponds to reducing the absorption losses from approximately 93% in the ungrated metallic structure to 75% in the grated structure. Lower losses are associated with a significant emission enhancement enabled by the SPs of silver/GaN interfaces, which are present in the blue/green wavelength range, and can be optimized by carefully nanostructuring the metal layer and by the positioning of the QW. In general, the enhancement results from the interplay of mode scattering, conversion of SP energy directly into light, and losses in the metallic grating. The reported losses are very high when compared to the losses present in modern light-emitting diodes (LEDs). Albeit, our work provides tools needed for further optimization of plasmonic light extraction, eventually leading to highly efficient LEDs.

  15. Light emitting ceramic device and method for fabricating the same

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  16. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  17. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  18. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  19. Smart Lighting ERC Industrial Speaker Series

    E-Print Network [OSTI]

    Varela, Carlos

    . About Crystal IS Crystal IS Inc. is the world leading manufacturer of ultraviolet light emitting diodes on native AlN high-quality substrates. These layers are fabricated into mid- ultraviolet light emitting diodes with peak wavelengths in the range of 240-275 nm. The low threading dislocation density

  20. anthracene emission layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layers Physics Websites Summary: , and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131, 1577-1579 (1999). 7. Jiang, X.Z., et al.,...

  1. anode catalyst layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  2. anode buffer layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  3. anode interfacial layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  4. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect (OSTI)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K., E-mail: aokyay@ee.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara (Turkey); UNAM—National Nanotechnology Research Center, Bilkent University, Bilkent, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, 06800 Ankara (Turkey); Yu, Hyun Yong [The School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-01-01T23:59:59.000Z

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?°C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?°C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  5. Electroluminescent apparatus having a structured luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Sunnyvale, CA)

    2008-09-02T23:59:59.000Z

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  6. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

    2012-01-03T23:59:59.000Z

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  7. Coronary Tree Extraction Using Motion Layer , Haibin Ling2

    E-Print Network [OSTI]

    Ling, Haibin

    , Kevin Shaohua Zhou1 , Martin Ostermeier3 , and Dorin Comaniciu1 1 Siemens Corporate Research,755 College, USA 3 Siemens AG, Health Care Sector, MED AX PLM-I, Forchheim, Germany Abstract. Fluoroscopic images to the traditional spatial domain approaches, Shizawa and Mase [11] reports that the 3D Fourier transform

  8. Method to generate high efficient devices which emit high quality light for illumination

    DOE Patents [OSTI]

    Krummacher, Benjamin C. (Sunnyvale, CA); Mathai, Mathew (Santa Clara, CA); Choong, Vi-En (San Jose, CA); Choulis, Stelios A. (San Jose, CA)

    2009-06-30T23:59:59.000Z

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  9. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  10. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  11. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    SciTech Connect (OSTI)

    Cabot Corporation

    2007-09-30T23:59:59.000Z

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

  12. Information extraction system

    DOE Patents [OSTI]

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13T23:59:59.000Z

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  13. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  14. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  15. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    SciTech Connect (OSTI)

    Kuzmenko, Paul J

    2013-10-01T23:59:59.000Z

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  16. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11T23:59:59.000Z

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  17. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  18. Light Meson Distribution Amplitudes

    E-Print Network [OSTI]

    R. Arthur; P. A. Boyle; D. Brömmel; M. A. Donnellan; J. M. Flynn; A. Jüttner; H. Pedroso de Lima; T. D. Rae; C. T. Sachrajda; B. Samways

    2010-11-12T23:59:59.000Z

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  19. algainp light-emitting diodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials for different organic layers, which compose the standard organic light emitting diode (OLED) architecture.; Chapter one introduces (more) Borek, Carsten 2008-01-01...

  20. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications

    E-Print Network [OSTI]

    Mavrokefalos, Anastassios

    Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid ...

  1. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  2. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  3. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  4. Layering as Optimization Decomposition 3-1 Layering as OptimizationLayering as Optimization

    E-Print Network [OSTI]

    Fan, Xingzhe

    1 Layering as Optimization Decomposition 3-1 Layering as OptimizationLayering as Optimization DecompositionDecomposition Layering as Optimization Decomposition 3-2 CONTENTSCONTENTS Introduction (Marta;2 Layering as Optimization Decomposition 3-3 Layering as Optimization Decomposition Introduction By Marta

  5. Angular momentum extraction by gravity waves in the Sun

    E-Print Network [OSTI]

    Suzanne Talon; Pawan Kumar; Jean-Paul Zahn

    2002-06-27T23:59:59.000Z

    We review the behavior of the oscillating shear layer produced by gravity waves below the surface convection zone of the Sun. We show that, under asymmetric filtering produced by this layer, gravity waves of low spherical order, which are stochastically excited at the base of the convection zone of late type stars, can extract angular momentum from their radiative interior. The time-scale for this momentum extraction in a Sun-like star is of the order of 10^7 years. The process is particularly efficient in the central region, and it could produce there a slowly rotating core.

  6. Fission Product Extraction Process

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  8. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  9. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

    1981-11-03T23:59:59.000Z

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  10. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01T23:59:59.000Z

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  11. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  12. Physical Layer Characteristics and Techniques for Visible Light Communications

    E-Print Network [OSTI]

    Cui, Kaiyun

    2012-01-01T23:59:59.000Z

    di?erent background solar radiation levels. . . 130 xii ListBackground solar radiation characterization . . . . . . . .erent background solar radiation levels. . . . . . . . . .

  13. Physical Layer Characteristics and Techniques for Visible Light Communications

    E-Print Network [OSTI]

    Cui, Kaiyun

    2012-01-01T23:59:59.000Z

    of the illuminance variation with adjacent LED lamp distance4.4.2 E?ect of the adjacent LED lamp distance 4.4.3 E?ect ofof di?erent LED lamps. . . . . . . . . . . . . . 107 Input

  14. Light transport in two-layer tissues Arnold D. Kim

    E-Print Network [OSTI]

    Kim, Arnold D.

    Universidad Carlos III de Madrid Escuela Polite´cnica Superior Grupo de Modelizacion y Simulacion Numerica

  15. Integrated fuses for OLED lighting device

    DOE Patents [OSTI]

    Pschenitzka, Florian (San Jose, CA)

    2007-07-10T23:59:59.000Z

    An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.

  16. Compliant layer chucking surface

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA); Spence, Paul A. (Pleasanton, CA); Thompson, Samuel L. (Pleasanton, CA)

    2004-12-28T23:59:59.000Z

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  17. Distributed boundary layer suction utilizing wing tip effects

    E-Print Network [OSTI]

    Edwards, Jay Thomas

    1962-01-01T23:59:59.000Z

    of this system to existing light aircraft would present no mechanical complications, either in the perforation of the wings or in the maintenance of the system. Recommendations for Other A lications 1. An investigation into the possibility of delaying... Means of Effecting Boundary Layer Control by Suction, " Aeronautical En ineerin Review, September, 1953. 17. Cornish, J. , "Practical High Lift Systems Using Distributed Boundary Layer Control, " Research Report $19, Miss. State College, 1958. 18...

  18. Layered Spinach Salad Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    cucumbers 2 tomatoes 1/2 cup low-fat mayonnaise 1/2 cup parmesan cheese, grated 1/4 cup milk 1 1/2 teaspoons size pieces, layer on bottom of a large bowl. 2. Rinse mushrooms off under cool water and use a soft half. Layer on top of vegetables. 6. To make salad dressing, add mayonnaise, cheese, milk, dill weed

  19. Evaluation of Packed Columns in Supercritical Extraction Processes

    E-Print Network [OSTI]

    Rathkamp, P. J.; Fair, J. R.; Humphrey, J. L.

    process. A 10 wt.% aqueous solution of etha nol was extracted in a spray column using super critical carbon dioxide. Mass transfer coefficients were determined to be more than ten times greater than those associated with conventional liquid extraction... form near the bottom when flooding occurs. The column was operated with countercurrent flow, with the more dense aqueous feed entering near the top of the column, and the less dense super critical carbon dioxide entering near the bottom. The light...

  20. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21T23:59:59.000Z

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  1. Compton Scattering on Light Nuclei

    E-Print Network [OSTI]

    Deepshikha Shukla

    2009-12-22T23:59:59.000Z

    Compton scattering on light nuclei ($A=2,3$) has emerged as an effective avenue to search for signatures of neutron polarizabilities, both spin--independent and spin--dependent ones. In this discussion I will focus on the theoretical aspect of Compton scattering on light nuclei; giving first a brief overview and therafter concentrating on our Compton scattering calculations based on Chiral effective theory at energies of the order of pion mass. These elastic $\\gamma$d and $\\gamma$He-3 calculations include nucleons, pions as the basic degrees of freedom. I will also discuss $\\gamma$d results where the $\\Delta$-isobar has been included explicitly. Our results on unpolarized and polarization observables suggest that a combination of experiments and further theoretical efforts will provide an extraction of the neutron polarizabilities.

  2. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  3. Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene Derivatives

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and to stop the well known spectral shift degradation occurring in fluorene based materials. In this paper we1 Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene, copolymerization of siloles with fluorene was aimed at improving electron injection into the polymer layer and so

  4. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  5. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01T23:59:59.000Z

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  6. Liquid chromatographic extraction medium

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13T23:59:59.000Z

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  7. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  8. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  9. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  10. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  11. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  12. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10T23:59:59.000Z

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  14. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  15. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31T23:59:59.000Z

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

  16. Multi-layer diffusion approximation for photon transport in biological tissue 

    E-Print Network [OSTI]

    Hollmann, Joseph

    2009-06-02T23:59:59.000Z

    A method for improving the accuracy of the optical diffusion theory for a multi-layer scattering medium is presented. An infinitesimally narrow incident light beam is replaced by multiple isotropic point sources of different strengths...

  17. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    E-Print Network [OSTI]

    Mayer, Alexandre

    Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

  18. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  19. Threshold voltage extraction circuit

    E-Print Network [OSTI]

    Hoon, Siew Kuok

    2000-01-01T23:59:59.000Z

    to that of the saturation method. However, instead of fixing Vos ? Vos, the drain current is measured as a function of Vos while Vns is fixed at a constant low voltage of 100mV to ensure operation in the linear MOSFET region. Neglecting channel length modulation effect... transistors are layout next to the DUT of the NMOS and PMOS Vr extraction circuits respectively for extraction of Vr via graphical means. GRAPHICAL METHOD OF THE THRESHOLD-VOLTAGE MEASUREMENT Using the graphical method, the characteristics of 4n versus Vos...

  20. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  1. A Laser-Wire System at the ATF Extraction Line

    SciTech Connect (OSTI)

    Boogert, S.T.; Blair, G.; Boorman, G.; Bosco, A.; Deacon, L.; Driouichi, C.; Karataev, P.; /Royal Holloway, U. of London; Kamps, T.; /BESSY, Berlin; Delerue, N.; Dixit, S.; Foster, B.; Gannaway, F.; Howell, D.F.; Qureshi, M.; Reichold, A.; Senanayake, R.; /Oxford U.; Aryshev, A.; Hayano, H.; Kubo, K.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba /Liverpool

    2007-02-12T23:59:59.000Z

    A new laser-wire (LW) system has been installed at the ATF extraction line at KEK, Tsukuba. The system aims at a micron-scale laser spot size and employs a mode-locked laser system. The purpose-built interaction chamber, light delivery optics, and lens systems are described, and the first results are presented.

  2. Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode

    E-Print Network [OSTI]

    Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode are presented from polymer/molecular organic heterostructure light emitting diodes composed of a layer,2 organic light emitting diodes OLEDs utilizing fluorescent molecules have attracted considerable interest

  3. Supercritical Fluid Extraction

    E-Print Network [OSTI]

    Johnston, K. P.; Flarsheim, W. M.

    1984-01-01T23:59:59.000Z

    supercritical tetrahydrofuran (583K, 10 MPa) or toluene (668K, 10 MPa) to remove 95% of the organic matter from Athabasca tar sanrls [4J. Compared to oil shale retorting at 870K which extracted 71% of the kerogen, supercritical toluene at 713K and 10 MPa...

  4. Layer-by-layer assembly in confined geometries

    E-Print Network [OSTI]

    DeRocher, Jonathan P

    2011-01-01T23:59:59.000Z

    The fundamental nature of layer-by-layer (LbL) assembly in confined geometries was investigated for a number of different chemical systems. The first part of this thesis concerns the modification of microfluidic and ...

  5. Ion transport and structure of layer-by-layer assemblies

    E-Print Network [OSTI]

    Lutkenhaus, Jodie Lee

    2007-01-01T23:59:59.000Z

    Layer-by-layer (LbL) films of various architectures were examined as potential solid state electrolytes for electrochemical systems (e.g. batteries and fuel cells). The relationship between materials properties and ion ...

  6. Thermal Transitions in Layer-By-Layer Assemblies

    E-Print Network [OSTI]

    Sung, Choonghyun

    2014-10-13T23:59:59.000Z

    Thermal transitions in layer-by-layer (LbL) assemblies were investigated under dry and hydrated conditions. In the dry state, the effects of film thickness and the film deposition method on the glass transition temperature (Tg) were studied...

  7. Engineering electroresponsive layer-by-layer thin films

    E-Print Network [OSTI]

    Schmidt, Daniel J., Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Electroresponsive layer-by-layer (LbL) polymer films and polymer nanocomposite films were investigated as model systems for electrically triggered drug delivery applications and "mechanomutable" surface coating applications. ...

  8. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  9. Cooperatively enhanced light transmission in cold atomic matter

    E-Print Network [OSTI]

    Kasie Kemp; S. J. Roof; M. D. Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-10-09T23:59:59.000Z

    We report enhanced transmission in measurements of the spectral dependence of forward light scattering by a high-density and cold ensemble of 87Rb atoms. This phenomenon, which is a result of dipole-dipole interaction induced cooperative light scattering in the atomic sample, implies a significant departure from the traditional density dependence of the transmitted light as embodied in the Beer-Lambert Law. Absolute values of the density-dependent forward light scattering cross-section are extracted from the measurements.

  10. Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    was supported by the U.S. Department of Energy under Grant NETL, DE-PS26-08NT00290, the National Science]­[7], thermoelectric [8]­[11], photovoltaics and solar energy conversion [12]­[14], and terahertz photonics [15], III

  11. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  12. Light nuclei production in heavy ion collisions

    E-Print Network [OSTI]

    K. H. Khan; M. K. Suleymanov; Z. Wazir; E. U. Khan; Mahnaz Q. Haseeb; M. Ajaz

    2009-04-14T23:59:59.000Z

    Light nuclei production as a result of nuclear coalescence effect can give some signals on final state of Quark Gluon Plasma formation. We are studying the behavior of nuclear modification factor as a function of different variables using the simulated data coming from the FASTMC generator. This data is necessary to extract information on coalescence mechanism from experimental data on high energy nuclear-nuclear interactions.

  13. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  14. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  15. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

    2001-01-01T23:59:59.000Z

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  16. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  17. CHEM333: Experiment 2: Extraction

    E-Print Network [OSTI]

    Taber, Douglass

    ). Combine the aqueous NaOH extractions and back-extract them with ether (15 ml). Combine the ether extracts the stopcock is closed c. Before you attempt to drain the sepfunnel, remove the stopper. 2. Use a ring stand. You will also find that the funnel will not drain properly (if at all) when the stopper is one. 3

  18. Innovative Drying and Nutrients Extraction

    E-Print Network [OSTI]

    to the extraction process. This method evaporates the water from the products but also drives off up to 70 percent dimethyl ether to extract the water from the material. The new process does not require the addition of heat to evaporate the water during the extraction process. Dimethyl ether has a lower heat

  19. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  20. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  1. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15T23:59:59.000Z

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  2. Flip-chip light emitting diode with resonant optical microcavity

    SciTech Connect (OSTI)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29T23:59:59.000Z

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  3. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    years to improve water extraction methods, develop numericalreactions during water extraction, redox processes were notAranyossy, J.F. , 2001. Extraction of water and solutes from

  4. Organic light emitting device structure for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun (Princeton, NJ); Ngo, Tan (Levittown, PA)

    2007-05-01T23:59:59.000Z

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  5. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22T23:59:59.000Z

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  6. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  7. Light Rail Transit Strengthening

    E-Print Network [OSTI]

    Minnesota, University of

    Light Rail Transit Improving mobility Easing congestion Strengthening our communities Central Corridor Communicating to the Public During Major Construction May 25, 2011 #12;2 Light Rail Transit;Light Rail Transit Central Corridor Route and Stations 3 · 18 new stations · 9.8 miles of new double

  8. Blue-green phosphor for fluorescent lighting applications

    DOE Patents [OSTI]

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15T23:59:59.000Z

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  9. Measurement of Dynamic Light Scattering Intensity in Gels

    E-Print Network [OSTI]

    Rochas, Cyrille

    2015-01-01T23:59:59.000Z

    In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity...

  10. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

    2002-01-01T23:59:59.000Z

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  11. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S.; Meyer, Gerald J.

    2003-07-22T23:59:59.000Z

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: ##EQU1## wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  12. Highly efficient light management for perovskite solar cells

    E-Print Network [OSTI]

    Wang, Dong-Lin; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2015-01-01T23:59:59.000Z

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  13. Optical testing of layered microstructures with and without underlying vias.

    SciTech Connect (OSTI)

    Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-02-01T23:59:59.000Z

    The response of microsystem components to laser irradiation is relevant to the use of laser processing, optical diagnostics, and optical microelectromechanical systems (MEMS) device design and performance. The dimensions of MEMS are on the same order as infrared laser wavelengths which results in interference phenomena when the parts are partially transparent. Four distinct polycrystalline structures were designed and irradiated with 808 nm laser light to determine the effect of layers and the presence of a substrate via on the laser power threshold for damage. The presence of a substrate via resulted in lower damage thresholds, and interference phenomena resulted in a single layer structure having the highest damage threshold.

  14. Shear zone refraction and deflection in layered granular materials

    E-Print Network [OSTI]

    Tamas Borzsonyi; Tamas Unger; Balazs Szabo

    2009-12-09T23:59:59.000Z

    Refraction and deflection of shear zones in layered granular materials was studied experimentally and numerically. We show, that (i) according to a recent theoretical prediction [T. Unger, Phys. Rev. Lett. 98, 018301 (2007)] shear zones refract in layered systems in analogy with light refraction, (ii) zone refraction obeys Snell's law known from geometric optics and (iii) under natural pressure conditions (i.e. in the presence of gravity) the zone can also be deflected by the interface so that the deformation of the high friction material is avoided.

  15. Fission product solvent extraction

    SciTech Connect (OSTI)

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A. [and others

    1998-02-01T23:59:59.000Z

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

  16. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  17. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20T23:59:59.000Z

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  18. Extraction Utility Design Specification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility Design

  19. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,EnergyExploring theExtracellularExtracting the

  20. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,EnergyExploring theExtracellularExtracting

  1. Extracting the Eliashberg Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE, Ford,Extracting the Eliashberg

  2. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  3. Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520525 nm employing graded growth-temperature profile

    E-Print Network [OSTI]

    Gilchrist, James F.

    Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520­525 nm employing current spreading and light extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012

  4. Comparing directed efficiency of III-nitride nanowire light-emitting diodes

    E-Print Network [OSTI]

    Gradecak, Silvija

    III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects ...

  5. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  6. Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization Artificial Neural Networks

    E-Print Network [OSTI]

    Kjellström, Hedvig

    Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization Artificial Neural Networks Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization 1 Artificial Neural Networks Properties Applications Classical Examples Biological Background 2 Single Layer

  7. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22T23:59:59.000Z

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  8. Soft Multiple Winners for Sparse Feature Extraction

    E-Print Network [OSTI]

    A simple and computationally inexpensive neural network method for generating sparse representations is presented. The network has a single layer of linear neurons and, on top of it, a mechanism, which assigns a winning strength for each neuron. Both input and output are real valued in contrast to many earlier methods, where either input or output must have been binary valued. Also, the sum of winning strengths does not have to be normalized as in some other approaches. The ability of the algorithm to find meaningful features is demonstrated in a simulation with images of handwritten numerals. 1. Introduction The objective of a feature extraction system is to refine data in such a way that further processing becomes easier. In classification, such a system has two basic goals. One is to remove redundancies from the data. This helps cutting down computational costs later on. Another, contradictory goal is to discriminate data, which helps in distinguishing between similar inputs. A fe...

  9. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

  10. The Ether Extract and the Chloroform Extract of Soils.

    E-Print Network [OSTI]

    Fraps, G. S.; Rather, J. B.

    1913-01-01T23:59:59.000Z

    I39-3I3-5m TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN NO. 155 JANUARY, 1913 DIVISION OF CHEMISTRY TECHNICAL BULLETIN THE ETHER EXTRACT AND THE CHLORO? FORM EXTRACT OF SOILS BY G. S. FRAPS and J. B. RATHER POSTOFFICE COLLEGE STATION... postal card will bring these publications. THE ETHER EXTRACT AND THE CHLOROFORM EXTRACT OF SOILS. (t. S. FliAPS , Chemist. ?J. B. o Y . C U G O Assistant Chemist. The soil may coDtarn any of the Substances which are found in plants or animals...

  11. Foundations and Light Compass Foundations and Light Compass

    E-Print Network [OSTI]

    Wong, Jennifer L.

    Foundations and Light Compass Case Study Foundations and Light Compass Case Study Jennifer L. WongQuantitative Sensor--centric Designcentric Design Light CompassLight Compass ­­ Models and Abstractions Contaminant Transport Marine Microorganisms Ecosystems, Biocomplexity What is a Light Compass?What is a Light

  12. Lighting and Surfaces 11.1 Introduction to Lighting

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 11 Lighting and Surfaces 11.1 Introduction to Lighting Three-dimensional surfaces can react to light, and how computer graphics simulates this. There are three species of light (or "illumination models"): 1. Intrinsic (self-emitting) 2. Ambient light (sometimes called "diffuse light") 3

  13. Low Cost, Single Layer Replacement for the Back-Sheet and Encapsulant Layers

    SciTech Connect (OSTI)

    Kempe, M. D.; Thapa, P.

    2008-01-01T23:59:59.000Z

    Ethylene propylene diene monomer (EPDM) based polymers have been formulated for specific use in photovoltaic modules to produce better performance and longer term stability at a lower cost than standard materials. EPDM formulations are advantageous over ethylene vinyl-acetate (EVA) because they can use the same lamination/cure cycle as EVA, they do not need a second back-sheet protective material (e.g. PET/Tedlar), they have a lower glass transition temperature, no melting transition, more constant mechanical moduli as a function of temperature, they are less polar than EVA (provides better corrosion protection), and they have excellent damp heat (85 C/85% relative humidity) resistance against delamination. Module designs typically use EVA on the back side of cells despite the fact that transparency is not advantageous. We have developed a single encapsulant layer that will replace standard module back-sheet constructions consisting of EVA/PET/Tedlar. Because a single low-cost material layer is used, it will provide a significant materials cost savings of about $6 to $8/m{sup 2} as compared to traditional back-sheets. Electrical insulation tests were conducted using 0.85 mm thick stainless steel sheets as a model for a cell. It was found that a polymer layer thickness of about 0.33mm provided better high voltage electrical insulation than a combined film of Tedla (0.038 mm)/PET (0.051 mm)/EVA (0.55 mm). When formulated with a white pigment, reflectivity was comparable to Tedlar{trademark}. Upon accelerated exposure to light at 60C and 60% RH it was found that an EVA layer in front of these materials would decompose before significant yellowing and delamination of the back EPDM layer occurs.

  14. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  15. Instabilities induced by Light in Liquid Crystal Cells with a Photo-Responsive Substrate

    E-Print Network [OSTI]

    T. Tóth-Katona; K. Fodor-Csorba; A. Vajda; I. Jánossy

    2014-09-07T23:59:59.000Z

    Instabilities are discussed which take place when a nematic liquid crystal (LC) layer, enclosed between a planar reference plate and a photosensitive substrate, is illuminated with polarized light from the reference side ({\\it reverse} geometry). The dependence of the observed effects on the wavelength, polarization direction of the light, and on the thickness of the LC layer is explained by a model based on photoinduced surface torque. The application possibilities of the phenomena are also explored.

  16. Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes

    E-Print Network [OSTI]

    Carter, Sue

    the thickness-dependent optical properties of single layer polymer light emitting diodes for two materials, poly the electronic and optical properties of these materials in light emitting diode LED structures.2 OurThickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting

  17. Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy

    E-Print Network [OSTI]

    Kim, Sehun

    Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study injec- tion and transport layers in an organic light-emitting diode (OLED) structure has been studied B.V. All rights reserved. 1. Introduction OLEDs (organic light-emitting diodes) are display de

  18. Actinide extraction methods

    DOE Patents [OSTI]

    Peterman, Dean R. (Idaho Falls, ID) [Idaho Falls, ID; Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Harrup, Mason K. (Idaho Falls, ID) [Idaho Falls, ID; Tillotson, Richard D. (Moore, ID) [Moore, ID; Law, Jack D. (Pocatello, ID) [Pocatello, ID

    2010-09-21T23:59:59.000Z

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  19. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  20. Extraction chromatography: Progress and opportunities

    SciTech Connect (OSTI)

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-10-01T23:59:59.000Z

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  1. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02T23:59:59.000Z

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  2. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  3. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  4. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect (OSTI)

    Scott, M.J.

    2005-12-01T23:59:59.000Z

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form high level liquid wastes and a general actinide clean-up procedure. The selectivity of the standard extractant for tetravalent actinides, (N,N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide (CMPO), was markedly improved by the attachment of three CMPO-like functions onto a triphenoxymethane platform, and a ligand that is both highly selective and effective for An(IV) ions was isolated. A 10 fold excess of ligand will remove virtually all of the 4+ actinides from the acidic layer without extracting appreciable quantities of An(III) and Ln(III) unlike simple CMPO ligands. Inspired by the success of the DIAMEX industrial process for extractions, three new tripodal chelates bearing three diglycolamide and thiodiglycolamide units precisely arranged on a triphenoxymethane platform have been synthesized for an highly efficient extraction of trivalent f-element cations from nitric acid media. A single equivalent of ligand will remove 80% of the Ln(III) ion from the acidic layer since the ligand is perfectly suited to accommodate the tricapped trigonal prismatic geometry preferred by the metal center. The ligand is perhaps the most efficient binder available for the heavier lanthanides and due to this unique attribute, the extraction event can be easily followed by 1H NMR spectroscopy confirming the formation of a TPP complex. The most lipophilic di-n-butyl tris-diglycolamide was found to be a significantly weaker extractant in comparison to the di-isopropyl analogs. The tris-thiodiglycolamide derivative proved to be an ineffective chelate for f-elements and demonstrated the importance of the etheric oxygens in the metal binding. The results presented herein clearly demonstrate a cooperative action of these three ligating groups within a single molecule, confirmed by composition and structure of the extracted complexes, and since actinides prefer to have high coordination numbers, the ligands should be particularly adept at binding with three arms. The use of such an extractant permits the extraction of metal ions form highly acidic environment through the ability

  5. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  6. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28T23:59:59.000Z

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  7. Comparing Light Bulbs

    Broader source: Energy.gov [DOE]

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  8. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  9. Lighting Technology Panel

    Broader source: Energy.gov [DOE]

    Presentation covers the Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009. 

  10. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  11. Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    into the market. On the market side, DOE works closely with drivers, heat sinks, and optics. LEDs must be carefully energy efficiency program partners, lighting professionals,...

  12. Network layer Connectionless datagram forwarding

    E-Print Network [OSTI]

    (passed down by transport layer) into datagrams Destination host delivers segments up to transport layer by the cold war " If there exists a path, routers will put it in the routing table automatically Forwarding in the original order Physical Link Network Transport Application Physical Link Network Transport Application

  13. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect (OSTI)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31T23:59:59.000Z

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

  14. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark (Raleigh, NC); Bharathan, Jayesh (Cary, NC); Haberern, Kevin (Cary, NC); Bergmann, Michael (Chapel Hill, NC); Emerson, David (Chapel Hill, NC); Ibbetson, James (Santa Barbara, CA); Li, Ting (Ventura, CA)

    2012-01-03T23:59:59.000Z

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  15. Reducing home lighting expenses

    SciTech Connect (OSTI)

    Aimone, M.A.

    1981-02-01T23:59:59.000Z

    Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

  16. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  17. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09T23:59:59.000Z

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  18. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-02-21T23:59:59.000Z

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  19. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect (OSTI)

    Hanagaki, K.; /Fermilab

    2006-01-01T23:59:59.000Z

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  20. Spiral wound extraction cartridge

    DOE Patents [OSTI]

    Wisted, Eric E. (Apple Valley, MN); Lundquist, Susan H. (White Bear Township, MN)

    1999-01-01T23:59:59.000Z

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.

  1. Spiral wound extraction cartridge

    DOE Patents [OSTI]

    Wisted, E.E.; Lundquist, S.H.

    1999-04-27T23:59:59.000Z

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.

  2. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  3. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Fisher, Kathleen

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  4. Asbestos, polarized light microscopy, PLM, The Clean Air Act mandates a specific analytical

    E-Print Network [OSTI]

    Ahmad, Sajjad

    75 KEY WORDS Asbestos, polarized light microscopy, PLM, NESHAP ABSTRACT The Clean Air Act of the polarized light microscopy (PLM) test method that re moved the compositing of layers and effectively sought within the sample. In 1994 and again in 1995, the EPA recommended that the 1993 PLM method be used

  5. Extended light scattering model incorporating coherence for thin-film silicon solar cells

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non efficiency spectra of state-of-the-art microcrystalline silicon solar cells. The simulations agree very well

  6. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15T23:59:59.000Z

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

  7. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    SciTech Connect (OSTI)

    Lee, Yuna [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Yeong-Shin [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of)] [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of) [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15T23:59:59.000Z

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  8. METEOROLOGY 130 Boundary Layer Meteorology

    E-Print Network [OSTI]

    Clements, Craig

    4) Turbulence Kinetic Energy · TKE budget and terms · Stability concepts · Richardson number 5) Measuring the Boundary Layer · Balloons · Radars · Sodars · Towers (micrometeorology) · Measuring Turbulence Time Series Analysis 8) Similarity Theory and Turbulence Closure 9) Surface Energy Budgets 10) Special

  9. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER

    E-Print Network [OSTI]

    Spiga, Aymeric

    THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A [Haberle et al., 1993a; Larsen et al., 2002; Hinson et al., 2008]. At night, convection is inhibited

  10. General Comparison of Power Loss in Single-Layer and Multi-Layer Windings

    E-Print Network [OSTI]

    General Comparison of Power Loss in Single-Layer and Multi-Layer Windings M. E. Dale C. R. Sullivan the IEEE. #12;General Comparison of Power Loss in Single-Layer and Multi-Layer Windings Magdalena E. Dale

  11. Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization Artificial Neural Networks

    E-Print Network [OSTI]

    Kjellström, Hedvig

    Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization Artificial Neural Networks #12;Artificial Neural Networks Single Layer Networks Multi Layer Networks Generalization 1 Artificial Neural Networks Properties Applications Classical Examples Biological Background 2

  12. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  13. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03T23:59:59.000Z

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  14. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  15. The limited growth of vegetated shear layers

    E-Print Network [OSTI]

    Ghisalberti, M.

    In contrast to free shear layers, which grow continuously downstream, shear layers generated by submerged vegetation grow only to a finite thickness. Because these shear layers are characterized by coherent vortex structures ...

  16. Surface photovoltage method for the quality control of silicon epitaxial layers on sapphire

    SciTech Connect (OSTI)

    Yaremchuk, A. F.; Starkov, A. V.; Zaikin, A. V., E-mail: lynch0000@gmail.com [National Rsearch University MIET (Russian Federation); Alekseev, A. V. [ZAO “Telekom-STV” (Russian Federation); Sokolov, E. M. [ZAO “Epiel” (Russian Federation)

    2014-12-15T23:59:59.000Z

    The surface photovoltage method is used to study “silicon-on-sapphire” epitaxial layers with a thickness of 0.3–0.6 ?m, which are used to fabricate p-channel MOS (metal—oxide-semiconductor) transistors with improved radiation hardness. It is shown that the manner in which the photoconductivity of the epitaxial layer decays after the end of a light pulse generated by a light-emitting diode (wavelength ?400 nm) strongly depends on the density of structural defects in the bulk of the structure. This enables control over how a “silicon-on-sapphire” structure is formed to provide the manufacturing of MOS structures with optimal operating characteristics.

  17. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

    2011-01-25T23:59:59.000Z

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  18. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  19. Sandia National Laboratories: (Lighting and) Solid-State Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  20. Columbia Water and Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  1. Reading Municipal Light Department- Business Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy efficient lights and sensors in existing facilities. In addition to rebates for the...

  2. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  3. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  4. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOE Patents [OSTI]

    Spahn, Olga B. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  5. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOE Patents [OSTI]

    Spahn, O.B.; Lear, K.L.

    1998-03-10T23:59:59.000Z

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  6. Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction

    SciTech Connect (OSTI)

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2009-12-01T23:59:59.000Z

    The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

  7. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    Waste Water Treatment by Solvent Extraction," Canadian J.A.F. Preuss, "Extraction of Phenol from Water with a Liquid1980 SOLVENT EXTRACTION OF PHENOLS FROM WATER LP,WRENCE BERv

  8. Efficient Light Sources Today

    E-Print Network [OSTI]

    Hart, A. L.

    1982-01-01T23:59:59.000Z

    This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

  9. Natural lighting and skylights

    E-Print Network [OSTI]

    Evans, Benjamin Hampton

    1961-01-01T23:59:59.000Z

    outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting....

  10. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  11. Light Vector Mesons

    E-Print Network [OSTI]

    Alexander Milov

    2008-12-21T23:59:59.000Z

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  12. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  13. Light and Energy -Daylight measurements

    E-Print Network [OSTI]

    Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, Ásta Logadóttir ........................................................................................................ 5 Daylight quantity

  14. Light as a Healing Mechanism

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    S. (1991). Meridians conduct light. Moskow: Raum and Zeit.the bod’ys absorption of light. Explore, 9(2), doi: https://01). The healing use of light and color. Health Care Design

  15. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  16. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  17. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  18. July 18, 2012 Using QECBs for Street Lighting Upgrades

    E-Print Network [OSTI]

    lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

  19. Structure functions for light nuclei

    SciTech Connect (OSTI)

    S.A. Kulagin, R. Petti

    2010-11-01T23:59:59.000Z

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including 2H, 3He, 4He, 9Be, 12C and 14N. In order to verify the consistency of available data, we calculate the \\chi^2 deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than 3He. We also discuss the extraction of the neutron/proton structure function ratio F2n/F2p from the nuclear ratios 3He/2H and 2H/1H. Our analysis shows that the E03-103 data on 3He/2H require a renormalization of about 3% in order to be consistent with the F2n/F2p ratio obtained from the NMC experiment. After such a renormalization, the 3He data from the E03-103 data and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  20. Hot water bitumen extraction process

    SciTech Connect (OSTI)

    Rendall, J.S.

    1989-10-24T23:59:59.000Z

    This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

  1. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    processes may occur during porewater extraction such as dissolution of soluble minerals (processes taking place during aqueous extraction. Identification of GM requires knowing: 1) Aqueous complexes, 2) Mineral

  2. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  3. The Announcement Layer: Beacon Coordination for the Sensornet Stack

    E-Print Network [OSTI]

    Dunkels, Adam

    consumption. #12;MAC / Link layers ... ... Multiple, uncoordinated beacons Collect Trickle Deluge Collect Trickle Deluge Coordinated beacons Announcement layer MAC / Link layers Fig. 1. The announcement layer

  4. Extractant composition including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2009-04-28T23:59:59.000Z

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  5. Sandia National Laboratories: White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can be...

  6. Sandia National Laboratories: Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateLighting Developments to 2030 Lighting Developments to 2030 videobanner Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 V iew Slides: Lighting...

  7. Interior Light Level Measurements Appendix F -Interior Light Level Measurements

    E-Print Network [OSTI]

    Appendix F ­ Interior Light Level Measurements #12;F.1 Appendix F - Interior Light Level. A potential concern is that a lower VT glazing may increase electric lighting use to compensate for lost qualify and quantify a representative loss of daylighting, and therefore electric lighting use

  8. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  9. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  10. Smart Lighting: A Second Wave in Solid State Lighting?

    E-Print Network [OSTI]

    Salama, Khaled

    Smart Lighting: A Second Wave in Solid State Lighting? OIDA Conference on Green Photonics Bob Karlicek Director, Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute June 2010 #12;2 Outline · The First Wave of Solid State Lighting · Complex Dynamics in the Supply Chain · What

  11. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2007-11-06T23:59:59.000Z

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  12. White organic light-emitting diodes: Status and perspective

    E-Print Network [OSTI]

    Reineke, Sebastian; Lüssem, Björn; Leo, Karl

    2013-01-01T23:59:59.000Z

    White organic light-emitting diodes (OLEDs) are ultra-thin, large-area light sources made from organic semiconductor materials. Over the last decades, much research has been spent on finding the suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color-tunability, and color-quality, white OLEDs are emerging to become one of the next generation light sources. In this review, we discuss the physics of a variety of device concepts that are introduced to realize white OLEDs based on both polymer and small molecule organic materi als. Owing to the fact that about 80 % of the internally generated photons are trapped within the thin-film layer structure, we put a second focus on reviewing promising concepts for improved light outcoupling.

  13. Layered architecture for quantum computing

    E-Print Network [OSTI]

    N. Cody Jones; Rodney Van Meter; Austin G. Fowler; Peter L. McMahon; Jungsang Kim; Thaddeus D. Ladd; Yoshihisa Yamamoto

    2012-09-27T23:59:59.000Z

    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.

  14. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15T23:59:59.000Z

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  15. Layered Manufacturing Sara McMains

    E-Print Network [OSTI]

    McMains, Sara

    ­ Sintering (vector) ­ 3D Printing (raster) #12;Stereolithography (SLA) · First commercial layered

  16. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30T23:59:59.000Z

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  17. Sneaky light stop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eifert, Till; Nachman, Benjamin

    2015-04-01T23:59:59.000Z

    A light supersymmetric top quark partner (stop) with a mass nearly degenerate with that of the standard model (SM) top quark can evade direct searches. The precise measurement of SM top properties such as the cross-section has been suggested to give a handle for this ‘stealth stop’ scenario. We present an estimate of the potential impact a light stop may have on top quark mass measurements. The results indicate that certain light stop models may induce a bias of up to a few GeV, and that this effect can hide the shift in, and hence sensitivity from, cross-section measurements. Duemore »to the different initial states, the size of the bias is slightly different between the LHC and the Tevatron. The studies make some simplifying assumptions for the top quark measurement technique, and are based on truth-level samples.« less

  18. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

    1991-01-01T23:59:59.000Z

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  19. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

  20. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

  1. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

  2. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    SECTION 3 LIGHTING 101 1. Common terminology 2. Sources & luminaires 3. Controls #12;SECTION 3SECTION 3 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use

  3. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    LIGHTING 101 1. Common terminology 2. Sources and luminaires 3. Controls #12;SECTION 2 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use on the job? SLIDE 14

  4. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  5. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15T23:59:59.000Z

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  6. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31T23:59:59.000Z

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  7. Chemical solution seed layer for rabits tapes

    SciTech Connect (OSTI)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10T23:59:59.000Z

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  8. Single-poly EEPROM cell with lightly doped MOS capacitors

    DOE Patents [OSTI]

    Riekels, James E. (New Hope, MN); Lucking, Thomas B. (Maple Grove, MN); Larsen, Bradley J. (Mound, MN); Gardner, Gary R. (Golden Valley, MN)

    2008-05-27T23:59:59.000Z

    An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell and a method of operation are disclosed for creating an EEPROM memory cell in a standard CMOS process. A single polysilicon layer is used in combination with lightly doped MOS capacitors. The lightly doped capacitors employed in the EEPROM memory cell can be asymmetrical in design. Asymmetrical capacitors reduce area. Further capacitance variation caused by inversion can also be reduced by using multiple control capacitors. In addition, the use of multiple tunneling capacitors provides the benefit of customized tunneling paths.

  9. Analytica Chimica Acta 573574 (2006) 913 Metal oxide thin films as sensing layers for ozone detection

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Analytica Chimica Acta 573­574 (2006) 9­13 Metal oxide thin films as sensing layers for ozone. Their structural, electrical and ozone sensing properties were analyzed. Structural investigations carried out with ultraviolet light and subsequent oxidation in ozone atmosphere at room temperature. © 2006 Elsevier B.V. All

  10. The infrared laser transmission as a function of magnetic field in a single layer

    E-Print Network [OSTI]

    Weston, Ken

    (known as "graphene") indicates the band filling as some of the transmitted light is absorbed. In samples of graphene this has proven to be an important capability. Also, since the laser wavelength layer graphene taken at room temperature using a 10.6 micron laser and the Single Turn Magnet system

  11. A MAC Layer Protocol for Priority-based Reliable Multicast in Wireless Ad Hoc Networks

    E-Print Network [OSTI]

    Demirbas, Murat

    A MAC Layer Protocol for Priority-based Reliable Multicast in Wireless Ad Hoc Networks Murat Abstract RTS-CTS handshake based protocols achieve "reliable unicast" by eliminating the hidden node. Here we present a simple, light-weight, and self- stabilizing MAC protocol, namely Busy Elimination

  12. Organic light emitting device architecture for reducing the number of organic materials

    DOE Patents [OSTI]

    D'Andrade, Brian (Westampton, NJ); Esler, James (Levittown, PA)

    2011-10-18T23:59:59.000Z

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  13. Windows and lighting program

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  14. AIRPORT LIGHTING Session Highlights

    E-Print Network [OSTI]

    Minnesota, University of

    Administration advisory circulars, available online at www.faa.gov or by mail at the following address: Federal Aviation Administration, Airports 800 Independence Ave. S.W. Washington, D.C. 20591 To qualify for federal AND NAVIGATIONAL AIDS A complete list of federal regulations for airfield lighting is located in Federal Aviation

  15. Tokyo Street Lights

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2008-03-12T23:59:59.000Z

    that you have only 17, no 16, no 15 seconds left to get to the other side before the light changes and the impatient American drivers put the pedal to the metal and it's road kill time. Talk about stress! In Tokyo, crossing the street is a leisurely...

  16. Sweetness and light 

    E-Print Network [OSTI]

    Craig, Katie

    2014-07-03T23:59:59.000Z

    1. Sweetness and Light. A novel. Judi lives in a nice, clean house with her seventeen year old stepson, who won’t talk to her in anything but monosyllables. His father, Nelson, and she are struggling to relate to each ...

  17. Light Trapping for Thin Silicon Solar Cells by Femtosecond Laser Texturing: Preprint

    SciTech Connect (OSTI)

    Lee, B. G.; Lin, Y. T.; Sher, M. J.; Mazur, E.; Branz, H. M.

    2012-06-01T23:59:59.000Z

    Femtosecond laser texturing is used to create nano- to micron-scale surface roughness that strongly enhances light-trapping in thin crystalline silicon solar cells. Light trapping is crucial for thin solar cells where a single light-pass through the absorber is insufficient to capture the weakly absorbed red and near-infrared photons, especially with an indirect-gap semiconductor absorber layer such as crystalline Si which is less than 20 um thick. We achieve enhancement of the optical absorption from light-trapping that approaches the Yablonovitch limit.

  18. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  19. Concave-hemisphere-patterned organic top-light emitting device

    DOE Patents [OSTI]

    Forrest, Stephen R; Slootsky, Michael; Lunt, Richard

    2014-01-21T23:59:59.000Z

    A first device is provided. The first device includes an organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first and second electrode. Preferably, the second electrode is more transparent than the first electrode. The organic emissive layer has a first portion shaped to form an indentation in the direction of the first electrode, and a second portion shaped to form a protrusion in the direction of the second electrode. The first device may include a plurality of organic light emitting devices. The indentation may have a shape that is formed from a partial sphere, a partial cylinder, a pyramid, or a pyramid with a mesa, among others. The protrusions may be formed between adjoining indentations or between an indentation and a surface parallel to the substrate.

  20. Structure functions for light nuclei

    SciTech Connect (OSTI)

    Kulagin, S. A. [Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Petti, R. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2010-11-15T23:59:59.000Z

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including {sup 2}H, {sup 3}He, {sup 4}He, {sup 9}Be, {sup 12}C, and {sup 14}N. In order to verify the consistency of available data, we calculate the {chi}{sup 2} deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than {sup 3}He. We also discuss the extraction of the neutron/proton structure function ratio F{sub 2}{sup n}/F{sub 2}{sup p} from the nuclear ratios {sup 3}He/{sup 2}H and {sup 2}H/{sup 1}H. Our analysis shows that the E03-103 data on {sup 3}He/{sup 2}H require a renormalization of about 3% in order to be consistent with the F{sub 2}{sup n}/F{sub 2}{sup p} ratio obtained from the NMC experiment. After such a renormalization, the {sup 3}He data from the E03-103 and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion, and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  1. Superposed Coherent and Squeezed Light

    E-Print Network [OSTI]

    Fesseha Kassahun

    2012-01-18T23:59:59.000Z

    We first calculate the mean photon number and quadrature variance of superposed coherent and squeezed light, following a procedure of analysis based on combining the Hamiltonians and using the usual definition for the quadrature variance of superposed light beams. This procedure of analysis leads to physically unjustifiable mean photon number of the coherent light and quadrature variance of the superposed light. We then determine both of these properties employing a procedure of analysis based on superposing the Q functions and applying a slightly modified definition for the quadrature variance of a pair of superposed light beams. We find the expected mean photon number of the coherent light and the quadrature variance of the superposed light. Moreover, the quadrature squeezing of the superposed output light turns out to be equal to that of the superposed cavity light.

  2. Pore-Water Extraction from Unsaturated Porous Media: Intermediate-Scale Laboratory

    SciTech Connect (OSTI)

    Oostrom, Martinus; Truex, Michael J.; Wietsma, Thomas W.; Tartakovsky, Guzel D.

    2014-08-15T23:59:59.000Z

    As a remedial approach, vacuum-induced pore-water extraction offers the possibility of contaminant and water removal from the vadose zone, which may be beneficial in reducing the flux of vadose zone contaminants to groundwater. Vadose zone water extraction is being considered at the Hanford Site in Washington State as a means to remove technetium-99 contamination from low permeability sediments with relatively high water contents. A series of intermediate-scale laboratory experiments have been conducted to improve the fundamental understanding and limitations of the technique. Column experiments were designed to investigate the relations between imposed suctions, water saturations, and water production. Flow cell experiments were conducted to investigate the effects of high-permeability layers and near-well compaction on pore-water extraction efficiency. Results show that water extraction from unsaturated systems can be achieved in low permeability sediments, provided that the initial water saturations are relatively high. The presence of a high-permeability layer decreased the yield, and compaction near the well screen had a limited effect on overall performance. In all experiments, large pressure gradients were observed near the extraction screen. Minimum requirements for water extraction include an imposed vacuum-induced suction larger than the initial sediment capillary pressure, in combination with a fully saturated seepage-face boundary. A numerical multiphase simulator with a coupled seepage-face boundary conditions was used to simulate the experiments. Reasonable matches were obtained between measured and simulated results for both water extraction and capillary pressures, suggesting that numerical simulations may be used as a design tool for field-scale applications of pore-water extraction.

  3. Superscattering of light optimized by a genetic algorithm

    SciTech Connect (OSTI)

    Mirzaei, Ali, E-mail: ali.mirzaei@anu.edu.au; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S. [Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2014-07-07T23:59:59.000Z

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  4. Transformations in Lighting: The Ninth Annual Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop. DOE SSL Portfolio Manager James Brodrick kicked off Day 1 by observing that although LED...

  5. Interface dynamics for layered structures

    E-Print Network [OSTI]

    Takao Ohta; David Jasnow

    1997-07-17T23:59:59.000Z

    We investigate dynamics of large scale and slow deformations of layered structures. Starting from the respective model equations for a non-conserved system, a conserved system and a binary fluid, we derive the interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A further reduction of the degrees of freedom is possible for a non-conserved system such that internal motion of each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our formulation automatically includes the phase dynamics of layered structures. In a conserved system and a binary fluid, however, the internal motion of domains turns out to be a slow variable in the long wavelength limit because of concentration conservation. Therefore a reduced description only involving the phase variable is not generally justified.

  6. Mechanically flexible organic electroluminescent device with directional light emission

    DOE Patents [OSTI]

    Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc

    2005-05-10T23:59:59.000Z

    A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.

  7. Light cone matrix product

    SciTech Connect (OSTI)

    Hastings, Matthew B [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  8. Nonequilibrium lighting plasmas

    SciTech Connect (OSTI)

    Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

    1991-12-01T23:59:59.000Z

    In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

  9. The Advanced Light Source

    SciTech Connect (OSTI)

    Jackson, A.

    1991-05-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs.

  10. Scattering Of Light Nuclei

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15T23:59:59.000Z

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  11. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  12. Solar light bulb

    SciTech Connect (OSTI)

    Smith, D.A.

    1983-07-26T23:59:59.000Z

    A system for generating light directly using solar energy is provided herein. It includes a concentrator and accumulator for the sun's rays to generate a concentrated beam of visible solar radiation. A distributor shaft is provided for distributing the beam of visible solar radiation. A fork is provided in the distributor shaft to define a plurality of branch lines, each provided with a mirror at the intersection to direct the beam down the respective branch line to permit parallel fractions of the beam to be reflected off the respective mirrors and to pass down the respective branch line. A solar bulb is provided including a double walled upper bulbous portion including the inlet from the branch line and a pair of heat outlet tubes, and a double walled lower bulbous portion, the upper portion thereof being divergently reflective, with the lower portion having walls which are either transparent or translucent to provide greater light diffusion, and the space between the two walls being maintained under vacuum to provide heat insulation values. A structure is provided within the solar bulb for the absorption and radiation of the concentrated beam of visible solar radiation. Preferably structure is provided connected to the solar bulb to draw in outside air in the summer to direct it past the solar bulb and to air vent hot air produced at the solar bulb to the outside, thereby providing light with minimal heat in the summer. The same structure is operated in the winter to draw in household air to direct it past the solar bulb and to recirculate such heated air produced at the solar bulb to the house, thereby providing light and heat in the winter.

  13. Pore-Water Extraction Intermediate-Scale Laboratory Experiments and Numerical Simulations

    SciTech Connect (OSTI)

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Truex, Michael J.

    2011-06-30T23:59:59.000Z

    A series of flow cell experiments was conducted to demonstrate the process of water removal through pore-water extraction in unsaturated systems. In this process, a vacuum (negative pressure) is applied at the extraction well establishing gas and water pressure gradients towards the well. The gradient may force water and dissolved contaminants, such as 99Tc, to move towards the well. The tested flow cell configurations consist of packings, with or without fine-grained well pack material, representing, in terms of particle size distribution, subsurface sediments at the SX tank farm. A pore water extraction process should not be considered to be equal to soil vapor extraction because during soil vapor extraction, the main goal may be to maximize gas removal. For pore water extraction systems, pressure gradients in both the gas and water phases need to be considered while for soil vapor extraction purposes, gas phase flow is the only concern. In general, based on the limited set (six) of flow experiments that were conducted, it can be concluded that pore water extraction rates and cumulative outflow are related to water content, the applied vacuum, and the dimensions of the sediment layer providing the extracted water. In particular, it was observed that application of a 100-cm vacuum (negative pressure) in a controlled manner leads to pore-water extraction until the water pressure gradients towards the well approach zero. Increased cumulative outflow was obtained with an increase in initial water content from 0.11 to 0.18, an increase in the applied vacuum to 200 cm, and when the water-supplying sediment was not limited. The experimental matrix was not sufficiently large to come to conclusions regarding maximizing cumulative outflow.

  14. Electronic transport in atomically thin layered materials

    E-Print Network [OSTI]

    Baugher, Britton William Herbert

    2014-01-01T23:59:59.000Z

    Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

  15. Turbo-Charged Lighting Design

    E-Print Network [OSTI]

    Clark, W. H. II

    TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds...

  16. Physical layer model design for wireless networks 

    E-Print Network [OSTI]

    Yu, Yi

    2009-06-02T23:59:59.000Z

    the relationship between wireless protocol design and physical layer models, it is necessary to first comprehend the network architecture, which groups the communication functions into related and manageable layers. The journal model is IEEE Transactions... data to the network format and vice versa. It is intended to provide independence from different represen- tations of application layer data. The session layer deals with sessions and connections between applications. It manages conversations between...

  17. Webinar: Fuel Cell Mobile Lighting

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

  18. Faster than Light Quantum Communication

    E-Print Network [OSTI]

    A. Y. Shiekh

    2008-04-05T23:59:59.000Z

    Faster than light communication might be possible using the collapse of the quantum wave-function without any accompanying paradoxes.

  19. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2005-07-30T23:59:59.000Z

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

  20. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION level of each multi-tier garage. · General lighting must have occupant sensing controls with at least one control step between 20% and 50% of design lighting power · No more than 500 watts of rated

  1. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION 5 Additions and Alterations Any alteration that increases the connected lighting load must meet all No measures required OUTDOOR LIGHTING11/20/2014 #12;SECTION 5 BACKLIGHT, UPLIGHT, AND GLARE (BUG) RATINGS

  2. STATE OF CALIFORNIA RESIDENTIAL LIGHTING

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

  3. Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    ;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

  4. Slow-light solitons revisited

    E-Print Network [OSTI]

    A. V. Rybin; I. P. Vadeiko; A. R. Bishop

    2006-08-16T23:59:59.000Z

    We investigate propagation of slow-light solitons in atomic media described by the nonlinear $\\Lambda$-model. Under a physical assumption, appropriate to the slow light propagation, we reduce the $\\Lambda$-scheme to a simplified nonlinear model, which is also relevant to 2D dilatonic gravity. Exact solutions describing various regimes of stopping slow-light solitons can then be readily derived.

  5. Extracting energies from the vacuum

    E-Print Network [OSTI]

    She-Sheng Xue

    2000-11-27T23:59:59.000Z

    We present and study a possible mechanism of extracting energies from the vacuum by external classical fields. Taking a constant magnetic field as an example, we discuss why and how the vacuum energy can be released in the context of quantum field theories. In addition, we give a theoretical computation showing how much vacuum energies can be released. The possibilities of experimentally detecting such a vacuum-energy releasing are discussed.

  6. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    kinetic mineral dissolution during extraction. 4.3 Types ofextraction such as dissolution of soluble minerals (halite,extraction. Identification of GM requires knowing: 1) Aqueous complexes, 2) Mineral

  7. Titanium metal: extraction to application

    SciTech Connect (OSTI)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01T23:59:59.000Z

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  8. Intercalation mechanisms and time dependencies of work parameters of electrochromic layers

    SciTech Connect (OSTI)

    Heckner, K.H.; Rothe, A. [Humboldt Univ., Berlin (Germany). Inst. of Physical and Theoretical Chemistry

    1994-12-31T23:59:59.000Z

    The phenomenon of electrochromism offers new routes for convenient devices of light modulation which can be exploited for the fabrication of several optical devices of technological importance. Electrochromic devices have a significant potential for the use as ``smart`` windows for the control of light transmission in response to the change in brightness of the environment, anti-glare rear view mirrors and sun roofs for automobiles, large area optical information displays and consumer sun glasses, just to cite the most relevant examples. This paper describes some essential properties of all-solid-state transmissive electrochromic devices based on a combination of polyaniline (PANI) and tungsten trioxide (WO{sub 3}) layers on ITO sandwiching a proton conducting polymeric layer. The single electrochromic layers were prepared by electrochemical deposition onto ITO/glass electrodes. Proton conducting polymeric electrolytes were prepared by mixing protonic acids with (poly)vinylalcohol. The fabricated all solid-state electrochromic devices exhibit electrochromic response times with color contrasts of about 50% in the range between 0.1 and 1 s, depending on the thickness of the single electrochromic layers, on the cell voltage, on the ion conductivity of the polymeric layer and on the electronic conductivity of the ITO layers. The observed color can be changed from transparent clear yellow to deep blue by applied voltages in the range between 0.5--2 V. The response time of the single investigated electrochromic layers is governed by the rate of proton transport within the layers. The response times of single PANI/ITO/glass half cells in acid aqueous electrolytes show asymmetric characteristics and can be less than 0.2 s.

  9. Improvement of extraction system geometry with suppression of possible Penning discharge ignition

    SciTech Connect (OSTI)

    Delferrière, O., E-mail: olivier.delferriere@cea.fr; Gobin, R.; Harrault, F.; Nyckees, S.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)] [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)

    2014-02-15T23:59:59.000Z

    During the past two years, a new ECR 2.45 GHz type ion source has been developed especially dedicated to intense light ion injector project like IPHI (Injecteur Proton Haute Intensité), IFMIF (International Fusion Materials Irradiation Facility), to reduce beam emittance at RFQ entrance by shortening the length of the LEBT. This new ALISES concept (Advanced Light Ion Source Extraction System) is based on the use of an additional LEBT short length solenoid very close to the extraction aperture. The fringe field of this new solenoid produces the needed magnetic field to create the ECR resonance in the plasma chamber. Such geometry allows first putting the solenoid at ground potential, while saving space in front of the extraction to move the first LEBT solenoid closer and focus earlier the intense extracted beam. During the commissioning of the source in 2011–2012, ALISES has produced about 20 mA extracted from a 6 mm diameter plasma extraction hole at 23 kV. But the magnetic configuration combined to the new extraction system geometry led to important Penning discharge conditions in the accelerator column. Lots of them have been eliminated by inserting glass pieces between electrodes to modify equipotential lines with unfavorable ExB vacuum zones where particles were produced and trapped. To study Penning discharge location, several 3D calculations have been performed with OPERA-3D/TOSCA code to simulate the possible production and trapping of electrons in the extraction system. The results obtained on different sources already built have shown very good agreement with sparks location observed experimentally on electrodes. The simulations results as well as experimental measurements are presented and solutions to prevent possible Penning discharge in future source geometries are established.

  10. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOE Patents [OSTI]

    Sinclair; Michael B. (Albuquerque, NM); Sweatt, William C. (Albuquerque, NM)

    2010-03-23T23:59:59.000Z

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  11. Extractable soil phosphorus in Blackland Prairie soils

    E-Print Network [OSTI]

    Byrd, Robert Claude

    1995-01-01T23:59:59.000Z

    CONCLUSIONS . REFERENCES. . APPENDIX. 92 . 94 99 . . 104 Vlh Table LIST OF TABLES Page Extractable soil P ratings for the TAEX, Bray I, Olsen, and TAEX 3 soil P extractants 18 Chemical properties of preliminary soil sample (Fall 1992) taken from..., and 8 0). The authors, however, noted that Olsen and TAEX extractable P also resulted in acceptable correlation values All the above extractants were highly correlated (r& 0. 94) with total P uptake for both the calcareous soil and the slightly acidic...

  12. Light Vector Mesons in the Nuclear Medium

    E-Print Network [OSTI]

    M. H. Wood; R. Nasseripour; D. P. Weygand; C. Djalali; C. Tur; U. Mosel; P. Muehlich; CLAS Collaboration

    2008-03-04T23:59:59.000Z

    The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.

  13. Radio-transparent multi-layer insulation for radiowave receivers

    SciTech Connect (OSTI)

    Choi, J. [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of)] [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ishitsuka, H. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan)] [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Mima, S. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oguri, S., E-mail: shugo@post.kek.jp [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, K. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Tajima, O. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan) [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-15T23:59:59.000Z

    In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

  14. SchoolFEFLOW Exercise Heat extraction

    E-Print Network [OSTI]

    Kornhuber, Ralf

    the flux: q = 0.15 m/d Pumping (heat extraction) from aquifer and re-injection (of cooled water-injected water: 20°C · T = 20°C Model Extension #12;Summer SchoolHeat extraction from sloped aquifer 22Summer SchoolFEFLOW® Exercise Heat extraction from a sloped sandstone aquifer Vertical cross

  15. Gauge Invariant Spectral Cauchy Characteristic Extraction

    E-Print Network [OSTI]

    Casey J. Handmer; Béla Szilágyi; Jeffrey Winicour

    2015-02-24T23:59:59.000Z

    We present gauge invariant spectral Cauchy characteristic extraction. We compare gravitational waveforms extracted from a head-on black hole merger simulated in two different gauges by two different codes. We show rapid convergence, demonstrating both gauge invariance of the extraction algorithm and consistency between the legacy Pitt null code and the much faster Spectral Einstein Code (SpEC).

  16. Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy during the construction of a model biofuel cell anode. The model anode was a layered structure formedDH to the CB layer confirmed successful enzyme immobilization. 1. Introduction Biofuel cells use microorganisms

  17. Overcoming the Boundary Layer Turbulence at Dome C: Ground-Layer Adaptive Optics versus Tower

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    Overcoming the Boundary Layer Turbulence at Dome C: Ground-Layer Adaptive Optics versus Tower T the boundary layer: mounting a telescope on a tower that physically puts it above the turbulent layer such a goal, two solutions can be proposed. The most intuitive one is to place a telescope on a tower

  18. Sandia National Laboratories: efficient LED lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  19. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

  20. Ecological Consequences of Artificial Night Lighting

    E-Print Network [OSTI]

    Piselli, Kathy

    2006-01-01T23:59:59.000Z

    of Artificial Night Lighting Catherine Rich and Travisof artificial night lighting. This book provides editedage of modern urban lighting was ushered in. Coincidentally,

  1. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Developments to 2030 On July 30, 2012, in Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 View Slides: Lighting Technologies, Costs, and...

  2. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01T23:59:59.000Z

    REFERENCES Task Report to Lighting Systems Research,Berkeley Laboratory, "Lighting Control System Market1980). Task Report to Lighting Systems Research, Lawrence

  3. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  4. Municipal Consortium LED Street Lighting Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    A Rational View of LM-79 Reports, IES Files, and Product Variation Gary Steinberg, GE Lighting Solutions Solid-State Street Lighting: Calculating Light Loss Factors Dana Beckwith,...

  5. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of Energy Services Companies Calculating Light Loss Factors for Solid-State Lighting Systems Chad Stalker, Philips Lumileds Lighting Intro to MSSLC's...

  6. Light propagation and Imaging in Indefinite Metamaterials

    E-Print Network [OSTI]

    Yao, Jie

    2010-01-01T23:59:59.000Z

    photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (

  7. Advances in Lighting

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01T23:59:59.000Z

    colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

  8. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31T23:59:59.000Z

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  9. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About

  10. Lighting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang River ValleyLighting

  11. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21T23:59:59.000Z

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  12. Chip-Scale Power Conversion for LED Lighting: Integrated Power Chip Converter for Solid-State Lighting

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    ADEPT Project: Teledyne is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.

  13. On the feasibility of determining slant-range visibility by using measurements of scattered light

    E-Print Network [OSTI]

    Newcomb, Fred Richard

    1972-01-01T23:59:59.000Z

    to vary according to the pollution sources; this prevented the use of average values of the scattering parameters. A one- light source, two-detector instrument which operated on a forward scattering angle was simulated in the numerical model... was developed that simulated the one- light source, two-detector instrument operating in the model atmospheres. The horizontal (surface) visual range and visual range of seven layers in the model atmospheres were computed. The value of the slant...

  14. A low-temperature processed environment-friendly full-organic carrier collection layer for polymer solar cells

    SciTech Connect (OSTI)

    Shi, Ai-Li; Li, Yan-Qing, E-mail: yqli@suda.edu.cn, E-mail: zhangdd@suda.edu.cn, E-mail: jxtang@suda.edu.cn; Jiang, Xiao-Chen; Ma, Zhong-Sheng; Wang, Qian-Kun; Guo, Zhen-Yu; Zhang, Dan-Dan, E-mail: yqli@suda.edu.cn, E-mail: zhangdd@suda.edu.cn, E-mail: jxtang@suda.edu.cn; Lee, Shuit-Tong; Tang, Jian-Xin, E-mail: yqli@suda.edu.cn, E-mail: zhangdd@suda.edu.cn, E-mail: jxtang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-08-04T23:59:59.000Z

    We constructed a concept of the full-organic carrier collection layer (CCL) used for polymer solar cells. The CCL is composed of dipyrazino[2,3-f:2?,3?-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile as hole collection layer (HCL) and chlorine-free solvents (formic acid (FA)) processed 4,7-Diphenyl-1,10-phenanthroline (Bphen) as electron collection layer, exhibiting good solubility, and environmental protection. The FA based device shows ideal power conversion efficiency (3.75%), which is higher than that of control device (3.6%). Besides, the HCL shows a different mechanism in hole extraction by functioning as a charge recombination zone for electrons injected from anode and holes extracted from the donor materials.

  15. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24T23:59:59.000Z

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  16. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004 37 Monte Carlo Modeling of the Light Transport in

    E-Print Network [OSTI]

    Kanicki, Jerzy

    absorption, thin-film coatings, and uneven or irregular surfaces by tracking the photon polarization aerogel layer [10]. Several models have also been proposed for modeling optical transport in organic light

  17. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Dang, Xiangnan

    In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). ...

  18. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Murawski, Caroline, E-mail: caroline.murawski@iapp.de; Fuchs, Cornelius; Hofmann, Simone; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Str. 1, 01062 Dresden (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS Scotland (United Kingdom)

    2014-09-15T23:59:59.000Z

    We investigate the properties of N,N?-[(Diphenyl-N,N?-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N?,N?-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2?,7,7?-tetrakis(N,N?-di-p-methylphenylamino)-9,9?-spirobifluorene (Spiro-TTB), and N,N?-di(naphtalene-1-yl)-N,N?-diphenylbenzidine (NPB). The influence of 2,2?-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4?wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35?.1?lm/W (74?.0?lm/W) at 1000?cd/m{sup 2} and reach a very high brightness of 10?000 cd/m{sup 2} at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

  19. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30T23:59:59.000Z

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  20. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13T23:59:59.000Z

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  1. Posters | Posters --721 Exploring lighting cultures

    E-Print Network [OSTI]

    Boyer, Edmond

    Posters | Posters -- 721 Exploring lighting cultures Beyond light and emotions Vincent LAGANIER 1 , Jasmine van der POL 2 1. Lighting Applications Services (LiAS), Philips Lighting, France vincent.laganier@philips.com 2

  2. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01T23:59:59.000Z

    Floors Floor Area Lighting Power Density Light Output Lampenergy den- sity and power density for lighting to 3.5 kWh/Lighting Level (Lumens/Watt) (Footcandles) Power Density (

  3. Low-Pressure Sodium Lighting Basics

    Broader source: Energy.gov [DOE]

    Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important.

  4. Radioluminescent lighting for Alaskan runway lighting and marking

    SciTech Connect (OSTI)

    Jensen, G.A.; Leonard, L.E.

    1985-03-01T23:59:59.000Z

    Alaska and other far northern areas have special logistical, environmental, and economic problems that make radioluminescent (RL) lighting applications, especially in the area of airport lighting, an attractive alternative to electrical systems and flare pots. Tests and demonstrations of prototype systems conducted in Alaska over the past two years have proved the basic technological worth of RL airport lighting systems for civilian and military use. If regulatory issues and other factors identified during these tests can be favorably resolved and if the system and its components can be refined through production engineering, attractive applications for RL airfield lighting systems in Alaska and other remote locations could result.

  5. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Office of Environmental Management (EM)

    in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

  6. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  7. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review...

  8. Overcoming Common Pitfalls: Energy Efficient Lighting Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Overcoming Common Pitfalls: Energy Efficient Lighting Projects Overcoming Common Pitfalls: Energy Efficient Lighting Projects Transcript Presentation More Documents & Publications...

  9. Light modulating device

    DOE Patents [OSTI]

    Rauh, R.D.; Goldner, R.B.

    1989-12-26T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  10. Energy and lighting

    SciTech Connect (OSTI)

    Berman, S.

    1985-01-01T23:59:59.000Z

    Advances in research for new types of lighting with increased efficacies (lumens/watt) are discussed in the following areas: (1) high-frequency, solid-state ballasts, (2) isotopic enhancement of mercury isotopes, (3) magnetic augmentation, (4) electrodeless, ultra-high frequency, (5) tuned phosphors, (6) two-photon phosphors, (7) heat mirrors, and (3) advanced control circuits to take advantage of daylight and occupancy. As of 1985, improvements in efficacy have been accomplished on an economic basis to save energy for (1) high-frequency ballasts (25%), (2) isotopic enhancement (5%), and (8) advanced control circuits (up to 50%). Most of these advances depend on a deeper understanding of the weakly ionized plasma as a radiating and diffusing medium. 3 figures, 4 tables.

  11. Light modulating device

    DOE Patents [OSTI]

    Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

    1989-01-01T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  12. Ultrafast Magnetic Light

    E-Print Network [OSTI]

    Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01T23:59:59.000Z

    We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.

  13. Exclusive light particle measurements for the system $^{19}$F + $^{12}$C at 96 MeV

    E-Print Network [OSTI]

    D. Bandyopadhyay; C. Bhattacharya; K. Krishan; S. Bhattacharya; S. K. Basu; A. Chatterjee; S. Kailas; A. Shrivastava; K. Mahata

    2001-10-04T23:59:59.000Z

    Decay sequence of hot ${31}^$P nucleus has been investigated through exclusive light charged particle measurements in coincidence with individual evaporation residues using the reaction ${19}^$F (96 MeV) + ${12}^$C. Information on the sequential decay chain have been extracted by confronting the data with the predictions of the statistical model. It is observed from the present analysis that such exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of the hot light compound systems.

  14. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald (Silver Spring, MD)

    2004-09-14T23:59:59.000Z

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  15. Organic electrophosphorescence device having interfacial layers

    SciTech Connect (OSTI)

    Choulis, Stelios A. (San Jose, CA); Mathai, Mathew (Santa Clara, CA); Choong, Vi-En (San Jose, CA); So, Franky (Gainesville, FL)

    2010-08-10T23:59:59.000Z

    Techniques are described for forming an organic light emitting diode device with improved device efficiency. Materials having at least one energy level that is similar to those of a phosphorescent light emitting material in the diode are incorporated into the device to directly inject holes or electrons to the light emitting material.

  16. anticorrelation light yield: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Light Engineering Websites Summary: Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr as the largest supplier of LED Lighting...

  17. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography

    E-Print Network [OSTI]

    Trompoukis, Christos; Depauw, Valérie; Gordon, Ivan; Poortmans, Jef; 10.1063/1.4749810.

    2012-01-01T23:59:59.000Z

    We report on the fabrication of two-dimensional periodic photonic nanostructures by nanoimprint lithography and dry etching, and their integration into a 1-{\\mu}m-thin mono-crystalline silicon solar cell. Thanks to the periodic nanopatterning, a better in-coupling and trapping of light is achieved, resulting in an absorption enhancement. The proposed light trapping mechanism can be explained as the superposition of a graded index effect and of the diffraction of light inside the photoactive layer. The absorption enhancement is translated into a 23% increase in short-circuit current, as compared to the benchmark cell, resulting in an increase in energy-conversion efficiency.

  18. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  19. Pedestrian-Friendly Nighttime Lighting

    Broader source: Energy.gov [DOE]

    This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor...

  20. Linac Coherent Light Source Overview

    Broader source: Energy.gov [DOE]

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  1. Linac Coherent Light Source Overview

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  2. Utility lighting summit proves illuminating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-lighting-summit-proves-illuminating Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  3. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  4. Lighting with Paint FABIO PELLACINI

    E-Print Network [OSTI]

    Pellacini, Fabio

    Lighting with Paint FABIO PELLACINI Dartmouth College and FRANK BATTAGLIA, R. KEITH MORLEY, animation, rendering, optimization, painting ACM Reference Format: Pellacini, F., Battaglia, F., Morley, R

  5. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Institute; David Shiller, Environmental Protection Agency. Program Advisory Committee: Ron Lewis Corporation; Don Aumann, California Lighting Technology Center; Holly Larsen, Larsen Communications

  6. Combustion fronts in porous media with two layers Steve Schecter

    E-Print Network [OSTI]

    Schecter, Stephen

    Combustion fronts in porous media with two layers layer 1 layer 2 Steve Schecter North Carolina Subject: Propagation of a combustion front through a porous medium with two parallel layers having different properties. · Each layer admits a traveling combustion wave. · The layers are coupled by heat

  7. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  8. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  9. Manganese containing layer for magnetic recording media

    DOE Patents [OSTI]

    Lambeth, David N. (Pittsburgh, PA); Lee, Li-Lien (Santa Clara, CA); Laughlin, David E. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  10. Sandia National Laboratories: atomic layer deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer deposition Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events,...

  11. Enhanced Densification of SDC Barrier Layers

    SciTech Connect (OSTI)

    Hardy, John S.; Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.

    2011-09-12T23:59:59.000Z

    This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.

  12. Electronic Transport in Few-layer Graphene

    E-Print Network [OSTI]

    Zhao, Zeng

    2013-01-01T23:59:59.000Z

    in Charge Neutral Bilayer Graphene Introduction In thisstudy on heterogeneous graphene devices in a differentto probe few layer graphene to determine their dependence on

  13. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Yang, Fan (Piscataway, NJ); Rand, Barry P. (Somers, NY)

    2011-09-06T23:59:59.000Z

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  14. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01T23:59:59.000Z

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  15. Solar Energy Materials & Solar Cells 75 (2003) 307312 Extreme radiation hardness and light-weighted

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Solar Energy Materials & Solar Cells 75 (2003) 307­312 Extreme radiation hardness and light-weighted thin-film indium phosphide solar cell and its computer simulation Guohua Lia, *, Qingfen Yanga+ -i-p+ InP solar cell is developed. The total thickness of its epitaxial layer is only 0.22 mm

  16. Light-by-Light Scattering Effect in Light-Cone Supergraphs

    E-Print Network [OSTI]

    Renata Kallosh; Pierre Ramond

    2010-06-24T23:59:59.000Z

    We give a relatively simple explanation of the light-cone supergraph prediction for the UV properties of the maximally supersymmetric theories. It is based on the existence of a dynamical supersymmetry which is not manifest in the light-cone supergraphs. It suggests that N=4 supersymmetric Yang-Mills theory is UV finite and N=8 supergravity is UV finite at least until 7 loops whereas the $n$-point amplitudes have no UV divergences at least until $L=n+3$. Here we show that this prediction can be deduced from the properties of light-cone supergraphs analogous to the light-by-light scattering effect in QED. A technical aspect of the argument relies on the observation that the dynamical supersymmetry action is, in fact, a compensating field-dependent gauge transformation required for the retaining the light-cone gauge condition $A_+=0$.

  17. Light to Energy Team, MPA-11 Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of interfaces and fundamental photophysics behind the phenomena with the ultimate goal of energy applications * Layered two-dimensional (2D) nanomaterials such as graphene, layered...

  18. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect (OSTI)

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17T23:59:59.000Z

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  19. Extracting inorganics from scrap tires

    SciTech Connect (OSTI)

    Cummings, R.; Wertz, D.L. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

    1995-12-31T23:59:59.000Z

    Scrap tires contain several inorganic moieties in abundances >0.5% which are impregnated into their carbonaceous matrix. These inorganic species are known to produce acid rain, toxic aerosols, and boiler scale and could produce unwanted catalytic effects as well. It is our position that the potential of recycling scrap tires would be considerably enhanced if the inorganics in question - S, Ca, and Zn - were removed prior to attempts to upgrade the carbonaceous matrix. Using non-mechanical methods, we are attempting to cleave the adherence between the co-polymer matrix and to extract the inorganics. The efficiency of our methods is being measured by wavelength dispersive x-ray spectrometry and by other methods.

  20. Reducing Energy Usage in Extractive Distillation

    E-Print Network [OSTI]

    Saxena, A. C.; Bhandari, V. A.

    , .. ~ REDUCING ENERGY USAGE IN,EXTRACTIVE DISTILLATION A. C. Saxena V. A. Bhandari Polysar Limited Sarnia, Ontario, Canada Abstract Butadiene 1:3 is separated from other C. hydrocarbons by extractive distillation in a sieve plate tower.... To improve the energy efficiency, butadiene recovery and productivity of the extractive distillation process, many process changes have been made. Their rationale, the methodology used to implement the various changes, and how they affected the process...

  1. Combined transuranic-strontium extraction process

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1992-12-08T23:59:59.000Z

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.

  2. Combined transuranic-strontium extraction process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Dietz, M.L.

    1991-12-31T23:59:59.000Z

    The transuranic (TRU) elements neptunium, plutonium and amercium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N.N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU`s to gather with strontium, uranium and technetium. The TRU`s and the strontium can then be selectively stripped from the extractant for disposal.

  3. 4522 J.Org. Chem. 1988,53,4522-4530 system. Thin-layer chromatography (TLC) was run with pre-

    E-Print Network [OSTI]

    RajanBabu, T. V. "Babu"

    4522 J.Org. Chem. 1988,53,4522-4530 system. Thin-layer chromatography (TLC) was run with pre- coated silica gel plates (Merck,Art. No. 5554). Spot detection was carried out by UV light and materials together with a stream of nitrogen. After dry chloroform(0.5 mL) was added to the residue

  4. UV-modulated one-dimensional photonic-crystal resonator for visible lights

    SciTech Connect (OSTI)

    Yang, S. Y.; Yang, P. H.; Liao, C. D.; Chieh, J. J.; Chen, Y. P.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Department of Mechanical Engineering, Nan-kai Institute of Technology, Nantou County 542, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2006-12-04T23:59:59.000Z

    The one-dimensional photonic-crystal (A/SiO{sub 2}){sub 6}/ZnO/(SiO{sub 2}/A){sub 6} resonators at visible lights are fabricated and characterized, where A may be ZnO or indium tin oxide. Owing to the absorption of ultraviolet (UV) light by the ZnO layers, the refractive index of ZnO layers is changed temporally. This fact led to a temporary shifting of the forbidden band and the resonant mode of the resonator under UV irradiation. Besides, via adjusting the thickness of the ZnO defect layer, the resonant wavelength is manipulated. These experimental data show good consistence with simulated results.

  5. Determination of Extractives in Biomass: Laboratory Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steps. This procedure uses a two-step extraction process to remove water soluble and ethanol soluble material. Water soluble materials may include inorganic material,...

  6. Geothermal: Sponsored by OSTI -- Technologies for Extracting...

    Office of Scientific and Technical Information (OSTI)

    Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  7. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    E-Print Network [OSTI]

    Schmidt, Daniel J.

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly ...

  8. An ultra-thin buffer layer for Ge epitaxial layers on Si

    SciTech Connect (OSTI)

    Kawano, M.; Yamada, S.; Tanikawa, K.; Miyao, M.; Hamaya, K. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)] [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Sawano, K. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Tokyo 158-0082 (Japan)] [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Tokyo 158-0082 (Japan)

    2013-03-25T23:59:59.000Z

    Using an Fe{sub 3}Si insertion layer, we study epitaxial growth of Ge layers on a Si substrate by a low-temperature molecular beam epitaxy technique. When we insert only a 10-nm-thick Fe{sub 3}Si layer in between Si and Ge, epitaxial Ge layers can be obtained on Si. The detailed structural characterizations reveal that a large lattice mismatch of {approx}4% is completely relaxed in the Fe{sub 3}Si layer. This means that the Fe{sub 3}Si layers can become ultra-thin buffer layers for Ge on Si. This method will give a way to realize a universal buffer layer for Ge, GaAs, and related devices on a Si platform.

  9. Surface engineering using layer-by-layer assembly of pH-sensitive polymers and nanoparticles

    E-Print Network [OSTI]

    Lee, Daeyeon

    2007-01-01T23:59:59.000Z

    Surface engineering of a variety of materials including colloidal particles and porous membranes has been achieved by using layer-by-layer assembly of pH-sensitive polymers and nanoparticles. In the first part of this ...

  10. Amperometric Glucose Biosensor by Means of Electrostatic Layer-by-layer Adsorption onto Electrospun Polyaniline Fibers

    E-Print Network [OSTI]

    Shin, Young J.

    2010-07-14T23:59:59.000Z

    were formed and collected by electrospinning. Glucose oxidase was immobilized onto these fibers using an electrostatic layer-by-layer adsorption technique. In this method, poly(diallyldimethylammonium chloride) was used as the counter ion source...

  11. automated spin-assisted layer-by-layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas 2005-01-01 16 Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film MIT - DSpace Summary: This article summarizes an experiment on thin-film fabrication...

  12. Engineering the electrochromism and ion conduction of layer-by-layer assembled films

    E-Print Network [OSTI]

    DeLongchamp, Dean M. (Dean Michael), 1975-

    2003-01-01T23:59:59.000Z

    This work applies the processing technique of layer-by-layer (LBL) assembly to the creation and development of new electrochemically active materials. Elements of the thin-film electrochromic cell were chosen as a particular ...

  13. Antimicrobial Activity of Cationic Antiseptics in Layer-by-Layer Thin Film Assemblies

    E-Print Network [OSTI]

    Dvoracek, Charlene M.

    2010-07-14T23:59:59.000Z

    Layer-by-layer (LbL) assembly has proven to be a powerful technique for assembling thin films with a variety of properties including electrochromic, molecular sensing, oxygen barrier, and antimicrobial. LbL involves the deposition of alternating...

  14. Commercial Lighting Solutions, Webtool Peer Review Report

    SciTech Connect (OSTI)

    Jones, Carol C.; Meyer, Tracy A.

    2009-06-17T23:59:59.000Z

    The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the beta version of the CLS webtool, which contains retail box lighting solutions. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed about which feedback should be addressed for the release of version 1.0 of the webtool at the Lightfair conference in New York City in May 2009. Due to the volume of data (~500 comments) the methodology for addressing the peer review comments was central to the success of the ultimate goal of improving the tool. The comments were first imported into a master spreadsheet, and then grouped and organized in several layers. Solutions to each comment were then rated by importance and feasibility to determine the practicality of resolving the concerns of the commenter in the short-term or long-term. The rating system was used as an analytical tool, but the results were viewed thoughtfully to ensure that they were not the sole the factor in determining which comments were recommended for near-term resolution. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 1.0 as well as appendices containing the short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 1.0 are listed as long-term recommendations.

  15. Multi-layered Spectral Formation in SNe Ia Around Maximum Light

    E-Print Network [OSTI]

    Bongard, Sebastien

    2008-01-01T23:59:59.000Z

    stars: atmospheres — supernovae DISCLAIMER This document wasIntroduction Type Ia supernovæ have been used as “spanning the “normal” supernovæ blue magnitudes. Single Ion

  16. Probing Excitonic Dark States in Single-layer Tungsten Disulfide

    E-Print Network [OSTI]

    Ye, Ziliang; O'Brien, Kevin; Zhu, Hanyu; Yin, Xiaobo; Wang, Yuan; Louie, Steven G; Zhang, Xiang

    2014-01-01T23:59:59.000Z

    Transition metal dichalcogenide (TMDC) monolayer has recently emerged as an important two-dimensional semiconductor with promising potentials for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDC has a sizable band gap. More interestingly, when thinned down to a monolayer, TMDC transforms from an indirect bandgap to a direct bandgap semiconductor, exhibiting a number of intriguing optical phenomena such as valley selective circular dichroism, doping dependent charged excitons, and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. The observed optical resonance was initially considered to be band-to-band transitions. In contrast, first-principle calculations predicted a much larger quasiparticle band gap size and an optical response that is dominated by excitonic effects. Here, we report experimental evidence of the exciton dominance mechanism by discovering a series of exc...

  17. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)

    1985-01-01T23:59:59.000Z

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  18. Steady water waves with multiple critical layers

    E-Print Network [OSTI]

    Mats Ehrnström; Joachim Escher; Erik Wahlén

    2011-04-01T23:59:59.000Z

    We construct small-amplitude periodic water waves with multiple critical layers. In addition to waves with arbitrarily many critical layers and a single crest in each period, two-dimensional sets of waves with several crests and troughs in each period are found. The setting is that of steady two-dimensional finite-depth gravity water waves with vorticity.

  19. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect (OSTI)

    Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-06-21T23:59:59.000Z

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  20. Instability limits for spontaneous double layer formation

    SciTech Connect (OSTI)

    Carr, J. Jr. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States) [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Department of Physics, Texas Lutheran University, Seguin, Texas 78155 (United States); Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)] [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Magee, R. M. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States) [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); TriAlpha Energy, Inc., Foothill Ranch, California 92610 (United States); Reynolds, E. [Department of Physics and Engineering, West Virginia Wesleyan, Buckhannon, West Virginia 26201 (United States)] [Department of Physics and Engineering, West Virginia Wesleyan, Buckhannon, West Virginia 26201 (United States)

    2013-11-15T23:59:59.000Z

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  1. Electropositive surface layer MPD thruster cathodes

    SciTech Connect (OSTI)

    Chamberlain, F.R.; Kelly, A.J.; Jahn, R.G.

    1989-01-01T23:59:59.000Z

    Lithium and barium oxide have been used to generate electropositive surface layers on tungsten cathodes in low power steady state MPD thruster experiments. The electropositive surface layer decreases the cathode work function, resulting in substantial reductions in the steady state cathode operating temperature and erosion rate. Cathode temperature is reduced by 300 degrees with a lithium surface layer and by 800 degrees with a barium oxide surface layer at a 500 ampere thruster current level. These temperature reductions substantially reduce the calculated steady state evaporative erosion rate of the cathode by factors of 20 and 10,000 respectively. Cold cathode startup erosion is also reduced dramatically. The surface melting and arc cratering that is characteristic of pure tungsten cathodes does not occur with an electropositive surface layer cathode. In addition to reducing cathode erosion, the use of these materials increases thruster efficiency. 12 refs.

  2. Main Sequence Evolution with Layered Semiconvection

    E-Print Network [OSTI]

    Moore, Kevin

    2015-01-01T23:59:59.000Z

    Semiconvection - mixing that occurs in regions that are stable when considering compositional gradients, but unstable when ignoring them - is shown to have the greatest potential impact on main sequence stars with masses in the range 1.2 - 1.7 solar masses. We present the first stellar evolution calculations using a prescription for semiconvection derived from extrapolation of direct numerical simulations of double-diffusive mixing down to stellar parameters. The dominant mode of semiconvection in stars is layered semiconvection, where the layer height is an adjustable parameter analogous to the mixing length in convection. The rate of mixing across the semiconvective region is sensitively dependent on the layer height. We find that there is a critical layer height that separates weak semiconvective mixing (where evolution is well-approximated by using the Ledoux criterion) from strong semiconvective mixing (where evolution is well-approximated by using the Schwarzschild criterion). This critical layer height...

  3. SU4 light stop signature analysis at ATLAS

    SciTech Connect (OSTI)

    Krstic, Jelena; Milosavljevic, Marija; Popovic, Dragan [Institute of Physics, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    A possibility to observe light stop signal above the Standard Model background was analysed for SU4 low mass SUSY model. With a production cross section of 270 pb, SU4 seems to be a promising target for SUSY searches with early ATLAS data. In order to extract a light stop signal from the decay g-tilde {yields} t-tilde{sub 1}t {yields} {chi}-tilde{sub 1}{sup {+-}}tb the final state tb invariant mass distribution was reconstructed. A kinematic endpoint was observed at a position close to the expected value for this decay chain which is 300 GeV. By establishing proper event selection criteria SM backgrounds can be suppressed to the level S/B > 4 with only 200 pb-1 of data. The analysis was performed on fully simulated ATLAS data.

  4. Mimicking interacting relativistic theories with stationary pulses of light

    E-Print Network [OSTI]

    Dimitris G. Angelakis; MingXia Huo; Darrick Chang; Leong Chuan Kwek; Vladimir Korepin

    2012-07-31T23:59:59.000Z

    One of the most well known relativistic field theory models is the Thirring model (TM). Its realization can demonstrate the famous prediction for the renormalization of mass due to interactions. However, experimental verification of the latter requires complex accelerator experiments whereas analytical solutions of the model can be extremely cumbersome to obtain. In this work, following Feynman's original proposal, we propose a alternative quantum system as a simulator of the TM dynamics. Here the relativistic particles are mimicked, counter-intuitively, by polarized photons in a quantum nonlinear medium. We show that the entire set of regimes of the Thirring model -- bosonic or fermionic, and massless or massive -- can be faithfully reproduced using coherent light trapping techniques. The sought after correlations' scalings can be extracted by simple probing of the coherence functions of the light using standard optical techniques.

  5. 324 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 9, NO. 5, MAY 2013 Light Extraction Efficiency Enhancement of

    E-Print Network [OSTI]

    Gilchrist, James F.

    ]­[17], diode lasers [18]­[23], thermoelectricity [24], [25], and solar energy conver- sion [26]­[29]. Blue, 2013. The work was supported by U.S. Department of Energy under Grant NETL, DE-PS26- 08NT00290, by the National Science Foundation under Grant ECCS 1028490 and Grant CBET 0828426, and by the Class of 1961

  6. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

    1994-10-04T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  7. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

    1994-08-02T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  8. Poly (p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  9. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02T23:59:59.000Z

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  10. Summary of Topic1 Fusion Power Extraction

    E-Print Network [OSTI]

    Abdou, Mohamed

    Extraction and Tritium Fuel Cycle · What choices are available for material, coolant, breeder, configuration availability of external tritium supply? #12;FW/Blanket concepts for fusion power extraction and tritium&D and facilities strongly overlap RAFM Steel PbLi Breeder Helium Cooled Ceramic Breeder Beryllium Helium Cooled Pb

  11. Transposon extraction protocol Maitreya Dunham November 2006

    E-Print Network [OSTI]

    Dunham, Maitreya

    Transposon extraction protocol Maitreya Dunham November 2006 modification of the Qiagen HSE precipitate. Mix equal amounts of DNA from each digest if multiple digests. Extraction In a screw-cap tube (Qiagen), and water to bring to 30 µl total. Heat for 15 minutes at 95C with a 100C block on top (blocks

  12. Induction Lighting: An Old Lighting Technology Made New Again...

    Broader source: Energy.gov (indexed) [DOE]

    25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,...

  13. Using QECBs for Street Lighting Upgrades: Lighting the Way to...

    Broader source: Energy.gov (indexed) [DOE]

    Summarizes how the City of San Diego leveraged 13.1 million in qualified energy conservation bonds to increase the size of a street lighting upgrade project. Author: Lawrence...

  14. Quasi light fields: Extending the light field to coherent radiation

    E-Print Network [OSTI]

    Accardi, Anthony J.

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

  15. 46th Street Pilot Street Lighting Project

    E-Print Network [OSTI]

    Minnesota, University of

    Street to 48th Street) as standard high-pressure sodium (HPS) lighting comparison corridor #12;The over time #12;Initial Lighting Comparison #12;Lighting Project Location #12;Street Light Layout 3046th Street Pilot Street Lighting Project A Joint Venture: Hennepin County & City of Minneapolis

  16. Projection screen having reduced ambient light scattering

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    2010-05-11T23:59:59.000Z

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  17. Identifying Lights with their Switches Jayadev Misra

    E-Print Network [OSTI]

    Misra, Jayadev

    Identifying Lights with their Switches Jayadev Misra 09/07/2012 Problem Description Given are N switches and N lights where each switch controls exactly one light and each light is controlled by exactly of selecting some number of switches and turning them on, and, presumably, noting the lights that come

  18. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  19. Saturable absorption and 'slow light'

    E-Print Network [OSTI]

    Adrian C Selden

    2006-03-25T23:59:59.000Z

    Quantitative evaluation of some recent 'slow light' experiments based on coherent population oscillations (CPO) shows that they can be more simply interpreted as saturable absorption phenomena. Therefore they do not provide an unambiguous demonstration of 'slow light'. Indeed a limiting condition on the spectral bandwidth is not generally satisfied, such that the requirements for burning a narrow spectral hole in the homogeneously broadened absorption line are not met. Some definitive tests of 'slow light' phenomena are suggested, derived from analysis of phase shift and pulse delay for a saturable absorber

  20. Design of the ILC RTML extraction lines

    SciTech Connect (OSTI)

    Seletskiy, S.; Tenenbaum, P.; Walz, D.; /SLAC; Solyak, N.; /Fermilab

    2008-06-01T23:59:59.000Z

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distance required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window.

  1. Membrane Extraction for Detoxification of Biomass Hydrolysates

    SciTech Connect (OSTI)

    Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

    2012-05-01T23:59:59.000Z

    Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

  2. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20T23:59:59.000Z

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  3. Upgrading of solvent extracted athabasca bitumen by membrane ultrafiltration

    SciTech Connect (OSTI)

    Sparks, B.D.; Hazlett, J.D.; Kutowy, O.; Tweddle, T.A. (National Research Council of Canada, Montreal Road Campus, Ottawa, Ontario K1A 0R9 (CA))

    1990-08-01T23:59:59.000Z

    This paper reports on solvent extraction processes that have been tested extensively for the separation of bitumen from surface-mineable, oil-bearing deposits. The end result of these processes is a solution of bitumen in a hydrocarbon solvent, usually a light naphtha. The bitumen solution contains only minimal amounts of solids and water; but, because of the constraints of the solid- liquid separation and washing steps, the bitumen concentration in the produced solutions can be quite low. Solvent must be separated from these solutions for recycle back to the extraction step of the process. This is usually accomplished by conventional techniques such as distillation, multiple-effect evaporation, or steam stripping. Sometimes a combination of these techniques is required. As a result of the low bitumen content of the solutions, the energy and capital costs associated with solvent recycle can be substantial. The use of membranes for nonaqueous liquid separations is a recent application of this developing technology. Several patents can be found describing processes for the recovery of solvent used in lube oil dewaxing or the regeneration of used automotive oils. A Japanese company has reported the development of several solvent-stable ultrafiltration membranes for the removal of solids from a number of solvents. The use of spiral-wound polysulfone membranes for the recovery of pentane solvent used in heavy oil deasphalting has been described by an American firm.

  4. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    SciTech Connect (OSTI)

    Liu, Jian [School of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan (China) [School of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan (China); Beijing Computational Science Research Center, Beijing 100084 (China); College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411105, Hunan (China); Li, Xi-Bo; Wang, Da; Liu, Li-Min, E-mail: ppeng@hnu.edu.cn, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China)] [Beijing Computational Science Research Center, Beijing 100084 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing 100084 (China) [Beijing Computational Science Research Center, Beijing 100084 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China); Peng, Ping, E-mail: ppeng@hnu.edu.cn, E-mail: limin.liu@csrc.ac.cn [School of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan (China)] [School of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2014-02-07T23:59:59.000Z

    The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.

  5. Modified Extraction Scheme for the CERN PS Multi-Turn Extraction

    E-Print Network [OSTI]

    Gilardoni, S; Hernalsteens, C; Lachaize, A; Métral, G

    2012-01-01T23:59:59.000Z

    High-activation of the extraction magnetic septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. A possible mitigation measure consists of using an existing electrostatic septum, located upstream of the extraction magnetic septum, to deflect the beam. This would highly decrease the beam losses, and hence the induced activation, during the rise time of the MTE kickers due to the reduced thickness of the electrostatic septum with respect to the magnetic one. The layout of this new extraction will be described in detail and the results of beam measurements presented.

  6. Electrical Engineering and Computer Cross-Layer Design

    E-Print Network [OSTI]

    Electrical Engineering and Computer Science Cross-Layer Design and Analysis of Wireless Networks Layer Design #12;Electrical Engineering and Computer Science Layered Approach Presentation Layer Session;Electrical Engineering and Computer Science Why not cross-layer design? · Difficulty. · Lack of insight

  7. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  8. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  9. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    ; James Bryan, Arden Realty; Peter Ngai, Peerless; David Malman, Architectural Lighting Design; Ron Lewis) ; Terry McGowan, ALA; Adriana Valencia (CPUC alternate). Program Advisory Committee: Ron Lewis; Holly Larsen, Larsen Communications. Please cite this repor

  10. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Design Group; Bill Daiber, WFD Associates. Program Advisory Committee: Ron Lewis, Department of Energy Buchan, Sacramento Municipal Utility District. Editorial assistance: Holly Larsen, Larsen Communications Lighting Technology Center; Holly Larsen, Larsen Communications. Please cite

  11. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    the contribution of the below individuals: Program Advisory Committee: Ron Lewis, Department of Energy; Jerry Mills Lighting Technology Center; Holly Larsen, Larsen Communications. Please cite this report as follows

  12. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite...

  13. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16T23:59:59.000Z

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  14. Method for forming a barrier layer

    DOE Patents [OSTI]

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01T23:59:59.000Z

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  15. Energy transport using natural convection boundary layers

    SciTech Connect (OSTI)

    Anderson, R.

    1986-04-01T23:59:59.000Z

    Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

  16. Design of the ILC RTML Extraction Lines

    SciTech Connect (OSTI)

    Seletskiy, S.; Tenenbaum, P.; Walz, D.; /SLAC; Solyak, N.; /Fermilab

    2011-10-17T23:59:59.000Z

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distance required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.

  17. Novel phosphors for solid state lighting

    E-Print Network [OSTI]

    Furman, Joshua D

    2010-11-16T23:59:59.000Z

    Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore...

  18. Toward ZnO Light Emitting Diode

    E-Print Network [OSTI]

    Liu, Jianlin

    2008-01-01T23:59:59.000Z

    applications such as light emitting diodes (LEDs) and laser009 "Toward ZnO Light Emitting Diode" Jianlin Liu July 2008Title: “Toward ZnO Light Emitting Diode” Sponsor: UC Energy

  19. CAMPUS INFRASTRUCTURE & SERVICES CIS-Standard-Lighting

    E-Print Network [OSTI]

    Viglas, Anastasios

    ...........................................................................................................5 5.6 Light fittings and lux performance requirements for various University space types.....5 5...........................................................................12 5.8 EXTERIOR LIGHTING.......................................................................................................12 5.8.2 Exterior Light Poles, Fixings and Wiring

  20. EECBG Success Story: Lighting Retrofit Improving Visibility,...

    Broader source: Energy.gov (indexed) [DOE]

    New LED lighting fixtures (right) emit a whiter light than existing high-pressure sodium cobra head streetlights (left) and don't spill light onto nearby houses. | Photos courtesy...