National Library of Energy BETA

Sample records for light distribution systems

  1. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  2. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  3. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect (OSTI)

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  4. Portable lamp with dynamically controlled lighting distribution

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  5. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM)

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  6. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy ... A. Building Systems Windows, Facades, and Daylighting Lighting Controls ...

  7. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M.; Jewett, Don L.

    1991-01-01

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  8. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  9. CONNECTED LIGHTING SYSTEMS MEETING

    Broader source: Energy.gov [DOE]

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  10. Connected Lighting Systems Meeting

    Broader source: Energy.gov [DOE]

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  11. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-08-25

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  12. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-02-24

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  13. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  14. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOE Patents [OSTI]

    Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

  15. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. CONNECTED LIGHTING SYSTEMS RESOURCES | Department of Energy

    Energy Savers [EERE]

    CONNECTED LIGHTING SYSTEMS RESOURCES CONNECTED LIGHTING SYSTEMS RESOURCES The following resources provide information about outdoor lighting control systems. PDF icon 2014 Presentation: What to Look for Today in Control Systems PDF icon 2015 Presentation: Outdoor Lighting Control System Fundamentals PDF icon 2015 Presentation: Lessons Learned from Networked Outdoor Lighting Control System Pilot Projects PDF icon Emerging Technology Primer: Networked Outdoor Lighting Control Systems

  17. Distributed optimization system and method

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  18. Future Lighting Systems: The Path to Optimized Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest National Laboratory Future Lighting Systems: The Path to Optimized Energy Performance Lightfair May 5-7, 2015 2 SSL technology is re-defining the role of lighting devices * SSL is the most energy efficient, flexible, controllable lighting technology in history - Spectral power distribution, light output (e.g. luminous flux, intensity, distribution), color characteristics (e.g. CCT, CRI, Duv) - System architecture, partitioning, and power conversion * SSL is blurring the

  19. Advanced Lighting Systems | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Zip: 56378 Product: Advanced Lighting Systems (ALS) provides a number of LED and fiber optic lighting solutions. It was acquired by Nexxus Lighting in September...

  20. PHOTOVOLTAIC LIGHTING SYSTEM PERFORMANCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-Tied PV System Energy Smoothing Thomas D. Hund, Sigifredo Gonzalez, and Keith Barrett *Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico, USA ABSTRACT Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time

  1. CONNECTED LIGHTING SYSTEMS RESOURCES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONNECTED LIGHTING SYSTEMS RESOURCES CONNECTED LIGHTING SYSTEMS RESOURCES The following resources provide information about outdoor lighting control systems. PDF icon 2014 Presentation: What to Look for Today in Control Systems PDF icon 2015 Presentation: Outdoor Lighting Control System Fundamentals PDF icon 2015 Presentation: Lessons Learned from Networked Outdoor Lighting Control System Pilot Projects PDF icon Emerging Technology Primer: Networked Outdoor Lighting Control Systems Solid-State

  2. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov (indexed) [DOE]

    America Program www.buildingamerica.gov Buildings Technologies Program Date: November 8, 2011 Ductless Hydronic Distribution Systems Welcome to the Webinar! We will start at 1:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 800-779-8694; Pass code: 2506667 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote

  3. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOE Patents [OSTI]

    Zorn, C.J.; Kross, B.J.; Majewski, S.; Wojcik, R.F.

    1998-08-25

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools. 5 figs.

  4. Philadelphia International Airport Apron Lighting: LED System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Philadelphia International Airport Apron Lighting: LED System Performance in a ...

  5. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  6. Restoring Detroit's Street Lighting System

    SciTech Connect (OSTI)

    Kinzey, Bruce R.

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  7. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  8. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  9. Solar concentrator with integrated tracking and light delivery system with collimation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  10. Innovative Office Lighting System with Integrated Spectrally...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an innovative LED office lighting system solution that integrates light delivery, optics, and controls for energy efficiency and occupant health and well-being. The office...

  11. CONNECTED LIGHTING SYSTEMS WORKSHOP | Department of Energy

    Energy Savers [EERE]

    CONNECTED LIGHTING SYSTEMS WORKSHOP CONNECTED LIGHTING SYSTEMS WORKSHOP Industry thought leaders. Industry thought leaders. Join DOE and industry thought leaders at the 2016 Connected Lighting Systems Workshop, June 8-9 in Santa Clara, CA. Complex issues. Complex issues. Join DOE and industry thought leaders at the 2016 Connected Lighting Systems Workshop, June 8-9 in Santa Clara, CA. Dynamic discussions. Dynamic discussions. Join DOE and industry thought leaders at the 2016 Connected Lighting

  12. Solar concentrator with integrated tracking and light delivery system with summation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  13. CONNECTED LIGHTING SYSTEMS WORKSHOP | Department of Energy

    Energy Savers [EERE]

    SYSTEMS WORKSHOP CONNECTED LIGHTING SYSTEMS WORKSHOP Complex issues. Complex issues. Join DOE and industry thought leaders at the 2016 Connected Lighting Systems Workshop, June 8-9 in Santa Clara, CA. Industry thought leaders. Industry thought leaders. Join DOE and industry thought leaders at the 2016 Connected Lighting Systems Workshop, June 8-9 in Santa Clara, CA. Dynamic discussions. Dynamic discussions. Join DOE and industry thought leaders at the 2016 Connected Lighting Systems Workshop,

  14. Energy-efficient lighting system for television

    DOE Patents [OSTI]

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  15. CONNECTED LIGHTING SYSTEMS | Department of Energy

    Energy Savers [EERE]

    SYSTEMS CONNECTED LIGHTING SYSTEMS SSL technology is evolving from sources focused on a one-dimensional commodity (i.e. producing light) into multi-function devices that also produce and exchange data. SSL's microelectronic nature makes it possible to integrate one or more sensors and network interfaces and leverage increasing levels of integral intelligence to drastically improve the energy performance of lighting and other building systems. Such connected lighting systems have the potential to

  16. DOE Announces Webinars on the Distributed Wind Power Market, Lighting

    Office of Environmental Management (EM)

    Retrofits Financial Analysis Tool, and More | Department of Energy Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced

  17. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  18. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of iStockphotoJot Radiators are used in...

  19. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  20. Enhanced distributed energy resource system

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  1. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    SciTech Connect (OSTI)

    Lee, E. S.; Fernandes, L. L.; Coffey, B.; McNeil, A.; Clear, R.; Webster, T.; Bauman, F.; Dickerhoff, D.; Heinzerling, D.; Hoyt, T.

    2013-01-01

    With aggressive goals to reduce national energy use and carbon emissions, the U.S. Department of Energy (DOE) will be looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals now needed at a national level. The New York Times Building, in New York, New York, incorporates a number of innovative technologies, systems and processes and could become model for widespread replication in new and existing buildings. A year-long monitored study was conducted to verify energy performance, assess occupant comfort and satisfaction with the indoor environment, and evaluate impact on maintenance and operations. Lessons learned were derived from the analysis; these lessons could help identify and shape policy, financial, or supporting strategies to accelerate diffusion in the commercial building market.

  2. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  3. Distributed Energy Systems Corp | Open Energy Information

    Open Energy Info (EERE)

    Distributed Energy Systems Corp Jump to: navigation, search Name: Distributed Energy Systems Corp Place: Wallingford, Connecticut Zip: CT 06492 Product: The former holding company...

  4. Why Lighting Systems will become more connected?

    Energy Savers [EERE]

    November 16, 2015 Why Lighting Systems will become more connected? Agenda What is the Internet of Things? Why would I want to do that? How would I do that? Challenges? 1 2 3 4 IoT...

  5. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  6. Reflector system for a lighting fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  7. Reflector system for a lighting fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  8. Reflector system for a lighting fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  9. Fukushima Light Water Detritiation System Presentation

    Office of Environmental Management (EM)

    Doc No: 8000-0685 1 Light Isotope Technology Centre of Excellence Fukushima Light Water Detritiation System Water Distillation Option A. Busigin, Ph.D., P.Eng. and P. Mason, P.Eng. Presented at the 34 th Tritium Focus Group Meeting on September 23-25, 2014, Idaho National Laboratory, Idaho Falls, Idaho Proprietary Information. All Rights Reserved. Not to be used or reproduced without prior written consent from GE Hitachi Nuclear Energy Canada Inc. Doc No: 8000-0685 2 Light Isotope Technology

  10. NREL: Electric Infrastructure Systems Research - Distributed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems...

  11. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPL is installing a distribution management system (DMS), distribution automation (DA) ... allows PPL to move forward with future automation projects. "Lack of an advanced DMS was ...

  12. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect (OSTI)

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  13. Universal light-switchable gene promoter system

    DOE Patents [OSTI]

    Quail, Peter H.; Huq, Enamul; Tepperman, James; Sato, Sae

    2005-02-22

    An artificial promoter system that can be fused upstream of any desired gene enabling reversible induction or repression of the expression of the gene at will in any suitable host cell or organisms by light is described. The design of the system is such that a molecule of the plant photoreceptor phytochrome is targeted to the specific DNA binding site in the promoter by a protein domain that is fused to the phytochrome and that specifically recognizes this binding site. This bound phytochrome, upon activation by light, recruits a second fusion protein consisting of a protein that binds to phytochrome only upon light activation and a transcriptional activation domain that activates expression of the gene downstream of the promoter.

  14. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  15. Heat Distribution Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That...

  16. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cool » Home Heating Systems » Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems.

  17. Ductless Hydronic Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Systems Ductless Hydronic Distribution Systems This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems. PDF icon arbi_hydronic_webinar.pdf More Documents & Publications Ductless Hydronic Distribution Issue #2: What Emerging Innovations are the Key to Future Homes? Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for

  18. 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS AND MATERIALS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS AND MATERIALS 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS AND MATERIALS Download presentations from the inaugural DOE Connected Lighting Systems Meeting, held November 16 in Portland, OR. Please note: not all of the workshop speakers presented slides. AGENDA Meeting Introduction James Brodrick, U.S. Department of Energy Keynote: Why Lighting Systems Will Become More Connected Tom Herbst, Cisco Systems Why Lighting

  19. Low jitter RF distribution system

    DOE Patents [OSTI]

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  20. Building America Webinar: Ductless Hydronic Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution systems in new homes and deep retrofits. File webinar_arbi_20111108.wmv More Documents & Publications Building America Webinar: National Residential Efficiency Measures Database Unveiled

  1. Building America Webinar: Ductless Hydronic Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution systems in new homes and deep retrofits. File webinar_arbi_20111108.wmv More Documents & Publications Building America Webinar: National Residential Efficiency Measures Database

  2. 2015 Connected Lighting Systems Meeting Presentations Posted | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Connected Lighting Systems Meeting Presentations Posted 2015 Connected Lighting Systems Meeting Presentations Posted December 2, 2015 - 4:44pm Addthis On November 16, more than 260 experts from the lighting, semiconductor, and IT industries gathered in Portland at DOE's inaugural Connected Lighting Systems Meeting. The purpose of the meeting was to share perspectives and lay the groundwork for government/industry collaboration on the convergence of intelligent controllable light

  3. NREL: Electric Infrastructure Systems Research - Distributed Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Test Facility Virtual Tour Electricity Integration Research Printable Version Distributed Energy Resources Test Facility Virtual Tour The Distributed Energy Resources Test Facility (DERTF), located at the National Renewable Energy Laboratory in Golden, Colorado, was designed to assist the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize the performance and

  4. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  5. Differences Between Distributed and Parallel Systems

    SciTech Connect (OSTI)

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.

  6. 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS PDF icon Meeting Introduction: James Brodrick, U.S. Department of Energy PDF icon Keynote: Tom Herbst, Cisco PDF icon Why Lighting Systems Need to Evolve: Gabe Arnold, DesignLights Consortium PDF icon DOE Focus Areas and Panel Introduction: Michael Poplawski, Pacific Northwest National Laboratory PDF icon Energy Reporting: Michael Poplawski, Pacific Northwest National Laboratory PDF icon Energy

  7. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  8. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nations critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nations economic security. Our Nations economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  9. Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  10. Backscatter absorption gas imaging systems and light sources therefore

    DOE Patents [OSTI]

    Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  11. Connected Outdoor Lighting Systems For Municipalities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Connected Outdoor Lighting Systems For Municipalities Connected Outdoor Lighting Systems For Municipalities This webinar is intended for municipal staff who have had some introduction to connected outdoor lighting systems, and want to further explore whether today's commercially available offerings suit their needs. Presented by Michael Poplawski of Pacific Northwest National Laboratory, the webinar covers basic capabilities, key differentiators between systems, and common adoption

  12. The Inaugural Connected Lighting Systems Meeting

    Broader source: Energy.gov [DOE]

    More than 260 lighting technologists, their counterparts from the semiconductor and IT industries, folks from utilities, and others gathered in Portland, OR, November 16, 2015, to participate in...

  13. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  14. Advanced Technology Light Duty Diesel Aftertreatment System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Light Duty Diesel Aftertreatment System Advanced Technology Light Duty Diesel Aftertreatment System Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions PDF icon deer12_henry.pdf More Documents & Publications Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next

  15. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect (OSTI)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  16. Making It Happen: Connected Lighting Systems That Are Changing...

    Energy Savers [EERE]

    Kaynam Hedayat, VP of Product Management & Marketing Making It Happen: Connected Lighting Systems That Are Changing the Game Agenda * Project overview - ACE Hardware * Project...

  17. SunLight Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: SunLight Energy Systems Address: 955 Manchester Ave., SW Place: North Lawrence, Ohio Zip: 44666-9438 Sector: Solar Product: Retailer - Siemens...

  18. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  19. Lighting system with thermal management system having point contact synthetic jets

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  20. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  1. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  2. System Reliability Model for Solid-State Lighting Luminaires | Department

    Energy Savers [EERE]

    of Energy System Reliability Model for Solid-State Lighting Luminaires System Reliability Model for Solid-State Lighting Luminaires Lead Performer: RTI International - Research Triangle Park, NC Partners: Auburn University - Auburn, AL DOE Total Funding: $2,848,942 Cost Share: $712,234 Project Term: 9/16/2011 - 9/30/2016 Funding Opportunity: Solid State Lighting Core Technology Funding Opportunity Announcement (DE-FOA- 0000329) Project Objective The primary objectives of the proposed work

  3. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  4. Philadelphia International Airport Apron Lighting: LED System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Trial Installation | Department of Energy Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation PDF icon 2015_gateway_philadelphia-airport.pdf PDF icon gateway_philadelphia-airport_brief.pdf More Documents & Publications LED Performance Under Tough Conditions December 2015 Postings 2015 ARTICLES

  5. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL

  6. Harmonic analysis of electrical distribution systems

    SciTech Connect (OSTI)

    1996-03-01

    This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.

  7. System for diffusing light from an optical fiber or light guide

    DOE Patents [OSTI]

    Maitland, Duncan J. (Pleasant Hill, CA) [Pleasant Hill, CA; Wilson, Thomas S. (San Leandro, CA) [San Leandro, CA; Benett, William J. (Livermore, CA) [Livermore, CA; Small, IV, Ward [(Livermore, CA)

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  8. An advanced power distribution automation model system

    SciTech Connect (OSTI)

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  9. Measuring the Resilience of Energy Distribution Systems

    Broader source: Energy.gov [DOE]

    This report provides a review of existing resilience metrics for electric, oil, and natural gas distribution systems. The report summarizes the concepts addressed by measures of resilience, describes a framework for organizing alternative metrics used to measure resilience of energy distribution systems, and reviews the state of metrics for resilience of such systems. The framework organized resilience metrics into five categories – system inputs, capacities, capabilities, performance and outcomes – and existing metrics were evaluated within the context of this framework. The report finds more metrics for the electricity system than for oil and gas and that the literature pays greater attention to metrics at the facility level. Also, there were many performance measures identified at the system and regional level and these metrics were determined to be relatively well developed. In comparison, outcome measures were identified at the system, regional and national levels, but they were judged to be relatively less well developed. To improve resilience metrics, the report recommends standardizing data on inputs and capacities at the facility and system levels; developing measures of capabilities at the system and regional levels; and improving understanding of how capabilities and performance translate to regional and national outcomes.

  10. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  11. Pressure Regain Strategies for Existing Air Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Regain Strategies for Existing Air Distribution Systems Pressure Regain Strategies for Existing Air Distribution Systems This presentation was delivered at the U.S. ...

  12. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  13. Distributed parallel messaging for multiprocessor systems

    DOE Patents [OSTI]

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  14. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  15. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

  16. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  17. Reduction of background clutter in structured lighting systems

    DOE Patents [OSTI]

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  18. Innovative Office Lighting System with Integrated Spectrally Adaptive

    Energy Savers [EERE]

    Control | Department of Energy Office Lighting System with Integrated Spectrally Adaptive Control Innovative Office Lighting System with Integrated Spectrally Adaptive Control Lead Performer: Philips Research North America, LLC - Briarcliff Manor, NY DOE Total Funding: $499,131 Cost Share: $166,377 Project Term: 10/1/15 - 3/31/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will develop an innovative LED office

  19. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  20. Property:Distributed Generation System Enclosure | Open Energy...

    Open Energy Info (EERE)

    + Outdoor + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Dedicated Shelter + Distributed Generation StudySUNY Buffalo + Outdoor +...

  1. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  2. Distributed fiber optic moisture intrusion sensing system

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  3. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect (OSTI)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun, E-mail: tongjun@pku.edu.cn; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on kp approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  4. Clock distribution system for digital computers

    DOE Patents [OSTI]

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  5. Solar Self Help Inc aka Light Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Self Help Inc aka Light Energy Systems Jump to: navigation, search Name: Solar Self Help Inc. (aka Light Energy Systems) Place: Concord, California Sector: Solar Product:...

  6. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric ...

  7. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  8. Best Management Practice #3: Distribution System Audits, Leak Detection,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Repair | Department of Energy 3: Distribution System Audits, Leak Detection, and Repair Best Management Practice #3: Distribution System Audits, Leak Detection, and Repair A distribution system audit, or leak detection and repair program, may help federal facilities identify and reduce water losses and be better stewards of water as a resource. Overview Federal facilities in large campuses with expansive distribution systems can lose a significant amount of total water production and

  9. Alarm Management System for the D/3 Distributed Control System

    Energy Science and Technology Software Center (OSTI)

    1997-03-19

    As industrial processes continue to grow in size and complexity, the Distrubuted Control Systems that automate and monitor these processes expand in a like manner. This increase in control system complexity has resulted in ever increasing numbers of alarms presented to the operator. The challenge for today's control system designer is to find innovative ways to present alarm information to the operator such that despite the large number of alarms, the operator is able tomore » quickly assess the status of the plant and immediately respond to the most critical alarms in a timely manner. This software package, designed and developed for the Savannah River Site Replacement High Level Waste Evaporator/Waste Removal Distributed Control System installed on the H-Area Tank Farm, provides an alarm system which utilizes the annunciator (SKID) panel as a means of statusing the plant and providing single keystroke access to the display on which an alarm resides.« less

  10. Secondary Network Distribution Systems Background and Issues Related to the Interconnection of Distributed Resources

    SciTech Connect (OSTI)

    Behnke, M.; Erdman, W.; Horgan, S.; Dawson, D.; Feero, W.; Soudi, F.; Smith, D.; Whitaker, C.; Kroposki, B.

    2005-07-01

    This document addresses the technical considerations associated with the interconnection of distributed resources (DR) with secondary network distribution systems. It provides an overview of the characteristics of distribution systems and interconnection requirements and identifies unique issues specific to network interconnections. It also identifies the network-specific interconnection issues for which test protocols should be developed. Recommended criteria and requirements for the interconnection of DR with network distribution systems are presented.

  11. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  12. Distributed Generation Systems Inc DISGEN | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc DISGEN Jump to: navigation, search Name: Distributed Generation Systems Inc (DISGEN) Place: Lakewood, Colorado Zip: 80228 Sector: Wind energy Product: Developer of...

  13. Control and regulation of modern distribution system, ForskEL...

    Open Energy Info (EERE)

    system, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Control and regulation of modern distribution system, ForskEL Country Denmark Coordinates...

  14. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  15. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect (OSTI)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional one-size-fits-all (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected have-it-your-way (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupants thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions thermal resistance and the variability of internal loads at each office. These influences didnt make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the office wall requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the resulting temperature stratification. These simulations showed that the advective flow between cubicles is very significant and severely limits the occupants ability to control the personal micro-environments by simply controlling the temperature of the incoming air. Subsequently, the existing thermal-circuit model was extended to include the phenomena described above. The modifications to the thermal-circuit model, which were incorporated such that the simulation time was only slightly impacted, showed that accounting for room stratification resulting from the use of floor swirl diffusers could lead to 10%-26% reduction in the annual energy consumed for HVAC in non-temperate climates. This trend was evident in both OSFA and HIYW scenarios. However, the ratio of energy usage in the two scenarios was little affected by the enhancements in the thermal model.

  16. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution ...

  17. U.S. Department of Energy and International Association of Lighting Designers Partner to Improve Energy Efficiency in Lighting Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the International Association of Lighting Designers (IALD) signed a Memorandum of Understanding (MOU) in November 2008 to work cooperatively toward improving the efficient use of energy by lighting equipment and systems. The MOU emphasizes the importance of minimizing the impact of energy use on the environment in support of DOE SSL programs on lighting quality.

  18. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    SciTech Connect (OSTI)

    Niederman, Robert A.; Blankenship, Robert E.; Frank, Harry A.

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees represented a diverse international and multidisciplinary group, with over 160 individuals attending from a total of 17 different countries. Attendees came from a wide range of fields assuring that the widest possible interdisciplinary exchanges. They included prominent biochemists, biophysicists, plant physiologists, chemical physicists, as well as theoretical and computational physical chemists, who presented their research findings or to hear the latest advances in this very dynamic field. In the choice of speakers, a balance was created between established scientists and young, emerging researchers, given this opportunity to showcase their results. Sessions were held on electronic and vibrational coherence including coherent sharing of excitations among donor and acceptor molecules during excitation energy transfer, nonphotochemical quenching, acclimation to light environments, evolution, adaptation and biodiversity of light-harvesting pigment-protein complexes, their structure and membrane organization, spectroscopy and dynamics, as well as artificial antenna systems. A joint session was also held with the participants from the Cyanobacterial Satellite Conference. A special issue of Photosynthesis Research devoted to light harvesting (Volume 121, Issue No. 1, July 2014) has recently appeared which contains peer-reviewed original research contributions arising from talks and posters presented at the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems. Edited by the Organizers of the Workshop, Robert E. Blankenship, Harry A. Frank and Robert A. Niederman, it includes topics ranging from the isolation of new bacteriochlorophyll species from green bacteria, temperature effects on the excited states of the newly discovered chlorophyll (Chl) ƒ, new architectures for enhancing energy capture by biohybrid light-harvesting complexes, forces governing the formation of light-harvesting rings, spectroscopy of carotenoids of algae and diatoms and the supramolecular organization of caroteno-Chl proteins in diatoms, the molecular basis for urea dissociation of phycocyanin trimers and the role of vibronic molecular excitation theory in describing the spectral dynamics of pigment-protein complexes.

  19. Aerogel-Based Insulation for Industrial Steam Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aerogel-Based Insulation for Industrial Steam Distribution Systems Aerogel-Based Insulation for Industrial Steam Distribution Systems New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability Thermal loss through steam distribution systems is a significant source of wasted energy in the U.S. industrial sector. Traditional pipe insulation employs mineral wool, fiberglass, calcium silicate, perlite, and various foams. Annular

  20. Elimination of direct current distribution systems from new generating stations

    SciTech Connect (OSTI)

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  1. Voices of Experience | Advanced Distribution Management Systems_brochure.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights into Advanced Distribution Management Systems VOICES of Experience February, 2015 Prepared for the U.S. Department of Energy by the National Renewable Energy Laboratory under contract No. DE-AC36-08G028308, Subtask SG10.1011 in conjunction with Energetics Incorporated under contract No. GS-10F-0103J, Subtask J3806.0002. INSIGHTS INTO ADVANCED DISTRIBUTION MANAGEMENT SYSTEMS | DOE 3 Voices of Experience | Advanced Distribution Management Systems When people think of the electric power

  2. Eliminate Excessive In-Plant Distribution System Voltage Drops | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Eliminate Excessive In-Plant Distribution System Voltage Drops Eliminate Excessive In-Plant Distribution System Voltage Drops Studies indicate that in-plant electrical distribution system losses-due to voltage unbalance, over- and undervoltage, low power factor, undersized conductors, leakage to ground, and poor connections-can account for less than 1% to more than 4% of total plant electrical energy consumption. This two-page tip sheet recommends conducting a voltage drop survey

  3. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect (OSTI)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  4. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  5. Integration of HVAC System Design with Simplified Duct Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This photo shows framed walls and HVAC distribution systems. This Top Innovation profile ... Find more case studies of Building America projects across the country that integrate HVAC ...

  6. Best Management Practice #3: Distribution System Audits, Leak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaks in distribution systems are caused by a number of factors, including pipe corrosion, ... Different pipe materials transmit different frequencies at differing lengths, creating ...

  7. Distribution System planning for Smart Grids, ForskEL (Smart...

    Open Energy Info (EERE)

    Name Distribution System planning for Smart Grids, ForskEL Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  8. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Home Energy Management Systems on Distribution Utilities and Feeders under Various Market Structures Preprint Mark Ruth, Annabelle Pratt, Monte Lunacek, Saurabh Mittal,...

  9. Eliminate Excessive In-Plant Distribution System Voltage Drops

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in-plant electrical distribution system losses-due to voltage unbalance, over- and undervoltage, low power factor, ... unsched- uled equipment outages and improved safety due to ...

  10. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  11. Simulating cyanobacterial phenotypes by integrating flux balance analysis, kinetics, and a light distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Lian; Wu, Stephen G.; Wan, Ni; Reding, Adrienne C.; Tang, Yinjie J.

    2015-12-24

    In this study, genome-scale models (GSMs) are widely used to predict cyanobacterial phenotypes in photobioreactors (PBRs). However, stoichiometric GSMs mainly focus on fluxome that result in maximal yields. Cyanobacterial metabolism is controlled by both intracellular enzymes and photobioreactor conditions. To connect both intracellular and extracellular information and achieve a better understanding of PBRs productivities, this study integrates a genome-scale metabolic model of Synechocystis 6803 with growth kinetics, cell movements, and a light distribution function. The hybrid platform not only maps flux dynamics in cells of sub-populations but also predicts overall production titer and rate in PBRs. Analysis of the integratedmore » GSM demonstrates several results. First, cyanobacteria are capable of reaching high biomass concentration (>20 g/L in 21 days) in PBRs without light and CO2 mass transfer limitations. Second, fluxome in a single cyanobacterium may show stochastic changes due to random cell movements in PBRs. Third, insufficient light due to cell self-shading can activate the oxidative pentose phosphate pathway in subpopulation cells. Fourth, the model indicates that the removal of glycogen synthesis pathway may not improve cyanobacterial bio-production in large-size PBRs, because glycogen can support cell growth in the dark zones. Based on experimental data, the integrated GSM estimates that Synechocystis 6803 in shake flask conditions has a photosynthesis efficiency of ~2.7 %. Conclusions: The multiple-scale integrated GSM, which examines both intracellular and extracellular domains, can be used to predict production yield/rate/titer in large-size PBRs. More importantly, genetic engineering strategies predicted by a traditional GSM may work well only in optimal growth conditions. In contrast, the integrated GSM may reveal mutant physiologies in diverse bioreactor conditions, leading to the design of robust strains with high chances of success in industrial settings.« less

  12. Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb Products

    Broader source: Energy.gov [DOE]

    The Department has issued Notices of Allowance to Westinghouse Lighting Corporation and Fuzhou Sunlight Lighting Electrical Appliance Company determining, based on corrected test data provided by...

  13. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  14. NREL: Energy Systems Integration Facility - Thermal Distribution Bus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Distribution Bus The Energy Systems Integration Facility's integrated thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature delivered to laboratories. The thermal distribution bus allows the research community to study and test heating, ventilation, and air conditioning systems as well as combined heat and power applications that require controlled input water temperature or

  15. Energy Efficient HVAC System for Distributed Cooling/Heating with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Devices | Department of Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace048_bozeman_2012_o.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating

  16. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  17. Impact assessment and performance targets for lighting and envelope systems

    SciTech Connect (OSTI)

    Sullivan, R.; Lee, E.S.; Selkowitz, S.

    1992-06-01

    Electric lighting loads and cooling from solar heat gains and from lights are the two largest components of peak demand in commercial buildings. The most cost effective demand side management solutions are generally those that directly reduce or eliminate these loads. Existing technologies can provide modest reductions, however they are typically applied an a piecemeal manner that yields less than optimal results. The full potential of existing technologies will be realized when they are commercially available in an integrated package easily specifiable by architects and engineers. Emerging technologies can also be developed to provide even greater savings and extend the savings over a greater portion of the building floor area. This report assesses achievable energy and peak demand performance in California commercial buildings with technologies available today and in the future. We characterize energy performance over a large range of building envelope and lighting conditions, both through computer simulation models and through case study measured data, and subsequently determine reasonable energy targets if building design were further optimized with integrated systems of current or new technologies. Energy targets are derived from the study after consideration of industry priorities, design constraints, market forces, energy code influence, and the state of current building stock.

  18. Optical laser systems at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  19. Voices of Experience | Advanced Distribution Management Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... c Gas & Electric (PG&E) We hope that ... MANAGEMENT SYSTEMS | DOE 6 Keys to Our Success * Across organization-vision ... an archive copy or journal when data is ...

  20. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  1. Distributed sensor coordination for advanced energy systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.

  2. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets ...

  3. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a ...

  4. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  5. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  6. TITLE III EVALUATION REPORT FOR THE SUBSURFACE LIGHTING SYSTEM

    SciTech Connect (OSTI)

    L.J. Fernandez

    1998-09-09

    The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Subsurface Lighting System. Recommendations for resolving discrepancies between the as-constructed system, and the technical baseline requirements are included in this report. Cost and Schedule estimates are provided for all recommended modifications. This report does not address items which do not meet current safety or code requirements. These items are identified to the CMO and immediate action is taken to correct the situation. The report does identify safety and code items for which the A/E is recommending improvements. The recommended improvements will exceed the minimum requirements of applicable code and safety guide lines. These recommendations are intended to improve and enhance the operation and maintenance of the facility.

  7. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from Proof of Concept to true deployment through the activity described in this Final Report. This Project Integrated Distribution Management Systems in Alabama advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  8. Distributed Generation System Characteristics and Costs in the Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector Full report (1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable

  9. NREL: Energy Systems Integration Facility - Fuel Distribution Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, laboratory-grade natural gas is provided through a utility connection. Diesel fuel is available in two laboratories. Each of these labs is equipped with a 50-gallon "day tank" for diesel fuel and supply lines throughout the lab space. Photo of a man standing next to a rooftop hydrogen distribution bus.

  10. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect (OSTI)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  11. Renewable and Distributed Systems Integration Peer Review

    Energy Savers [EERE]

    4 Denver Marriott West Golden, Colorado AGENDA Tuesday, November 2, 2010 8:00 am Registration and Continental Breakfast 9:00 am-9:10 am Welcome Dr. Robert Hawsey, Associate Laboratory Director for Renewable Electricity and End Use Systems, US DOE-National Renewable Energy Laboratory 9:10 am-9:25 am Overview of Smart Grid Program Eric Lightner, U.S. Department of Energy 9:25 am-9:40 am Overview of Smart Grid Research and Development Activities Dan Ton, U.S. Department of Energy Moderator -

  12. A distributed timing system for sychronizing control and data correlation

    SciTech Connect (OSTI)

    Stettler, M.; Thout, M.; Dalesio, L.R.; Cole, R.; Fite, C.; Slentz, G.; Warren, D.

    1992-09-01

    Synchronization is necessary in experimental physics machines to provide positive control over related events. The Ground Test Accelerator (GTA) timing system provides this function through a distributed control system, known as the Experimental Physics and Industrial Control System (EPICS). The EPICS timing system was designed to take advantage of a distributed architecture, and provides time stamping for synchronous data correlation as well as event control. The system has been successfully demonstrated on over a dozen controller nodes for operation and data analysis. The design of the hardware, software, and operational results are discussed.

  13. Data transmission system with distributed microprocessors

    DOE Patents [OSTI]

    Nambu, Shigeo (Fuchu, JP)

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  14. System-wide power management control via clock distribution network

    DOE Patents [OSTI]

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  15. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  16. Pressure Regain Strategies for Existing Air Distribution Systems |

    Energy Savers [EERE]

    Department of Energy Pressure Regain Strategies for Existing Air Distribution Systems Pressure Regain Strategies for Existing Air Distribution Systems This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq1_pressure_regain_burdick.pdf More Documents & Publications Critical Question #1: How Do We Retrofit the Tough Buildings? Building America Technology Solutions for New and Existing

  17. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than

  18. Energy distribution of nonequilibrium electrons and optical phonons in GaAs under band-to-band pumping by intense short pulses of light

    SciTech Connect (OSTI)

    Altybaev, G. S.; Kumekov, S. E. Mahmudov, A. A.

    2009-03-15

    Deviation from the Fermi distribution of nonequilibrium electrons and distribution of 'hot' optical phonons in GaAs under band-to-band pumping by picosecond pulses of light are calculated.

  19. Globular cluster systems and their host galaxies: comparison of spatial distributions and colors

    SciTech Connect (OSTI)

    Hargis, Jonathan R.; Rhode, Katherine L.

    2014-11-20

    We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant elliptical NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ?5 effective radii (?20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.

  20. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect (OSTI)

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  1. Laser Spark Distribution and Ignition System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Laser Spark Distribution and Ignition System A method of creating sparks in lean fuel/air mixtures without expensive,short-lifetime spark plugs National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Laser Spark Distribution and

  2. Lighting System Optimization: Leveraging the New Technology Paradigm

    Energy Savers [EERE]

    Commercial Advanced Lighting Controls Project 14 Advanced Control Demonstration Projects Utility EE Program Specs and Qualified Products List Training Programs for Designers and...

  3. System Reliability Model for Solid-State Lighting Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact The primary objectives of the proposed work will be to develop and validate ... for predicting the lifetime of integrated solid-state lighting (SSL) luminaires. ...

  4. Integrating wind turbines into the Orcas Island distribution system

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  5. and Control of Power Systems Using Distributed Synchrophasors

    Broader source: Energy.gov (indexed) [DOE]

    a Multi-User Network Testbed for Wide-Area Monitoring and Control of Power Systems Using Distributed Synchrophasors Principal Investigator: Aranya Chakrabortty FREEDM System Center, North Carolina State University Co-Principal Investigators: Mesut Baran and Pam Carpenter, FREEDM Systems Center, North Carolina State University Collaborators: Duke Energy (utility), Southern California Edison (utility), ABB Inc. (vendor), Renaissance Computing Institute at UNC Chapel Hill (network provider) Contact

  6. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger-mile. There are only four light rail systems with energy intensity over 10,000 Btu per passenger-mile. These systems may have improved

  7. Light scattering investigation of phase separation in a micelle system

    SciTech Connect (OSTI)

    Wilcoxon, J.P.; Martin, J.E.; Odinek, J.

    1993-12-31

    We report a real-time, two-dimensional light scattering study of the evolution of structure in a two component nonionic micelle system during phase separation via spinodal decomposition. Our principal finding is that domain growth proceeds much slower than the cube root of time prediction for simple binary fluids. In fact, the growth kinetics can be empirically described as a stretched exponential approach to a pinned domain size. Although the kinetics are not yet understood, this anomalous behavior may be due to the ability of the spherical micelles to reorganize into more complex structures. The domain structure also shows some anomalies. Although at short times the expected structure factor for a critical quench is observed, at long times the structure factor crosses over to the off-critical form. However, in all cases the average scattered intensity is proportional to the cube of the domain size. These findings are discussed in comparison to standard theories of and experimental work on binary fluids.

  8. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system PDF icon deer09_briggs.pdf More Documents & Publications Performance of an Organic

  9. SunPower Corporation Systems formerly PowerLight | Open Energy...

    Open Energy Info (EERE)

    navigation, search Name: SunPower Corporation, Systems (formerly PowerLight) Place: Berkeley, California Zip: 94702 Sector: Efficiency, Services, Solar Product: US-based...

  10. Distributed Frequency Control of Prosumer-Based Electric Energy Systems

    SciTech Connect (OSTI)

    Nazari, MH; Costello, Z; Feizollahi, MJ; Grijalva, S; Egerstedt, M

    2014-11-01

    In this paper, we propose a distributed frequency regulation framework for prosumer-based electric energy systems, where a prosumer (producer-consumer) is defined as an intelligent agentwhich can produce, consume, and/or store electricity. Despite the frequency regulators being distributed, stability can be ensured while avoiding inter-area oscillations using a limited control effort. To achieve this, a fully distributed one-step model-predictive control protocol is proposed and analyzed, whereby each prosumer communicates solely with its neighbors in the network. The efficacy of the proposed frequency regulation framework is shown through simulations on two real-world electric energy systems of different scale and complexity. We show that prosumers can indeed bring frequency and power deviations to their desired values after small perturbations.

  11. Connected Outdoor Lighting Systems for Municipalities- Text-Alt Version

    Broader source: Energy.gov [DOE]

    Welcome, everyone. This is Bruce Kinzey with the Pacific Northwest National Laboratory and director of the U.S. Department of Energy's Municipal Solid-State Street Lighting Consortium. Welcome to...

  12. Eliminate Excessive In-Plant Distribution System Voltage Drops

    Broader source: Energy.gov [DOE]

    Studies indicate that in-plant electrical distribution system losses—due to voltage unbalance, over- and undervoltage, low power factor, undersized conductors, leakage to ground, and poor connections—can account for less than 1% to more than 4% of total plant electrical energy consumption.

  13. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  14. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  15. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

  16. Design of a REDD-compliant Benefit Distribution System for Viet...

    Open Energy Info (EERE)

    Benefit Distribution System for Viet Nam Jump to: navigation, search Name Design of a REDD-compliant Benefit Distribution System for Viet Nam AgencyCompany...

  17. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  18. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  19. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  20. EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft) PV Distribution System Modeling Workshop - Draft Agenda as of May 1 This one-day workshop, hosted by Sandia National Laboratories, the Electric Power Research Institute (EPRI), and the National Renewable Energy Laboratory, will cover best practices to facilitate integration of PV into the power system. Topics will include technical and policy updates for current interconnection and screening practices and

  1. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

  2. System Reliability Model for Solid-State Lighting Luminaires

    Broader source: Energy.gov [DOE]

    This project is developing and validating a probabilistic reliability prediction tool, and accelerated life testing methodologies, to help lighting manufacturers and stakeholders answer two questions: (1) How can the promised reliability for a rapidly changing technology platform be ensured?, and (2) What will the usage and maintenance profiles be for a product that lasts 15 years?

  3. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  4. Method for adding nodes to a quantum key distribution system

    DOE Patents [OSTI]

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  5. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  6. Compiling software for a hierarchical distributed processing system

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  7. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  8. Multi-State Load Models for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

    2011-11-01

    Recent work in the field of distribution system analysis has shown that the traditional method of peak load analysis is not adequate for the analysis of emerging distribution system technologies. Voltage optimization, demand response, electric vehicle charging, and energy storage are examples of technologies with characteristics having daily, seasonal, and/or annual variations. In addition to the seasonal variations, emerging technologies such as demand response and plug in electric vehicle charging have the potential to send control signals to the end use loads which will affect how they consume energy. In order to support time-series analysis over different time frames and to incorporate potential control signal inputs it is necessary to develop detailed end use load models which accurately represent the load under various conditions, and not just during the peak load period. This paper will build on previous work on detail end use load modeling in order to outline the method of general multi-state load models for distribution system analysis.

  9. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  10. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    2 U.S. Commercial Buildings Conditioned Floorspace, Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings Warehouse/Storage Total Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1. 3,988 4,771 19,767 5,287 2,822 3,352 12,065 48,064 119 1,482 0 0 102

  11. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    SciTech Connect (OSTI)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-09-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10{sup -9} s{>=} pulse width {tau}{>=}1 fs=10{sup -15} s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for {tau} and numerical aperture of the focusing lens (0.1{<=}X{sub NA}{<=}1.2). At X{sub NA}=0.8, rapid deterioration of the focused intensity distribution is observed at {tau}=1.2 fs. This happens because a 750-nm optical pulse with {tau}=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source.

  12. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOE Patents [OSTI]

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  13. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOE Patents [OSTI]

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  14. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public Assembly 1.2 3.0 Warehouse 0.4 1.8 All Buildings 1.0 2.8 Source(s): Design Load Intensity End Use Intensity (W/SF) (kWh/SF) BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment,

  15. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  16. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Post Mortem of 120k mi Light-Duty Urea SCR and DPF System Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lambert.pdf More Documents & Publications Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

  17. Measured Off-Grid LED Lighting System Performance

    SciTech Connect (OSTI)

    Granderson, Jessica; Galvin, James; Bolotov, Dmitriy; Clear, Robert; Jacobson, Arne; Mills, Evan

    2008-12-18

    This report is a product of our ongoing effort to support the development of high-quality yet affordable products for off-grid lighting in the developing world that have good potential to succeed in the market. The effort includes work to develop low-cost testing procedures, to identify useful performance metrics, and to facilitate the development of industry standards and product rating protocols. We conducted laboratory testing of nine distinct product lines. In some cases we also tested multiple generations of a single product line and/or operating modes for a product. The resultsare summarized in Table 1. We found that power consumption and light output varied by nearly a factor of 12, with efficacy varying by a factor of more than six. Of particular note, overall luminous efficacy varied from 8.2 to 53.1 lumens per watt. Color quality indices variedmaterially, especially for correlated color temperature. Maximum illuminance, beamcandlepower, and luminance varied by 8x, 32x, and 61x respectively, suggesting considerable differences among products in terms of service levels and visual comfort. Glare varied by1.4x, and was above acceptable thresholds in most cases. Optical losses play a role in overall performance, varying by a factor of 3.2 and ranging as high as 24percent. These findings collectively indicate considerable potential for improved product design.

  18. Panel 2, Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy Storage for Grid and Transportation Services Workshop Sacramento, California May 14, 2014 Valuation challenges 2 Source: Lamontagne, C. 2014. Survey of Models and Tools for the Stationary Energy Storage Industry. Presentation at Infocast Storage Week. Santa Clara, CA. Transmission and Distribution planning Models lack

  19. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 04_h2gen_low-cost_h2_distributed_production_systems.pdf More Documents & Publications Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

  20. GUIDED TOUR—CONNECTED LIGHTING SYSTEMS MEETING AND TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    The guided bus tour will provide a first-hand look at an LED connected lighting system installed in an office space in the 911 Federal Building. This eight-story building constructed in the 1950s...

  1. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  2. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    4 Thermal Distribution Equipment Design Load and Electricity Intensities, by System Type Central VAV Central CAV Packaged CAV Central VAV Central CAV Packaged CAV Condenser Fan 0.3 0.2 Cooling Tower Fan 0.2 0.1 0.2 0.0 Condenser Water Pump 0.2 0.3 0.3 0.0 Chilled Water Pump 0.2 0.1 0.2 0.0 Supply & Return Fans 0.7 0.5 0.6 1.2 1.9 1.9 Chiller/Compressor 1.9 1.8 3.3 1.7 2.3 4.0 Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:

  3. Design criteria for the light duty utility arm system end effectors

    SciTech Connect (OSTI)

    Pardini, A.F.

    1995-01-03

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

  4. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Plug-in Hybrid Vehicle Systems Analysis Light Duty Plug-in Hybrid Vehicle Systems Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_08_markel.pdf More Documents & Publications Real-World PHEV Fuel Economy Prediction Advanced HEV/PHEV Concepts Heavy-Duty Vehicle Field Evaluations

  5. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reduction of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.

  6. Demonstration of a light-redirecting skylight system at the Palm Springs Chamber of Commerce

    SciTech Connect (OSTI)

    Lee, E.S.; Beltran, L.O.; Selkowitz, S.E. [Lawrence Berkeley National Lab., CA (United States); Lau, H.; Ander, G.D. [Southern California Edison, San Dimas, CA (United States)

    1996-05-01

    As part of a demonstration project to provide a comprehensive energy upgrade to a 294 m{sup 2} (3168 ft{sup 2}) commercial building, an advanced skylight design was developed using optical light control materials and geometry to provide daylight to two adjoining offices. The skylight system was developed using outdoor physical model tests and simulation tools Limited on-site measurements and occupant polls were conducted. Market issues were addressed. The skylight systems were found to improve lighting quality and to control excessive daylight illuminance levels compared to a conventional diffusing bubble skylight. Daylighting principles developed in earlier work for vertical glazing systems (light shelves and light pipes) were shown to be applicable in skylight designs at full-scale.

  7. How Do Distributed Wind Energy Systems Work? (Text Version) | Department of

    Office of Environmental Management (EM)

    Energy Do Distributed Wind Energy Systems Work? (Text Version) How Do Distributed Wind Energy Systems Work? (Text Version) Below is the text version for the How Do Distributed Wind Energy Systems Work? animation. The animation shows a city powered by wind power. It includes a utility-scale wind farm, connected by transmission lines to a city with homes, farms, and a school. The animation explains how wind can be used at all of these interconnected locations. Distributed Wind Distributed wind

  8. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  9. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  10. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  11. Method and system for controlling the position of a beam of light

    DOE Patents [OSTI]

    Steinkraus, Jr., Robert F. (San Francisco, CA); Johnson, Gary W. (Livermore, CA); Ruggiero, Anthony J. (Livermore, CA)

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  12. PROJECT PROFILE: Visualization and Analytics of Distribution Systems with Deep Penetration of Distributed Energy Resources (SuNLaMP)

    Broader source: Energy.gov [DOE]

    For high penetration of distributed energy resources (DER) like solar, electric power grid operators and planners must be able to incorporate large datasets from photovoltaic (PV) sources, local and line mounted precision instruments, customer load data from smart meters, and EV charging data into their analyses. This project will design and implement a platform for the visualization and analytics of distribution systems with high penetrations of distributed energy resources (VADER). VADER is a unified data analytics platform that will enable the integration of massive and varied data streams for real-time monitoring with analytics, visualization, and control of DERs in distribution networks.

  13. Electric Boosting System for Light Truck/SUV Application

    SciTech Connect (OSTI)

    Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

  14. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_lambert.pdf More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 DOE

  15. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  16. Cybersecurity through Real-Time Distributed Control Systems

    SciTech Connect (OSTI)

    Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul; Nutaro, James J; Munro Jr, John K; Ewing, Paul D; Howlader, Mostofa; Kuruganti, Phani Teja; Wallace, Richard M; Olama, Mohammed M

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  17. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  18. System Integration of Distributed Power for Complete Building Systems: Phase 1 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

  19. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  20. Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Citation Details In-Document Search Title: Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Petascale systems are in existence today and will become common in the next few years. Such systems are inevitably very complex, highly distributed and heterogeneous. Monitoring a petascale system in real-time and understanding its status at any given moment without impacting

  1. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  2. Probabilities for the emission of light particles and their energy and angular distributions for true quaternary nuclear fission

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V. [Voronezh State University (Russian Federation)] [Voronezh State University (Russian Federation)

    2013-01-15

    On the basis of quantum-mechanical fission theory, the features of true quaternary nuclear fission are studied by treating this fission process as a sequence of three processes following one another in the course of time. The first two processes are the escape of the first and then the second of the two light particles emitted from the neck of a fissioning nucleus because of a nonadiabatic character of the collective deformation motion of this nucleus. Finally, the third process is the separation of the fissioning nucleus into two rather heavy fission fragments. The differences that arise in the emission probabilities and in the angular and energy distributions upon going over from the first emitted to the second emitted prescission third and fourth particles are analyzed by invoking experimental data on the spontaneous and thermalneutron-induced fission of nuclei, and it is shown that these differences are caused by the changes both in the geometric configuration of the fissioning nucleus and in the shell structure of its neck after the first prescission particle is emitted from it.

  3. An Efficient LED System-in-Module for General Lighting Applications

    SciTech Connect (OSTI)

    2008-09-14

    The objective of the project was to realize an LED-based lighting technology platform for general illumination, starting with LED chips, and integrating the necessary technologies to make compact, user-friendly, high-efficiency, energy-saving sources of controlled white (or variable-colored) light. The project is to build the system around the LEDs, and not to work on the LEDs themselves, in order that working products can be introduced soon after the LEDs reach suitable efficiency for mass-production of high-power light sources for general illumination. Because the light sources are intended for general illumination, color must be accurately maintained, requiring feedback control in the electronics. The project objective has been realized and screw base demonstrators, based on the technology developed in the project, have been built.

  4. Garbage collection for functional languages in a distributed system

    SciTech Connect (OSTI)

    Eckart, J.D.

    1987-01-01

    Garbage collection is a helpful facility provided by many applicative languages such as Prolog, SISAL, FP, and Lisp. While these, and other, languages provide easy recognition of actions that may be executed in parallel, the garbage-collection algorithms used for single-machine environments become significantly more inefficient in multi-machine environments. Thus, in order to make effective use of these languages, more-efficient algorithms for collecting inter-machine structures is needed. Reference marking is the algorithm developed to meet these needs. It takes advantage of the semantics of applicative languages allowing each parallel action to be responsible for collecting any discarded structures it was responsible for creating. Simulation results comparing the performance of reference marking with other distributed garbage-collection algorithms are given. A variety of problem types and sizes are examined to determine the effects of particular styles of computation on each of the garbage-collection algorithms. The results gathered demonstrate the usefulness of the reference-marking algorithm in both uni- and multi-machine systems.

  5. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  6. Post-Delivery test report for light duty utility arm high resolution stereoscopic video system (HRSVS)

    SciTech Connect (OSTI)

    Pardini, A.F., Westinghouse Hanford

    1996-05-07

    This report documents the post delivery testing of the High Resolution Stereoscopic Video Camera System (HRSVS) LDUA system,designed for use by the Light Duty Utility Arm (LDUA) project.The post delivery test shows by demonstration that the high resolution stereoscopic video camera system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  7. Post delivery test report for light duty utility arm optical alignment system (OAS)

    SciTech Connect (OSTI)

    Pardini, A.F.

    1996-04-18

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  8. System Integration of Distributed Power for Complete Building Systems: Phase 2 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s second year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of combined heat and power systems in end-user environments and a further understanding of electric interconnection and siting issues. The specific objective of work under this subcontract is to identify the system integration and implementation issues of DG and develop and test potential solutions to these issues. In addition, recommendations are made to resolve identified issues that may hinder or slow the integration of integrated energy systems into the national energy picture.

  9. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  10. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect (OSTI)

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  11. System Impacts from Interconnection of Distributed Resources: Current Status and Identification of Needs for Further Development

    SciTech Connect (OSTI)

    Basso, T. S.

    2009-01-01

    This report documents and evaluates system impacts from the interconnection of distributed resources to transmission and distribution systems, including a focus on renewable distributed resource technologies. The report also identifies system impact-resolution approaches and actions, including extensions of existing approaches. Lastly, the report documents the current challenges and examines what is needed to gain a clearer understanding of what to pursue to better avoid or address system impact issues.

  12. Request for Information for Distributed Wind Energy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department’s Wind Program is seeking feedback from the wind industry, academia, research laboratories, government agencies, and other stakeholders regarding the Energy Department’s new perspective on Distributed Wind R&D.

  13. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  14. Leveraging AMI data for distribution system model calibration and situational awareness

    SciTech Connect (OSTI)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation and regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.

  15. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  16. Considerations When Comparing LED and Conventional Lighting | Department of

    Office of Environmental Management (EM)

    Energy Using LEDs » Considerations When Comparing LED and Conventional Lighting Considerations When Comparing LED and Conventional Lighting When comparing LED lighting performance to conventional lighting, buyers will want to consider energy efficiency, operating life and lumen depreciation, light output/distribution, color quality, color shift, dimmability, and expected lifetime. Energy efficiency The final energy efficiency of any lighting system depends on more than the efficacy of the

  17. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    SciTech Connect (OSTI)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.

  18. A Performance Comparison of Tree and Ring Topologies in Distributed System

    SciTech Connect (OSTI)

    Min Huang

    2005-12-19

    A distributed system is a collection of computers that are connected via a communication network. Distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. However, the management infrastructure often does not scale well when distributed systems get very large. Some of the considerations in building a distributed system are the choice of the network topology and the method used to construct the distributed system so as to optimize the scalability and reliability of the system, lower the cost of linking nodes together and minimize the message delay in transmission, and simplify system resource management. We have developed a new distributed management system that is able to handle the dynamic increase of system size, detect and recover the unexpected failure of system services, and manage system resources. The topologies used in the system are the tree-structured network and the ring-structured network. This thesis presents the research background, system components, design, implementation, experiment results and the conclusions of our work. The thesis is organized as follows: the research background is presented in chapter 1. Chapter 2 describes the system components, including the different node types and different connection types used in the system. In chapter 3, we describe the message types and message formats in the system. We discuss the system design and implementation in chapter 4. In chapter 5, we present the test environment and results, Finally, we conclude with a summary and describe our future work in chapter 6.

  19. Fault Detection and Isolation in Low-Voltage DC Distribution System -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Electricity Transmission Electricity Transmission Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Fault Detection and Isolation in Low-Voltage DC Distribution System University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2941D-3222D (DC Microgrid) Marketing Summary.pdf (172 KB) Conceptual diagram of a DC distribution system Conceptual diagram of a DC distribution system Technology

  20. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect (OSTI)

    Lubin, Barry T.

    2012-02-02

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focused on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.

  1. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  2. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Short, Robert W. (Rochester, NY); Craxton, Stephen (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY); Soures, John (Pittsford, NY)

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  3. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  4. Studies of light neutron-excess systems from bounds to continuum

    SciTech Connect (OSTI)

    Ito, Makoto; Otsu, Hideaki

    2012-10-20

    The generalized two-center cluster model (GTCM), which can handle various single particle configurations in general two center systems, is applied to the light neutron-rich system, {sup 12}Be = {alpha}+{alpha}+4N. We discuss the change of the neutrons' configuration around two {alpha}-cores as a variation of an excitation energy. We show that the excess neutrons form various chemical-bondinglike configurations around two {alpha} cores in the unbound region above the {alpha} decay threshold. The possibility of the {alpha} cluster formation in the heavier neutron-excess system, {sup 28}Ne, is also discussed.

  5. Distributed Generation Study/615 kW Waukesha Packaged System...

    Open Energy Info (EERE)

    PHE-Type SL140-TM-EE-190, Sondex PHE-Type SL140-TM-EE-150, Cain UTR1-810A17.5SSP Fuel Natural Gas System Installer GTI System Enclosure Outdoor System Application Combined Heat...

  6. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  7. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  8. NREL: Distributed Grid Integration - Power Systems Modeling Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling Projects Photo of power block prototype and advanced controller inside a power inverter cabinet. Power block prototype and advanced controller. Photo by Joshua Bauer, NREL NREL researchers work with industry and stakeholders to create power systems models. Modeling power systems is important for product research and development. For example, researchers have developed renewable energy inverters which convert energy from sources such as photovoltaic arrays and flywheels and

  9. NREL: Distributed Grid Integration - Energy System Basics Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation...

  10. Trace-Element Distribution In An Active Hydrothermal System,...

    Open Energy Info (EERE)

    the history of the system. Authors Odin D. Christensen, Regina A. Capuano and Joseph N. Moore Published Journal Journal of Volcanology and Geothermal Research, 1983 DOI Not...

  11. Category:Smart Grid Projects - Electric Distributions Systems...

    Open Energy Info (EERE)

    Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C...

  12. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  13. Global garbage collection for distributed heap storage systems

    SciTech Connect (OSTI)

    Ali, K.A.M.; Haridi, S.

    1986-10-01

    The authors present a garbage-collection algorithm, suitable for loosely-coupled multi-processor systems, in which the processing elements (PEs) share only the communication medium. The algorithm is global, i.e., it involves all the PEs in the system. It allows space compaction, and it uses a system-wide marking phase to mark all accessible objects where a combination of parallel breadth-first/depth-first strategies is used for tracing the object-graphs according to a decentralized credit mechanism that regulates the number of garbage collections messages in the system. The credit mechanism is crucial for determining the space requirement of the garbage-collection messages. Also a variation of this algorithm is presented for systems with high locality of reference. It allows each PE to perform first its local garbage collection and only invokes the global garbage collection when the freed space by the local collector is insufficient.

  14. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  15. Energy storage management system with distributed wireless sensors

    DOE Patents [OSTI]

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  16. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  17. Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report

    SciTech Connect (OSTI)

    Tom McDermott

    2010-05-07

    The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.

  18. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  19. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  20. PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP)

    Broader source: Energy.gov [DOE]

    As more distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation, the grid must support more stringent requirements to ensure continued reliable and cost-effective grid operations. New communications systems are needed to allow for bidirectional information exchange between distributed photovoltaic (PV) generators and various information and controls systems of the electric power grid. This project at the National Renewable Energy Laboratory (NREL) will develop a hybrid communications system to meet the needs of monitoring and controlling millions of distributed PV generators, while taking advantage of existing communications infrastructure, which will greatly reduce the costs necessary to provide these services.

  1. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    SciTech Connect (OSTI)

    Watanabe, Kyoko; Shimizu, Toshifumi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Masuda, Satoshi [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ichimoto, Kiyoshi [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ohno, Masanori, E-mail: watanabe.kyoko@isas.jaxa.jp [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8516 (Japan)

    2013-10-20

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere.

  2. Mapping a hierarchical control strategy onto a distributed system architecture

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Thompson, D.H.

    1988-01-01

    This paper describes the implementation of the control architecture for the Thermal Management System (TMS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Oak Ridge Gaseous Diffusion Plant in Oak Ridge, Tennessee. It represents one of the major process control subsystems and is responsible for the overall thermal environment during the operational phases of the facility. The author's involvement included the conceptualization, development, design, and implementation of the overall control strategy along with the specification/configuration of the supporting hardware and software. 7 refs., 6 figs.

  3. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    SciTech Connect (OSTI)

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-15

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  4. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  5. Economic evaluation of distribution system smart grid investments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less

  6. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  7. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed hard dollar benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  8. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    SciTech Connect (OSTI)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  9. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  10. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  11. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  12. Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program

    SciTech Connect (OSTI)

    2009-01-14

    Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.

  13. Manufacturing R&D for systems that will produce and distribute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfgwkshpproduction.pd...

  14. Manufacturing R&D for systems that will produce and distribute hydrogen |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for systems that will produce and distribute hydrogen Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_production.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Roadmap on Manufacturing R&D for the Hydrogen Economy 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell

  15. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  16. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect (OSTI)

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  17. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    SciTech Connect (OSTI)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  18. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    SciTech Connect (OSTI)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation capability was demonstrated for estimating enthalpy in a power plant.

  19. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  20. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  1. Residential forced-air-distribution system study. Semi-annual report March-September 1982

    SciTech Connect (OSTI)

    Orlando, J.A.; Pettit, V.E.; Gamze, M.G.

    1982-11-01

    Tracer gas techniques have frequently been used to determine the air change characteristics for various structures. Previously, GKCO had utilized a tracer gas procedure to measure intrastructural air flows as a basis for computing the heat loss due to forced air distribution systems. Testing of several gas furnace hot air systems indicated that distribution losses can be significant and were affected by the characteristics of the heat source. In a subsequent study, the field testing was expanded to other heating system components including an electric heat pump, a gas heat pump, and a gas furnace/electric heat pump hybrid system. In addition, cooling mode data were taken as a basis for an annual analysis of distribution system efficiency. The report describes the detailed instrumentation of a single test home with a tracer gas and with flowmeters and temperature sensors installed in the duct system, the calibration of these flowmeters, and two alternative analyses of the resulting data. It also includes results from data collection in two additional structures - a two story structure with the duct system located in the basement and attic, and a one story rambler with a radial duct system buried in the building slab. Distribution system efficiencies ranged from 66% to over 74%.

  2. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  3. November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting a simulation-based investigation of PV impacts on distribution systems and discussing a new approach for volt-VAR optimization with reactive power capabilities of PV inverters.

  4. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  5. Performance Modeling and Testing of Distributed Electronics in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Deline, C.

    2015-03-18

    Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NRELs System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NRELs System Advisor Model program to model partial shading losses.

  6. Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems

    SciTech Connect (OSTI)

    Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

    2011-01-01

    Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

  7. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W.

    2004-08-10

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  8. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A. (Livermore, CA); Lee, Howard W. H. (Fremont, CA)

    2009-05-19

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  9. Development of Innovative Distributed Power Interconnection and Control Systems: Annual Report, December 2000-December 2001

    SciTech Connect (OSTI)

    Liss, W.; Dybel, M.; West, R.; Adams, L.

    2002-11-01

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging, and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.

  10. Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories

    Broader source: Energy.gov [DOE]

    This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

  11. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric power system was designed for efficiency, reliability, ease of operation, and to meet consumer needs at minimum cost. The grid of the future must maintain these characteristics while meeting a number of new requirements: supporting the

  12. Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Perstein, J.; Castellano, J.A.

    1989-01-20

    Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

  13. Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems Citation Details In-Document Search Title: Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  14. Urea/Ammonia Distribution Optimization in an SCR Emission Control System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the Use of CFD Analysis | Department of Energy Urea/Ammonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis Urea/Ammonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle

  15. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect (OSTI)

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  16. Optimal Combination of Distributed Energy System in an Eco-Campusof Japan

    SciTech Connect (OSTI)

    Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

    2006-06-14

    In this study, referring to the Distributed Energy Resources Customer Adoption Model (DER-CAM) which was developed by the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), E-GAMS programmer is developed with a research of database of energy tariffs, DER (Distributed Energy Resources) technology cost and performance characteristics, and building energy consumption in Japan. E-GAMS is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills. In this research, by using E-GAMS, we present a tool to select the optimal combination of distributed energy system for an Ecological-Campus, Kitakyushu, Science and Research Park (KSRP). We discuss the effects of the combination of distributed energy technologies on the energy saving, economic efficiency and environmental benefits.

  17. Three-phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems with Synchronous Machines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  18. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  19. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan.

  20. Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation

    SciTech Connect (OSTI)

    Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2012-12-12

    The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

  1. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  2. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  3. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-06-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  4. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  5. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  6. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect (OSTI)

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  7. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  8. Distribution of occupation numbers in finite Fermi systems and role of interaction in chaos and thermalization

    SciTech Connect (OSTI)

    Flambaum, V.V.; Izrailev, F.M. [School of Physics, University of New South Wales, Sydney 2052 (Australia)] [School of Physics, University of New South Wales, Sydney 2052 (Australia)

    1997-01-01

    A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model. {copyright} {ital 1997} {ital The American Physical Society}

  9. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect (OSTI)

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  10. ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants November 7, 2007 Denver, Colorado Paul Lemar Jr., President pll@rdcnet.com www.rdcnet.com www.distributed-generation.com Reciprocating Engines for ADG and LFG z Reciprocating engines are either Otto (spark ignition) or Diesel (compression ignition) cycle systems z Natural gas engines, as well as those powered by ADG or LFG, are typically spark ignition systems z Some dual fuel engines have been developed using ADG/LFG with a portion of diesel

  11. Luminescent light source for laser pumping and laser system containing same

    DOE Patents [OSTI]

    Hamil, Roy A. (Tijeras, NM); Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1994-01-01

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  12. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  13. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  15. Future Opportunities and Challenges with Using Demand Response as a Resource in Distribution System Operation and Planning Activities

    Broader source: Energy.gov [DOE]

    This scoping study focuses on identifying the ability for current and future demand response opportunities to contribute to distribution system management. To do so, this scoping study will...

  16. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  17. Opportunities for Energy Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    Broader source: Energy.gov [DOE]

    From 2000-2012, about 6% of U.S. electricity generation did not reach any customer, instead being lost in the transmission and distribution system. This report describes sources of energy loss in the transmission and distribution of electricity, and reviews research on both the magnitude and potential for reducing these losses. Strategies to improve energy efficiency on the grid include upgrades in physical infrastructure as well as information technologies and operational strategies that can help grid operators make the system run more efficiently. The report also describes engineering, economic, and policy barriers to implementing these loss reduction strategies. For transmission, emerging technologies such as superconductors and power flow control technologies can reduce transmission loss 50% or more, but these technologies may not be cost-effective in all areas. On the distribution system, theoretical studies of reducing overloading lines through reconfiguration have identified loss reductions of up to 40%; however, studies of real systems have observed loss reductions of only 5-20%.

  18. A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

    Broader source: Energy.gov [DOE]

    In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the...

  19. Effortless Adjustment of Light Distribution

    Energy Savers [EERE]

    Monitoring * Autonomous Marty McFly: "Hey, Doc, we better back up. We don't have enough road to get up to 88." Dr. Emmett Brown: "Roads? Where we're going, we don't need roads." 12...

  20. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  1. Light-induced electron transfer vs. energy transfer in molecular thin-film systems

    SciTech Connect (OSTI)

    Renschler, C. L.; Faulkner, L. R.

    1980-01-01

    Quenching of fluoranthene (FA) singlets by tetrabromo-o-benzoquinone (TBBQ) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was studied both in xylene solutions and in spin-cast polystyrene (PS) films. Emphasis was placed on time-resolved fluorescence transients resulting from pulsed excitation. Linear Stern-Volmer plots were obtained for quenching in solution and gave diffusion-controlled rate constants, of 1.45 x 10/sup 10/ M/sup -1/ sec/sup -1/ and 1.53 x 10/sup 10/ M/sup -1/ sec/sup -1/ for TBBQ and TMPD, respectively. TBBQ was found to quench FA singlets in PS over the studied concentration range 12 mM < (TBBQ) < 48 mM, but in its presence FA singlets decayed nonexponentially. The results were interpreted quantitatively in terms of pure Foerster's transfer from FA to TBBQ without diffusion of excitons. The critical transfer radius R/sub 0/ was experimentally determined to be 24.3 A, which is in good agreement with the theoretical value of 23 A calculated from spectral data. Quenching of FA singlets in PS films was found to be independent of FA concentration over a 300 mM to 1200 mM FA concentration range for a constant TBBQ concentration of 24.0 mM. TMPD was only slightly effective as a quencher of FA singlets in PS because it apparently behaves strictly as a contact quencher based on reversible charge transfer. The implications of these results for the design of systems intended to exploit light-induced electron transfer are discussed.

  2. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  3. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect (OSTI)

    Professor Richard Eisenberg

    2012-07-18

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

  4. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  5. Oxide vapor distribution from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R.; Tassano, P.L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  6. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  7. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect (OSTI)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  8. An Industrial Membrane System Suitable for Distributed Used Oil Re-refining

    Broader source: Energy.gov (indexed) [DOE]

    An Industrial Membrane System Suitable for Distributed Used Oil Re-refining DE-SC0006185 Dr. Richard J. Ciora, Jr., Media and Process Technology Inc. 1155 William Pitt Way, Pittsburgh, PA 15238 412 292-4057, rciora@mediaandprocess.com US DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28 - 29, 2015 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objectives Ceramic membranes for large scale hydrocarbon

  9. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  10. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D. Steward National Renewable Energy Laboratory J. Zuboy Contractor Technical Report NREL/TP-6A20-62781 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  11. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No.

  12. Survey of Emissions Models for Distributed Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey of Emissions Models for Distributed Combined Heat and Power Systems Will Gans, Anna Monis Shipley, and R. Neal Elliott January 2007 Report Number IE071 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, N.W., Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site Survey of Emissions Models for CHP, ACEEE CONTENTS

  13. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  14. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing: Supplemental Report on Penetration Software Algorithms

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2005-03-01

    This report supplements the July 2003 report ''Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing'' (NREL/SR-560-33909). The original report presented methods for calculating penetration limits for distributed energy resources interconnected with distribution circuits of utility-owned electric power systems. This report describes the algorithms required to develop application software to calculate penetration limits. The original report can be found at http://www.nrel.gov/docs/fy03osti/33909.pdf.

  15. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV FOR ELECTRICITY SYSTEM RESILIENCY POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can signifcantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with resiliency in mind and combined with other technologies, such as

  16. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect (OSTI)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

  17. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  18. Methods and apparatuses for information analysis on shared and distributed computing systems

    DOE Patents [OSTI]

    Bohn, Shawn J [Richland, WA; Krishnan, Manoj Kumar [Richland, WA; Cowley, Wendy E [Richland, WA; Nieplocha, Jarek [Richland, WA

    2011-02-22

    Apparatuses and computer-implemented methods for analyzing, on shared and distributed computing systems, information comprising one or more documents are disclosed according to some aspects. In one embodiment, information analysis can comprise distributing one or more distinct sets of documents among each of a plurality of processes, wherein each process performs operations on a distinct set of documents substantially in parallel with other processes. Operations by each process can further comprise computing term statistics for terms contained in each distinct set of documents, thereby generating a local set of term statistics for each distinct set of documents. Still further, operations by each process can comprise contributing the local sets of term statistics to a global set of term statistics, and participating in generating a major term set from an assigned portion of a global vocabulary.

  19. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2007-09-11

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the re quest, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  20. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2010-09-21

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  1. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2004-01-13

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  2. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  3. Daylighting and Electric Lighting Analysis for Complex Spaces

    Energy Science and Technology Software Center (OSTI)

    1995-06-07

    SUPERLITE is a powerful lighting analysis program designed to accurately predict interior illuminance in complex building spaces due to daylight and electric lighting systems. The program enables users to model interior daylight levels for any sun and sky condition in spaces having windows, skylights or other standard fenestration systems. SUPERLITE Version 2.0 includes the capability to calculate electric lighting levels in addition to the daylighting prediction, allowing lighting performance simulation for integrated lighting systems. Themore » program calculates lighting levels on all interior surfaces, as well as on planes that can be arbitrarily positioned to represent work surfaces or other locations of interest. SUPERLITE is intended to be used by researchers and lighting designers who require detailed analysis of the illuminance distribution in architecturally complex spaces.« less

  4. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  5. Guidelines for Implementing Advanced Distribution Management Systems-Requirements for DMS Integration with DERMS and Microgrids

    SciTech Connect (OSTI)

    Wang, Jianhui; Chen, Chen; Lu, Xiaonan

    2015-08-01

    This guideline focuses on the integration of DMS with DERMS and microgrids connected to the distribution grid by defining generic and fundamental design and implementation principles and strategies. It starts by addressing the current status, objectives, and core functionalities of each system, and then discusses the new challenges and the common principles of DMS design and implementation for integration with DERMS and microgrids to realize enhanced grid operation reliability and quality power delivery to consumers while also achieving the maximum energy economics from the DER and microgrid connections.

  6. DEEP, LOW MASS RATIO OVERCONTACT BINARY SYSTEMS. XIII. DZ PISCIUM WITH INTRINSIC LIGHT VARIABILITY

    SciTech Connect (OSTI)

    Yang, Y.-G.; Dai, H.-F.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2013-08-01

    New multi-color photometry for the eclipsing binary DZ Psc was performed in 2011 and 2012 using the 85 cm telescope at the Xinglong Station of the National Astronomical Observatories of China. Using the updated Wilson-Devinney (W-D) code, we deduced two sets of photometric solutions. The overcontact degree is f = 89.7({+-} 1.0)%, identifying DZ Psc as a deep, low mass ratio overcontact binary. The asymmetric light curves (i.e., LC{sub 2} in 2012) were modeled by a hot spot on the primary star. Based on all of the available light minimum times, we discovered that the orbital period of DZ Psc may be undergoing a secular period increase with a cyclic variation. The modulated period and semi-amplitude of this oscillation are P{sub mod} = 11.89({+-} 0.19) yr and A = 0.0064({+-} 0.0006) days, which may be possibly attributed to either cyclic magnetic activity or light-time effect due to the third body. The long-term period increases at a rate of dP/dt=+7.43({+-}0.17) Multiplication-Sign 10{sup -7} days yr{sup -1}, which may be interpreted as conserved mass transfer from the less massive component to the more massive one. With mass transferring, DZ Psc will finally merge into a rapid-rotation single star when J{sub spin}/J{sub orb} > 1/3.

  7. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  8. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  9. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems

    SciTech Connect (OSTI)

    Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2013-08-24

    In this paper, a novel distributed hierarchical coordinated control architecture is proposed for large scale power systems. The newly considered architecture facilitates frequency restoration and power balancing functions to be decoupled and implemented at different levels. At the local level, decentralized robust generator controllers are designed to quickly restore frequency after large faults and disturbances in the system. The controllers presented herein are shown to improve transient stability performance, as compared to conventional governor and excitation control. At the area level, Automatic Generation Control (AGC) is modified and coordinates with the decentralized robust controllers to reach the interchange schedule in the tie lines. The interaction of local and zonal controllers is validated through detailed simulations.

  10. Modeling of distribution and speciation of plutonium in the Urex extraction system

    SciTech Connect (OSTI)

    Paulenova, A.; Tkac, P.; Vandegrift, G.F.; Krebs, J.F.

    2008-07-01

    The PUREX extraction process is used worldwide to recover uranium and plutonium from dissolved spent nuclear fuel using the tributylphosphate-nitric acid extraction system. In the recent decade, significant research progress was achieved with the aim to modify this system by addition of a salt-free agent to optimize stripping of plutonium from the tributylphosphate (TBP) extraction product (UREX). Experimental results on the extraction of Pu(IV) with and without acetohydroxamic acid in the HNO{sub 3}/TBP (30 vol %) were used for the development of a thermodynamic model of distribution and speciation of Pu(IV) in this separation process. Extraction constants for several sets of nitric acid, nitrate, and acetohydroxamic acid concentrations were used to model the obtained data. The extraction model AMUSE (Argonne Model for Universal Solvent Extraction) was employed in our calculations. (authors)

  11. System design and algorithmic development for computational steering in distributed environments

    SciTech Connect (OSTI)

    Wu, Qishi; Zhu, Mengxia; Gu, Yi; Rao, Nageswara S

    2010-03-01

    Supporting visualization pipelines over wide-area networks is critical to enabling large-scale scientific applications that require visual feedback to interactively steer online computations. We propose a remote computational steering system that employs analytical models to estimate the cost of computing and communication components and optimizes the overall system performance in distributed environments with heterogeneous resources. We formulate and categorize the visualization pipeline configuration problems for maximum frame rate into three classes according to the constraints on node reuse or resource sharing, namely no, contiguous, and arbitrary reuse. We prove all three problems to be NP-complete and present heuristic approaches based on a dynamic programming strategy. The superior performance of the proposed solution is demonstrated with extensive simulation results in comparison with existing algorithms and is further evidenced by experimental results collected on a prototype implementation deployed over the Internet.

  12. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  13. Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

    SciTech Connect (OSTI)

    Palmintier, Bryan

    2015-07-28

    This presentation discusses the next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources, and also discusses future directions for transmission and distribution.

  14. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The amount and quality of light around us affects our health, safety, comfort, and productivity. Our country spends more than $37 billion each year on electricity for lighting, but technologies developed during the past 10 years can help us cut lighting costs by 30% to 60% while enhancing lighting quality and reducing environmental impacts. In a typical indoor lighting system, 50 percent or more of the energy supplied to the lamp can be wasted by obsolete equipment, poor maintenance, or

  15. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2003-07-01

    This study determines the magnitude of distributed resources that can be added to a distribution circuit without causing undesirable conditions or equipment damage.

  16. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  17. Moon Solar Light MSL | Open Energy Information

    Open Energy Info (EERE)

    Product: developed and distributes solar-based lighting applications using PV panels, LED lights and ultra-capacitors. Coordinates: 31.899309, 34.807999 Show Map Loading...

  18. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 /kWh, well within the price of commercial and residential retail prices at the national level (9.9-10/kWh and 11-12 /kWh, respectively). With an additional 5 /kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  19. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  20. Development of a High Resolution, Real Time, Distribution-Level Metering System and Associated Visualization, Modeling, and Data Analysis Functions

    SciTech Connect (OSTI)

    Bank, J.; Hambrick, J.

    2013-05-01

    NREL is developing measurement devices and a supporting data collection network specifically targeted at electrical distribution systems to support research in this area. This paper describes the measurement network which is designed to apply real-time and high speed (sub-second) measurement principles to distribution systems that are already common for the transmission level in the form of phasor measurement units and related technologies.

  1. The Development of a Smart Distribution Grid Testbed for Integrated Information Management Systems

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-07-28

    This paper presents a smart distribution grid testbed to test or compare designs of integrated information management systems (I2MSs). An I2MS extracts and synthesizes information from a wide range of data sources to detect abnormal system behaviors, identify possible causes, assess the system status, and provide grid operators with response suggestions. The objective of the testbed is to provide a modeling environment with sufficient data sources for the I2MS design. The testbed includes five information layers and a physical layer; it generates multi-layer chronological data based on actual measurement playbacks or simulated data sets produced by the physical layer. The testbed models random hardware failures, human errors, extreme weather events, and deliberate tampering attempts to allow users to evaluate the performance of different I2MS designs. Initial results of I2MS performance tests showed that the testbed created a close-to-real-world environment that allowed key performance metrics of the I2MS to be evaluated.

  2. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  3. Identification of significant problems related to light water reactor piping systems

    SciTech Connect (OSTI)

    None

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems.

  4. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  5. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  6. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  7. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Not Available

    2011-06-22

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  8. Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect (OSTI)

    Susan Burkett; Hagen Schempf

    2006-01-31

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.

  9. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    SciTech Connect (OSTI)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  10. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    SciTech Connect (OSTI)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca; Crichton, Daniel; Danvil, Sebastian; Drach, Bob; Fiore, Sandro; Gonzalez, Estanislao; Harney, John F; Mattmann, Chris; Kershaw, Philip; Morgan, Mark; Pascoe, Stephen; Shipman, Galen M; Wang, Feiyi

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  11. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    SciTech Connect (OSTI)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill; Mattmann, Chris; Harney, John F; Shipman, Galen M; Wang, Feiyi; Bell, Gavin; Drach, Bob; Ananthakrishnan, Rachana; Pascoe, Stephen; Fiore, Sandro; Schweitzer, Roland; Danvil, Sebastian; Morgan, Mark

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  12. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  13. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  14. Distributed File System Test Using Small FilesV1.1

    Energy Science and Technology Software Center (OSTI)

    2004-04-09

    This program tests distributed filesystems using small files for lock and metadata contention. It is useful for debugging.

  15. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    SciTech Connect (OSTI)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.

  16. Workshop Proceedings: Communication and Control Systems for Distributed Energy Implementation and Testing; May 14-15, 2002

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energetics, Incorporated i June 2002 Executive Summary This report presents the proceedings of a technical workshop on communication and control systems for the implementation and testing of distributed energy devices such as microturbines, fuel cells, and photovoltaic arrays. The purpose of the workshop was two- fold: To develop ideas for conducting large-scale demonstration projects of distributed energy devices in high levels of saturation on particular feeder lines or substations, and

  17. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  18. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    SciTech Connect (OSTI)

    Nocente, M. Gorini, G.; Fazzi, A.; Lorenzoli, M.; Pirovano, C.; Tardocchi, M.; Cazzaniga, C.; Rebai, M.; Uboldi, C.; Varoli, V.

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%4% in the energy range E{sub ?} = 35 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  19. ATLAS: A Small, Light Weight, Time-Synchronized Wind-Turbine Data Acquistion System

    SciTech Connect (OSTI)

    Berg, D.E.; Robertson, P.; Zayas, J.

    1998-11-09

    Wind energy researchers at Sandia National Laboratories have developed a small, lightweight, time- synchronized, robust data acquisition system to acquire long-term time-series data on a wind turbine rotor. A commercial data acquisition module is utilized to acquire data simultaneously from multip!e strain-gauge, analog, and digital channels. Acquisition of rotor data at precisely the same times as acquisition of ground data is ensured by slaving the acquisition clocks on the rotor- based data unit and ground-based units to the Global Positioning Satellite (GPS) system with commercial GPS receiver units and custom-built and programmed programmable logic devices. The acquisition clocks will remain synchronized within two microseconds indefinitely. Field tests have confirmed that synchronization can be maintained at rotation rates in excess of 350 rpm, Commercial spread-spectrum radio modems are used to transfer the rotor data to a ground- based computer concurrently with data acquisition, permitting continuous acquisition of data over a period of several hours, days or even weeks.

  20. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Broader source: Energy.gov [DOE]

    Presentation by C.E. (Sandy) Thomas at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  1. Low-cost light-weight thin material solar heating system

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1985-03-01

    Presented in this paper are innovative concepts to substantially reduce the cost of residential solar application. They were based on a research and development approach that establishes cost goals which if successfully met can insure high marketability. Included in this cost goal-oriented approach is the additional need to address aesthetics and performance. With such constraints established, designs were initialized, tested, and iterated towards appropriate solutions. These solutions are based on methods for reducing the material intensity of the products, improving the simplicity for ease of production, and reducing the cost of installation. Such a development approach has yielded past proof-of-concept designs in the solar collector and in the other components that constitute a total solar heating system.

  2. Methods, media and systems for managing a distributed application running in a plurality of digital processing devices

    DOE Patents [OSTI]

    Laadan, Oren; Nieh, Jason; Phung, Dan

    2012-10-02

    Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.

  3. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  4. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    SciTech Connect (OSTI)

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; De, A.; Gupta, D.

    2010-06-15

    The influence of alpha clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions {sup 20}Ne (E{sub lab}=145,160 MeV) + {sup 12}C and {sup 20}Ne (E{sub lab}=160 MeV) + {sup 27}Al, populating {sup 32}S and {sup 47}V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-alpha-like {sup 47}V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the alpha cluster {sup 32}S an extended prolate kind of shape is observed. This unusual deformation, seen directly via gamma decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of {sup 16}O + {sup 16}O in the {sup 32}S superdeformed band.

  5. Light diffusing fiber optic chamber

    DOE Patents [OSTI]

    Maitland, Duncan J. (Lafayette, CA)

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  6. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  7. Light collection device for flame emission detectors

    DOE Patents [OSTI]

    Woodruff, Stephen D. (Morgantown, WV); Logan, Ronald G. (Morgantown, WV); Pineault, Richard L. (Morgantown, WV)

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  8. State Research, Outreach, and Technical Assistance to Imrove the Nation's Transmission & Distribution System

    SciTech Connect (OSTI)

    J. Fox; M. Keogh; A. Spahn

    2009-05-20

    The broad purpose of this project was to work cooperatively with the DOE to explore technology nad policy issues associated with more efficient, reliable, and affordable electric transmission and distribution use.

  9. Strain and lattice orientation distribution in SiN/Ge complementary metaloxidesemiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    SciTech Connect (OSTI)

    Chahine, G. A.; Schlli, T. U.; Zoellner, M. H.; Guha, S.; Reich, C.; Zaumseil, P.; Capellini, G.; Richard, M.-I.; Schroeder, T.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup ?5} (?a/a) with a spatial resolution of ?0.5??m. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive ?-Raman and ?-photoluminescence measurements. The experimental data are interpreted with the help of finite element modeling of the strain relaxation dynamics in the investigated structures.

  10. Test procedures and protocols: Their relevance to the figure of merit for thermal distribution systems. Volume 1: Informal report

    SciTech Connect (OSTI)

    Andrews, J.W.

    1993-09-01

    A conceptual framework is developed that categorizes measurement protocols for forced-air thermal distribution systems in small buildings. This framework is based on the distinction between two generic approaches. The {open_quote}system-comparison{close_quote} approach seeks to determine, via a pair of whole-house energy-use measurements, the difference in energy use between the house with the as-found duct system and the same house with no energy losses attributable to the thermal distribution system. The {open_quote}component loss-factor{close_quote} approach identifies and measures the individual causes of duct losses, and then builds up a value for the net overall duct efficiency, usually with the help of computer simulation. Examples of each approach are analyzed and related to a proposed Figure of Merit for thermal distribution systems. This Figure of Merit would serve as the basis for a Standard Method of Test analogous to those already in place for furnaces, boilers, air conditioners, and heat pumps.

  11. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  12. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  13. Development of a Real-Time, High-Speed Distribution Level Data Acquisition System

    SciTech Connect (OSTI)

    Bank, J.; Kroposki, B.

    2012-01-01

    With the development of smart grids and the deployment of their enabling technologies, improved data acquisition will be needed at the distribution level to understand the full impact of these changes. With this in mind, NREL has developed a high-speed measurement and data collection network targeted specifically at the distribution level. This network is based around adaptable, rugged measurement devices designed for deployment at a variety of low and medium voltage locations below the sub-station. Each of these devices is capable of real-time data transmission via an Internet connection. Additionally, several analysis and visualization applications have been developed around the incoming data streams.

  14. Ceci N'est Pas a globular cluster: the metallicity distribution of the stellar system Terzan 5

    SciTech Connect (OSTI)

    Massari, D.; Mucciarelli, A.; Ferraro, F. R.; Lanzoni, B.; Dalessandro, E.; Lovisi, L. [Dipartimento di Fisica e Astronomia, Universit degli Studi di Bologna, v.le Berti Pichat 6/2, I-40127 Bologna (Italy); Origlia, L.; Bellazzini, M. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Rich, R. M.; Reitzel, D. [Department of Physics and Astronomy, Math-Sciences 8979, UCLA, Los Angeles, CA 90095-1562 (United States); Valenti, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Mnchen (Germany); Ibata, R. [Observatoire Astronomique, Universit de Strasbourg, CNRS, 11, rue de l'Universit. F-67000 Strasbourg (France)

    2014-11-01

    We present new determinations of the iron abundance for 220 stars belonging to the stellar system Terzan 5 in the Galactic bulge. The spectra have been acquired with FLAMES at the Very Large Telescope of the European Southern Observatory and DEIMOS at the Keck II Telescope. This is by far the largest spectroscopic sample of stars ever observed in this stellar system. From this data set, a subsample of targets with spectra unaffected by TiO bands was extracted and statistically decontaminated from field stars. Once combined with 34 additional stars previously published by our group, a total sample of 135 member stars covering the entire radial extent of the system has been used to determine the metallicity distribution function of Terzan 5. The iron distribution clearly shows three peaks: a super-solar component at [Fe/H] ? 0.25 dex, accounting for ?29% of the sample, a dominant sub-solar population at [Fe/H] ? 0.30 dex, corresponding to ?62% of the total, and a minor (6%) metal-poor component at [Fe/H] ? 0.8 dex. Such a broad, multi-modal metallicity distribution demonstrates that Terzan 5 is not a genuine globular cluster but the remnant of a much more complex stellar system.

  15. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J.

    2014-03-21

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  16. LIGHT CURVES OF 32 LARGE TRANSNEPTUNIAN OBJECTS

    SciTech Connect (OSTI)

    Benecchi, Susan D.; Sheppard, Scott S.

    2013-05-15

    We present observations of 32 primarily bright, newly discovered Transneptunian objects (TNOs) observable from the Southern Hemisphere during 39 nights of observation with the Irenee du Pont 2.5 m telescope at Las Campanas Observatory. Our dataset includes objects in all dynamical classes, but is weighted toward scattered objects. We find 15 objects for which we can fit periods and amplitudes to the data, and place light curve amplitude upper limits on the other 17 objects. Combining our sample with the larger light curve sample in the literature, we find a 3{sigma} correlation between light curve amplitude and absolute magnitude with fainter objects having larger light curve amplitudes. We looked for correlations between light curve and individual orbital properties, but did not find any statistically significant results. However, if we consider light curve properties with respect to object dynamical classification, we find statistically different distributions between the classical-scattered and classical-resonant populations at the 95.60% and 94.64% level, respectively, with the classical objects having larger amplitude light curves. The significance is 97.05% if the scattered and resonant populations are combined. The properties of binary light curves are largely consistent with the greater TNO population except in the case of tidally locked systems. All the Haumea family objects measured so far have light curve amplitudes and rotation periods {<=}10 hr, suggesting that they are not significantly different from the larger TNO population. We expect multiple factors are influencing object rotations: object size dominates light curve properties except in the case of tidal, or proportionally large collisional interactions with other TNOs, the influence of the latter being different for each TNO sub-population. We also present phase curves and colors for some of our objects.

  17. Flexible liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Kross, Brian J. (Yorktown, VA); Majewski, Stanislaw (Grafton, VA); Zorn, Carl J. (Yorktown, VA); Majewski, Lukasz A. (Grafton, VA)

    1997-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures.

  18. Flexible liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

    1997-11-04

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

  19. Adaptive, full-spectrum solar energy system

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  20. Distributed Resource Energy Analysis and Management System (DREAMS) Development for Real-time Grid Operations

    Broader source: Energy.gov [DOE]

    Hawaii has two different Energy Management Systems (EMS) on the islands of Oahu and Maui, and already has very high solar penetration. This project will design new capabilities for these systems to...

  1. TOPOS: A new topometric patient positioning and tracking system for radiation therapy based on structured white light

    SciTech Connect (OSTI)

    Lindl, Bastian L.; Mueller, Reinhold G.; Lang, Stephanie; Herraiz Lablanca, Maria D.; Kloeck, Stephan

    2013-04-15

    Purpose: A patient positioning system for radiation therapy based on structured white light and using off-the-shelf hardware components for flexibility and cost-effectiveness has been developed in house. Increased accuracy, patient comfort, abandonment of any skin marks, accelerated workflow, objective reading/recording, better usability and robust sensor design, compared to other positioning approaches, were the main goals of this work. Another aim was the application of a 6 degrees of freedom tracking system working without dose deposition. Methods: Two optical sensors are the main parts of the TOPOS Registered-Sign system (Topometrical Positioning, cyberTECHNOLOGIES, Germany). The components: cameras, projectors, and computers are commercial off-the-shelf products, allowing for low production costs. The black/white cameras of the prototype are capable of taking up to 240 frames per second (resolution: 640 Multiplication-Sign 488 pixels). The projector has a resolution of 1024 Multiplication-Sign 768 and a refresh rate of 120 Hz. The patient's body surface is measured continuously and registered to a reference surface, providing a transformation to superimpose the patient's surface to the reference (planning CT) surface as best as possible. The execution of the calculated transformation provides the correct patient position before the treatment starts. Due to the high-speed acquisition of the surfaces, a surveillance of the patient's (respiration) motion during treatment is also accomplished. The accuracy of the system was determined using a male mannequin. Two treatment sites were evaluated: one simulating a head and neck treatment and the other simulating a thoracic wall treatment. The mannequin was moved to predefined positions, and shift vectors given by the surface registration were evaluated. Additionally manual positioning using a color-coding system was evaluated. Results: Two prototypes have been developed, each allowing a continuous high density scan of a 500 Multiplication-Sign 500 Multiplication-Sign 400 mm{sup 3} (L Multiplication-Sign W Multiplication-Sign D) large volume with a refresh rate of 10 Hz (extendible to 20 Hz for a single sensor system). Surface and position correction display, as well as respiratory motion, is shown in real-time (delay < 200 ms) using present graphical hardware acceleration. For an intuitive view of the patient's misalignment, a fast surface registration algorithm has been developed and tested and a real-time color-coding technique is proposed and verified that allows the user to easily verify the position of the patient. Using first the surface registration and then the color coding the best results were obtained: for the head and neck case, the mean difference between the actual zero position and the final match was 0.1 {+-} 0.4, -0.2 {+-} 0.7, and -0.1 {+-} 0.3 mm in vertical, longitudinal, and lateral direction. For the thoracic case, the mean differences were 0.3 {+-} 0.5, -0.6 {+-} 1.9, 0.0 {+-} 0.4 mm. Conclusions: The presented system copes with the increasing demand for more accurate patient positioning due to more precise irradiation technologies and minimizes the preparation times for correct patient alignment, therefore optimizing the treatment workflow. Moreover, TOPOS is a versatile and cost effective image guided radiation therapy device. It allows an objective rating of the patient's position before and during the irradiation and could also be used for respiratory gating or tracking.

  2. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  3. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

  4. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); Teruya, Alan T. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  5. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  6. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.

    1995-01-17

    A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.

  7. DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions

    Broader source: Energy.gov [DOE]

    Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOE’s effort is part of the larger Administration’s Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

  8. Enterprise Assessments Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility … December 2015

    Office of Environmental Management (EM)

    Targeted Review of the Safety System Management of the Secondary Confinement System and Safety Significant Power Distribution System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility December 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  9. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  10. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  11. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNLs research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $1519,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.

  12. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect (OSTI)

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  13. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect (OSTI)

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  14. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect (OSTI)

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  15. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  16. Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Paatero, Jukka; Lund, Peter

    2010-03-15

    The trend of increasing application of distributed generation with solar photovoltaics (PV-DG) suggests that a widespread integration in existing low-voltage (LV) grids is possible in the future. With massive integration in LV grids, a major concern is the possible negative impacts of excess power injection from on-site generation. For power-flow simulations of such grid impacts, an important consideration is the time resolution of demand and generation data. This paper investigates the impact of time averaging on high-resolution data series of domestic electricity demand and PV-DG output and on voltages in a simulated LV grid. Effects of 10-minutely and hourly averaging on descriptive statistics and duration curves were determined. Although time averaging has a considerable impact on statistical properties of the demand in individual households, the impact is smaller on aggregate demand, already smoothed from random coincidence, and on PV-DG output. Consequently, the statistical distribution of simulated grid voltages was also robust against time averaging. The overall judgement is that statistical investigation of voltage variations in the presence of PV-DG does not require higher resolution than hourly. (author)

  17. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  18. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  19. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by...

  20. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  1. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  2. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  3. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  4. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  5. Method and apparatus for distributed intrusion protection system for ultra high bandwidth networks

    DOE Patents [OSTI]

    Goranson, Craig A.; Burnette, John R.; Greitzer, Frank L.; McMillan, Bryan H.

    2013-10-15

    A method for providing security to a network having a data stream with a plurality of portions of data, each having differing levels of sensitivity. The data stream is interrogated to determine the presence of predetermined characteristics associated with at least one of the portions of data within the data stream. At least one of the portions of data is then characterized, based upon the portion of data exhibiting a predetermined combination of characteristics, wherein the predetermined combination of characteristics is related to the sensitivity of the portion of data. The portions of the data stream are then distributed into a plurality of different channels, each of the channels associated with different level of sensitivity.

  6. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to understanding how homes use energy. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, NREL researchers investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. This report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to 10 end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. NREL concludes that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  7. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  8. A study of the reliability of Stirling engines for distributed receiver systems

    SciTech Connect (OSTI)

    Holtz, R.E.; Uherka, K.L.

    1988-11-01

    The objective of this study was to examine the reliability of existing and improved Stirling engine concepts for dispersed solar dish/electric applications in the 25--50 kW/sub e/ range. Five current kinematic Stirling engine designs have the capability to meet or exceed the 32% system efficiency goal of the DOE Solar Thermal Program. Experience with the Vanguard Solar-Dish/Stirling Engine module demonstrated that the 32% efficiency goal is realistic, but that improved Stirling engine reliability is necessary for successful implementation of dispersed solar power systems. A review of historical Stirling engine data illustrated that the three major reliability issues with kinematic Stirling engines are the piston-rod seals, engine hot parts and power control/drive systems. A specific kinematic engine concept that appears to have the potential for meeting the 50,000-hour operating lifetime requirement of solar power systems has a pressurized crankcase to reduce piston-rod seal problems, an indirectly heated hot-end section using heat pipes to smooth out temperature gradients in the heater tubes, and a variable-angle swashplate for power control. Further development efforts are required to establish reliability and validate performance goals of these engine concepts. 30 refs., 13 figs., 8 tabs.

  9. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  10. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.

    2015-09-04

    In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). We introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for any atomistic model.

  11. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  12. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  13. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect (OSTI)

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  14. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOE Patents [OSTI]

    Feddema, John T. (Albuquerque, NM); Driessen, Brian J. (Albuquerque, NM); Kwok, Kwan S. (Albuquerque, NM)

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  15. Projection screen having reduced ambient light scattering

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  16. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOE Patents [OSTI]

    Benke, Roland R. (Helotes, TX); Kearfott, Kimberlee J. (Ann Arbor, MI); McGregor, Douglas S. (Ann Arbor, MI)

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  17. Westinghouse Lighting: Notice of Allowance (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Allowance to Westinghouse Lighting Corporation allowing Westinghouse Lighting to resume distribution of various lamp products after Westinghouse Lighting provided new test data performed according to DOE regulations.

  18. Elecron-positron momentum distribution measurements of high-t/sub c/ superconductors and related systems

    SciTech Connect (OSTI)

    Wachs, A.L.; Turchi, P.E.A.; Howell, R.H.; Jean, Y.C.; Fluss, M.J.; West, R.N.; Kaiser, J.H.; Rayner, S.; Hahgighi, H.; Merkle, K.L.; Revcolevschi, A.

    1989-06-01

    We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La/sub 2/CuO/sub 4/, YBa/sub 2/Cu/sub 3/O/sub 7/ (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems. 5 refs., 1 fig.

  19. Electron-positron momentum distribution measurements of high-T superconductors and related systems

    SciTech Connect (OSTI)

    Wachs, A.L.; Turchi, P.E.A.; Howell, R.J.; Jean, Y.C.; Fluss, M.J.; West, R.N.; Kaiser, J.H.; Rayner, S.; Hahgighi, H.; Merkle, K.L.; Revcolevschi, A.; Wang, Z.Z.

    1989-08-01

    We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La{sub 2}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems. 5 refs., 1 fig.

  20. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOE Patents [OSTI]

    Stark, Peter C.; Zurek, Eduardo; Wheat, Jeffrey V.; Dunbar, John M.; Olivares, Jose A.; Garcia-Rubio, Luis H.; Ward, Michael D.

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  1. A 250 MHz Level 1 Trigger and Distribution System for the GlueX experiment

    SciTech Connect (OSTI)

    Abbott, David J.; Cuevas, R. Christopher; Doughty, David Charles; Jastrzembski, Edward A.; Barbosa, Fernando J.; Raydo, Benjamin J.; Dong, Hai T.; Wilson, Jeffrey S.; Gupta, Abishek; Taylor, Mark; Somov, S.

    2009-11-01

    The GlueX detector now under construction at Jefferson Lab will search for exotic mesons though photoproduction (10^8 tagged photons per second) on a liquid hydrogen target. A Level 1 hardware trigger design is being developed to reduce total electromagnetic (>200 MHz) and hadronic (>350 kHz) rates to less than 200 kHz. This trigger is dead timeless and operates on a global synchronized 250 MHz clock. The core of the trigger design is based on a custom pipelined flash ADC board that uses a VXS backplane to collect samples from all ADCs in a VME crate. A custom switch-slot board called a Crate Trigger Processor (CTP) processes this data and passes the crate level data via a multi-lane fiber optic link to the Global Trigger Processing Crate (also VXS). Within this crate detector sub-system processor (SSP) boards can accept all individual crate links. The subsystem data are processed and finally passed to global trigger boards (GTP) where the final L1 decision is made. We present details of the trigger design and report some performance results on current prototype systems.

  2. Real-Time Distribution Feeder Performance Monitoring, Advisory Control, and Health Management System

    SciTech Connect (OSTI)

    Stoupis, James; Mousavi, Mirrasoul

    2014-09-30

    New data collection system equipment was installed in Xcel Energy substations and data was collected from 6 substations and 20 feeders. During Phase I, ABB collected and analyzed 793 real-time events to date from 6 Xcel Energy substations and continues today. The development and integration of several applications was completed during the course of this project, including a model-based faulted segment identification algorithm, with very positive results validated with field-gathered data discussed and included in this report. For mostly underground feeders, the success rate is 90% and the overreach rate is 90%. For mostly overhead feeders, the success rate is 74% and the overreach rate is 50%. The developed method is producing very accurate results for mostly underground feeders. For mostly overhead feeders, due to the bad OMS data quality and varying fault resistance when arcing, the developed method is producing good results but with much room for improvement. One area where the algorithm can be improved is the accuracy for sub-cycle fault events. In these cases, the accuracy of the conventional signal processing methods suffers due to most of these methods being based on a one-cycle processing window. By improving the signal processing accuracy, the accuracy of the faulted segment identification algorithm will also improve significantly. ABB intends to devote research in this area in the near future to help solve this problem. Other new applications developed during the course of the project include volt/VAR monitoring, unbalanced capacitor switching detection, unbalanced feeder loading detection, and feeder overloading detection. An important aspect of the demonstration phase of the project is to show the ability to provide adequate “heads-up” time ahead of customer calls or AMI reports so that the operators are provided with the much needed time to collect information needed to address an outage. The advance notification feature of the demonstration system provides this time and helps accelerate service restoration ultimately. To demonstrate the effectiveness of this feature, a demo system using substation data alone was set up to compare the minutes saved over a period of 22 months for two feeders where the real-time notification system has been deployed. The metric used for performance assessment is the time difference between the actual outage time from the OMS versus the time the notification email was received on the operators desk. Over the period of 22 months, we have accumulated over 7600 minutes (32 hours) ahead of actual outage time compared to the OMS timestamps. The significance of this analysis is that it shows the potential to reduce the SAIDI minutes and directly impact utility performance in terms of outage duration. If deployed at scale, it would have a significant impact on system reliability. To put this number in perspective, it would be helpful to assign a dollar figure to the potential savings that could be realized. According to the host utility, the average cost for each customer-minute-out (CMO) is approximately $0.30 across the operating company. This includes both direct and indirect costs such as bad press. The outage data over the previous 4 years show that the average customer count on primary/tap level outages is about 56. Accordingly, the total minutes saved amounts to 425,600 CMOs on the average. This would in turn result in a potential cost savings figure of $127,680 for two feeders alone over the period of performance. This empirical evidence validates the strong value proposition of the project that was contemplated at the onset and its potential impact to reduce outage duration in support of DOE’s goal of 20%

  3. Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics

    SciTech Connect (OSTI)

    Kitagawa, Takuya; Pielawa, Susanne; Demler, Eugene [Physics Department, Harvard University, Cambridge, Massachusetts 02138 (United States); Imambekov, Adilet [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Schmiedmayer, Joerg [Atominstitut, TU-Wien, Stadionallee 2, 1020 Vienna (Austria); Gritsev, Vladimir [Physics Department, University of Fribourg, Chemin du Musee 3, 1700 Fribourg (Switzerland)

    2010-06-25

    We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show that distribution functions contain unique signatures of the many-body mechanism of decoherence. We argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated nature of 1D interacting systems.

  4. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect (OSTI)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  5. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  6. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can improve profitability. The fact of the matter, though, is that the focused commercialization of hydrogen from biological processes awaits some necessary scientific breakthroughs and much higher conventional energy prices.

  7. Combined Heat and Power (CHP) Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries.

  8. Network design optimization of fuel cell systems and distributed energy devices.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-07-01

    This research explores the thermodynamics, economics, and environmental impacts of innovative, stationary, polygenerative fuel cell systems (FCSs). Each main report section is split into four subsections. The first subsection, 'Potential Greenhouse Gas (GHG) Impact of Stationary FCSs,' quantifies the degree to which GHG emissions can be reduced at a U.S. regional level with the implementation of different FCS designs. The second subsection, 'Optimizing the Design of Combined Heat and Power (CHP) FCSs,' discusses energy network optimization models that evaluate novel strategies for operating CHP FCSs so as to minimize (1) electricity and heating costs for building owners and (2) emissions of the primary GHG - carbon dioxide (CO{sub 2}). The third subsection, 'Optimizing the Design of Combined Cooling, Heating, and Electric Power (CCHP) FCSs,' is similar to the second subsection but is expanded to include capturing FCS heat with absorptive cooling cycles to produce cooling energy. The fourth subsection, - Thermodynamic and Chemical Engineering Models of CCHP FCSs,' discusses the physics and thermodynamic limits of CCHP FCSs.

  9. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-09-30

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  10. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    SciTech Connect (OSTI)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. The prototype robot system was built and tested indoors and outdoors, outfitted with a Remote-Field Eddy Current (RFEC) sensor integrated as its main NDE sensor modality. An angled launcher, allowing for live launching and retrieval, was also built to suit custom angled launch-fittings from TDW. The prototype vehicle and launcher systems are shown. The complete system, including the in-pipe robot train, launcher, integrated NDE-sensor and real-time video and control console and NDE-data collection and -processing and real-time display, were demonstrated to all sponsors prior to proceeding into final field-trials--the individual components and setting for said acceptance demonstration are shown. The launcher-tube was also used to verify that the vehicle system is capable of operating in high-pressure environments, and is safely deployable using proper evacuating/purging techniques for operation in the po

  11. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect (OSTI)

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  12. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  13. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  14. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, ...

  15. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. PDF icon Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  16. Adaptive Street Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Webcasts » Adaptive Street Lighting Controls Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of San Jose, CA, and Kelly Cunningham of the California Lighting Technology Center at UC Davis discussed their experiences as early adopters of these smart street lighting systems. In Part II, presenters

  17. Florida Power and Light- Business Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Florida Power and Light (FPL) offers incentives for its business customers to upgrade the HVAC system, building envelope, water heating, refrigeration and lighting systems. The individual rebates...

  18. LED Lighting in a Performing Arts Building

    SciTech Connect (OSTI)

    Miller, N. J.; Kaye, S. M.; Coleman, P. M.; Wilkerson, A. M.; Perrin, T. E.; Sullivan, G. P.

    2014-07-31

    At the University of Florida in Gainesville, the DOE Solid-State Lighting GATEWAY program evaluated LED architectural and theatrical lighting in four academic/performance-related spaces within the Nadine McGuire Theatre + Dance Pavilion. Due to a wise choice of products and luminaire light distributions, the change brought significant quality improvements including improved controllability and color.

  19. Distribution System State Estimation

    Office of Scientific and Technical Information (OSTI)

    ... Table 1 - Project Tasks, Goals, and Accomplishments |Task|Goal|Result| |Phase I - 1|IEEE ... All are available through IEEE Xplore. The project has fostered and supported many other ...

  20. Electricity Distribution System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... Such analysis would need to go beyond simple financial estimates of upgrades and into ... technologies to support flexibility. a. Mixed AC-DC networks with new control theory. b. ...

  1. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect (OSTI)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-29

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  2. Lighting Control Energy Savings

    Energy Science and Technology Software Center (OSTI)

    1985-01-01

    CONTROLITE 1.0 is a lighting energy analysis program designed to calculate the energy savings and cost benefits obtainable using lighting controls in buildings. The program can compute the lighting energy reductions that result from using daylighting, scheduling, and other control strategies. When modeling daylight control systems, the program uses QUICKLITE to compute the daylight illuminances at specified points 5 times a day, 12 days a year (the 21st of each month), and for two skymore » conditions (clear and overcast skies). Fourier series techniques are used to fit a continuous curve through the computed illuminance points. The energy use for each of the 12 days is then computed given user-specified power-in/light-out characteristics of the modeled control system. The monthly and annual energy usage for overcast and clear conditions are found separately by fitting two long-term Fourier series curves to the energy use computed for each of the 12 days. Finally, the monthly energy use is calculated by taking a weighted average for the monthly energy use computed for the overcast and clear sky conditions. The program only treats the energy use directly attributable to lighting. The impact of lighting control strategies on building thermal loads is not computed. The program allows input of different control schedules (i.e., on/off times for the lighting system) for each day of the week, but every week of the year is treated the same; thus, holidays cannot be modeled explicitly. When used for daylighting purposes, CONTROLITE1.0 understands only clear and overcast conditions. User-supplied values for the proportion of clear and overcast hours for each month of the year are required to accommodate different climatic conditions.« less

  3. Solar optics: light as energy; energy as light

    SciTech Connect (OSTI)

    Bennett, D.J.; Eijadi, D.A.

    1980-05-01

    a prominent characteristic of earth-sheltered and underground buildings, as well as buildings designed to accommodate more uses within the same perimeters, is the prominence of interior space without direct access to natural light and view opportunities. Solar Optics, a technique for illuminating interior spaces with natural light, offers a way to satisfy the well-documented human affinity for natural light. The system, which uses a heliostat to track the sun and lenses and mirrors to direct the light to remote interior spaces, is more efficient than converting solar radiation into electricity. Through the use of cold mirrors, it is also possible to separate the infrared portion of the spectrum from visible light, thereby creating a cool light source that can reduce a building's space cooling demand. Solar Optics also offers energy savings by transmitting light through a small aperture, as opposed to a large window. Several design problems must still be addressed. The system will be demonstrated in a new building at the University of Minnesota. Because this is a limited demonstration, it does not include the integration of a natural light system with a central source light system...another promising application of Solar Optics.

  4. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  5. A Test Bed for Self-regulating Distribution Systems: Modeling Intergrated Renewable Energy and Demand Response in the GridLAB-D/MATLAB Environment

    SciTech Connect (OSTI)

    Wang, Dan; de Wit, Braydon; Parkinson, Simon; Fuller, Jason C.; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2012-01-16

    This paper discusses the development of a simulation test bed permitting the study of integrated renewable energy generators and controlled distributed heat pumps operating within distribution systems. The test bed is demonstrated in this paper by addressing the important issue of the self-regulating effect of consumer-owned air-source heat pumps on the variability induced by wind power integration, particularly when coupled with increased access to demand response realized through a centralized load control strategy.

  6. Nonimaging light concentrator with uniform irradiance

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gee, Randy C. (Arvada, CO)

    2003-04-01

    A nonimaging light concentrator system including a primary collector of light, an optical mixer disposed near the focal zone for collecting light from the primary collector, the optical mixer having a transparent entrance aperture, an internally reflective housing for substantially total internal reflection of light, a transparent exit aperture and an array of photovoltaic cells disposed near the transparent exit aperture.

  7. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  8. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energys Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  9. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  10. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses

    SciTech Connect (OSTI)

    atl?, Serap; Tan?r, Gne?

    2013-10-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  11. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  12. Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices

  13. Chapter 5: Lighting, HVAC, and Plumbing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Lighting, HVAC, and Plumbing High-Performance Engineering Design Lighting System Design Mechanical System Design Central Plant Systems Plumbing and Water Use Building Control Systems Electrical Power Systems Metering LANL | Chapter 5 High-Performance Engineering Design Lighting, HVAC, and Plumbing By now, the building envelope serves multiple roles. It protects the occupants from changing weather condi- tions and it plays a key part in meeting the occupants' comfort needs. The heating,

  14. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  15. Request for Information on the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126- Jul. 1, 2015

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is seeking comments and information from interested parties to inform the development of a pilot project concerning an interactive self-assessment tool to understand the relative resilience level of national electric grid distribution systems to extreme weather events.

  16. Three SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Three SBIR Grants Awarded for Solid-State Lighting Technology Three SBIR Grants Awarded for Solid-State Lighting Technology June 19, 2015 - 10:49am Addthis The U.S. Department of Energy Office of Science has awarded Three Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. (Phase II)-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System MoJo Labs Inc.(Phase

  17. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 11:25am Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. - Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp. - Integrating

  18. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 4:39pm Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc.-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp.-Integrating Energy

  19. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  20. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  1. Lighting market sourcebook for the US

    SciTech Connect (OSTI)

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-12-01

    Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

  2. System and method for ultrafast optical signal detecting via a synchronously coupled anamorphic light pulse encoded laterally

    DOE Patents [OSTI]

    Heebner, John E. (Livermore, CA)

    2010-08-03

    In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.

  3. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  4. Biogas systems in India

    SciTech Connect (OSTI)

    Lichtman, R.J.

    1983-01-01

    In addition to an analysis of household energy consumption, three scenarios are presented for the economic analysis of energy systems used for cooking, lighting, irrigation, and rice husk-cement manufacture. Digester design and feedstock variations are discussed. Problems such as gas pricing, sociological problems of distribution to diverse ethnic groups, and the complexity of technology transfer are mentioned. (CKK)

  5. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems ...

  6. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, Randolph Frank (Yorktown, VA); Majewski, Stanislaw (Grafton, VA); Zorn, Carl John (Yorktown, VA); Kross, Brian (Yorktown, VA)

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  7. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  8. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  9. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind? Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads). Because the definition is based on a wind project's location relative to end-use and power-distribution infrastructure, rather than on

  10. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect (OSTI)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  11. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  12. Overview of recent studies and modifications being made to RHIC to mitigate the effects of a potential failure to the helium distribution system

    SciTech Connect (OSTI)

    Tuozzolo, J.; Bruno, D.; DiLieto, A.; Heppner, G.; Karol, R.; Lessard,E.; Liaw, C-J; McIntyre, G; Mi, C.; Reich, J.; Sandberg, J.; Seberg, S.; Smart, L.; Tallerico, T.; Theisen, C.; Todd, R.; Zapasek R.

    2011-03-28

    In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel along with helium distribution for the magnet line recoolers, the heat shield, and the associated return lines. The worse case for failure would be a release from the magnet distribution line which operates at 3.5 to 4.5 atmospheres and contains the energized magnet but with a potential energy of 70 MJoules should the insulation system fail or an electrical connection opens. Studies were done to determine release rate of the helium and the resultant reduction in O{sub 2} concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for design and reliability and modifications were made to reduce the likelihood of failure and to reduce the volume of helium that could be released.

  13. Fukushima Light Water Detritiation System

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  14. GE Lighting Solutions: Order (2013-SE-4901)

    Broader source: Energy.gov [DOE]

    DOE ordered General Electric Lighting Solutions, LLC to pay a $5,360 civil penalty after finding GE Lighting Solutions had manufactured and distributed in commerce in the U.S. 30 units of basic model DR4-RTFB-23B and 177 units (of which 85 units remain in inventory) of basic model DR4-RTFB-77A-002, noncompliant traffic signal modules.

  15. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; Liu, Wenliang; Yu, Lizhong; Qian, Yu; Wang, Jun; Wang, Jia -Jun; Eng, Christopher; Liu, Chang -Jun; et al

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  16. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    SciTech Connect (OSTI)

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; Liu, Wenliang; Yu, Lizhong; Qian, Yu; Wang, Jun; Wang, Jia -Jun; Eng, Christopher; Liu, Chang -Jun; Jones, Keith W.

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g., Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.

  17. EECBG Success Story: North Carolina Playing Fields Score Brighter Lights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy North Carolina Playing Fields Score Brighter Lights EECBG Success Story: North Carolina Playing Fields Score Brighter Lights July 19, 2010 - 2:00pm Addthis Energy efficient metal halide lighting is replacing the outdated lighting system at Mecklenburg Park. | Photo courtesy of Michael Jaycocks Energy efficient metal halide lighting is replacing the outdated lighting system at Mecklenburg Park. | Photo courtesy of Michael Jaycocks Huntersville, North Carolina received a

  18. Mixture Formation in a Light-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant

  19. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  20. Light extraction block with curved surface

    DOE Patents [OSTI]

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.