National Library of Energy BETA

Sample records for light columbia water

  1. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  2. Columbia Water & Light- Solar Energy Loans

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  3. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  4. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  5. Columbia Water & Light- Home Performance with ENERGY STAR Loan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Columbia Water & Light (CWL) Home Performance with ENERGY STAR program allows Columbia residents to finance energy efficiency improvements to homes with affordable, low-interest loans with...

  6. Columbia Water & Light- New Home ENERGY STAR Rebate

    Broader source: Energy.gov [DOE]

    Columbia Water and Light offers a $1,000 rebate to customers for the construction of new homes that achieve certification as Energy Star homes. The Energy Star designation is given to homes that...

  7. Columbia Water & Light- Home Performance with ENERGY STAR Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light, a municipal utility, offers rebates to its residential customers who make certain energy efficient improvements to the home. Under the Home Performance with Energy Star...

  8. Columbia River monitoring: Distribution of tritium in Columbia River water at the Richland Pumphouse

    SciTech Connect (OSTI)

    Dirkes, R.L.

    1993-02-01

    The Surface Environmental Surveillance Project (SESP) is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This report presents the results of a special study conducted as part of the SESP to supplement the routine Columbia River monitoring program and provide information relative to the dispersion and distribution of Hanford origin contaminants entering the river through the seepage of ground water along the Hanford Site. Sampling was conducted along cross sections to determine the distribution of tritium within the Columbia River at Richland, Washington. The investigation was also designed to evaluate the relationship between the average tritium concentrations in the river water at this location and in water collected from the routine SESP river monitoring system located at the city of Richland drinking water intake (Richland Pumphouse). This study was conducted during the summers of 1987 and 1988. Water samples were collected along cross sections located at or near the Richland Pumphouse monitoring station.

  9. Columbia Water & Light- Commercial Energy Efficiency Loans

    Broader source: Energy.gov [DOE]

    The process involves several steps. First, the customer should have an ASHRAE Level II energy assessment conducted and complete a commercial loan application. Upon approval, the customer may proc...

  10. Light Water Reactor Sustainability (LWRS) Program | Department...

    Energy Savers [EERE]

    Nuclear Reactor Technologies Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) ...

  11. Light water reactor program

    SciTech Connect (OSTI)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  12. Light water detritiation

    SciTech Connect (OSTI)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  13. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect (OSTI)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  14. Cedarburg Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    Cedarburg Light & Water Comm Jump to: navigation, search Name: Cedarburg Light & Water Comm Place: Wisconsin Phone Number: (262) 375-7650 Website: www.cedarburglightandwater.com...

  15. Paragould Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    Paragould Light & Water Comm Jump to: navigation, search Name: Paragould Light & Water Comm Place: Arkansas Phone Number: (870) 239-7700 Website: www.paragould.com Facebook:...

  16. Clarksville Light & Water Co | Open Energy Information

    Open Energy Info (EERE)

    Clarksville Light & Water Co Jump to: navigation, search Name: Clarksville Light & Water Co Place: Arkansas Phone Number: 479-754-3148 Website: www.clarksvillelightwater.com...

  17. Two Rivers Water & Light | Open Energy Information

    Open Energy Info (EERE)

    Water & Light Jump to: navigation, search Name: Two Rivers Water & Light Place: Wisconsin Phone Number: (920) 793-5550 Website: trwaterandlight.com Facebook: https:...

  18. Parkland Light & Water Company | Open Energy Information

    Open Energy Info (EERE)

    Parkland Light & Water Company Jump to: navigation, search Name: Parkland Light & Water Company Place: Washington Phone Number: (253) 531-5666 Website: www.plw.coop Outage...

  19. Lockwood Water & Light Company | Open Energy Information

    Open Energy Info (EERE)

    Lockwood Water & Light Company Jump to: navigation, search Name: Lockwood Water & Light Company Place: Missouri Phone Number: 417-232-4221 Outage Hotline: 417-232-4221 References:...

  20. Brodhead Water & Lighting Comm | Open Energy Information

    Open Energy Info (EERE)

    Brodhead Water & Lighting Comm Jump to: navigation, search Name: Brodhead Water & Lighting Comm Place: Wisconsin Phone Number: 608-897-2505 Website: www.cityofbrodheadwi.usdepart...

  1. Light Water Reactor Sustainability Nondestructive Evaluation...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability ... A multitude of concrete-based structures are typically part of a light water reactor (LWR) ...

  2. Light Water Reactor Sustainability Program - Integrated Program...

    Office of Environmental Management (EM)

    Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and ...

  3. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  4. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  5. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  6. Newberry Water & Light Board | Open Energy Information

    Open Energy Info (EERE)

    Water & Light Board Jump to: navigation, search Name: Newberry Water & Light Board Place: Michigan Phone Number: (906) 293-5681 Outage Hotline: (906) 293-5681 References: EIA Form...

  7. Lake Mills Light & Water | Open Energy Information

    Open Energy Info (EERE)

    Light & Water Jump to: navigation, search Name: Lake Mills Light & Water Place: Wisconsin Phone Number: (920) 648-4026 Website: www.lakemillslw.com Outage Hotline: (920) 648-4026...

  8. Waterloo Light & Water Comm | Open Energy Information

    Open Energy Info (EERE)

    Water Comm Jump to: navigation, search Name: Waterloo Light & Water Comm Place: Wisconsin Phone Number: (920) 478-2260 Website: waterlooutilities.com Facebook: https:...

  9. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  10. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    SciTech Connect (OSTI)

    Columbia River System Operations Review; United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  11. Light-Water Breeder Reactor

    DOE Patents [OSTI]

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  12. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  13. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  14. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  15. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Energy Savers [EERE]

    disposed instead of untreated used fuel. April 29, 2010 Constituents of Used Light Water Reactor Nuclear Fuel (by mass) April 29, 2010 Descriptions from NE R&D Roadmap to...

  16. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    SciTech Connect (OSTI)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors.

  17. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  18. Sun Prairie Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Water & Light Comm Jump to: navigation, search Name: Sun Prairie Water & Light Comm Place: Wisconsin Phone Number: 608.837.5500 Website: www.sunprairieutilities.com Twitter:...

  19. Oconto Falls Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Oconto Falls Water & Light Comm Jump to: navigation, search Name: Oconto Falls Water & Light Comm Place: Wisconsin Phone Number: (920) 846-4507 Website: ofmu.orgaboutus Outage...

  20. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  1. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap...

    Office of Environmental Management (EM)

    Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability ...

  2. Light Water Detritiation using the CECE Process | Department...

    Office of Environmental Management (EM)

    Light Water Detritiation using the CECE Process Light Water Detritiation using the CECE Process Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey ...

  3. Light Water Reactor Sustainability Program - Non-Destructive...

    Office of Environmental Management (EM)

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  4. Light-water reactor accident classification

    SciTech Connect (OSTI)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  5. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  6. Hyporheic discharge of river water into fall chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Hanford Reach, Columbia River

    SciTech Connect (OSTI)

    Geist, David R. )

    1999-12-01

    Fall chinook salmon (Oncorhynchus tshawytscha) spawned predominantly in areas of the Hanford Reach of the Columbia River where hyporheic water discharged into the river channel. This upwelling water had a dissolved solids content (i.e., specific conductance) indicative of river water and was presumed to have entered highly permeable riverbed substrate at locations upstream of the spawning areas. Hyporheic discharge zones composed of undiluted ground water or areas with little or no upwelling were not used by spawning salmon. Rates of upwelling into spawning areas averaged 1,200 L?m-2?day-1 (95% C.I.= 784 to 1,665 L?m-2?day-1) as compared to approximately 500 L?m-2?day-1 (95% C.I.= 303 to 1,159 L?m-2?day-1) in non-spawning areas. Dissolved oxygen content of the hyporheic discharge near salmon spawning areas was about 9 mg?L-1 (+ 0.4 mg?L-1) whereas in non-spawning areas dissolved oxygen values were 7 mg?L-1 (+ 0.9 mg?L-1) or lower. In both cases dissolved oxygen of the river water was higher (11.3+ 0.3 mg?L-1). Physical and chemical gradients between the hyporheic zone and the river may provide cues for adult salmon to locate suitable spawning areas. This information will help fisheries managers to describe the suitability of salmon spawning habitat in large rivers.

  7. Superior Water, Light and Power Co | Open Energy Information

    Open Energy Info (EERE)

    Superior Water, Light and Power Co Jump to: navigation, search Name: Superior Water, Light and Power Co Place: Wisconsin Phone Number: 715-394-2200 Website: www.swlp.com Outage...

  8. North Branch Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    North Branch Water & Light Comm Jump to: navigation, search Name: North Branch Water & Light Comm Place: Minnesota Phone Number: 651-674-7100 or 651-674-8113 Website:...

  9. Light Water Reactor Sustainability Program: Materials Aging and...

    Office of Environmental Management (EM)

    Program: Materials Aging and Degradation Technical Program Plan Light Water Reactor ... Primary water stress corrosion cracking (PWSCC) is one key form of degradation in extended ...

  10. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. Light Water Reactor Sustainability Program - Integrated Program Plan - Revision 3 (2.66 MB)

  11. Commercial Light Water Reactor Tritium Extraction Facility

    SciTech Connect (OSTI)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  12. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  13. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.C., CASL: Consortium for the Advanced Simulation of Light Water Reactors - A DOE Energy Innovation Hub, ANS MC2015 Joint Internation Conference on Mathematics and Computation...

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Environment for Scientific Collaboration Posted: April 30, 2013 The Consortium for Advanced Simulation of Light Water Reactors, the Department of Energy's first...

  16. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  17. McMinnville Water & Light- Conservation Service Loan Program

    Broader source: Energy.gov [DOE]

    McMinnville Water & Light offers financing to residential and commercial customers to make energy efficient improvements to eligible facilities and homes. Financing is available for pre...

  18. Moose Lake Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    Website: www.mooselakepower.com Facebook: https:www.facebook.compagesMoose-Lake-Water-Light-Commission445326012175319?frefts Outage Hotline: (218) 485-4100 References:...

  19. Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.

    SciTech Connect (OSTI)

    Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

    1982-09-01

    A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

  20. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  1. Chemical and light-stable isotope characteristics of waters from...

    Open Energy Info (EERE)

    light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation, search OpenEI...

  2. McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

  3. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    City Water, Light and Power  (CWLP) is offering residential and commercial customers a $500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems with a maximum rebate of up to $2...

  4. Cedarburg Light & Water Utility- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cedarburg Light & Water (CL&W) offers rebates to residential customers for a variety of energy-efficient equipment and upgrades.  Through Wisconsin Focus on Energy, CL&W provides...

  5. Improving Light Water Reactor Fuel Reliability Via Flow-Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Light Water Reactor Fuel Reliability Via Flow-Indu... Failures of the fuel rod elements used to power U.S. nuclear ... and a recognized bottleneck to optimal fuel utilization. ...

  6. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  7. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  8. Advanced dry head-end reprocessing of light water reactor spent...

    Office of Scientific and Technical Information (OSTI)

    reprocessing of light water reactor spent nuclear fuel Citation Details In-Document Search Title: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel ...

  9. EIS-0288-S1: Production of Tritium in a Commercial Light Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Commercial Light Water Reactor Supplemental Environmental Impact Statement EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor Supplemental Environmental ...

  10. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactors, a DOE Energy Innovation Hub | Princeton Plasma Physics Lab May 29, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water Reactors, a DOE Energy Innovation Hub Dr. Douglas Kothe Oak Ridge National Laboratory The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first U.S. Department of Energy (DOE) Energy Innovation Hub, established in July 2010 for the modeling and simulation (M&S) of nuclear

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactors (CASL) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  12. Columbia Power System | Open Energy Information

    Open Energy Info (EERE)

    931-388-4833 Website: www.cpws.com Facebook: https:www.facebook.compagesColumbia-Power-Water-Systems123897314290346 Outage Hotline: 931-388-4833 References: EIA Form...

  13. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  14. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    SciTech Connect (OSTI)

    Paul L. Wichlacz; Gerald Sehlke

    2008-02-01

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and

  15. Columbia Gas of Virginia- Business Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers, controls, and infrared heaters are...

  16. Columbia River PUD- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Columbia River PUD offers rebates for Energy Star manufactured homes, Energy Star appliances, duct sealing, ductless heat pumps, air-source heat pumps, Marathon water heaters, appliance recycling,...

  17. Assessment of light water reactor accident management programs and experience

    SciTech Connect (OSTI)

    Hammersley, R.J.

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Archive Energy Department Announces Five Year Renewal of Funding for First Energy Innovation Hub Consortium for Advanced Simulation of Light Water Reactors to Receive up to $121.5 Million Over Five Years. Posted: January 29, 2015 VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem modeling. Posted: August 14, 2014 Westinghouse Completes its AP1000®

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinars Introduction to CASL Youtube snapshot Consortium for Advanced Simulation of Light Water Reactors Youtube snapshot CASL Dedication Youtube snapshot Energy Secretary Chu visits ORNL Youtube snapshot CASL's VERA: What is Possible? Youtube snapshot Andrew Godfrey - Nuclear Energy Technical Webcasts - VERA Methods Youtube snapshot Subchannel methods for the Thermal-Hydraulic Analysis of Nuclear Power Systems Youtube snapshot Surrogate Models for Uncertainty Quantification presented by Dr.

  20. Use of Thorium in Light Water Reactors (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Use of Thorium in Light Water Reactors Citation Details In-Document Search Title: Use of Thorium in Light Water Reactors Thorium-based fuels can be used to reduce concerns related ...

  1. Advanced dry head-end reprocessing of light water reactor spent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel Citation Details In-Document Search Title: Advanced dry head-end reprocessing of light water ...

  2. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  3. SEIS for the Production of Tritium in a Commercial Light Water...

    National Nuclear Security Administration (NNSA)

    SEIS for the Production of Tritium in a Commercial Light Water Reactor The NNSA, a ... the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS; DOEEIS-0288). ...

  4. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Kit CASL Acknowledgement This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. CASL Logo Files CASL Extended - CASL_word.jpg and CASL_word.png CASL without words - CASL.jpg and CASL.png CASL with words - CASL_word.jpg and CASL_word.png CASL Partners - partners.jpg

  6. District of Columbia - Compare - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  7. District of Columbia - Rankings - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  8. District of Columbia - Search - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  9. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  10. Method of burning lightly loaded coal-water slurries

    DOE Patents [OSTI]

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  11. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  12. Multi-Applications Small Light Water Reactor - NERI Final Report

    SciTech Connect (OSTI)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  13. Mechanical design of a light water breeder reactor

    DOE Patents [OSTI]

    Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.

    1976-01-01

    In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.

  14. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  15. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  16. A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

    Broader source: Energy.gov [DOE]

    In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the...

  17. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  18. Light-water breeder reactor (LWBR Development Program)

    DOE Patents [OSTI]

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  19. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  20. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  1. The Columbia River System : the Inside Story.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  2. Database of radionuclide measurements in Columbia River water, fish, waterfowl, gamebirds, and shellfish downstream of Hanford`s single-pass production reactors, 1960--1970. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Thiede, M.E.; Duncan, J.P.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from radionuclide emissions since 1944 at the Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. The time periods of greatest interest to the HEDR study vary depending on the type of environmental media concerned. Concentrations of radionuclides in Columbia River media from 1960--1970 provide the best historical data for validation of the Columbia River pathway computer models. This report provides the historical radionuclide measurements in Columbia River water (1960--1970), fish (1960--1967), waterfowl (1960--1970), gamebirds (1967--1970), and shellfish (1960--1970). Because of the large size of the databases (845 pages), this report is being published on diskette. A diskette of this report is available from the Technical Steering Panel (c/o K. CharLee, Office of Nuclear Waste Management, Department of Ecology, Technical Support and Publication Information Section, P.O. Box 47651, Olympia, Washington 98504-7651).

  3. North Branch Municipal Water & Light- Commercial & Industrial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Branch Municipal Water & Light provides incentives for its commercial and industrial customers to improve the energy efficiency of facilities. Rebates are available for a variety of...

  4. EIS-0288-S1: Production of Tritium in a Commercial Light Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium ... February 24, 2016 EIS-0288-S1: Final Supplemental Environmental Impact Statement August ...

  5. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  6. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  7. McMinnville Water and Light- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to residential customers. Rebates are valid on: 

  8. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of CHP in Light Commercial Hot Water Applications 2016 Building Technologies Office Peer Review Kris L. Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation 2 ...

  9. Sustainability Considerations in Spent Light-water Nuclear Fuel Retrievability

    SciTech Connect (OSTI)

    Wood, Thomas W.; Rothwell, Geoffrey

    2012-01-10

    This paper examines long-term cost differences between two competing Light Water Reactor (LWR) fuels: Uranium Oxide (UOX) and Mixed Uranium Oxide-Plutonium Oxide (MOX). Since these costs are calculated on a life-cycle basis, expected savings from lower future MOX fuel prices can be used to value the option of substituting MOX for UOX, including the value of maintaining access to the used UOX fuel that could be reprocessed to make MOX. The two most influential cost drivers are the price of natural uranium and the cost of reprocessing. Significant and sustained reductions in reprocessing costs and/or sustained increases in uranium prices are required to give positive value to the retrievability of Spent Nuclear Fuel. While this option has positive economic value, it might not be exercised for 50 to 200 years. Therefore, there are many years for a program during which reprocessing technology can be researched, developed, demonstrated, and deployed. Further research is required to determine whether the cost of such a program would yield positive net present value and/or increases the sustainability of LWR energy systems.

  10. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  11. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  12. Revised accident source terms for light-water reactors

    SciTech Connect (OSTI)

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  13. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  14. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  15. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  16. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect (OSTI)

    2009-02-01

    The Columbia River, the fourth largest river on the continent as measured by average annual flow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak flood waters, that flow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, officials from the United States and Canada began a long process to seek a joint solution to the flooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  17. Multi-Application Small Light Water Reactor Final Report

    SciTech Connect (OSTI)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as

  18. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  19. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    SciTech Connect (OSTI)

    Thomas, Kenneth; Oxstrand, Johanna

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  20. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... leveraging previous taxpayer investments in M&S tools that run on the world's ...

  1. Consortium for Advanced Simulation of Light-Water Reactors To...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... leveraging previous taxpayer investments in modelingsimulation tools that run ...

  2. City Water Light and Power - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers Water Heaters Heat Pumps Building Insulation Maximum Rebate Building Insulation: 500 Program Info Sector Name Utility Administrator Energy Services Office Website...

  3. Duquesne Light Company - Residential Solar Water Heating Program...

    Broader source: Energy.gov (indexed) [DOE]

    rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of 286 per qualifying...

  4. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  5. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  6. Columbia Estuary Ecosystem Restoration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Estuary Ecosystem Restoration Program Finding of No Significant Impact page 1 Columbia Estuary Ecosystem Restoration Program Finding of No Significant Impact Bonneville Power Administration DOE/EA-2006 July 2016 SUMMARY Bonneville Power Administration (BPA) announces its environmental findings for the Columbia Estuary Ecosystem Restoration Program. The ongoing program, implemented by BPA and United States Army Corps of Engineers (Corps), involves activities and projects to restore

  7. Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The FY10 activities for development of a nuclear concrete materials database to support the Light Water Reactor Sustainability Program are summarized. The database will be designed and constructed...

  8. EIS-0288: Production of Tritium in a Commercial Light Water Reactor

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more...

  9. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  10. Development of Light Water Reactor Fuels with Enhanced Accident Tolerance – Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides DOE’s plan to develop light water reactor (LWR) fuels with enhanced accident tolerance in response to 2012 Congressional direction and funding authorization. The result of the...

  11. Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor

    National Nuclear Security Administration (NNSA)

    FRONT COVER Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor U.S. Department of Energy National Nuclear Security Administration DOE/EIS-0288-S1 August 2014 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CLWR commercial light water reactor CO2e carbon dioxide equivalent DOE U.S. Department of Energy EIS environmental impact statement EPA U.S. Environmental Protection Agency °F degrees Fahrenheit FR Federal Register

  12. British Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. British Columbia is a province in Canada. Energy Incentives for British Columbia Energy Monitoring Act (Canada) Western Interstate Nuclear Compact State Nuclear Policy...

  13. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  14. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  15. Los Alamos boosts light-water reactor research with advanced modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation technology Los Alamos boosts light-water reactor research Los Alamos boosts light-water reactor research with advanced modeling and simulation technology As part of the consortium CASL will now be deployed to industry and academia under a new inter-institutional agreement for intellectual property. March 2, 2015 A simulation demonstrates the volume fraction of a bubble phase in the region downstream of a 3×3 rod bundle after a short burst of bubbles has been introduced into the

  16. Practical combinations of light-water reactors and fast reactors for future actinide transmutation

    SciTech Connect (OSTI)

    Collins, Emory D.; Renier, John-Paul

    2007-07-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle. (authors)

  17. Columbia Boulevard Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2005-08-01

    This is a combined heat and power (CHP) project profile on 320 kW fuel cell and microturbine power plants at Columbia Boulevard Wastewater Treatment Plant in Portland, Oregon.

  18. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  19. Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    63 No. 8 * JOM 49 www.tms.org/jom.html Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance: Current Status, Challenges, and Future High Fidelity Modeling K. Edsinger, C.R. Stanek, and B.D. Wirth How would you... ...describe the overall signifcance of this paper? This paper provides a concise description of the nuclear fuel used in pressurized water nuclear reactors and the most commonly observed fuel failure mechanisms. ...describe this work to a materials

  20. Consortium for Advanced Simulation of Light-Water Reactors To Receive Up To

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $121.5M Over Five Years Light-Water Reactors To Receive Up To $121.5M Over Five Years - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  1. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect (OSTI)

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  2. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  3. District of Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (District of Columbia) Glacial Energy Holdings (District of Columbia) Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Integrys Energy Services, Inc. (District...

  4. Technology Solutions for New Homes Case Study: Columbia County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia County Habitat for Humanity Passive Townhomes Technology Solutions for New Homes Case Study: Columbia County Habitat for Humanity Passive Townhomes The Columbia County ...

  5. Building America Case Study: Columbia County Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia County Habitat for Humanity Passive Townhomes Hudson, New York PROJECT INFORMATION Project Name: Columbia Passive Townhomes II Location: Hudson, NY Partners: Columbia ...

  6. PP-369 British Columbia Hydro and Power Authority | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-369 British Columbia Hydro and Power Authority PP-369 British Columbia Hydro and Power Authority Presidential Permit authorizing British Columbia and Power Authority to...

  7. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. )

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  8. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  9. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    SciTech Connect (OSTI)

    Not Listed

    2011-11-01

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  10. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  11. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    SciTech Connect (OSTI)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  12. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect (OSTI)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450?nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ?43% at 375450?nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  13. British Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incentives for British Columbia Energy Monitoring Act (Canada) Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) References http:...

  14. Generic component failure data base for light water and liquid sodium reactor PRAs (probabilistic risk assessments)

    SciTech Connect (OSTI)

    Eide, S.A.; Chmielewski, S.V.; Swantz, T.D.

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs). The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates. Using this approach, most of the failure rates are based on actual plant data rather than existing estimates. 21 refs., 9 tabs.

  15. Fuel assembly for the production of tritium in light water reactors

    DOE Patents [OSTI]

    Cawley, William E.; Trapp, Turner J.

    1985-01-01

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  16. Fuel assembly for the production of tritium in light water reactors

    DOE Patents [OSTI]

    Cawley, W.E.; Trapp, T.J.

    1983-06-10

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  17. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  18. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings January 11, 2011 - Oak Ridge, TN February 8, 2011 - Charlotte, NC Minutes The second meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held in two parts on January 11, 2011 at Oak Ridge National Laboratories (ORNL), Oak Ridge, TN; and on February 8, 2011, at the facilities of the Electric Power Research Institute (EPRI) in Charlotte, NC. Both meetings were chaired by John Gaertner of EPRI. Two meetings were necessary

  19. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 23 - 24, 2011 - Oak Ridge, TN Minutes The third meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on August 23 until noon on August 24, 2011, at Oak Ridge National Laboratories (ORNL), Oak Ridge, Tennessee. The meeting was chaired by John Gaertner of EPRI. The agenda, meeting attendees, and IC member organizations are included in Attachment 1 to these minutes. Attendance was by invitation only. Fifteen representatives

  20. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting September 9, 2010 Minutes The first meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on September 9, 2010, at the facilities of the Electric Power Research Institute (EPRI) in Charlotte, NC. The meeting was chaired by John Gaertner of EPRI. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was by invitation only. Representatives from 16 organizations were invited. All

  1. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  2. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect (OSTI)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  3. Neutron collar calibration for assay of LWR (light-water reactor) fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the /sup 235/U content, and the /sup 238/U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities.

  4. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  5. Columbia River White Sturgeon (Acipenser Transmontanus) Population Genetics and Early Life History Study, January 1, 1986 to December 31, 1986, Final Report.

    SciTech Connect (OSTI)

    Brannon, Ernest L.

    1986-12-01

    The 1986 Columbia River white sturgeon investigations continued to assess genetic variability of sturgeon populations isolated in various areas of the Columbia River, and to examine environmental factors in the habitat that may affect early life history success. Baseline data have been collected for three character sets. Twenty-eight loci have been analyzed for differences using electrophoresis, snout shapes were assessed for multivariate distinction, and scute counts have been examined as an index of variability. Fish that reside in the mid-Columbia and lower river have been sufficiently characterized by electrophoresis to compare with up-river areas. To date, few electrophoretic differences have been identified. However, Lake Roosevelt sturgeon sample size will be increased to determine if some of the observed differences from lower river fish are significant. Snout shape has been shown to be easily quantifiable using the digitizing technique. Scute count data initially indicate that variability exists within as well as between areas. Patterns of differentiation of one or more of these data sets may be used to formulate stock transplant guidelines essential for proper management or enhancement of this species. The historical habitat available to sturgeon in the Columbia River has changed through the development of hydroelectric projects. Dams have reduced the velocity and turbulence, and increased light penetration in the water column from less silt. These changes have affected the ability of sturgeon to feed and have made them more vulnerable to predation, which appear to have altered the ability of populations isolated in the reservoirs to sustain themselves. Present studies support the theory that both the biological and physical habitat characteristics of the Columbia River are responsible for reduced sturgeon survival, and justify consideration of enhancement initiatives above Bonneville to improve sturgeon reproductive success.

  6. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges

    Broader source: Energy.gov [DOE]

    The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR...

  7. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure...

  8. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    SciTech Connect (OSTI)

    Holbrook, Mark; Kinsey, Jim

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Columbia Water & Light- Home Performance with ENERGY STAR Loan The Columbia Water & Light (CWL) Home Performance with ENERGY STAR program allows Columbia residents to finance...

  10. Cold fusion by electrolysis in a light water-potassium carbonate solution with a nickel electrode

    SciTech Connect (OSTI)

    Notoya, Reiko )

    1993-09-01

    The evolution of a large amount of heat, unexplainable by ordinary chemical reactions, was observed in an electrolytic cell with a nickel cathode and a platinum anode in a potassium carbonate-light water solution. The nickel cathode had a specially designed porous structure, based on fundamental knowledge concerning the active hydrogen electrode in alkaline solutions. An increase in the concentration of calcium ions was observed in the electrolyte, which seems to be the result of potassium-hydrogen cold fusion. 5 refs., 4 figs.

  11. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 11 - 12, 2012 - Oak Ridge, TN Minutes The fifth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on September 11 and 12, 2012; at Oak Ridge National Laboratory in Oak Ridge, TN. The first day was a joint meeting of the CASL Science Council and the Industry Council and was co-facilitated by Paul Turinsky of NCSU and John Gaertner of EPRI. The Industry Council met separately on the second day which was chaired by John

  12. Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor, Summary

    National Nuclear Security Administration (NNSA)

    Draft Supplemental Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor Summary U.S. Department of Energy National Nuclear Security Administration DOE/EIS-0288-S1 August 2014 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CLWR commercial light water reactor DOE U.S. Department of Energy EIS environmental impact statement EPA U.S. Environmental Protection Agency FR Federal Register NEPA National Environmental Policy Act of 1969 NNSA National

  13. Nanostructure of Metallic Particles in Light Water Reactor Used Nuclear Fuel

    SciTech Connect (OSTI)

    Buck, Edgar C.; Mausolf, Edward J.; Mcnamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2015-03-11

    The extraordinary nano-structure of metallic particles in light water reactor fuels points to possible high reactivity through increased surface area and a high concentration of high energy defect sites. We have analyzed the metallic epsilon particles from a high burn-up fuel from a boiling water reactor using transmission electron microscopy and have observed a much finer nanostructure in these particles than has been reported previously. The individual round particles that varying in size between ~20 and ~50 nm appear to consist of individual crystallites on the order of 2-3 nm in diameter. It is likely that in-reactor irradiation induce displacement cascades results in the formation of the nano-structure. The composition of these metallic phases is variable yet the structure of the material is consistent with the hexagonal close packed structure of epsilon-ruthenium. These findings suggest that unusual catalytic behavior of these materials might be expected, particularly under accident conditions.

  14. Shippingport operations with the Light Water Breeder Reactor core. (LWBR Development Program)

    SciTech Connect (OSTI)

    Budd, W.A.

    1986-03-01

    This report describes the operation of the Shippingport Atomic Power Station during the LWBR (Light Water Breeder Reactor) Core lifetime. It also summarizes the plant-oriented operations during the period preceding LWBR startup, which include the defueling of The Pressurized Water Reactor Core 2 (PWR-2) and the installation of the LWBR Core, and the operations associated with the defueling of LWBR. The intent of this report is to examine LWBR experience in retrospect and present pertinent and significant aspects of LWBR operations that relate primarily to the nuclear portion of the Station. The nonnuclear portion of the Station is discussed only as it relates to overall plant operation or to unusual problems which result from the use of conventional equipment in radioactive environments. 30 refs., 69 figs., 27 tabs.

  15. Sensitivity of the threshold voltage of organic thin-film transistors to light and water

    SciTech Connect (OSTI)

    Feng, Cong; Marinov, Ognian; Deen, M. Jamal; Selvaganapathy, Ponnambalam Ravi; Wu, Yiliang

    2015-05-14

    Analyses of extensive experiments with organic thin-film transistors (OTFTs) indicate that the threshold voltage V{sub T} of an OTFT has a temporal differential sensitivity. In particular, V{sub T} changes initially by changing the light illumination intensity or making/removing a contact of water with the organic semiconductor. Keeping the conditions stationary, then the initial shift of V{sub T} diminishes, since the time dependence of V{sub T} gradually recovers the OTFT to the state before applying the change in the environmental conditions. While still causing a differential and time-variant shift of V{sub T}, the deionized water does not have a dramatic impact on OTFTs that use the polymer DKPP-?T (diketopyrrolopyrrole ?-unsubstituted quaterthiophene) as the active semiconductor material. Observations for the impact of water are made from experiments with an OTFT that has a microfluidic channel on the top the electrical channel, with the water in the microfluidic channel in direct contact with the electrical channel of the OTFT. This arrangement of electrical and microfluidic channels is a novel structure of the microfluidic OTFT, suitable for sensing applications of liquid analytes by means of organic electronics.

  16. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  17. EIS-0163-S: Supplemental EIS/1993 Interim Columbia and Snake Rivers Flow Improvement Measures for Salmon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers – Walla Walla District has prepared this statement to assess alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency in developing this supplement due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement in March of 1993. This statement supplements the 1992 Columbia River Salmon Flow Measures Options Analysis Environmental Impact Statement, which evaluated ways to alter water management operations in 1992 on the lower Columbia and Snake rivers to enhance the survival of wild Snake River salmon.

  18. Depolarized light scattering and dielectric response of a peptide dissolved in water

    SciTech Connect (OSTI)

    Martin, Daniel R.; Fioretto, Daniele; Matyushov, Dmitry V.

    2014-01-21

    The density and orientational relaxation of bulk water can be separately studied by depolarized light scattering (DLS) and dielectric spectroscopy (DS), respectively. Here, we ask the question of what are the leading collective modes responsible for polarization anisotropy relaxation (DLS) and dipole moment relaxation (DS) of solutions involving mostly hydrophobic solute-water interfaces. We study, by atomistic molecular dynamics simulations, the dynamics and structure of hydration water interfacing N-Acetyl-leucine-methylamide dipeptide. The DLS response of the solution is consistent with three relaxation processes: bulk water, rotations of single solutes, and collective dipole-induced-dipole polarizability of the solutes, with the time-scale of 130200 ps. No separate DLS response of the hydration shell has been identified by our simulations. Density fluctuations of the hydration layer, which largely contribute to the response, do not produce a dynamical process distinct from bulk water. We find that the structural perturbation of the orientational distribution of hydration waters by the dipeptide solute is quite significant and propagates ?3?5 hydration layers into the bulk. This perturbation is still below that produced by hydrated globular proteins. Despite this structural perturbation, there is little change in the orientational dynamics of the hydration layers, compared to the bulk, as probed by both single-particle orientational dynamics and collective dynamics of the dipole moment of the shells. There is a clear distinction between the perturbation of the interfacial structure by the solute-solvent interaction potential and the perturbation of the interfacial dynamics by the corresponding forces.

  19. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  20. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  1. City of Columbia- Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In November 2004, voters in Columbia, Missouri, approved* a proposal to adopt a local renewable portfolio standard (RPS). (The state renewable electricity standard adopted by ballot initiative in...

  2. Columbia Utilities Electricity | Open Energy Information

    Open Energy Info (EERE)

    Electricity Jump to: navigation, search Name: Columbia Utilities Electricity Place: New York Phone Number: (877) 726-5862 Website: www.columbiautilities.com Twitter:...

  3. District of Columbia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    District of Columbia Denise Peoples honored for 30 years of service Four sworn in as NNSA's newest members of the Senior Executive Service corps NNSA Headquarters

  4. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  5. Brochure: Federal Columbia River Power System (FCRPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these agencies maximize the use of the Columbia River by generating power, protecting fish and wildlife, controlling floods, providing irrigation and navigation, and sustaining...

  6. U. 5. COLUMBIA RIVER POWER SYS1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration deposited 12,800,000 to the reclamation fund in the United States Treasury for the account of Columbia Basin Project, Yakima Project...

  7. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  8. Columbia, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Missouri. It falls under Missouri's 9th congressional district.12 Registered Energy Companies in Columbia, Missouri AFuels Technologies LLC Renewable Alternatives LLC...

  9. British Columbia UILO | Open Energy Information

    Open Energy Info (EERE)

    UILO Jump to: navigation, search Name: British Columbia UILO Place: Canada Sector: Services Product: General Financial & Legal Services ( Academic Research foundation )...

  10. Columbia Gas of Ohio- Residential Rebate Programs

    Broader source: Energy.gov [DOE]

    Columbia Gas of Ohio (CGO) offers energy efficiency rebates for furnaces, boilers, and customers that enroll in the Home Performance Solutions Program. 

  11. PP-22 British Columbia Electric Company, Limited

    Broader source: Energy.gov [DOE]

    Presidential permit authorizing British Columbia Electric Company, Limited to construct, operate, and maintain electric transmission facilities at the U.S-Canadian border.

  12. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  13. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  14. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  15. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect (OSTI)

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  16. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  17. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect (OSTI)

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  18. Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis

    2010-09-01

    RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

  19. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  20. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  1. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect (OSTI)

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  2. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    SciTech Connect (OSTI)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  3. Columbia River PUD- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Columbia River PUD offers a variety of rebates to commercial and industrial customers who make energy saving improvements to facilities. Visit Columbia River PUD's website for specific program...

  4. EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas...

    Office of Environmental Management (EM)

    5: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, Washington EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, ...

  5. Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: District of Columbia References:...

  6. EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, Washington EA-1945: Northern Mid-Columbia Joint Project; Grant, Douglas, and Chelan Counties, ...

  7. Washington Gas Energy Services (District of Columbia) | Open...

    Open Energy Info (EERE)

    Washington Gas Energy Services (District of Columbia) Jump to: navigation, search Name: Washington Gas Energy Services Place: District of Columbia References: EIA Form EIA-861...

  8. Columbia County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype C. Places in Columbia County, Oregon Clatskanie, Oregon Columbia City, Oregon Prescott, Oregon Rainier, Oregon Scappoose, Oregon St. Helens, Oregon Vernonia, Oregon...

  9. Noble Americas Energy Solutions LLC (District of Columbia) |...

    Open Energy Info (EERE)

    District of Columbia) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 -...

  10. Columbia County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Columbia County, Georgia Evans, Georgia Grovetown, Georgia Harlem, Georgia Martinez, Georgia Retrieved from "http:en.openei.orgwindex.php?titleColumbiaCounty,Geor...

  11. DOE - Office of Legacy Management -- Teledyne-Columbia-Summerville...

    Office of Legacy Management (LM)

    Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Columbia Steel, Summerill Tube, Columbia-Summerill PA.01-1 Location: Pittsburgh , ...

  12. Devonshire Energy, LLC (District of Columbia) | Open Energy Informatio...

    Open Energy Info (EERE)

    Devonshire Energy, LLC (District of Columbia) Jump to: navigation, search Name: Devonshire Energy, LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for...

  13. Environmentally assisted cracking in light water reactors - annual report, January-December 2001.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E; Hiller, R. W.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2003-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2001. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (c) EAC of Alloy 600. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, and material heat treatment, on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The mechanism of fatigue crack initiation in austenitic SSs in LWR environments has also been examined. The results indicate that the presence of a surface oxide film or difference in the characteristics of the oxide film has no effect on fatigue crack initiation in austenitic SSs in LWR environments. Slow-strain-rate tensile tests and post-test fractographic analyses were conducted on several model SS alloys irradiated to {approx}2 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) ({approx}3 dpa) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. Corrosion fatigue tests were conducted on nonirradiated austenitic SSs in high-purity water at 289 C to establish the test procedure and conditions that will be used for the tests on irradiated materials. A comprehensive irradiation experiment was initiated to obtain many tensile and disk specimens irradiated under simulated pressurized water reactor conditions at {approx}325 C to 5, 10, 20, and 40 dpa. Crack growth tests were completed on 30% cold-worked Alloy 600 in high-purity water under various environmental and loading conditions. The results are compared with data obtained earlier on several heats of Alloy 600

  14. Application for Presidential Permit OE Docket No. PP-369 British Columbia Transmission Corporation and British Columbia Hydro and Power Authority

    Broader source: Energy.gov [DOE]

    Application from British Columbia Transmission Corporation and British Columbia Hydro and Power Authority to construct, operate, and maintain electric transmission facilities at the U.S. - Canada...

  15. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  16. Evaluation of the 1998 Predictions of the Run-Timing of Wild Migrant Yearling Chinook and Water Quality at Multiple Locations on the Snake and Columbia Rivers using CRiSP/RealTime, 1998 Technical Report.

    SciTech Connect (OSTI)

    Beer, W. Nicholas; Hayes, Joshua A.; Shaw, Pamela

    1999-07-21

    Since 1988, wild salmon have been PIT-tagged through monitoring and research programs conducted by the Columbia River fisheries agencies and Tribes. Workers at the University of Washington have used detection data at Lower Granite Dam to generate predictions of arrival distributions for various stocks at the dam. The prediction tool is known as RealTime. In 1996, RealTime predictions were linked to a downstream migration model, CRiSP.1. The composite model, known as CRiSP/RealTime, predicts the arrival distribution and fraction transported at downriver locations.

  17. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect (OSTI)

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  18. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect (OSTI)

    Rebak, Raul B.

    2014-12-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  19. Jonathan Link, Columbia NuCosmo '02

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-19, 2002 Jonathan Link, Columbia NuCosmo '02 Jonathan Link Columbia University Workshop on Neutrino News from the Lab and the Cosmos October 17-19, 2002 October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02 Outline 1. The LSND Experiment a. The experimental setup b. Results c. Ramifications 2. MiniBooNE a. The BooNE Collaboration b. The beam line and expected neutrino flux c. The MiniBooNE detector d. Expected backgrounds and systematics e. First neutrino events, and cosmic rays f.

  20. Jonathan Link, Columbia KEK Topical Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -22, 2001 Jonathan Link, Columbia KEK Topical Conference Short Baseline Neutrino Oscillations and MiniBooNE Jonathan Link Columbia University The 5 th KEK Topical Conference - Frontiers in Flavor Physics November 20-22, 2001 November 20-22, 2001 Jonathan Link, Columbia KEK Topical Conference Outline 1. Background on Short Baseline Neutrino Oscillations * A little neutrino physics * The LSND oscillation result 2. About MiniBooNE 3. Status of MiniBooNE. Some of you may have noticed that I'll be

  1. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  2. EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS updates the environmental analyses in DOE’s 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

  3. EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS updates the environmental analyses in DOE’s 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

  4. Columbia River Pathway Dosimetry Report, 1944-1992. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Farris, W.T.; Napier, B.A.; Simpson, J.C.; Snyder, S.F.; Shipler, D.B.

    1994-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One objective of the HEDR Project is to estimate doses to individuals who were exposed to the radionuclides released to the Columbia River (the river pathway). This report documents the last in a series of dose calculations conducted on the Columbia River pathway. The report summarizes the technical approach used to estimate radiation doses to three classes of representative individuals who may have used the Columbia River as a source of drinking water, food, or for recreational or occupational purposes. In addition, the report briefly explains the approaches used to estimate the radioactivity released to the river, the development of the parameters used to model the uptake and movement of radioactive materials in aquatic systems such as the Columbia River, and the method of calculating the Columbia River`s transport of radioactive materials. Potential Columbia River doses have been determined for representative individuals since the initiation of site activities in 1944. For this report, dose calculations were performed using conceptual models and computer codes developed for the purpose of estimating doses. All doses were estimated for representative individuals who share similar characteristics with segments of the general population.

  5. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect (OSTI)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  6. Apex nuclear fuel cycle for production of light water reactor fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Hiroshi, T.; Powell, J.R.

    1982-09-01

    The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of less than or equal to 1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X 10/sup 6/-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (..beta..-diketonate) and distillation of the organometallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment.

  7. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect (OSTI)

    Shah, V.N.; Sinha, U.P.; Smith, S.K.

    1994-03-01

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  8. Swelling in light water reactor internal components: Insights from computational modeling

    SciTech Connect (OSTI)

    Stoller, Roger E.; Barashev, Alexander V.; Golubov, Stanislav I.

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  9. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  10. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  11. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  12. Evaluation of fission gas release in high-burnup light water reactor fuel rods

    SciTech Connect (OSTI)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D. )

    1993-05-01

    Research to define the behavior of Zircaloy-clad light water reactor (LWR) UO[sub 2] fuel irradiated to high burnup levels was conducted as part of the High Burnup Effects Program (HBEP). The HBEP was a 12-yr program that ultimately acquired, characterized, irradiated, and examined after irradiation 82 LWR fuel rods ranging in rod-average fuel burnup from 22 to 69 MWd/kgM with a peak pellet burnup of 83 MWd/kg M. A principal emphasis of the HBEP was to evaluate the effect of high burnup on fission gas release. It was confirmed that fission gas release remained as dependent on design and irradiation history parameters at high burnup levels as at low to moderate burnup levels. One observed high-burnup effect was the development of a burnup-dependent microstructure at the fuel pellet surface when pellet-edge burnup exceeded 65 MWd/kgM. This low-temperature rim region' was characterized by a loss of optically definable grain structure, a high volume of porosity, and diffusion of fission gas from the UO[sub 2] matrix to the porosity. Although the rim region has the potential for enhanced fission gas release, it is concluded that no significant enhancement of rod-average fission gas release at high burnup levels was observed for the examined fuel rods.

  13. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  14. BPA research aids Columbia River white sturgeon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research aids Columbia River white sturgeon 8142015 12:00 AM Tweet Page Content BPA fish biologist Scott Bettin (left) and Brad Cady of the Washington Dept. of Fish and...

  15. Mid-Columbia Region Clean Energy Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93 -VA Revision 0 Mid-Columbia Region Clean Energy Opportunities Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P.O. Box 550 Richland, ...

  16. Director, health Physics Office Columbia University

    Office of Legacy Management (LM)

    f. 3 -J Mr. Philip tori0 Director, health Physics Office Columbia University 289 Engineering Terrace 520 West 120th Street New York, New York 10027 NY.3 "I A\, 4 f- ' :""5 . . ;. ,_ i._ ' L, Dear Mr. Lorio: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on Columbia University facilities to determine whether they contain residual radioactivity traceable to activities conducted on behalf of the

  17. Columbia University | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Columbia University Columbia University Professor Michael Mauel PPPL Engineer Steve Raftopoulos assisted Professor Mike Mauel with the upgrade of the HBT-EP experiment. The upgrade involved installing a new conducting first wall shell that is instrumented with magnetic sensor arrays. The HBT-EB research required these components to be installed with greater precision, and Professor Mauel asked for the assistance of PPPL's metrology engineers and equipment. The stabilization of MHD in HBT-EB will

  18. Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

    SciTech Connect (OSTI)

    KELLY,MICHAEL J.; SWEATT,WILLIAM C.; KEMME,SHANALYN A.; KASUNIC,K.J.; BLAIR,DIANNA S.; ZAIDI,S.H.; MCNEIL,J.R.; BURGESS,L.W.; BRODSKY,A.M.; SMITH,S.A.

    2000-04-01

    Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately 50 parts

  19. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  20. MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting

    SciTech Connect (OSTI)

    Yousefzadeh, Samira; Reyhani, Ali; Naseri, Naimeh; Moshfegh, Alireza Z.

    2013-08-15

    The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNTs weight percentages were prepared by solgel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ?4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 C under 1000 Wm{sup ?2} visible photo-illumination. Display Omitted - Highlights: MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using solgel derived method. TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

  1. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  2. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect (OSTI)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  3. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Kassner, T. F.; Ruther, W. E.; Shack, W. J.; Smith, J. L.; Soppet, W. K.; Strain; R. V.

    1999-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.

  4. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  5. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  6. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  7. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doors, Comprehensive MeasuresWhole Building, Other EE, LED Lighting Columbia Water & Light- Home Performance with ENERGY STAR Loan The Columbia Water & Light (CWL) Home...

  9. Mechanical design of core components for a high performance light water reactor with a three pass core

    SciTech Connect (OSTI)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-07-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  10. American National Standard: design requirements for light water reactor spent fuel storage facilities at nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1983-10-07

    This standard presents necessary design requirements for facilities at nuclear power plants for the storage and preparation for shipment of spent fuel from light-water moderated and cooled nuclear power stations. It contains requirements for the design of fuel storage pool; fuel storage racks; pool makeup, instrumentation and cleanup systems; pool structure and integrity; radiation shielding; residual heat removal; ventilation, filtration and radiation monitoring systems; shipping cask handling and decontamination; building structure and integrity; and fire protection and communication.