National Library of Energy BETA

Sample records for light bulb efficiency

  1. How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...

    Office of Environmental Management (EM)

    Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents November 5, 2014 - 11:39pm Addthis By...

  2. How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save 75 each year. Compared to traditional incandescents, energy-efficient lightbulbs...

  3. Free Energy Efficiency Kit includes CFL light bulbs,

    E-Print Network [OSTI]

    Rose, Annkatrin

    Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency

  4. Text-Alternative Version: L Prize™: The Race for Super Efficient Light Bulbs

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the L Prize™: The Race for Super Efficient Light Bulbs webcast.

  5. How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    you can save 75 each year. Compared to traditional incandescents, energy-efficient lightbulbs such as halogen incandescents, compact fluorescent lamps (CFLs), and light emitting...

  6. L Prize™: The Race for Super Efficient Light Bulbs

    Broader source: Energy.gov [DOE]

    This September 23, 2008 webcast provided an overview of the Bright Tomorrow Lighting Prize (L Prize) technology competition. The L Prize calls for super-efficient SSL products to replace two of the...

  7. Comparing Light Bulbs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  8. Consumer Light Bulb Changes: Briefing and Resources for Media...

    Office of Environmental Management (EM)

    background information on the new legislation and the types of energy-efficient lighting available today. Consumer Light Bulb Changes: Briefing and Resources for Media and...

  9. CALiPER Snapshot Report: Light Bulbs

    SciTech Connect (OSTI)

    2013-10-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  10. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  11. DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models...

    Broader source: Energy.gov (indexed) [DOE]

    action against Westinghouse Lighting Corporation, the company must cease sales of two light bulb models - medium based CFL basic model 15GLOBE652 (Westinghouse product code...

  12. Tired of changing light bulbs AND want to save money? Still using 100 year-old technology?

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Tired of changing light bulbs AND want to save money? Still using 100 year-old technology? TAKE THE COMPACT FLUORESCENT LIGHT BULB CHALLENGE! · A 23 W Compact bulb gives the same light as a 100W regular?) ·Fine print: You will also reduce Global Warming pollution. Over its lifetime, a "100W" Compact

  13. M362K First Midterm Exam. February 7, 2002 Problem 1. Light Bulbs

    E-Print Network [OSTI]

    Voloch, Felipe

    M362K First Midterm Exam. February 7, 2002 Problem 1. Light Bulbs Suppose the probability function hiking, and a 20% chance that I'll stay home and play soccer. The (conditional) probability of my getting

  14. Randolph EMC- Commercial and Industrial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet Randolph EMC's standards are eligible for a prescriptive incentive payment. The cooperative will provide a...

  15. Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat

    E-Print Network [OSTI]

    Levens, Kurt Antony, 1961-

    1997-01-01

    Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

  16. Why Did the LED Light Bulb Cross the Road?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Could using humor as a marketing strategy make energy efficiency a bit more digestible? One Illinois grant recipient thinks it could be.

  17. How many principles does it take to change a light bulb ... into a laser?

    E-Print Network [OSTI]

    Wiseman, Howard M

    2015-01-01

    Quantum optics did not, and could not, flourish without the laser. The present paper is not about the principles of laser construction, still less a history of how the laser was invented. Rather, it addresses the question: what are the fundamental features that distinguish laser light from thermal light? The answers do, however, show, in a quantitative way --- involving, indeed, very large dimensionless quantities (up to $\\sim 10^{51}$) --- that a laser must be constructed very differently from a light bulb. Some of this paper is based on material I use to introduce advanced undergraduate students to quantum optics. The theory presented is mostly quite simple, and yet it is not to be found in any text-books on quantum optics to my knowledge. The obvious answer, ``laser light is coherent'', is, I argue, so vague that it must be put aside at the start, albeit to revisit later. A specific version, ``laser light is in a coherent state'', is simply wrong in this context, since both laser light and thermal light ca...

  18. How many principles does it take to change a light bulb ... into a laser?

    E-Print Network [OSTI]

    Howard M. Wiseman

    2015-10-16

    Quantum optics did not, and could not, flourish without the laser. The present paper is not about the principles of laser construction, still less a history of how the laser was invented. Rather, it addresses the question: what are the fundamental features that distinguish laser light from thermal light? The answers do, however, show, in a quantitative way --- involving, indeed, very large dimensionless quantities (up to $\\sim 10^{51}$) --- that a laser must be constructed very differently from a light bulb. Some of this paper is based on material I use to introduce advanced undergraduate students to quantum optics. The theory presented is mostly quite simple, and yet it is not to be found in any text-books on quantum optics to my knowledge. The obvious answer, ``laser light is coherent'', is, I argue, so vague that it must be put aside at the start, albeit to revisit later. A specific version, ``laser light is in a coherent state'', is simply wrong in this context, since both laser light and thermal light can be described by a coherent state, though necessarily one that varies stochastically in space. Nevertheless, this perspective does reveal a profound difference between them, in that this description (a stochastically varying coherent state) is the only simple description of a laser beam. Interestingly, this implies the (perhaps new) prediction that narrowly filtered laser beams are indistinguishable from similarly filtered thermal beams. I hope that other educators find this material useful; it may contain surprises even for researchers who have been in the field longer than I have. But I cannot finish the abstract without answering the titular question: four --- high directionality, monochromaticity, high brightness, and stable intensity.

  19. Purchasing Energy-Efficient Light Bulbs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    trap heat and increase temperatures in which lamps operate. This heat build-up can impact the performance and life expectancy of certain CFL or LED products. When purchasing...

  20. Purchasing Energy-Efficient Light Bulbs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOE Hydrogen and FuelAwardee: City

  1. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMSHome

  2. Energy Efficiency Through Lighting Upgrades

    SciTech Connect (OSTI)

    Kara Berst; Maria Howeth

    2010-06-01

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year�¢����s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  3. Randolph EMC- Agricultural Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Agricultural members of Randolph EMC (REMC) who upgrade to energy-efficient CFL bulbs in agricultural facilities are eligible for an incentive to help cover the initial cost of installation. The...

  4. Interior Lighting Efficiency for Municipalities

    Broader source: Energy.gov [DOE]

    This webinar covered a basic understanding of lighting, different types of lamps and luminaries, importance of energy efficiency in lighting, and knowledge of where to find financial resources.

  5. Tips: Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Lighting Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting choices save you money....

  6. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Energy Savers [EERE]

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  7. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

  8. Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    consumption. A transition to alternative energy-efficient technologies could reduce this energy consumption of five, lowering barriers to adoption of energy efficient alternatives with higher up-front costs., 1980), uncertainty in the future price of electricity or other fuels, low priority of energy issues

  9. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

    1991-01-01

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  10. Lamp bulb with integral reflector

    DOE Patents [OSTI]

    Levin, Izrail (Silver Spring, MD); Shanks, Bruce (Gaithersburg, MD); Sumner, Thomas L. (Wheaton, MD)

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  11. Frequently Asked Questions Information on Compact Fluorescent Light Bulbs (CFLs) and Mercury

    E-Print Network [OSTI]

    Jia, Songtao

    home's electric bill. ENERGY STAR qualified CFLs use up to 75 percent less energy than incandescent, in one year it would save enough energy to light more than 3 million homes and prevent greenhouse gas, accessible change every American can make right now to reduce energy use at home and prevent greenhouse gas

  12. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  13. New Lighting Standards Began in 2012 | Department of Energy

    Office of Environmental Management (EM)

    save you about 50 per year when you replace 15 traditional incandescent bulbs in your home. Measuring Light in Lumens The new efficiency standards require lightbulbs to consume...

  14. What Light Bulbs Do You Use in Your Home? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects atWeRenewableDoes the SunIs YourLight

  15. Luminous Efficacy Standards for General Purpose Lights

    Broader source: Energy.gov [DOE]

    *Efficacy refers to the overall energy efficiency of light and is measured in lumens (measure of light output) per watt (measure of power input). The efficacy of a typical incandescent light bulb...

  16. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  17. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  18. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  19. Lighting Market Study: Illuminating the Northwest Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Market Study: Illuminating the Northwest Efficiency Community Summer 2014 through Winter 2015 Research Manager: Carrie Cobb, clcobb@bpa.gov, 503-230-4985 The lighting...

  20. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  1. Jacketed lamp bulb envelope

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  2. DOE ZERH Webinar: LED Lighting Efficiency

    Broader source: Energy.gov [DOE]

    Description: LED lighting offers efficiency and performance benefits we've never seen in traditional lighting technologies. Commercial buildings have seen rapid growth in LED deployment, and in the...

  3. Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Efficiency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWestWestern

  4. Buying the Perfect Energy-Efficient Light Bulb in 5 Easy Steps | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyof Energy Shopping

  5. Energy Efficiency Wins Top Prize at EPA App Contest

    Broader source: Energy.gov [DOE]

    The winner of best overall app at the Environmental Protection Agency’s (EPA) Apps for the Environment is called Light Bulb Finder, a free iOS and Android application that helps a user choose the energy efficient bulbs that best match their home’s current lighting conditions.

  6. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    renewables- integrated green building floor space growing towhich renewable energy resources are used to provide spacerenewable energy (especially rooftop solar), and energy-efficient light bulbs, rather than for energy-efficient space-

  7. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  8. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    E-Print Network [OSTI]

    Lawrence Berkeley National Laboratory

    2007-01-01

    light on improving solar cell efficiency Ernest Orlandomethods produce solar cells with an efficiency of 12-15%;

  9. DOE Zero Energy Ready Home: Lighting Efficiency Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    webinar, DOE Zero Energy Ready Home: Lighting Efficiency, presented in May 2015. Alex Krowka: Presentation cover slide: ... join us today for this session on LED lighting design...

  10. LED Provides Effective and Efficient Parking Area Lighting at...

    Office of Environmental Management (EM)

    Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Document details new lighting technology that reduces energy consumption and reduces maintenance, while...

  11. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  12. DOE ZERH Webinar: Lighting Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Efficiency DOE ZERH Webinar: Lighting Efficiency May 21, 2015 12:00PM to 1:15PM EDT Go To Webinar: Register here The U.S. Department of Energy Zero Energy Ready Home...

  13. Evaluation Helps Program Increase Sales of Energy Saving Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Increase Sales of Energy Saving Light Bulbs Among Women Evaluation Helps Program Increase Sales of Energy Saving Light Bulbs Among Women This document, from the Wisconsin...

  14. Evaluation Helps Program Increase Sales of Energy Saving Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Helps Program Increase Sales of Energy Saving Light Bulbs Among Women Evaluation Helps Program Increase Sales of Energy Saving Light Bulbs Among Women This document,...

  15. System Architecture Directions for a Software-Defined Lighting Infrastructure

    E-Print Network [OSTI]

    Cafarella, Michael J.

    bulbs provided the impetus, the emergence of energy-efficient, cost-effective LED lighting is leading to global adoption of the new illumination technology. LED lighting efficiency is over 100 lm/W, higher than nearly any other technology, and average LED lifetime exceeds 50,000 h, longest among all lighting

  16. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    SciTech Connect (OSTI)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.

  17. ENERGY EFFICIENT LIGHTING PRODUCTS TEST METHOD SELECTION LIST

    E-Print Network [OSTI]

    ENERGY EFFICIENT LIGHTING PRODUCTS TEST METHOD SELECTION LIST NOTICE TO APPLICANTS FOR SOLID STATE of IES LM-79. ENERGY EFFICIENT LIGHTING PRODUCTS NOTICE (2015-02-05) i #12;DATE: __________________ NVLAP: _________________ _________________________________________________________________________________________________________________ NVLAP ENERGY EFFICIENT LIGHTING APPLICATION (REV. 2015-05-26) PAGE 1 OF 6 Test Method Designation Short

  18. South Carolina Community Lights Up the Season with Energy-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights December 20,...

  19. Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes, IEEE DOI: 10.1109/JPHOT.2011.2150745 1943-0655/$26.00 ©2011 IEEE #12;Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect

  20. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  1. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  2. Orcas Power & Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Orcas Power and Light Cooperative offers incentives for residential customers to pursue energy efficiency upgrades in eligible homes. Rebates are offered for Energy Star rated appliances, water...

  3. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  4. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2008 in Bethesda, Maryland. merit08frazier.pdf More Documents & Publications Light Duty Efficient Clean Combustion Exhaust Energy Recovery: 2008 Semi-Mega Merit Review...

  5. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue energy saving measures and install energy...

  6. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    E-Print Network [OSTI]

    Lawrence Berkeley National Laboratory

    2007-01-01

    light on improving solar cell efficiency Ernest Orlandomanufacturing methods produce solar cells with an efficiencythe impaired performance of solar cells manufactured from

  7. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  8. Chapter 21: Residential Lighting Evaluation Protocol

    SciTech Connect (OSTI)

    Dimetrosky, S.; Parkinson, K.; Lieb, N.

    2015-02-01

    In recent years, residential lighting has represented a significant share of ratepayer-funded energy-efficiency electricity savings. Utilities have achieved the majority of these savings by promoting the purchase and installation of compact fluorescent lamps (CFLs), both standard 'twister' bulbs and specialty CFLs such as reflectors, A-Lamps, globes, and dimmable lights.

  9. Energy-efficient lighting system for television

    DOE Patents [OSTI]

    Cawthorne, Duane C. (Amarillo, TX)

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  10. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  11. Fabrication of High Efficiency, Printable Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Petta, Jason

    design of OLED: Transparent Anode--ITO Glass substrate Organic layer(s) Metal Cathode Light #12;PRISMFabrication of High Efficiency, Printable Organic Light Emitting Diodes Michael AdamsMichael Adams: Design, fabricate, and characterize high efficiency OLEDs · Introduction · Background on OLEDs · Methods

  12. Marblehead Municipal Light Department - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Marblehead Light Department Website http:www.marbleheadelectric.comindex.php?id146 State Massachusetts Program Type Rebate Program Rebate Amount...

  13. Inland Power & Light Company - Agricultural Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    70% or project cost Program Info Sector Name Utility Administrator Inland Power & Light Company Website http:www.inlandpower.comcustomercarec.php?id190 State Washington...

  14. ENERGY EFFICIENT LIGHTING PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Berman, S.

    2013-01-01

    L-80-08 LBL-11768 ENERGY EFFICIENT LIGHTING PROGRAM ANNUALREPORT 1979 FROM: Energy Efficient Buildings Program ChapterVerderber INTRODUCTION The Energy-Efficient Lighting Program

  15. Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

  16. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report UCB will minimize, or truncate, the chlorophyll antenna size in green algae to maximize photobiological solar conversion efficiency and H2-production....

  17. Efficient Lighting Design and Office Worker Productivity

    SciTech Connect (OSTI)

    Jones, Carol C.; Gordon, Kelly L.

    2004-08-22

    This paper provides an overview of the research findings that will be used as the basis for changing customer buying behaviors and a recipe for success for lighting solutions that will yield both energy savings and non-energy benefits. The lighting energy savings of these new systems compared to strategies of the past is analyzed, along with a recommended market penetration strategy using market research and the dynamics of the construction market.

  18. Improving the external extraction efficiency of organic light emitting devices

    E-Print Network [OSTI]

    Ho, John C., 1980-

    2004-01-01

    Over the last decade Organic Light Emitting Device (OLED) technology has matured, progressing to the point where state-of-the-art OLEDs can demonstrate external extraction efficiencies that surpass those of fluorescent ...

  19. Industrial DSM: Beyond High Efficiency Lights and Motors 

    E-Print Network [OSTI]

    Appelbaum, B.

    1995-01-01

    Perhaps the greatest challenge to electric utilities is the design and implementation of demand side management (DSM) programs targeted to their industrial customers. In focussing on promotion of high efficiency lighting ...

  20. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates for heating and cooling to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat...

  1. McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

  2. Chicopee Electric Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a variety of incentives for its residential customers to increase the energy efficiency of participating homes. CEL provides rebates for heat pump water heaters...

  3. Solar cell efficiency enhancement via light trapping in printable resonant

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically

  4. Lighting Energy Efficiency in Parking Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean EnergysR&DLighting DesignerLighting

  5. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    SciTech Connect (OSTI)

    Melis, Anastasios

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  6. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  7. Highly efficient light management for perovskite solar cells

    E-Print Network [OSTI]

    Wang, Dong-Lin; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2015-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  8. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    E-Print Network [OSTI]

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  9. Nanophotonics: Shrinking light-based technology

    E-Print Network [OSTI]

    Polman, Albert

    , optical computing, solar, and medical technologies, setting high expectations for many novel discoveries bulbs are being replaced by efficient solid-state lighting, and solar energy technologies)/visible/near-infrared spec- tral range, and provide an outlook for the bright future of this research field. Photonic

  10. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  11. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  12. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  13. Photovoltaic cell with light trapping for enhanced efficiency

    DOE Patents [OSTI]

    Brener, Igal; Fofang, Nche Tumasang; Luk, Ting S.

    2015-11-19

    The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.

  14. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

  15. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    . Photovoltaics (PV) technology is currently enjoying sub- stantial growth and investment. Although there are manyPlasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke Physics, California Institute of Technology, Pasadena, California 91125 Received July 25, 2008; Revised

  16. Energy-Efficient Lighting The typical American family spends more

    E-Print Network [OSTI]

    Energy-Efficient Lighting The typical American family spends more than $1,500 a year on household energy bills--and many households spend considerably more. Costs could climb even higher in the future, as electricity and natural gas prices continue to rise. Investing money in energy-saving products like compact

  17. ENERGY EFFICIENT LIGHTING PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Berman, S.

    2013-01-01

    L-80-08 ENERGY EFFICIENT LIGHTING PROGRAM Chapter from the11768 ENERGY EFFICIENT LIGHTING PROGRAM ANNUAL REPORT 1979Contract No. W-7405-ENG-48. LIGHTING S. Barman, R. Claar, J.

  18. Economic Analysis of Ilumex, A Project to Promote Energy-Efficient Residential Lighting in Mexico

    E-Print Network [OSTI]

    Sathaye, Jayant A.

    2008-01-01

    Energy-Efficient Residential Lighting in Mexico J. Sathaye,Energy-Efficient Residential Lighting in Mexico J. Sathaye,of U.S. and Canadian lighting programs for the residential,

  19. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes Keywords: III-Nitride InGaN QWs Light-emitting diodes Efficiency-droop a b s t r a c t Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes

  20. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

  1. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    E-Print Network [OSTI]

    2007-01-01

    biome comparison of daily light-use efficiency for grossNPP): analysis of differences in light absorptionand light-use efficiency. Global Change Biol. 5, Ruimy, A. ,

  2. High-Efficiency Parking Lighting in Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartmentHigh-Efficiency Parking Lighting in

  3. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  4. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

  5. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    SciTech Connect (OSTI)

    Wang, Chao-Hung; Huang, Yu-Wen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Shang-En [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China)] [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China); Liu, Chuan-Pu, E-mail: cpliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China) [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81?×?10{sup 9}?cm{sup ?2} with the size unchanged or the size can be increased to 854.4?nm with the density unchanged.

  6. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable Light Module for Low-Cost, High Efficiency LED Luminaires Scalable Light Module for Low-Cost, High Efficiency LED Luminaires Lead Performer: Cree, Inc. - Durham, NC DOE...

  7. Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting

    Broader source: Energy.gov [DOE]

    The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

  8. 1999 Commercial Buildings Characteristics--Glossary--Lighting...

    U.S. Energy Information Administration (EIA) Indexed Site

    produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow, or fluoresce. Excluded are compact fluorescent light bulbs, which are listed...

  9. Playing Around with Lighting Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying Around with Lighting Efficiency

  10. Fundamentals of PV Efficiency: Limits for Light Absorption

    E-Print Network [OSTI]

    M. Ryyan Khan; Xufeng Wang; Muhammad A. Alam

    2012-12-13

    A simple thermodynamic argument related to a (weakly absorbing) finite dielectric slab illuminated by sunlight- originally suggested by Yablonovich- leads to the conclusion that the absorption in a dielectric can at best be increased by a factor 4n2. Therefore, the absorption in these materials is always imperfect; the Shockley-Queisser limit can be achieved only asymptotically. In this paper, we make the connection between the degradation in efficiency and the Yablonovich limit explicit and re-derive the 4n2 limit by intuitive geometrical arguments based on Snell's law and elementary rules of probability. Remarkably, the re-derivation suggests strategies of breaking the traditional limit and improving PV efficiency by enhanced light absorption.

  11. Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag as anode

    E-Print Network [OSTI]

    Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag The emission efficiency in an organic light-emitting diode OLED based on fac tris phenyl pyridine iridium Ir current efficiency of 81 cd/A and a power efficiency of 79 lm/W, compared with 46 cd/A and 39 lm

  12. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    E-Print Network [OSTI]

    Eggleston, Michael Scott

    2015-01-01

    G. Beausoleil, "Design of an efficient light-emitting diodethe Optical Excitation Efficiency of a Single Self-AssembledS. Nakagawa, "Energy-efficient 1060nm optical link operating

  13. Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01

    1991. "Energy-Efficient Lighting in Brazil and India:on Energy-Efficient Lighting. Stockholm, Sweden. Katzev,with a Project to Promote Lighting Efficiency in India AJ.

  14. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is used to regulate the ongoing electricity provided to the lamp. COMMON INDUSTRIAL LIGHTING UPGRADE TECHNOLOGIES Due to the phase-out of the incandescent bulb and magnetic...

  15. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect (OSTI)

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  16. Energy efficient control of polychromatic solid-state lighting using a sensor network

    E-Print Network [OSTI]

    . Accordingly, smart energy management will be a needed and motivating application area of solid-state lighting in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solidEnergy efficient control of polychromatic solid-state lighting using a sensor network Matthew

  17. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  18. Efficient estimation of energy transfer efficiency in light-harvesting complexes

    E-Print Network [OSTI]

    Alireza Shabani; Masoud Mohseni; Herschel Rabitz; Seth Lloyd

    2012-04-13

    The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their non-perturbative and non-Markovian interactions with proteins backbone and surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second-order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long time behaviour of exciton dynamics of Fenna-Matthews-Olson (FMO) protein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for environments with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulphur bacteria with respect to variations in reorganization energy and bath correlation time-scales.

  19. Energy efficient control of polychromatic solid state lighting using a sensor network

    E-Print Network [OSTI]

    Paradiso, Joseph A.

    Motivated by opportunities in smart lighting, energy efficiency, and ubiquitous sensing, we present the design of polychromatic solid-state lighting controlled using a sensor network. We developed both a spectrally tunable ...

  20. Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs

    DOE Patents [OSTI]

    Thompson, Mark E; Forrest, Stephen

    2015-02-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  1. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of RCCI Operation on a Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014:...

  2. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL...

  3. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  4. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Gasoline-Like Fuel Effects on Advanced...

  5. McMinnville Water and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to residential customers. Rebates are valid on: 

  6. Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for home...

  7. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ace17wagner.pdf More Documents & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in...

  8. Compact Fluorescent Lighting in America: Lessons Learned on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Evaluation...

  9. DOE Announces Winners of Lighting for Tomorrow 2010 Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004. This year, the SSL competition was expanded beyond fixtures to include light-emitting diode (LED) replacement bulbs as well as lighting control devices that are compatible...

  10. Department of Energy Announces Philips Lighting North America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy's L Prize challenged the lighting industry to develop high performance, energy-saving replacements for conventional light bulbs that will save American consumers and...

  11. Efficient light-trapping nanostructures in thin silicon solar cells

    E-Print Network [OSTI]

    Han, Sang Eon

    We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

  12. Efficient light harvesting in multiple-device stacked structure for polymer solar cells

    E-Print Network [OSTI]

    Efficient light harvesting in multiple-device stacked structure for polymer solar cells Vishal structure of polymer solar cells for efficient light harvesting. Two polymer photovoltaic cells are stacked harvesting has been demonstrated for organic solar cells uti- lizing tandem structure.11,12 However

  13. ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission

    E-Print Network [OSTI]

    Polman, Albert

    a non-concentrating system with limited emission angle in a thin, light trapping GaAs solar cellORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission angle Emily D Kosten1 of a high-quality GaAs solar cell is a feasible route to achieving power conversion efficiencies above 38

  14. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

  15. Efficient blue organic light-emitting diodes employing thermally activated delayed

    E-Print Network [OSTI]

    Cai, Long

    Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,2 * Organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) have energy is high enough and the 3 LE state is higher than the 3 CT state. O rganic light-emitting diodes

  16. High efficiency light emitting diode with anisotropically etched GaN-sapphire interface

    E-Print Network [OSTI]

    High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

  17. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode

    E-Print Network [OSTI]

    .1063/1.2032604 Organic light-emitting diodes OLED have attracted much interest due to their potential application in flat with silicon microdisplay OLED.8,9 However, silicon has high absorption in the visible light which greatlyEfficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent

  18. Effective intermediate layers for highly efficient stacked organic light-emitting devices

    E-Print Network [OSTI]

    studied in stacked organic light-emitting devices OLEDs . Stacked OLEDs with two identical emissive units organic light-emitting diode OLED device.1­3 The first three-color SOLED was reported in 1997, in whichEffective intermediate layers for highly efficient stacked organic light-emitting devices J. X. Sun

  19. High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode

    E-Print Network [OSTI]

    -film transistors can be bur- ied under the organic light-emitting diode OLED .3 Thus, complicated pixel circuitsHigh-efficiency microcavity top-emitting organic light-emitting diodes using silver anode Huajun February 2006 Top-emitting organic light-emitting diodes TOLEDs employing highly reflective Ag as anode

  20. Inland Power & Light Company- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Inland Power & Light offers a variety of rebates through the Conservation Services program. The Performance Tested Comfort Systems (PTCS) Heating/Cooling & Duct Sealing Rebate program...

  1. Dayton Power and Light - Business and Government Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    approval Other EE Program Info Sector Name Utility Administrator Dayton Power and Light Website http:www.dpandl.comsave-moneybusiness-government State Ohio Program Type...

  2. U.S. Lighting Market Characterization Volume II: Energy Efficient...

    Office of Scientific and Technical Information (OSTI)

    and Product Library, Washington, D.C. (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Country...

  3. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    SciTech Connect (OSTI)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56?cd/A at the remarkably high brightness of 10{sup 5}?cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  4. Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    A heated semiconductor light-emitting diode at low forward bias voltage Velectrical work to pump heat from the lattice to the photon field. Here the rates of both radiative and nonradiative recombination ...

  5. Nanomanufacturing of functional nanostructured surfaces for efficient light transport

    E-Print Network [OSTI]

    Kim, Jeong-Gil

    2015-01-01

    Nanostructured surfaces have given rise to many unique optical properties, such as broadband anti-reflectivity, structural coloring effects, and enhanced light extraction from high refractive index materials due to their ...

  6. Image Recognition System for Automated Lighting Retrofit Assessment 

    E-Print Network [OSTI]

    Venable, K.; Bhatia, D.; Coverick, R.; Gutierrez, C.; Knight, J.; McGarry, D.; McGee, K.; Smith, Z.; Terrill, T. J.; Vanderford, B.; Weiser, R.; Wightman, K.; Rasmussen, B. P.

    2013-01-01

    .D., P.E. ESL-IE-13-05-39 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 After initially parsing the data, the program sends the parsed data matrix to the image processing portion... identified bulb. Following the spectral curve analysis, the report generation portion of the program receives the resulting matrix and analyzes the lighting for energy efficiency recommendations. These recommendations are then compiled into a final...

  7. Electro-luminescent cooling: light emitting diodes above unity efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    Experimental demonstration of net electro-luminescent cooling in a diode, or equivalently electroluminescence with wall-plug efficiency greater than unity, had eluded direct observation for more than five decades. We review ...

  8. A Dual Supply Buck Converter with Improved Light Load Efficiency 

    E-Print Network [OSTI]

    Chen, Hui

    2013-05-02

    Power consumption is the primary concern in battery-operated portable applications. Buck converters have gained popularity in powering portable devices due to their compact size, good current delivery capability and high efficiency. However...

  9. Lighting Energy Efficiency in Parking Campaign | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe25,Lighting Control Types Lighting

  10. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  11. CoServ Electric Cooperative- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.20/watt saved is available on interior...

  12. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  13. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous Cd harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25@bilkent.edu.tr Abstract: We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer

  14. Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting

    SciTech Connect (OSTI)

    Im, Won Bin; George, Nathan; Kurzman, Joshua; Brinkley, Stuart; Mikhailovsky, Alexander; Hu, Jerry; Chmelka, Bradley F.; DenBaars, Steven P.; Seshadri, Ram (UCSB)

    2012-09-06

    A solid solution strategy helps increase the efficiency of Ce{sup 3+} oxyfluoride phosphors for solid-state white lighting. The use of a phosphor-capping architecture provides additional light extraction. The accompanying image displays electroluminescence spectra from a 434-nm InGaN LED phosphor that has been capped with the oxyfluoride phosphor.

  15. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    E-Print Network [OSTI]

    Yu, Edward T.

    and optimization of light-trapping structures for efficient thin-film solar cells Claiborne O McPheeters1 , Dongzhi elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than in their performance. Keywords: quantum-well, quantum-dot, scattering, diffraction, thin-film, GaAs, InAs, photovoltaic

  16. High Efficiency White Organic Light Emission Device Based On New Orange Phosphorescence Material

    E-Print Network [OSTI]

    High Efficiency White Organic Light Emission Device Based On New Orange Phosphorescence Material University, Kowloon, Hong Kong ABSTRACT White light emitting device based on a new orange phosphorescent fabricated. The white OLED consists of it and a blue phosphorescent material FIrPic (iridum-bis(4

  17. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOE Patents [OSTI]

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  18. SuperBulbs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMember CorpSunvie SAS Jump to:SunwaysSuperBulbs

  19. Efficient tunable switch from slow light to fast light in quantum opto-electromechanical system

    E-Print Network [OSTI]

    Akram, M Javed; Saif, Farhan

    2015-01-01

    The control of slow and fast light propagation, in the probe transmission in a single experiment, is a challenging task. This type of control can only be achieved through highly nonlinear interactions and additional interfering pathway(s), which is therefore seldom reported. Here, we devise a scheme in which slow light, and a tunable switch from slow light to fast light can be achieved in the probe transmission based on a hybrid setup, which is composed of an optical cavity with two charged nano mechanical resonators (MRs). The two MRs are electrostatically coupled via tunable Coulomb coupling strength ($g_{c}$) making a quantum opto-electromechanical system (QOEMS). The parameter $g_{c}$ that couples the two MRs can be switched on and off by controlling the bias voltages on the MRs, and acts as a tunable switch that allows the propagation of transmitted probe field as slow light ($g_{c} \

  20. Efficient tunable switch from slow light to fast light in quantum opto-electromechanical system

    E-Print Network [OSTI]

    M. Javed Akram; Khalid Naseer; Farhan Saif

    2015-03-05

    The control of slow and fast light propagation, in the probe transmission in a single experiment, is a challenging task. This type of control can only be achieved through highly nonlinear interactions and additional interfering pathway(s), which is therefore seldom reported. Here, we devise a scheme in which slow light, and a tunable switch from slow light to fast light can be achieved in the probe transmission based on a hybrid setup, which is composed of an optical cavity with two charged nano mechanical resonators (MRs). The two MRs are electrostatically coupled via tunable Coulomb coupling strength ($g_{c}$) making a quantum opto-electromechanical system (QOEMS). The parameter $g_{c}$ that couples the two MRs can be switched on and off by controlling the bias voltages on the MRs, and acts as a tunable switch that allows the propagation of transmitted probe field as slow light ($g_{c} \

  1. Achieving Extreme Efficiency: How to get the job done when energy is extremely expensive and scarce

    E-Print Network [OSTI]

    Brown, Rich

    2013-01-01

    LED) bulbs, organic LED (OLED) lighting fixtures, ceramicLED lamps in this application long before this technology was cost-effective for general-purpose lighting.

  2. ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission

    E-Print Network [OSTI]

    Atwater, Harry

    ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission angle Emily D Kosten1. This isotropic emission corresponds to a significant entropy increase in the solar cell, with a corresponding drop in efficiency. Here, using a detailed balance model, we show that limiting the emission angle

  3. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect (OSTI)

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  4. Summer Loving-Energy-Efficient Outdoor Lighting! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, Before the CommitteeYears 2003Summer Loving-Energy-Efficient

  5. Light Inspires Energy Efficient Building Design - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009LienertProducts, PartLight

  6. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  7. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal

    E-Print Network [OSTI]

    Baba, Toshihiko

    Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic 21 November 2003 We demonstrate a light-emitting diode exhibiting 1.7­2.7-fold enhancement in light light emitting diode LED , the ef- ficiency is limited to several percents by a low light extrac- tion

  8. DOE Closes Investigation into Alleged Lighting Efficiency Violations |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency,Energy News Media- TheEnergyofDecember

  9. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect (OSTI)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  10. Delivering Energy Efficiency to Middle Income Single Family Households

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01

    smartregs City of Boulder Rebates Matrix web page: http://light bulbs (CFLs) or provide rebates for high- efficiencymeasures. Targeted rebates. It is clear that rebates help to

  11. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOE Patents [OSTI]

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  12. Department of Energy Office of Energy Efficiency and Renewable Energy Solid State Lighting Core Technologies

    SciTech Connect (OSTI)

    Franky So; Paul Holloway; Jiangeng Xue

    2009-08-06

    The project objective is to demonstrate high efficiency white emitting OLED devices with a target luminous efficiency between 100 1m/W and 150 1m/W with integrated microcavity structure and down conversion phosphors. The main focus of this work will be on three areas: (1) demonstration of a 2X reduction in OLED device operating voltage by employing the appropriate dopants in the carrier transporting layers; (2) demonstration of a 3X light out-coupling efficiency enhancement by incorporating microcavity structure in the OLED devices; and (3) demonstration of a 2X down-conversion efficiency enhancement (from blue to white) using phosphors.

  13. 11.4 / H. J. Peng 11.4: Coupling Efficiency Enhancement of Organic Light Emitting Devices

    E-Print Network [OSTI]

    the coupling efficiency of organic light emitting diodes (OLEDs) is studied. Refractive microlens arrays as mask. Over 65% more light is extracted from the OLED on the microlens array substrate as compared by the microlens array. 1. Introduction High efficiency organic light emitting diodes (OLED) are required

  14. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  15. An Efficient LED System-in-Module for General Lighting Applications

    SciTech Connect (OSTI)

    2008-09-14

    The objective of the project was to realize an LED-based lighting technology platform for general illumination, starting with LED chips, and integrating the necessary technologies to make compact, user-friendly, high-efficiency, energy-saving sources of controlled white (or variable-colored) light. The project is to build the system around the LEDs, and not to work on the LEDs themselves, in order that working products can be introduced soon after the LEDs reach suitable efficiency for mass-production of high-power light sources for general illumination. Because the light sources are intended for general illumination, color must be accurately maintained, requiring feedback control in the electronics. The project objective has been realized and screw base demonstrators, based on the technology developed in the project, have been built.

  16. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOE Patents [OSTI]

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  17. Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01

    Lamps in India and Brazil" Energy Policy, 19(6):449-463.1991. "Energy-Efficient Lighting in Brazil and India:

  18. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-

    E-Print Network [OSTI]

    Cao, Jianshu

    stages in the conversion of solar energy into chemical and other useful forms of energy for humanEfficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial- temporal correlations Jianlan Wu, Fan Liu, Young Shen, Jianshu Cao1 and Robert J

  19. Nanodome Solar Cells with Efficient Light Management and Self-Cleaning

    E-Print Network [OSTI]

    Fan, Shanhui

    Nanodome Solar Cells with Efficient Light Management and Self-Cleaning Jia Zhu, Ching-Mei Hsu 94305 ABSTRACT Here for the first time, we demonstrate novel nanodome solar cells, which have periodic and enhance absorption over a broad spectral range. Nanodome solar cells with only a 280 nm thick hydrogenated

  20. Antennas in the optical range will improve the efficiency of light-emitting devices.

    E-Print Network [OSTI]

    Novotny, Lukas

    Antennas in the optical range will improve the efficiency of light-emitting devices. The purpose of optical antennas is to convert the energy of free propagat- ing radiation to localized energy, and vice versa. Although this is similar to what radio wave and microwave antennas do, optical antennas exploit

  1. Advanced method for increasing the efficiency of white light quantum dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which, respectively, diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal processing (PTP), reduces the number of point defects while maintaining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of theQD nanoparticles. The current research uses a thermal model to predict annealing temperatures during PTP and demonstrates up to a 300% increase in photoluminescence for QDs on passive substrates.

  2. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    E-Print Network [OSTI]

    Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

    2013-01-01

    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

  3. Efficient and accurate laser shaping with liquid crystal spatial light modulators

    SciTech Connect (OSTI)

    Maxson, Jared M.; Bartnik, Adam C.; Bazarov, Ivan V. [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2014-10-27

    A phase-only spatial light modulator (SLM) is capable of precise transverse laser shaping by either functioning as a variable phase grating or by serving as a variable mask via polarization rotation. As a phase grating, the highest accuracy algorithms, based on computer generated holograms (CGHs), have been shown to yield extended laser shapes with <10% rms error, but conversely little is known about the experimental efficiency of the method in general. In this work, we compare the experimental tradeoff between error and efficiency for both the best known CGH method and polarization rotation-based intensity masking when generating hard-edged flat top beams. We find that the masking method performs comparably with CGHs, both having rms error?efficiency?>?15%. Informed by best practices for high efficiency from a SLM phase grating, we introduce an adaptive refractive algorithm which has high efficiency (92%) but also higher error (16%), for nearly cylindrically symmetric cases.

  4. White lighting LEDs are fast replacing conventional lighting because not only are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high-speed wireless communication, especially for indoor applications.

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Background White lighting LEDs are fast replacing conventional lighting because not only by using ceiling mounted white lighting LEDs Jiun Bin Choong Supervisor : Prof. Jean Armstrong A B F 1 2 1 are they energy efficient light sources but also can be modulated at frequencies up to 20MHz for high

  5. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Essays on Environmental and Resource Economics

    E-Print Network [OSTI]

    Toledo, Chantal Nathalie

    2013-01-01

    energy efficient light bulb at home are more likely to take-or an energy efficient light bulb at home increases theenergy efficient light bulb at home are more likely to take-

  8. Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects atWeRenewable Energy Zones-PhaseProducts

  9. The History of the Light Bulb | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuildingTheEasements &A TenOutages1 ofMarissaRead

  10. The History of the Light Bulb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartment ofTestimony5Nuclear Power

  11. Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable

    E-Print Network [OSTI]

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency & Engineering Doctoral Defense Phosphorescent Organic Light Emitting Diodes with Platinum Complexes Jeremy Ecton

  12. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  13. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  14. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  15. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  16. THE JOURNAL OF CHEMICAL PHYSICS 137, 174111 (2012) Efficient energy transfer in light-harvesting systems: Quantum-classical

    E-Print Network [OSTI]

    Cao, Jianshu

    2012-01-01

    2012; published online 6 November 2012) Following the calculation of optimal energy transfer in thermal light-harvesting systems can help develop low-cost and highly efficient man-made solar energy apparatus#12;THE JOURNAL OF CHEMICAL PHYSICS 137, 174111 (2012) Efficient energy transfer in light

  17. Abstract--Power efficiency during heavy-and light-loading conditions in wireless portable applications is critical for

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    and quiescent current flow during light loading conditions and (2) an adaptive PA bias-current generator1 Abstract-- Power efficiency during heavy- and light-loading conditions in wireless portable efficiency is improved with a 0.5-µm CMOS dynamically adaptive, dual-mode buck- boost power supply and bias

  18. Novel Fresnel-zoned microstructured fibre for light waveguiding and efficient coupling between SMF and photonic crystals

    E-Print Network [OSTI]

    Haddadi, Hamed

    Novel Fresnel-zoned microstructured fibre for light waveguiding and efficient coupling between SMF, Universit y of Essex Abstract: We describe a low refractive-index contrast (RIC) Fresnel to efficiently couple light between SMF and PhC using a novel Fresnel-zoned (FZ) MSF waveguide lens. Figure 1(a

  19. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  20. Metacapacitors for LED Lighting: Metacapacitors

    SciTech Connect (OSTI)

    None

    2010-09-02

    ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

  1. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOE Patents [OSTI]

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  2. Efficiency of energy transfer in a light-harvesting system under quantum coherence

    E-Print Network [OSTI]

    Alexandra Olaya-Castro; Chiu Fan Lee; Francesca Fassioli Olsen; Neil F. Johnson

    2008-04-16

    We investigate the role of quantum coherence in the efficiency of excitation transfer in a ring-hub arrangement of interacting two-level systems, mimicking a light-harvesting antenna connected to a reaction center as it is found in natural photosynthetic systems. By using a quantum jump approach, we demonstrate that in the presence of quantum coherent energy transfer and energetic disorder, the efficiency of excitation transfer from the antenna to the reaction center depends intimately on the quantum superposition properties of the initial state. In particular, we find that efficiency is sensitive to symmetric and asymmetric superposition of states in the basis of localized excitations, indicating that initial state properties can be used as a efficiency control parameter at low temperatures.

  3. Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes

    E-Print Network [OSTI]

    Meng, Hsin-Fei

    -coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

  4. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Keywords: GaInN/GaN Light emitting diode temperature Micro-Raman Photoluminescence Electroluminescence well light emitting diode (LED) dies is analyzed by micro-Raman, photoluminescence, cathodoluminescenceJunction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting

  5. Design and optimization of a high-efficiency nanoscale 90 light-bending structure by mode selection and tailoring

    E-Print Network [OSTI]

    Chau, Kenneth

    before and after the bend. In this paper, we design a nanoscale light-bending struc- ture capable of 90Design and optimization of a high-efficiency nanoscale 90° light-bending structure by mode of a nanoscale structure to enable 90° visible light-bending. The geometry and constituent materials

  6. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer

    E-Print Network [OSTI]

    Cincinnati, University of

    as an integral element of organic light-emitting diodes OLED . Devices that incorporate DNA thin films#12;Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid as an electron blocking EB material has been demonstrated in both green- and blue-emitting organic light

  7. 47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes

    E-Print Network [OSTI]

    been obtained. 1. Introduction Organic light-emitting diode (OLED) is challenging liquid- crystal (LC47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes- metal layer such as, carbon, gallium, silicon, has been used as hole-injecting anode in organic light

  8. P-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting

    E-Print Network [OSTI]

    . Introduction Organic-light emitting diodes (OLEDs) as pixels for flat- panel displays are being hotly pursuedP-107 / C.F. Qiu P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting Diode and Technology Clear Water Bay, Kowloon, Hong Kong Abstract The characteristics of an organic light

  9. Highly efficient organic light-emitting diodes with a silole-based compound Center for Display Research, Department of Electrical and Electronic Engineering, The Hong Kong

    E-Print Network [OSTI]

    the emission efficiency of organic light-emitting diodes OLED . For con- ventional undoped small-molecule OLEDHighly efficient organic light-emitting diodes with a silole-based compound H. Y. Chen Center Efficient light emission was obtained in a silole-based organic light-emitting diode. A high luminous

  10. Energy resolution and efficiency of phonon-mediated KIDs for light detection

    E-Print Network [OSTI]

    Cardani, L; Cruciani, A; Di Domizio, S; Vignati, M; Bellini, F; Casali, N; Castellano, M G; Coppolecchia, A; Cosmelli, C; Tomei, C

    2015-01-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like Dark Matter interactions or Neutrinoless Double Beta Decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm$^2$ are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the first results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2x2 cm$^2$ silicon chip. The detector, exposed to optical pulses and to a $^{57}$Co X-ray source, features an energy resolution of 154+-7 eV and an efficiency of (18+-2)%.

  11. Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using Si O 2 /polystyrene microlens arrays

    E-Print Network [OSTI]

    Gilchrist, James F.

    November 2007 Improvement of light extraction efficiency of InGaN quantum wells light emitting diodes LEDs microlens arrays on InGaN quantum wells LEDs, deposited via rapid convective deposition, allows the increase of the effective photon escape cone and reduction in the Fresnel reflection. Improvement of output power by 219

  12. Optimal Efficiency of Self-Assembling Light-Harvesting Arrays Ji-Hyun Kim and Jianshu Cao*

    E-Print Network [OSTI]

    Cao, Jianshu

    Optimal Efficiency of Self-Assembling Light-Harvesting Arrays Ji-Hyun Kim and Jianshu Cao equation that describes energy transfer over a given lattice, we explore how energy transfer efficiency (derived in Appendix A) for efficiency shows a steep increase with a D-to-A transfer rate when

  13. Revolutionary Method for Increasing the Efficiency of White Light Quantum Dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which respec-tively diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal proc-essing (PTP), reduces the number of point defects while main-taining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of the quantum dot nanoparticles. The cur-rent research uses a thermal model to predict annealing tempera-tures during PTP and demonstrates up to a 300% increase in pho-toluminescence for QDs on passive substrates

  14. LEDs: The Future of Lighting is Here | Department of Energy

    Energy Savers [EERE]

    and the common household light bulb have in common? If your answer is that light emitting diode (LED) technology can power all these things, then you're pretty bright. LEDs...

  15. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  16. Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination

    SciTech Connect (OSTI)

    Ian Ferguson

    2006-07-31

    This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

  17. Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01

    Fluorescent Lamps in India and Brazil" Energy Policy, 19(6):Govern- ment of India, by Tata Energy Research Institute,1991. "Energy-Efficient Lighting in Brazil and India:

  18. Philips Light Sources & Electronics is Developing an Efficient, Smaller, Cost-Effective Family of LED Drivers

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Light Sources & Electronics is developing a new family of LED drivers that are more efficient and cost-effective as well as smaller in size than currently available drivers. The new drivers are switch-mode power supplies that are similar to today's drivers, but with an improved design. In addition, they have a different topology—boost plus LLC—for wattages of 40W and above, but they retain the commonly used flyback topology at lower wattages.

  19. Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model

    SciTech Connect (OSTI)

    Chow, Weng W.; Crawford, Mary H.; Tsao, Jeffrey Y.; Kneissl, Michael

    2010-01-01

    We propose a model to better investigate InGaN light-emitting diode (LED) internal efficiency by extending beyond the usual total carrier density rate equation approach. To illustrate its capability, the model is applied to study intrinsic performance differences between violet and green LEDs. The simulations show performance differences, at different current densities and temperatures, arising from variations in spontaneous emission and heat loss rates. By tracking the momentum-resolved carrier populations, these rate changes are, in turn, traced to differences in bandstructure and plasma heating. The latter leads to carrier distributions that deviate from the quasiequilibrium ones at lattice temperature.

  20. Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells: A Coupled Optical-Electrical

    E-Print Network [OSTI]

    Park, Namkyoo

    much attention for the more efficient harvesting of solar energy. Notably, even as the thickness acceptor materials have been envisioned as a promising next generation energy harvesting device dueEnhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells

  1. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    SciTech Connect (OSTI)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.

  2. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2012-01-01

    Standard for Residential Lighting in Chile, 2010 USResidential General Service Lighting in Chile Virginie E.focus on a regulation for lighting that would ban the sale

  3. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  4. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    SciTech Connect (OSTI)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Changchun 130022 (China); Zhao, Yongbiao [Luminous Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Zhang, Hongmei [Department of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2014-06-28

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000?cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2?lm/W, 59.3?cd/A, and 23.1%, which slightly shift to 53.4?lm/W, 57.1?cd/A, and 22.2% at 1000?cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thin non-doped orange emission layer in WOLEDs.

  5. Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible Light Communication

    E-Print Network [OSTI]

    Tufts University

    Light Communication What is the problem? The white light-emitting diode (LED) stands at the threshold

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    install energy efficiency measures in Xcel service territory. Rebates are available for evaporative cooling systems, LED light bulbs, and CFL light bulbs. All equipment must meet...

  7. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    SciTech Connect (OSTI)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  8. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    SciTech Connect (OSTI)

    McMahon, James E.; Wiel, Stephen

    2001-02-16

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

  9. On the efficiency of stochastic volume sources for the determination of light meson masses

    E-Print Network [OSTI]

    E. Endress; A. Jüttner; H. Wittig

    2011-11-25

    We investigate the efficiency of single timeslice stochastic sources for the calculation of light meson masses on the lattice as one varies the quark mass. Simulations are carried out with Nf = 2 flavours of non-perturbatively O(a) improved Wilson fermions for pion masses in the range of 450 - 760 MeV. Results for pseudoscalar and vector meson two-point correlation functions computed using stochastic as well as point sources are presented and compared. At fixed computational cost the stochastic approach reduces the variance considerably in the pseudoscalar channel for all simulated quark masses. The vector channel is more affected by the intrinsic stochastic noise. In order to obtain stable estimates of the statistical errors and a more pronounced plateau for the effective vector meson mass, a relatively large number of stochastic sources must be used.

  10. Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition

    E-Print Network [OSTI]

    Wiel, Stephen; McMahon, James E.

    2005-01-01

    Study on Energy Efficiency in Buildings. American Council ofSummer Study on Energy Efficiency in Buildings. Asilomar,Study on Energy Efficiency in Buildings. American Council of

  11. Optimizing stored light efficiency in vapor cells Irina Novikovaa, Mason Kleina,b, David F. Phillipsa, Ronald L. Walswortha,b

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Optimizing stored light efficiency in vapor cells Irina Novikovaa, Mason Kleina,b, David F experimental study of slow and stored light in Rb vapor cells under the conditions of electromagnetically induced transparency (EIT). We study the efficiency of light storage as a function of pulse duration

  12. Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    to their applications in display and lighting.1­4 Considering the microcavity effect, OLEDs can be roughly categorizedModifications of the exciton lifetime and internal quantum efficiency for organic light on the modifications of the exciton lifetime and internal quantum efficiency int for organic light-emitting devices

  13. Response to "Comment on `Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations'" [J. Appl. Phys. 117,

    E-Print Network [OSTI]

    Response to "Comment on `Towards high efficiency thin-film crystalline silicon solar cells high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non.1063/1.4905182 Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non

  14. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  15. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    E-Print Network [OSTI]

    Kisielowski, Christian

    2010-01-01

    Lighting / USA boosting the performance of their green LED’solid-state lighting. Blue and green LED’s became available

  16. New Lighting Facts Label: Takes the Guess Work Out of Shopping...

    Office of Environmental Management (EM)

    With new lighting standards taking effect this year, now's a great time switch to energy-saving incandescent, CFL, and LED light bulbs, which are available in most hardware and...

  17. Frequently Asked Questions: Lighting Choices to Save You Money...

    Broader source: Energy.gov (indexed) [DOE]

    comply to EISA's standards could save consumers nearly 6 billion in 2015. In your own home, replacing your five most frequently used light fixtures or bulbs with models that...

  18. Alliant Energy Interstate Power and Light (Electric) - Residential...

    Broader source: Energy.gov (indexed) [DOE]

    70% of total installation cost up to 250 Room Air Conditioners: 20 SolidThermal Entry Door: 10 - 25 LED and CFL bulbs: 50% of cost Summary Interstate Power and Light...

  19. Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    % in solution. CdTe and CdSe/ZnS dots of different sizes have further been studied for energy trans- fer in filmHighly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution Evren Mutlugün,a Sedat Nizamolu, and Hilmi Volkan Demirb Department of Physics; Department

  20. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    E-Print Network [OSTI]

    important evaluation criterion for photovoltaic (PV) technology. Therefore, research on novel structuresTowards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping February 2014; published online 3 March 2014) Thin-film solar cells based on silicon have emerged

  1. P-55 / J. X. Sun P-55: Bright and Efficient Stacked White Organic Light-emitting Diodes

    E-Print Network [OSTI]

    P-55 / J. X. Sun P-55: Bright and Efficient Stacked White Organic Light-emitting Diodes J. X. Sun N mCP N NN N N N TPBi FirPic Alq3 N O N O N O Al EuroDisplay 2005 · 397 #12;P-55 / J. X. Sun

  2. 23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission

    E-Print Network [OSTI]

    23.2 / J. X. Sun 23.2: An Efficient Stacked OLED with Double-Sided Light Emission J. X. Sun, X. L;23.2 / J. X. Sun 2. Experimental Details The SOLED were fabricated on 75nm-ITO coated glass with a sheet

  3. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect (OSTI)

    Bozzola, A. Kowalczewski, P.; Andreani, L. C.

    2014-03-07

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  4. Efficiency loss mechanisms in colloidal quantum-dot light-emitting diodes

    E-Print Network [OSTI]

    Shirasaki, Yasuhiro

    2013-01-01

    Saturated and tunable emission colors make colloidal quantum-dot light-emitting diodes (QD-LEDs) interesting for the next generation of display and lighting technologies. However, there still remain various hurdles to the ...

  5. Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix

    E-Print Network [OSTI]

    Li, Guangru; Tan, Zhi-Kuang; Di, Dawei; Lai, May Ling; Jiang, Lang; Lim, Jonathan Hua-Wei; Friend, Richard H.; Greenham, Neil C.

    2015-02-24

    Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting...

  6. AN ADVANCED STRATEGY FOR ENERGY EFFICIENT LIGHTING INCORPORATING DISTRIBUTED SENSING AND TAILORED CONTROLS

    E-Print Network [OSTI]

    Stanford University

    on Graduate Studies. #12;iv ABSTRACT Improving energy efficiency in buildings is an increasing national

  7. Method to generate high efficient devices which emit high quality light for illumination

    DOE Patents [OSTI]

    Krummacher, Benjamin C. (Sunnyvale, CA); Mathai, Mathew (Santa Clara, CA); Choong, Vi-En (San Jose, CA); Choulis, Stelios A. (San Jose, CA)

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  8. 22.3 / H. J. Peng 22.3: High Efficiency Electrophosphorescent Organic Light Emitting Diodes

    E-Print Network [OSTI]

    in an organic light emitting diode (OLEDs) based on tris(phenyl pyridine)iridium [Ir(ppy)3]. Using. The improvement is due to a carefully designed microcavity. 1. Introduction Organic light emitting diodes (OLEDs rate can be enhanced due to Purcell effect. Therefore, a microcaivty OLED should emit more light than

  9. Energy Efficiency ISSN 1570-646X

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ConEd Consolidated Edison CRT Cathode ray tube LCD Liquid crystal display LED Light emitting diode included combustion, incandescent and compact fluorescent (CFL) bulbs, and now light emitting diode (LED emitting diodes (LED), has been sug- gested as a way of reducing energy used for lighting. Such predictions

  10. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect (OSTI)

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang, E-mail: timtclu@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 300 (China)

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20?mA and a 27.0% efficiency droop at 100?mA (corresponding to a current density of 69?A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  11. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  12. Efficient light emitting devices utilizing CdSe(ZnS) quantum dots in organic host matrices

    E-Print Network [OSTI]

    Coe-Sullivan, Seth (Seth Alexander)

    2002-01-01

    We demonstrate efficient electroluminescence from thin film structures containing core-shell CdSe(ZnS) quantum dots dispersed in molecular organic host materials. In the most efficient devices, excitons are created on the ...

  13. Highly stable and high power efficiency tandem organic light-emitting diodes with transition metal oxide-based charge generation layers

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    efficiency improvement Transition metal oxide a b s t r a c t Tandem organic light-emitting diodes (OLEDs. Ó 2015 Elsevier B.V. All rights reserved. 1. Introduction Organic light-emitting diodes (OLEDs) [1 displays and lighting panels. However, before mass production of OLEDs for the consumer market can start

  14. Efficient organic light-emitting diode using semitransparent silver as anode Huajun Peng, Xiuling Zhu, Jiaxin Sun, Zhiliang Xie, Shuang Xie,

    E-Print Network [OSTI]

    A semitransparent silver layer is investigated as the anode for organic light-emitting devices OLEDs.1063/1.2115076 Organic light-emitting diodes OLEDs have attracted a great deal of attention due to their applicationsEfficient organic light-emitting diode using semitransparent silver as anode Huajun Peng, Xiuling

  15. Entergy Arkansas- Agricultural Energy Solutions Program Rebates

    Broader source: Energy.gov [DOE]

    The Presecriptive Option offers predetermined incentives on a wide variety of energy efficiency measures including Compact Flourescent Light Bulbs and high performance flourescent bulb replacemen...

  16. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Addressing...

  17. Solid-State Lighting with High Brightness, High Efficiency, and Low Cost

    E-Print Network [OSTI]

    Gilchrist, James F.

    -emitting diode (LED) is the most popular technique due to its advantages of small volume, long lifetime, high reliability, low power consumption, and nonpollution. The progress in solid-state lighting has been driven to the progress in visible InGaN-based light-emitting diodes (LEDs) based on III-nitride based semiconductor

  18. Fluorescence Efficiency and Stability of Radio-Pure Tetraphenyl-butadiene Based Coatings for VUV Light Detection in Cryogenic Environments

    E-Print Network [OSTI]

    Baudis, Laura; Dressler, Rugard; Piastra, Francesco; Usoltsev, Ilya; Walter, Manuel

    2015-01-01

    The detection of VUV scintillation light, e.g. in (liquid) argon detectors, commonly includes a reflector with a fluorescent coating, converting UV photons to visible light. The light yield of these detectors depends directly on the conversion efficiency. Several coating/reflector combinations were produced using VM2000, a specular reflecting multi layer polymer, and Tetratex, a diffuse reflecting PTFE fabric, as reflector foils. The efficiency of these coatings was optimised and has been measured in a dedicated liquid argon setup built at the University of Zurich. It employs a small, 1.3 kg LAr cell viewed by a 3-inch, low radioactivity PMT of type R11065-10 from Hamamatsu. The cryogenic stability of these coatings was additionally studied. The optimum reflector/coating combination was found to be Tetratex dip coated with Tetraphenyl-butadiene with a thickness of 0.9 mg/cm$^2$ resulting in a 3.6 times higher light yield compared to uncoated VM2000. Its performance was stable in long term measurements, ran up...

  19. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2004-09-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the first year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The first year activities were focused on the installation, set-up, and use of advanced equipment for the metalorganic chemical vapor deposition growth of III-nitride films and the characterization of these materials (Task 1) and the design, fabrication, testing of nitride LEDs (Task 4). As a progress highlight, we obtained improved quality of {approx} 2 {micro}m-thick GaN layers (as measured by the full width at half maximum of the asymmetric (102) X-ray diffraction peak of less than 350 arc-s) and higher p-GaN:Mg doping level (free hole carrier higher than 1E18 cm{sup -3}). Also in this year, we have developed the growth of InGaN/GaN active layers for long-wavelength green light emitting diodes, specifically, for emission at {lambda} {approx} 540nm. The effect of the Column III precursor (for Ga) and the post-growth thermal annealing effect were also studied. Our LED device fabrication process was developed and initially optimized, especially for low-resistance ohmic contacts for p-GaN:Mg layers, and blue-green light emitting diode structures were processed and characterized.

  20. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  1. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  2. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption

    SciTech Connect (OSTI)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Zuo, Peng; Jia, Haiqiang; Chen, Hong, E-mail: hchen@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-18

    We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20?mA are 0.24 mW and 556.3?nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resulted from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.

  3. 324 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 9, NO. 5, MAY 2013 Light Extraction Efficiency Enhancement of

    E-Print Network [OSTI]

    Gilchrist, James F.

    Science and Technology Development Agency, Payathai, Ratchathewi, Bangkok 10400, Thailand. J. F. Gilchrist radiative and current injection efficiencies. Novel growth methods for achieving low dislocation density InGaN/GaN ma- terial are also important for achieving high radiative efficiency from the nitride LEDs [16], [17

  4. Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In

    E-Print Network [OSTI]

    emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light

  5. Pousset, Obein, Razet, LED lighting quality with CQS samples CIE 2010 : Lighting Quality and Energy Efficiency, 14-17 March 2010, Vienna, Austria 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A psychophysical experiment developed to evaluate light quality of Light Emitting Diodes (LEDs) is described. Keywords: Light Emitting Diode, quality of light, Color Rendering Index, Color Quality Scale, visual

  6. A Dual-Supply Buck Converter with Improved Light-Load Efficiency 

    E-Print Network [OSTI]

    Zhang, Chao

    2012-07-16

    Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current...

  7. Harnessing waste heat and reducing wasted lighting : three mechanical structures for efficient energy systems

    E-Print Network [OSTI]

    Stronger, Brad A

    2008-01-01

    This thesis presents three mechanical structures designed for efficient energy systems. In [3], Cooley presents a modification of a fluorescent lamp which allows it to detect nearby occupants and dim itself automatically. ...

  8. High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing

    E-Print Network [OSTI]

    Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

  9. Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells

    SciTech Connect (OSTI)

    Stuckelberger, M., E-mail: michael.stuckelberger@epfl.ch; Riesen, Y.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71, CH-2000 Neuchâtel (Switzerland)

    2014-09-07

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both the p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.

  10. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13,CenterCenterLighting Sign In

  11. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Dang, Xiangnan

    In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). ...

  12. DOE Investment Yields R&D 100 Award Winner in Energy-Efficient Lighting

    Broader source: Energy.gov [DOE]

    RTI International's nanofiber lighting improvement technology (NLITe™) has been honored with a 2011 R&D 100 Award. Established in 1963 by the editors of R&D Magazine, the annual R&D 100 Awards identify the 100 most significant, newly introduced research and development advances of the past year in multiple disciplines.

  13. Designing Interactive Lighting Dzmitry Aliakseyeu, Bernt Meerbeek, Jon

    E-Print Network [OSTI]

    light bulb was controlled using a single switch; on and off. LED-based lighting systems can easilyDesigning Interactive Lighting Dzmitry Aliakseyeu, Bernt Meerbeek, Jon Mason, Philips Research Europe Eindhoven, The Netherlands {dzmitry.aliakseyeu, bernt.meerbeek, jon.mason}@philips.com Harm van

  14. Efficient generation of highly squeezed light and second harmonic wave with periodically poled MgO:LiNbO_3

    E-Print Network [OSTI]

    Genta Masada; Tsuyoshi Suzudo; Yasuhiro Satoh; Hideki Ishizuki; Takunori Taira; Akira Furusawa

    2009-12-21

    We report on effective generation of continuous-wave squeezed light and second harmonics with a periodically poled MgO:LiNbO$_{\\mathrm{3}}$ (PPMgLN) crystal which enables us to utilize the large nonlinear optical coefficient $d_{\\mathrm{33}}$. We achieved the squeezing level of $-7.60 \\pm 0.15$dB at 860 nm by utilizing a subthreshol optical parametric oscillator with a PPMgLN crystal. We also generated 400 mW of second harmonics at 430 nm from 570 mW of fundamental waves with 70% of conversion efficiency by using a PPMgLN crystal inside an external cavity.

  15. Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate

    E-Print Network [OSTI]

    Psaltis, Demetri

    Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light developed substrate that decouples the growth and scattering interfaces are investigated in n-i-p triple-junction

  16. A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis

    E-Print Network [OSTI]

    Kelsch, Wolfgang

    New neurons integrate in large numbers into the mature olfactory bulb circuit throughout life. The factors controlling the synaptic development of adult-born neurons and their connectivity remain essentially unknown. We ...

  17. Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector

    Broader source: Energy.gov [DOE]

    While there has been considerable research focusing on energy efficiency and fuel substitution options for LDVs, much less attention has been given to non-LDV modes, even though they constitute close to half of the energy used in the transportation sector. We conducted an extensive literature review of the non-LDV modes, and in this report we bring together the salient findings concerning future energy efficiency options in the time period up to 2050. The studies reviewed provided potential energy savings for individual technologies within each mode, as well as an overall energy savings representing the case where all possible improvements are implemented.

  18. Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis

    SciTech Connect (OSTI)

    Sulaeman, Uyi; Yin, Shu; Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2010-09-06

    SrTiO{sub 3} powders with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reactions of SrCl{sub 2} and Ti(OC{sub 3}H{sub 7}){sub 4} in KOH aqueous solutions. The nanoparticles of perovskite type SrTiO{sub 3} structure with the particle size of 30-40 nm were synthesized. The photocatalytic activity was determined by deNO{sub x} ability using light emitting diode lamps of various wavelengths such as 627 nm (red), 530 nm (green), 445 nm (blue), and 390 nm (UV). The photocatalytic activity significantly changed depending on the Sr/Ti atomic ratio, i.e., the strontium rich sample (Sr/Ti atomic ratio>1) showed excellent visible light responsive photocatalytic activity for the oxidative destruction of NO.

  19. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  20. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    SciTech Connect (OSTI)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  1. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the FennaMatthewsOlson complex

    E-Print Network [OSTI]

    Eisfeld, Alexander

    An efficient method to calculate excitation energy transfer in light-harvesting systems o u r n a l f o r p h y s i c s New Journal of Physics An efficient method to calculate excitation, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA E-mail: eisfeld@mpipks-dresden.mpg.de New

  2. Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    ://dx.doi.org/10.1063/1.4905599 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/106/2?ver Internationale de L'Eclairage coordinates insensitive to the applied bias voltage. This insensitivity the achieved stable color coordinates of (0.411 6 0.007, 0.382 6 0.003), a high power efficiency of 30.7 lm

  3. Lighting Design | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of...

  4. Neutron light output and detector efficiency (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron light output and

  5. The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project

    SciTech Connect (OSTI)

    Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1994-05-01

    The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

  6. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  7. Improved energy efficiency by use of the new ultraviolet light radiation paint curing process

    SciTech Connect (OSTI)

    Grosset, A.M.; Su, W.-F.A.

    1984-08-01

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures is more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. The replacement of a conventional natural gas fired oven by an ultraviolet radiation curing line for paint curing could save quadrillions of joules per year for each finishing line. In this program sponsored by the U.S. Department of Energy, Office of Industrial Programs, two photoinduced polymerizations, via free radical or cationic mechanisms, were considered in the formulation of UV curable paints. The spectral output of radiation sources was chosen so as to complement the absorption spectra of pigments and photoactive agents; thus highly pigmented thick films could be cured fully by UV radiation. One coat enamels, topcoats, and primers have been developed which can be applied on three dimensional objects by spraying and can be cured by passing through a tunnel containing UV lamps.

  8. Energy-Efficiency Labels and Standards: A Guidebook forAppliances, Equipment, and Lighting - 2nd Edition

    SciTech Connect (OSTI)

    Wiel, Stephen; McMahon, James E.

    2005-04-28

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

  9. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  10. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2006-01-01

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the second year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The second year activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on green LED active region as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda} {approx}540nm green LEDs. We have also studied the thermal annealing effect on blue and green LED active region during the p-type layer growth. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {Omega}-cm) and improved optical quality green LED active region emitting at {lambda} {approx}540nm by electroluminescence. The active region of the green LEDs was found to be much more sensitive to the thermal annealing effect during the p-type layer growth than that of the blue LEDs. We have designed grown, fabricated green LED structures for both 520 nm and 540 nm for the evaluation of second year green LED development.

  11. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell Dupuis

    2007-06-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. We also have achieved (projected) peak IQE of {approx}25% at {lambda}{approx}530 nm and of {approx}13% at {lambda}{approx}545 nm. Visible LEDs on a non-polar substrate using (11-20) {alpha}-plane bulk substrates. The absence of quantum-confined Stark effect was confirmed but further improvement in electrical and optical properties is required.

  12. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Héry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  13. Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

    SciTech Connect (OSTI)

    Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T. (Perspectives, Sedona, AZ); Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J. (Perspectives, Sedona, AZ); Pinson, Ariane O. (Perspectives, Sedona, AZ); Miksovic, Ann E. (Perspectives, Sedona, AZ); Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.

    2004-06-01

    This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

  14. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  15. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%?±?1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.×?nm sources.

  16. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01

    for Near-UV LED Solid State Lighting” ECS Journal of Solidfor Near-UV LED Solid State Lighting”, ECS J. Solid Statefor near-UV LED solid state lighting,” ECS J. Solid State

  17. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01

    application in white light emitting diode,” J. Mater. Res. ,S.Y. Choi. “White light-emitting diodes of GaN-based Sr 2phosphor for white light-emitting diodes prepared by sol–gel

  18. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01

    for near-UV LED solid state lighting,” Solid State Sci.for near-UV LED solid state lighting,” ECS J. Solid Statefor Near-UV LED Solid State Lighting” ECS Journal of Solid

  19. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect (OSTI)

    Wang, Qi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Ma, Dongge, E-mail: mdg1014@ciac.jl.cn; Ding, Junqiao; Wang, Lixiang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Leo, Karl [Tech. Univ. Dresden, Inst. Angew. Photophys., D-01062 Dresden (Germany); Qiao, Qiquan [Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Jia, Huiping; Gnade, Bruce E. [Department of Materials Science and Engineering and Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye ? green dye ? red host ? red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1?±?0.8% and power efficiency of 37.5?±?1.4?lm/W but shows no color shift over a wide range of voltages.

  20. Energy-Department Supported Scientist Receives Nobel Prize for...

    Broader source: Energy.gov (indexed) [DOE]

    red and green diodes, blue diodes made the white light coming from today's LED light bulbs possible. LED light bulbs are as much as 85% more energy efficient and last up to 25...

  1. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  2. Energy Efficiency Adult Tracking Report - Final

    SciTech Connect (OSTI)

    Gibson-Grant, Amy

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  3. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim, E-mail: piprek@nusod.org [NUSOD Institute LLC, P.O. Box 7204, Newark, Delaware 19714 (United States)

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  4. User-guided White Balance for Mixed Lighting Conditions Ivaylo Boyadzhiev

    E-Print Network [OSTI]

    Bala, Kavita

    -consumption fluo- rescent and LED lights vary widely in their color temperature, and rooms with multiple bulbsUser-guided White Balance for Mixed Lighting Conditions Ivaylo Boyadzhiev Cornell University Kavita Bala Cornell University Sylvain Paris Adobe Fr´edo Durand MIT CSAIL (a) input with mixed lighting

  5. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport

    E-Print Network [OSTI]

    Filippo Caruso; Alex W. Chin; Animesh Datta; Susana F. Huelga; Martin B. Plenio

    2009-06-19

    Excitation transfer through interacting systems plays an important role in many areas of physics, chemistry, and biology. The uncontrollable interaction of the transmission network with a noisy environment is usually assumed to deteriorate its transport capacity, especially so when the system is fundamentally quantum mechanical. Here we identify key mechanisms through which noise such as dephasing, perhaps counter intuitively, may actually aid transport through a dissipative network by opening up additional pathways for excitation transfer. We show that these are processes that lead to the inhibition of destructive interference and exploitation of line broadening effects. We illustrate how these mechanisms operate on a fully connected network by developing a powerful analytical technique that identifies the invariant (excitation trapping) subspaces of a given Hamiltonian. Finally, we show how these principles can explain the remarkable efficiency and robustness of excitation energy transfer from the light-harvesting chlorosomes to the bacterial reaction center in photosynthetic complexes and present a numerical analysis of excitation transport across the Fenna-Matthew-Olson (FMO) complex together with a brief analysis of its entanglement properties. Our results show that, in general, it is the careful interplay of quantum mechanical features and the unavoidable environmental noise that will lead to an optimal system performance.

  6. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density

    SciTech Connect (OSTI)

    Rozhansky, I. V., E-mail: igor@quantum.ioffe.ru; Zakheim, D. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2006-07-15

    The study is devoted to theoretical explanation of a decrease in the electroluminescence efficiency as the pump current increases, which is characteristic of light-emitting-diode (LED) heterostructures based on AlInGaN. Numerical simulation shows that the increase in the external quantum efficiency at low current densities J {approx} 1 A/cm{sup 2} is caused by the competition between radiative and nonradiative recombination. The decrease in the quantum efficiency at current densities J > 1 A/cm{sup 2} is caused by a decrease in the efficiency of hole injection into the active region. It is shown that the depth of the acceptor energy level in the AlGaN emitter, as well as low electron and hole mobilities in the p-type region, plays an important role in this effect. A modified LED heterostructure is suggested in which the efficiency decrease with the pump current should not occur.

  7. Northeast Energy Efficiency Partnerships | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: Burlington Electric Department, Cape Light Compact, Connecticut Light and Power, Efficiency...

  8. M362K First Midterm Exam Solutions. February 7, 2002 Problem 1. Light Bulbs

    E-Print Network [OSTI]

    Voloch, Felipe

    that the nickel was heads and the dime and quarter were tails. S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. (Each of these 8 points has probability 1/8). 2 #12;A = {HHH, HHT, HTH, THH, TTH} B = {HHH, HTH, THH, TTH} C = {HHH independent? Explain. BC = {HHH, HTH}, so P(BC) = 1/4. That is equal to P(B)P(C), so B and C are independent

  9. Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb...

    Energy Savers [EERE]

    general service fluorescent and medium base compact fluorescent lamps that used more energy than permitted by law. This case reflects DOE's renewed commitment to enforce the...

  10. Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparing LEDCSAC CharterConsumer

  11. DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartmentEP9425Violating Minimum

  12. DOE Withdraws the Energy Star Label from 34 Compact Fluorescent Light Bulbs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. TechnologyDOE Web| Department of

  13. Evaluation Helps Program Increase Sales of Energy Saving Light Bulbs Among

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new measuresEstimated |Women |

  14. A Winning Light Bulb With the Potential to Save the Nation Billions |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12: Drive5Leadership at PNNL |

  15. Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear8Under| Department of

  16. Rise and Shine: Lighting the World with 10 Billion LED Bulbs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServicesRecoveryRhode Island Schools

  17. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  18. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  19. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  20. Nanotechnology creates potential for enhanced quality of life light-emitting diodes for energy-efficient water purification, new

    E-Print Network [OSTI]

    Linke, Heiner

    -efficient water purification into a reality, along with high-efficiency solar power cells and new methods-efficient water purification, new energy-saving electronic components, high-efficiency solar cells and new methods is home to one of the world's leading research environments in the field, the Nanometer Structure

  1. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

  2. Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications: First Budget Period Technical Report

    SciTech Connect (OSTI)

    Yijian Shi

    2009-09-30

    A COLED device consists of a top electrode (anode) and a bottom electrode (cathode) separated by a thin dielectric layer. In this metal/dielectric stack, numerous small wells, or cavities, are etched through the top electrode and the dielectric layer. These cavities are subsequently filled with LEP molecules. When a voltage is applied between the top and bottom electrodes, holes (from the top electrode) and electrons (from the bottom electrode) are injected into the polymer. Light emission is generated upon recombination of holes and electrons within the polymer along the perimeters of cavities. Figure 1 compares the structures of the COLED and the traditional OLED. The existing COLED fabrication process flow is illustrated in Figure 2. A COLED can potentially be 5 times more efficient and can operate at as much as 100 times higher current density with much longer lifetime than an OLED. To fully realize these potential advantages, the COLED technology must overcome the following technical barriers, which were the technical focused points for Years 1 and 2 (Phase I) of this project: (1) Construct optimum thickness dielectric layer: In the traditional OLED structure, the optimal thickness of the LEP film is approximately 80-100 nm. In a COLED device, the effective LEP thickness roughly equals the thickness of the dielectric layer. Therefore, the optimal dielectric thickness for a COLED should also be roughly equal to 80-100 nm. Generally speaking, it is technically challenging to produce a defect-free dielectric layer at this thickness with high uniformity, especially over a large area. (2) Develop low-work-function cathode: A desired cathode should have a low work function that matches the lowest unoccupied molecular orbital (LUMO) level of the LEP molecules. This is usually achieved by using a low-work-function metal such as calcium, barium, lithium, or magnesium as the cathode. However, these metals are very vulnerable to oxygen and water. Since the cathode of the COLED will be exposed to air and processing chemicals during the COLED fabrication process, these low-work-function metals cannot be used directly in the COLED structure. Thus, new materials with low work function and better chemical stability are needed for the COLED cathode. (3) Increase active device area: Since photons are only generated from perimeters of the cavities, the actual active area in a COLED device is smaller than the device surface area. The cavity diameter and cavity spacing of the COLED devices previously produced at SRI by conventional photolithography processing are typically in the range of 3 to 7 {mu}m with an estimated active area of 2-3%. To achieve the same brightness of a traditional OLED at the same applied voltage, the active device area of a COLED should be at least 20% (1/5) of the device surface area, provided the COLED has 5 times higher EQE. This requires reducing the cavity diameter and cavity spacing to the sub-micrometer region, which can be achieved by electron-beam lithography or nanoimprint lithography. (4) Improve metal/polymer interfaces: The polymer/metal interfaces are critical issues to improve and optimize since they directly affect the effectiveness and balance of hole and electron injection, and consequently the device performance. Conventional approaches for improving a metal/polymer interface include deposition of a special interfacial material on the selected electrode surface or applying a proper surface treatment prior to deposition of the LEP. Since these approaches are generally nonselective to the cathode and anode, they cannot be directly adopted for COLED devices. Generally, the interface integration in current OLED technology still needs a better chemical approach. Hence, advanced methodology developed for the COLED technology as promoted in this project may be also suitable for other OLED devices.

  3. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as part of your whole-house design -- an approach for building an energy-efficient home. Indoor Lighting Design When designing indoor lighting for energy efficiency,...

  4. Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01

    urban planning and rural development efforts, have incorporated such institutional analyses into their research, the work on energy-efficiency

  5. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  6. Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays

    E-Print Network [OSTI]

    Gilchrist, James F.

    in the Fresnel reflection. Improvement of output power by 219% for InGaN quantum wells LEDs emitting at peakGaN quantum wells light emitting diodes LEDs using SiO2/polystyrene microspheres was demonstrated experimentally. The utilization of SiO2/polystyrene microlens arrays on InGaN quantum wells LEDs, deposited via

  7. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    are also under consideration. Outside the DOE, the Environmental Protection Agency's Green Lights program promotes energy-efficient lighting as a means to reducing...

  8. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    light by passing electricity through mercury vapor, which causes the fluorescent coating to glow or fluoresce. High-Efficiency Ballast (HEB): A lighting conservation feature...

  9. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  10. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes

    SciTech Connect (OSTI)

    Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Zhang, Shuming; Li, Deyao; Zhang, Liqun; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Cai, Jin; Wang, Hui; Wang, H. B. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Suzhou Nanojoin Photonics Co., Ltd., Suzhou (China)

    2014-10-27

    The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3?nm–6?nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200?A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelength we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.

  11. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  12. Microsphere Light-Scattering Layer Assembled by ZnO Nanosheets for the Construction of High Efficiency (>5%) Quantum Dots

    E-Print Network [OSTI]

    Cao, Guozhong

    for CdS/CdSe quantum dot cosensitized solar cells (QDSCs) with a power conversion efficiency (PCE Efficiency (>5%) Quantum Dots Sensitized Solar Cells Jianjun Tian,*, Lili Lv, Xuyang Wang, Chengbin Fei. As a result, the solar cell displayed Jsc of 17.13 mA/cm2 , Voc of 0.56 V, FF of 0.53, and PCE of 5.08%, one

  13. A new class of photo-catalytic materials and a novel principle for efficient water splitting under infrared and visible light - MgB2 as unexpected example

    E-Print Network [OSTI]

    Kravets, V G

    2015-01-01

    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photo-catalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photo-catalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts based on ionic binary metals with layered graphite-like structures which effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons an...

  14. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  15. Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Zhang, Xueliang; Wang, Liancheng; Kyaw, Zabu; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-23

    InGaN/GaN light-emitting diodes (LEDs) grown along the [0001] orientation inherit very strong polarization induced electric fields. This results in a reduced effective conduction band barrier height for the p-type AlGaN electron blocking layer (EBL) and makes the electron blocking effect relatively ineffective and the electron injection efficiency drops. Here, we show the concept of polarization self-screening for improving the electron injection efficiency. In this work, the proposed polarization self-screening effect was studied and proven through growing a p-type EBL with AlN composition partially graded along the [0001] orientation, which induces the bulk polarization charges. These bulk polarization charges are utilized to effectively self-screen the positive polarization induced interface charges located at the interface between the EBL and the last quantum barrier when designed properly. Using this approach, the electron leakage is suppressed and the LED performance is enhanced significantly.

  16. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  17. Induction Lighting: An Old Lighting Technology Made New Again

    Broader source: Energy.gov [DOE]

    Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that...

  18. Towards Accurate and Efficient Representation of Image Irradiance of Convex-Lambertian Objects Under Unknown Near Lighting

    E-Print Network [OSTI]

    Louisville, University of

    Towards Accurate and Efficient Representation of Image Irradiance of Convex-Lambertian Objects.farag@louisville.edu Abstract Surface irradiance signals are turned into outgoing radi- ance through the surface reflectance-frequency nature, irradiance signals can be represented using low-order basis functions, where spher- ical

  19. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  20. ENTRY LOBBY ENERGY EFFICIENCY

    E-Print Network [OSTI]

    Escher, Christine

    ENTRY LOBBY ENERGY EFFICIENCY Clerestory windows provide natural day-lighting.· Exterior roof SUSTAINABILITY FEATURES #12;ADMINISTRATION ENERGY EFFICIENCY High performance window glazing· minimizes heat gain. Skylights provide natural day-lighting.· High-efficiency lighting reduces energy· costs and heat gain

  1. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01

    30), 477-499. Efficient Lighting Initiative. 2004. Lighting Energy Bill, Internationalfor Energy-Efficient Lighting and Lawrence Berkeley National

  2. Program Name: Simple Steps, Smart Savings Simple Steps, Smart...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to purchase and install high-quality, energy-efficient compact fluorescent lamps (CFLs), light emitting diode bulbs (LEDs), light fixtures and energy-saving showerheads....

  3. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect (OSTI)

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  4. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  5. 2010 US Lighting Market Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 U.S. Lighting Market Characterization January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program Office of Energy Efficiency and Renewable Energy...

  6. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant

    SciTech Connect (OSTI)

    Zhou, Dong-Ying; Zu, Feng-Shuo; Shi, Xiao-Bo; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn; Zhang, Ying-Jie; Aziz, Hany E-mail: lsliao@suda.edu.cn

    2014-08-25

    In this work, we report thermally decomposable lithium amide (LiNH{sub 2}) feasible to function as an effective n-type dopant for intermediate connectors in tandem organic light-emitting devices (OLEDs). Metallic lithium, which is released from the decomposition process of LiNH{sub 2}, is proved by X-ray photoelectron spectroscopy and responsible for n-type electrical doping of electron transporting materials. We demonstrate that tandem OLEDs using LiNH{sub 2} and Cs{sub 2}CO{sub 3} as n-type dopants, respectively, give a comparable electroluminescence efficiency and, moreover, the device with LiNH{sub 2} has far longer operational lifetime. The results therefore highlight the significance of selecting suitable n-type dopant in intermediate connectors to fabricate high-stability tandem OLEDs.

  7. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

  8. Persistence of Energy Efficiency Behaviors over Time: Evidence from a Community-Based Program

    E-Print Network [OSTI]

    Whitsett, Donna D PhD; Justus, Hannah C; Steiner, Ellen; Duffy, Kevin

    2013-01-01

    Ways to Save Use energy- efficient lighting and appliances.natural lighting. Use an energy- efficient water heater andoff electronics, installing energy efficient lights, using

  9. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  10. ECE 466: LED Lighting Systems -Incandescent lightings rise and

    E-Print Network [OSTI]

    Connors, Daniel A.

    ECE 466: LED Lighting Systems - Incandescent lightings rise and demise via government policy - Alternative Fluorescent light sources and compact fluorescent lights (CFL) to incandescents - Alternative LED light sources - Color index as well as Watts to Lumens efficiency available from all three light sources

  11. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    SciTech Connect (OSTI)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  12. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  13. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  14. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    from the engineering literature, based on CBECS building activity.) 4. Efficacy: an energy efficiency measure. Technically, the amount of light produced per unit of energy...

  15. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  16. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  17. Energy Conservation in Industrial Lighting 

    E-Print Network [OSTI]

    Meharg, E.

    1979-01-01

    were identified. Savings in power and cost were quantified for typical examples as follows: Task lighting, high light source efficacy, high luminaire mounting height, efficient luminaires, surroundings painted a light color, regular luminaire cleaning...

  18. Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe

    E-Print Network [OSTI]

    McQuade, Lindsey E.

    We report the visualization of NO production using fluorescence in tissue slices of the mouse main olfactory bulb. This discovery was possible through the use of a novel, cell-trappable probe for intracellular nitric oxide ...

  19. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  20. Guide to Energy Efficient Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs | Department of Energyof2-1Today's CFLs

  1. Verifying One Hundred Prisoners and a Light-Hans van Ditmarsch, Jan van Eijck and William Wu

    E-Print Network [OSTI]

    van Eijck, Jan

    Verifying One Hundred Prisoners and a Light- bulb Hans van Ditmarsch, Jan van Eijck and William Wu analyze the `one hundred prisoners and a lightbulb' puzzle. In this puzzle it is relevant what the agents (prisoners) know, how their knowledge changes due to observations, and how they affect the state of the world

  2. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

  3. Energy Saver Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and prioritize your larger needs. November 26, 2014 We're thankful for energy-efficient light bulbs, home energy audits, ENERGY STAR appliances, and using public transportation....

  4. Manufacturing Initiative | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive components) and across the...

  5. General Counsel's Office Issues Guidance on Inherently Governmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation of New Health, Safety and Security Office DOE Launches New Smart Grid Web Portal Westinghouse Pays 50,000 Civil Penalty to Resolve Light Bulb Efficiency Violations...

  6. Replacing Lightbulbs and Ballasts | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Replacing Lightbulbs and Ballasts Replacing Lightbulbs and Ballasts Replace frequently used bulbs with more energy efficient options to save money and energy. Replace...

  7. Covered Product Category: Exterior Lighting | Department of Energy

    Energy Savers [EERE]

    & Technologies Energy-Efficient Products Covered Product Category: Exterior Lighting Covered Product Category: Exterior Lighting The Federal Energy Management Program...

  8. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    SciTech Connect (OSTI)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  9. Department of Energy Opens Investigation into Alleged Lighting...

    Energy Savers [EERE]

    Department of Energy Opens Investigation into Alleged Lighting Efficiency Violations Department of Energy Opens Investigation into Alleged Lighting Efficiency Violations March 24,...

  10. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

  11. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  12. LED Lighting Retrofit 

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01

    kWh is the one that never gets used? ?Dedicated to making environmentally responsible products? Ringdale Introduction LED Roadway Lighting Better Light, Fewer Watts. Period. Nathan Shaw-Meadow LED Lighting Specialist Ringdale ActiveLED ESL.../exponential efficiency growth often deters investment today 7 Challenges to Implementation ESL-KT-11-11-57 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ? Municipal Street Light Case Study 8 ? Replaced 400W High Pressure Sodium fixtures with 52W Active...

  13. Innovative Office Lighting System with Integrated Spectrally...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an innovative LED office lighting system solution that integrates light delivery, optics, and controls for energy efficiency and occupant health and well-being. The office...

  14. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  15. Some cultural practices affecting bulb rot, plant and floral development, and seed yield of the White Grano onion 

    E-Print Network [OSTI]

    Enzie, Joseph Vincent

    1955-01-01

    Public Buildings Leading by Example Philip Gates, CEM, CMVP, EIT Energy Manager 1 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 2 H ow to be gin ? ESL-KT-13-12-27 CATEE 2013: Clean Air... solution • 6,500 devices • $200K annual savings Pool Pump Control • Stop over-circulating • 24 Public Pools • $70K annual savings LED Street Lighting • Replace high wattage fixt. • 25,000 fixtures • $, kWh annually Chillers & DX Units • Eff. equip. w...

  16. Legislative Directive: EPACT 2005, Subtitle A: Energy Efficiency

    Broader source: Energy.gov [DOE]

    Legislative Directive: EPACT 2005, Subtitle A: Energy Efficiency, Sec. 911: Energy Efficiency, Sec. 912: Next Generation Lighting Initiative

  17. Volume 2, Issue 2 November 2008Office of Environmental Sustainability Sustainability Bulletin

    E-Print Network [OSTI]

    Alexandrova, Ivana

    by Energy Star. Nearly one-fifth of electricity used in homes comes from lighting, and this campaign or blow out. Energy efficient light bulbs use 75% less energy than the typical light bulb which saves both Sustainability Day 2 Change a Light Campaign 2 Electronics Collection Event 2 Who Killed the Electric Car? 3

  18. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  19. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and...

  20. An International Year of Light

    E-Print Network [OSTI]

    Faure, Claudie

    of light-based technologies for the equitable development of global society. The project received, renewable energy and energy efficiency, and for PROSPECTUS An International Year of Light Science ­ Technology ­ Nature ­ Culture ­ Development

  1. Enhanced coupling of light from organic light emitting diodes using nanoporous films

    E-Print Network [OSTI]

    Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

  2. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

  3. Fluorescent Lighting | Department of Energy

    Office of Environmental Management (EM)

    - by far the most common form of fluorescent lighting but rarely found in residential buildings -- are much more energy efficient than incandescent lamps and are ideally suited...

  4. Incandescent Lighting | Department of Energy

    Office of Environmental Management (EM)

    courtesy of iStockphotoTokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings....

  5. Cost-effective Lighting Retrofits: Lessons Learned 

    E-Print Network [OSTI]

    Fisher, M. D.

    1994-01-01

    -effective Lighting Retrofits: Lessons Learned Mark D. Fisher Certified Lighting Efficiency Professional Johnson Controls Dallas, Texas ABSTRACT Facility managers and energy engineers contemplating a lighting retrofit are confronted with a confusing array...

  6. Light-Light Scattering

    E-Print Network [OSTI]

    Naohiro Kanda

    2011-06-03

    For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

  7. Automatic lighting controls demonstration

    SciTech Connect (OSTI)

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  8. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01

    2003). "Disseminating energy-efficient technologies: a caseInternational Conference on Energy efficient Lighting, Nice,Market Study for Improving ENergy Efficiency for Fans. ISI.

  9. Problem 7-3: The air enters with a dry-bulb temperature of 50 o F and, at 50% relative humidity, with a wet-

    E-Print Network [OSTI]

    of the power-plant Rankine cycle. The actual process evaporates enough water to increase the humidity ratio, with a wet- bulb temperature of 42 o F, according to the Psychrometric Chart (page 821). The main evaporative% relative humidity. This process would evaporate enough water to increase the humidity ratio from 0

  10. Projection screen having reduced ambient light scattering

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  11. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    SciTech Connect (OSTI)

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin, E-mail: xinliscau@yahoo.com

    2013-07-15

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 ?mol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup ?1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 ?mol/g over 5 h.

  12. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    ventilating, and air conditioning. Energy efficiency is alsoenergy efficiency programs (e.g. , lighting, air conditioning)energy efficiency and sell large, capital-intensive technology solutions, such as boiler and heating, ventilating, and air conditioning (

  13. Photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James (Lawrenceville, NJ)

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  14. U.S. Department of Energy and International Association of Lighting...

    Energy Savers [EERE]

    International Association of Lighting Designers Partner to Improve Energy Efficiency in Lighting Systems U.S. Department of Energy and International Association of Lighting...

  15. CBEA LED Site Lighting Specification - Version 1.3, Released...

    Energy Savers [EERE]

    cbealedsitelightingspec.pdf More Documents & Publications CBEA High-Efficiency Parking Structure Lighting Specification FEMP Outdoor Solid-State Lighting Intiative:...

  16. Functional Polymer Architectures for Solution Processed Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Poulsen, Daniel Andrew

    2010-01-01

    developing new OLED displays and lighting devices withOLED technology has reached a point where highly efficient thin film devices which rival other lighting

  17. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    'll build the circuit! We'll use an LED to represent the room lights! #12;4! Block diagram! Battery! Rail! #12;23! LED: light-emitting diode! Diode conducts current in only one direction! When current flows1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if

  18. A merged two-stage converter for LED lighting applications

    E-Print Network [OSTI]

    Ranson, John (John David)

    2012-01-01

    Light Emitting Diodes (LEDs) are a very promising technology for developing more efficient lighting. For high-efficiency applications, a switching current regulator is necessary to control the power drawn by an LED string. ...

  19. Typically, hotel bathroom lights are left on between five to eight hours per occupied

    E-Print Network [OSTI]

    -public spaces, the energy efficient, super bright light-emitting diode (LED) nightlight remains on whenever

  20. Roundtable Discussions of the Solid State Lighting R&D Task Priorities Nov. 2009

    SciTech Connect (OSTI)

    2010-01-01

    A document for the Department of Energy, Energy Efficiency and Renewable Energy, Solid State Lighting

  1. Pedernales Electric Cooperative- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting. Rebates vary based upon whether construction is new or...

  2. Flathead Electric Cooperative- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program...

  3. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  4. High Thermal Efficiency and Low Emissions with Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical...

  5. Sandia Energy - Jeff Tsao participates in "Energy Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tsao participates in "Energy Efficiency and the Rebound Effect" Workshop Home Solid-State Lighting News Jeff Tsao participates in "Energy Efficiency and the Rebound Effect"...

  6. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

  7. Cowlitz County PUD- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers the Commercial Energy Efficiency Program (CEEP) for non-residential customers to improve the efficiency of facilities. The program offers incentives on lighting, custom...

  8. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  9. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    and A. H. Rosenfeld Energy Efficient Windows Program S.Verderber, and J. Klems Energy Efficient Lighting Program S.1978 A. K. OPPENHEIM Energy Efficient Buildings INTRODUCTION

  10. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  11. BEopt Optimization Tool and National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    response * HPXML export * Schedule wizard * Output visualization * Batch simulations * Library manager * ... Heating Cooling Lighting Appliances Other Efficiency PVSHW Energy Use...

  12. Light-Efficient Photography (#466) Supplementary Material

    E-Print Network [OSTI]

    Kutulakos, Kyros

    tea canister to the pale green book in the background. · Captured with a Canon S3 IS, at 2MP (1600x of a messy desk (close objects magnified 1:5), covered in books, papers, and tea paraphernalia, on top

  13. Virginia Tech Shines Light on Home Efficiency

    Broader source: Energy.gov [DOE]

    Collegiate teams from around the world came to Madrid this month to present their solar-powered houses in the first biennial Solar Decathlon Europe, a competition modeled after the Energy Department's Solar Decathlon in Washington, D.C.

  14. Lighting Efficiency Case Study 5 Buildings at

    E-Print Network [OSTI]

    Humphrys, Mark

    : .............................................................3 Power Conditioning:...............................................................4 Savings ................................................................6 Savings Summary .................................................................7 LIRC ­ Library ..........................................................................8 Occupancy Sensors................................................................9 Savings Summary

  15. Marblehead Municipal Light Department - Residential Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites |and theDepartment of EnergyRebate

  16. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r i t y -Department of

  17. LIFE CYCLE SUSTAINABILITY ASSESSMENT An agent based approach to the potential for rebound resulting

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    efficient lighting options, such as com- pact fluorescent bulbs and light emitting diodes are predicted . Light emitting diode . Lighting . Rebound effect . Residential consumption 1 Introduction Light (US EIA 2011). Light emitting diode (LED) lamps1 represent an evolution in how residential 1 Light

  18. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  19. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  20. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  1. Water Efficiency

    Energy Savers [EERE]

    Water Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group...

  2. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  3. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  4. New Light Sources for Tomorrow's Lighting Designs 

    E-Print Network [OSTI]

    Krailo, D. A.

    1986-01-01

    and lighting systems. Table 2 shows the development of four-foot energy-saving retrofit lamps. By utilizing new cathode designed and different gas fills, 34-watt energy-saving lamps were developed that operate on existing rapid start ballasts and afford... of fluorescent lamps, two watts of system power are consumed in heating the lamp cath odes. The shedding of cathode heating wattage was the next lamp efficiency improvement to be introduced. One available sy tern dis connects the lamp cathodes from...

  5. Lighting Research Group FinalReportOctober1999

    E-Print Network [OSTI]

    to improve the lighting quality and energy efficiency of the lighting system at the Social Security lighting quality, will provide an energy efficient solution and will be about the same cost as the direct Building in Richmond CA is being renovated. The firm of Beyez & Patel was retained to perform a site

  6. OLEDS FOR GENERAL LIGHTING

    SciTech Connect (OSTI)

    Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

    2004-02-29

    The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

  7. Energy Saver Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have to be difficult. With these five easy steps, you can find the best energy-efficient light bulb for your home September 9, 2014 Living the college lifestyle doesn't mean you...

  8. Quantum efficiency characterization of LBNL CCD's Part 1: the Quantum Efficiency Machine

    E-Print Network [OSTI]

    Quantum efficiency characterization of LBNL CCD's Part 1: the Quantum Efficiency Machine Donald E into characterization at LBNL. The quantum-efficiency (QE) workbench (The Quantum Efficiency Machine) described here Machine during measurements, making use of light from the axial port of the monochromator via an optical

  9. Lighting recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA

    SciTech Connect (OSTI)

    Rubinstein, Francis M.

    1999-10-25

    Specific recommendations are made to improve the lighting quality and energy efficiency of the lighting system at the Social Security Administration Frank Hagel Building in Richmond, CA. The main recommendation is to replace the recessed fluorescent lighting system in the general office area with indirect lighting. Indirect lighting will improve lighting quality, will provide an energy efficient solution and will be about the same cost as the direct lighting system originally proposed.

  10. Veeco's collaboration with Sandia has helped us lower

    E-Print Network [OSTI]

    Technologist Jeff Kempisty of SNL removes an InGaN LED wafer from the Veeco MOCVD system. Research Driving Down the Costs of Efficient LED Lighting Solid state lighting (SSL), which uses light emitting diodes (LEDs), has the potential to be 10 times more energy-efficient than traditional incandescent light bulbs. Currently, 20

  11. Integrated LED-based luminare for general lighting

    DOE Patents [OSTI]

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

    2013-03-05

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  12. Solar optics: light as energy; energy as light

    SciTech Connect (OSTI)

    Bennett, D.J.; Eijadi, D.A.

    1980-05-01

    a prominent characteristic of earth-sheltered and underground buildings, as well as buildings designed to accommodate more uses within the same perimeters, is the prominence of interior space without direct access to natural light and view opportunities. Solar Optics, a technique for illuminating interior spaces with natural light, offers a way to satisfy the well-documented human affinity for natural light. The system, which uses a heliostat to track the sun and lenses and mirrors to direct the light to remote interior spaces, is more efficient than converting solar radiation into electricity. Through the use of cold mirrors, it is also possible to separate the infrared portion of the spectrum from visible light, thereby creating a cool light source that can reduce a building's space cooling demand. Solar Optics also offers energy savings by transmitting light through a small aperture, as opposed to a large window. Several design problems must still be addressed. The system will be demonstrated in a new building at the University of Minnesota. Because this is a limited demonstration, it does not include the integration of a natural light system with a central source light system...another promising application of Solar Optics.

  13. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by your library lights E Kilowatt-hours consumed by your library lights F Annual cost of operating your library lights H Current lighting index for your library ...

  14. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  15. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01

    Technology/Measure Pump Efficiency Pinch Analysis Switched Reluctance Motor Advanced Lighting Anaerobic Waste Waterwater treatment High-efficiency/low NO x burners Membrane technology wastewater Process integration (pinch)water treatment High efficiency/low NO x burners Membrane technology wastewater Process Integration (pinch

  16. Energy-Efficient Computing and its Resource

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy-Efficient Computing and its Resource Implications Fred Chong Director, Greenscale Center for Energy-Efficient Computing Director, Computer Engineering UC Santa Barbara #12;Skyrocketing Energy Servers [Barosso and Hoetzle, Computer 2007] #12;Energy-Efficiency at Light Load [Barosso and Hoetzle

  17. Controls for Solid-State Lighting

    SciTech Connect (OSTI)

    Rubinstein, Francis

    2007-06-22

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

  18. Energy - LEDs to light UT arena | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 85 percent more efficient than conventional arena metal halide lights. The light-emitting diode fixtures developed by Oak Ridge-based LED North America incorporate an Oak...

  19. Wide band-gap nanowires for light emitting diodes

    E-Print Network [OSTI]

    Chesin, Jordan (Jordan Paul)

    2015-01-01

    Wide band-gap nanowires composed of GaN and ZnO are promising materials for unique designs and potential efficiency improvement of light emitting diodes (LEDs) for solid state lighting. The large surface-to-volume ratio ...

  20. Types of Lights Types of Lights

    E-Print Network [OSTI]

    1 Types of Lights Types of Lights q So far we have studied point lights ­ Radiate in all direc7ons q Other lights ­ Direc7onal lights (posi7on-independent) ­ Spotlights #12;2 Direc1onal Lights q Shine in a single, uniform direc7on q All rays

  1. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    types of LEDs varied from power LEDs to low-power 5mm LEDs.had a single highly efficient Power LED and four light levelhad a single highly efficient Power LED and two light level

  2. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  3. Solid State Lighting ECE 198 Lab Manual

    E-Print Network [OSTI]

    Wasserman, Daniel M.

    not only the technical properties of the bulbs that you measure in lab, but also the cost of the lightbulb, the cost to operate the lightbulb, and if you are feeling especially ambitious, other important factors

  4. Lighting market sourcebook for the US

    SciTech Connect (OSTI)

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-12-01

    Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

  5. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  6. Independence Power and Light- New Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light offers rebates to builders for constructing new, energy efficient homes which meet ENERGY STAR standards. Builders who meet ENERGY STAR standards and install specified...

  7. Light Trapping, Absorption and Solar Energy Harvesting by Artificial...

    Office of Scientific and Technical Information (OSTI)

    Org: USDOE Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY light-trapping, photonic crystals, high-efficiency thin-film solar cells Word Cloud...

  8. Energy Department Provides $7 Million for Solid-State Lighting...

    Energy Savers [EERE]

    quantum efficiency using remote phosphors and employing a multi-layer thin film coating technique to increase the probability that scattered light will escape out of the...

  9. FirstEnergy (Potomac Edison)- Municipal and Street Lighting Program

    Broader source: Energy.gov [DOE]

    FirstEnergy (Potomac Edision) offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient  fixtures. The...

  10. Portable lamp with dynamically controlled lighting distribution

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  11. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore »better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  12. Energy Efficiency Block Grant Approved Funds --Direct Purchase California Energy Commission

    E-Print Network [OSTI]

    in streetlights with higher efficiency options including induction or light emitting diodes. 4/7/2010 CITY

  13. Rapid energy savings in London's households to mitigate an energy crisis

    E-Print Network [OSTI]

    Julien, Aurore; Barrett, Mark; Croxford, Ben

    2011-01-01

    low energy light bulbs in the whole home Unplug my phoneall low energy light bulbs in t he whole home S ch off all

  14. Low Interest Energy Efficiency Loan Program (Electric and Gas)

    Broader source: Energy.gov [DOE]

    Energize CT offers low interest loans for commercial and industrial customers for investments in energy efficiency improvements. Electric customers of Connecticut Light & Power, United...

  15. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  16. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about high efficiency clean combustion in multi-cylinder light-duty engines. ace016curran2014o.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  17. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    for light trapping in photovoltaics: the supercell concept”,efficiency tables”, Progress in Photovoltaics: Research andphotovoltaic cells”, Progress in Photovoltaics: Research and

  18. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  19. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells. Such devices would have the advantages of being cheap to produce, lightweight, and flexible. The catch? Their efficiency in converting light into electricity is still...

  20. Empire Electric Association- Commercial Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    Empire Electric Association provides rebates for its commercial customers who upgrade to energy efficient lighting, HVAC equipment, and motors.  These rebates are offered in conjunction with Tri...

  1. Business Energy Efficiency Rebates (Offered by 5 Utilities)

    Broader source: Energy.gov [DOE]

    For commercial customers, rebates are available for compressed air system efficiency, heating and cooling, lighting, and VFDs and pumps. Applications are available on the program web site.

  2. Energy Efficiency and Conservation Block Grant Program Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including a solar photovoltaic energy system, LED lighting at municipal buildings, boiler upgrades, energy efficiency retrofits at the county government center, and a public...

  3. Vehicle Technologies Office: Materials for High-Efficiency Combustion...

    Office of Environmental Management (EM)

    work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these...

  4. Residential Energy Efficiency Rebates (Offered by 11 Utilities)

    Broader source: Energy.gov [DOE]

    Rebates are offered for a variety of efficient technologies and measures including: appliances, HVAC, lighting, and custom projects.  Rebates vary from one participating utility to another.  For ...

  5. Purchasing Energy-Efficient Commercial and Industrial LED Luminaires

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial and industrial light emitting diode (LED) luminaires, a product category covered by FEMP efficiency...

  6. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0 Averagequestionnaires 7tniLighting Sign In

  7. 278 JOURNAL OF DISPLAY TECHNOLOGY, VOL. 1, NO. 2, DECEMBER 2005 Coupling Efficiency Enhancement in Organic

    E-Print Network [OSTI]

    of the OLED. Index Terms--Coupling efficiency, microlens array, organic light-emitting diodes (OLEDs), soft lithography. I. INTRODUCTION HIGH efficiency organic light-emitting diodes (OLEDs) are required for display and solid-state lighting ap- plications. The external quantum efficiency of an OLED is determined

  8. Covered Product Category: Light Fixtures (Luminaires)

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including luminaires, or light fixtures. The luminaires product category is very broad and covers a wide variety of lighting products. Both ENERGY STAR® and FEMP provide programmatic guidance for various types of luminaires. See table 2 for more information about which types of light fixtures are covered by which program (FEMP or ENERGY STAR). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Robotic Efficiency Solutions for Ductwork 

    E-Print Network [OSTI]

    Forrest, F.

    2012-01-01

    That Work Robotic Efficiency Solutions for ductwork Frank Forrest Electrical Energy Consumption in Office Buildings Building Energy Upgrades ? Lighting upgrade ? Supplemental load reduction ? Air distribution system upgrade ? Windows, window... and ? Brushed or ? Sprayed ? Rolled Sealant Sprayable ? Lower viscosity than other methods ? Substantially better elasticity ? Sprays at a continuous pressure Robotic Spray Application Process ? Duct interior cleaning Click image to play video...

  10. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01

    Energy Demand and High Efficiency Scenarios .. 41 Lighting.. 41 Refrigeration 43 Air Conditioning air conditioning diffusion can grow rapidly. • Efficiency Scenarios – The ability to mitigate energy-Energy consumption of new stock is calculated according to efficiency trends in the Base Case and Efficiency Scenario The exception is residential air conditioning

  11. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives Home Energy Research EFRCs Solid-State Lighting Science EFRC (Lighting and) Solid-State Lighting:...

  12. New Energy-Saving Fiber Optic Lighting System Lights Up Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    levels. As a result of DOE SBIR and other government funding, EFO (efficient fiber optics) Lighting Systems can deliver as much as 80% energy savings over halogen or other...

  13. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  14. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  15. Efficiency Exchange Conference Highlights Energy Efficiency Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Exchange Conference Highlights Energy Efficiency Innovations and Trends Northwest electric power industry connects on the latest energy efficiency programs and...

  16. Efficiency Exchange highlights energy efficiency innovations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Exchange highlights energy efficiency innovations and trends Northwest electric power industry connects on the latest energy efficiency programs and strategies Portland,...

  17. Photonic modes of organic light emitting Submitted by

    E-Print Network [OSTI]

    Exeter, University of

    is a metallic cathode. To achieve high efficiency OLEDs a primary issue to address is how the light resultingPhotonic modes of organic light emitting structures Submitted by Peter Allen Hobson for the award of a degree by this or any other University. #12;Abstract 2 Abstract Organic light emitting diodes

  18. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  19. Laterally injected light-emitting diode and laser diode

    DOE Patents [OSTI]

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  20. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect (OSTI)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  1. 10.1117/2.1201102.003543 Energy-efficient control of

    E-Print Network [OSTI]

    maximizing the light source's usefulness. Figure 1. The lighting network consists of LED light sources10.1117/2.1201102.003543 Energy-efficient control of solid-state lighting Joseph A. Paradiso additional energy savings. Lighting control is in the midst of radical change. Present- day state

  2. Definition of Energy Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Users Energy Efficiency Page Energy Efficiency Definition Energy Efficiency: Definition Stairs) "Take the Stairs--Be More Energy Efficient" Person A interprets the sign as...

  3. Energy Efficiency in India: Challenges and Initiatives

    ScienceCinema (OSTI)

    Ajay Mathur

    2010-09-01

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  4. Materials for solid state lighting

    SciTech Connect (OSTI)

    Johnson, S.G.; Simmons, J.A.

    2002-03-26

    Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

  5. Solid-state lighting technology perspective.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  6. Using a low-index host layer to increase emission from organic light-emitting diode structures

    E-Print Network [OSTI]

    Exeter, University of

    The out-coupling efficiency of organic light-emitting diodes (OLEDs) may be significantly increased by use.60.Jb; 72.80.Le Keywords: Organic light-emitting diode (OLED); Out-coupling efficiency; Refractive index organic light-emitting diodes (OLEDs), with a large amount of this work centring on the efficiency

  7. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  8. Method for making a photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James (Lawrenceville, NJ)

    1987-05-05

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  9. Lighting Retrofit Workbook A PRACTICAL"HOW TO" GUIDE

    E-Print Network [OSTI]

    This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy's Federal Energy Management Program, and the Office of Building Technology, State and Community Programs of the U). The program promotes the use of energy-efficient practices (such as efficient lighting) and renewable energy

  10. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  11. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  12. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES ScienceInformationInformationFor DefenseEnergy-Efficiency Sign

  13. Practical image based lighting 

    E-Print Network [OSTI]

    Lee, Jaemin

    2003-01-01

    information is lighting. Image based lighting that is developed to recover illumination information of the real world from photographs has recently been popular in computer graphics. In this thesis we present a practical image based lighting method. Our...

  14. Light in the city

    E-Print Network [OSTI]

    Srinivasan, Kavita, 1976-

    2002-01-01

    This thesis focuses on enhancing the awareness of light for the pedestrian,and using light as a way of revealing the structure of the city and its relation to the cosmos. It proposes that aesthetic qualities of light inform ...

  15. Advances in Lighting 

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01

    Increasing electricity costs have made a significant impact on lighting. The Illuminating Engineering society (I.E.S.) and the lighting industry are producing new standards, procedures and products to make lighting more appropriate and energy...

  16. Natural lighting and skylights 

    E-Print Network [OSTI]

    Evans, Benjamin Hampton

    1961-01-01

    There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work...

  17. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  18. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  19. NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    SciTech Connect (OSTI)

    Sun, Yuanyuan; Wang, Wenzhong, E-mail: wzwang@mail.sic.ac.cn; Sun, Songmei; Zhang, Ling

    2014-04-01

    Highlights: • Design and synthesis of NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} based on upconversion. • NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF{sub 4}:Er,Yb and the shell was Bi{sub 2}MoO{sub 6} around the core, which was confirmed by EDS. The NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF{sub 4}:Er,Yb in the NaYF{sub 4}:Er,Yb/Bi{sub 2}MoO{sub 6} nanocomposite and the core–shell structure.

  20. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...