Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network [OSTI]

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

2

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect (OSTI)

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

3

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

out that EPA used an emissions trading program to controlsuggested that an emissions trading system could qualify asTO MANAGE LIFECYCLE GHG emissions trading system would also

Hagan, Colin R.

2012-01-01T23:59:59.000Z

4

Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard  

E-Print Network [OSTI]

Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

5

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

6

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US SoutheastGHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions

7

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network [OSTI]

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Outlook June 4, 2013 Steven Simmons CO2 Emission Outlook for the Pacific NW (ID-MT- OR-WA) Key Factors that determine Emissions Levels 1 Demand & Conservation 50 60 70 2 1. Demand

8

Methodology for Estimating Reductions of GHG Emissions from Mosaic...  

Open Energy Info (EERE)

Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation AgencyCompany Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits...

9

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...  

Open Energy Info (EERE)

Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

10

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

11

Energy and GHG Emissions in British Columbia 1990 -2010  

E-Print Network [OSTI]

Energy and GHG Emissions in British Columbia 1990 - 2010 Report Highlights John Nyboer and Maximilian Kniewasser Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser for Climate Solutions 1 HIGHLIGHTS The Energy and GHG Emissions in British

Pedersen, Tom

12

The Future Energy and GHG Emissions Impact of Alternative Personal  

E-Print Network [OSTI]

The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal Paul N. Kishimoto, Sergey Paltsev and Valerie J. Karplus Report No. 231 September 2012 China Energy

13

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O

14

GBTL Workshop GHG Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety,ofOpening Presentation_Tech BarriersGHG

15

Sandia National Laboratories: GHG emission reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFront EdgeCellsGENI ARPAe:GHG

16

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network [OSTI]

(milliontonsCO2) Petroleum + Pet Coke Natural Gas Coal 8 0.0 10.0 20.0 1995 1996 1997 1998 1999 2000 2001 2002 and ½ Valmy coal plants) 2 #12;6/5/2013 2 GHG Emissions by Economic Sector in the Pacific Northwest (2010 Renewables 7 6%In 2011, the region 0.2% 6.4% Coal, 15.7% Nuclear, 2.0% 7.6%, g generated ~27,000 MWa ­ 68

17

Selected GHG Emission Supply Curves | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: EnergySecondary EnergyGHG Emission

18

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-Print Network [OSTI]

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

Green, Donna

19

E-Print Network 3.0 - avoid ghg emissions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

greenhouse gas balances of cassava-based ethanol in Vietnam Loan T. Lea, Summary: . The Thailand case considered GHG emission credits assigned for the production process...

20

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are  

E-Print Network [OSTI]

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network on the overall power consumption and on the GHG emissions with just 25% of green energy sources. I. INTRODUCTION]. In the zero carbon approach, renewable (green) energy sources (e.g. sun, wind, tide) are employed and no GHGs

Politècnica de Catalunya, Universitat

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information  

E-Print Network [OSTI]

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad estimate from Columbia University shows the size of a multi-well pad of Marcellus Shale averages 20

Jaramillo, Paulina

22

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

23

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

Emissions from Alternative Fuel Lifecycles: Scoping theEMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THEACRONYMS and TERMS AF = alternative fuel AFL = alternative-

Delucchi, Mark

2005-01-01T23:59:59.000Z

24

GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: GHG emission factors for local recycling of municipal waste are presented. GHG emission factors for two composting technologies for garden waste are included. Local GHG emission factors were compared to international ones and discussed. Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO{sub 2} e (glass) to ?19 111 kg CO{sub 2} e (metals Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

2013-11-15T23:59:59.000Z

25

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

26

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation  

E-Print Network [OSTI]

1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

Jaramillo, Paulina

27

Project Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve  

E-Print Network [OSTI]

or organization) $25,217 Total Project Cost $25,217 Agency ID or Contract Number DTRT13-G-UTC29 Start and EndProject Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve Dates 4/1/14 ­ 3/30/15 Brief Description of Research Project There have been a variety of traffic

California at Davis, University of

28

Project Information Form Project Title Urban Spatial Structure and GHG Emissions  

E-Print Network [OSTI]

Project Information Form Project Title Urban Spatial Structure and GHG Emissions University UC@sppd.usc.edu Funding Source(s) and Amounts Provided (by each agency or organization) $75,000 Cal Trans Total Project Cost $75,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates June 30, 2014 to August 14

California at Davis, University of

29

Project Information Form Project Title Urban Spatial Structure and GHG Emissions  

E-Print Network [OSTI]

Source(s) and Amounts Provided (by each agency or organization) Caltrans $79,375 Total Project Cost $79Project Information Form Project Title Urban Spatial Structure and GHG Emissions University USC Brief Description of Research Project The evidence on land use and travel shows that employment access

California at Davis, University of

30

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL  

E-Print Network [OSTI]

.pradel@irstea.fr EXECUTIVE SUMMARY In 2007, 1 100 000 tons of sewage sludge were produced in France. This figure is constantly increasing and sludges have to be eliminated. Four disposal routes are currently possible: landASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES ­ THE METHOD BEHIND GESTABOUES

Boyer, Edmond

31

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

for emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from...

32

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...  

Open Energy Info (EERE)

for emissions from purchased electricity, transport or mobile sources, refrigeration and air conditioning equipment, and several industrial sectors. References 1.0 1.1...

33

Energy and GHG Emissions in British Columbia 1990 -2010  

E-Print Network [OSTI]

supply and use, greenhouse gas emissions and energy efficiency in British Columbia Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser University June 2012 Environment Canada, Natural Resources Canada, Aluminium Industry Association, Canadian Chemical Producers

Pedersen, Tom

34

Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World  

SciTech Connect (OSTI)

Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

Price, Lynn

2005-06-01T23:59:59.000Z

35

Airborne greenhouse gas (GHG) measurements provide essential constraints for estimating surface emissions. Until recently, dedicated research-grade instruments have been required  

E-Print Network [OSTI]

GHG columns · Quantifying local to regional GHG enhancements for emissions inventory verificationAbstract Airborne greenhouse gas (GHG) measurements provide essential constraints for estimating with another Cessna 210 over Central California quantified enhancements in CO2 and CH4 from urban

36

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

37

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

E-Print Network [OSTI]

potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles mustValuation of plug-in vehicle life-cycle air emissions and oil displacement benefits Jeremy J

Michalek, Jeremy J.

38

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

E-Print Network [OSTI]

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment for electricity generation, by comparing systems that consist of individual natural gas and coal power plants

Jaramillo, Paulina

39

GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities  

SciTech Connect (OSTI)

Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2013-04-15T23:59:59.000Z

40

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

Hagan, Colin R.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

42

15th International Conference Ramiran, May 3-6, 2013, Versailles Accounting GHG emissions from sludge treatment and disposal routes  

E-Print Network [OSTI]

% of sewage sludge is directly land spreading or composted before land spreading. Sludge application sludge treatment and disposal routes ­ methodological problems focused on sludge land spreading this tool can be used to quantify GHG emissions of sludge land spreading of a 380 000 per captia equivalent

Paris-Sud XI, Université de

43

Operational and policy implications of managing uncertainty in quality and emissions of multi-feedstock biodiesel systems  

E-Print Network [OSTI]

As an alternative transportation fuel to petrodiesel, biodiesel has been widely promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of ...

Gl?en, Ece

2012-01-01T23:59:59.000Z

44

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect (OSTI)

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

45

Summary of Fast Pyrolysis and Upgrading GHG Analyses  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term cellulosic biofuel means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 5059 % GHG reduction from a ? 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

Snowden-Swan, Lesley J.; Male, Jonathan L.

2012-12-07T23:59:59.000Z

46

GHG Considerations in Integrated  

E-Print Network [OSTI]

Power System Symposium 2012 Portland General Electric. All rights reserved. June 4, 2013 GHG federal, economy-wide legislation by 2020. o Prior to 2020, assumes CO2 emissions abatement due to effects CO2 compliance 3 y p cost and coal and gas commodity prices. o Based on middle ground federal

47

Lifecycle Model  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter describes the lifecycle model used for the Departmental software engineering methodology.

1997-05-21T23:59:59.000Z

48

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

49

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

50

GBTL Workshop GHG Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas as a feedstock for conversion

51

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network [OSTI]

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions multi-sector cap-and-trade program for GHG emissions allowances #12;5 September 2008 Interim Opinion

52

Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions  

E-Print Network [OSTI]

to the choice of coal over natural gas. External incentives such as low natural gas prices compared to coalImplications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG

Jaramillo, Paulina

53

Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios  

SciTech Connect (OSTI)

This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

2013-03-01T23:59:59.000Z

54

Emissions from US waste collection vehicles  

SciTech Connect (OSTI)

Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 610% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

2013-05-15T23:59:59.000Z

55

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

56

Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels  

E-Print Network [OSTI]

The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

Wong, Hsin Min

2008-01-01T23:59:59.000Z

57

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect (OSTI)

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

58

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network [OSTI]

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

59

Optical and infrared emission of H II complexes as a clue to PAHs lifecycle  

E-Print Network [OSTI]

We present an analysis of optical spectroscopy and infrared aperture photometry of more than 100 H II complexes in nine galaxies. Spectra obtained with the 6-m telescope of SAO RAS are used along with archival data from Spitzer and several ground-based telescopes to infer a strength of polycyclic aromatic hydrocarbon (PAH) emission, age, properties of the UV radiation field, and metallicity of studied H II complexes. Physical properties (age, radiation field parameters, metallicity) are related to the $F_{8}/F_{24}$ ratio used as a proxy for the PAH abundance in order to reveal factors that may influence the PAH evolution in H II complexes. The well-known correlation between the $F_{8}/F_{24}$ ratio and metallicity is confirmed in the studied complexes. The infrared flux ratio also correlates with the [O III]$\\lambda 5007/\\mathrm{H\\beta}$ ratio which is often considered as an indicator of the radiation field hardness, but this correlation seems to be a mere reflection of a correlation between [O III]$\\lambda ...

Khramtsova, M S; Lozinskaya, T A; Egorov, O V

2014-01-01T23:59:59.000Z

60

LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)  

SciTech Connect (OSTI)

In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

2009-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

62

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

energy and GHGperformanceofChicagoandNewYorkistheChicagoandNewYorksystemswhereenergyand emissionsCO 2 e). ForNewYork,life?cycleenergyandGHGemissions

Chester, Mikhail V

2008-01-01T23:59:59.000Z

63

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

Emissions from Alternative Fuel Lifecycles: Scoping theEMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THEACRONYMS and TERMS AF = alternative fuel AFL = alternative-

Delucchi, Mark

2005-01-01T23:59:59.000Z

64

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

65

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

function of CO2 taxes (or CO2 emission limits) 10 . b) Taxesrefinery process areas CO2 emissions from the control of COfertilizer use. CH4 and CO2 emissions from soil (parameters

Delucchi, Mark

2005-01-01T23:59:59.000Z

66

GHG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, Jump to:SOURCEGHD IncGHG

67

Current Activities of the GHG Scientific Advisory Group Ed Dlugokencky  

E-Print Network [OSTI]

. Motivation High GWP gases Valuable in emissions trading Network of measurements likely to expand. This may be important as our observations are used to verify emission inventories under GHG emissions trading schemes. We also prepare documents that can be used by developing countries to assess

68

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

Hagan, Colin R.

2012-01-01T23:59:59.000Z

69

What GHG Concentration Targets are Reachable in this Century?  

E-Print Network [OSTI]

We offer simulations that help to understand the relationship between GHG emissions and concentrations, and the relative role of long-lived (e.g., CO2) and short-lived (e.g., CH4) emissions. We show that, absent technologies ...

Paltsev, Sergey

2013-07-26T23:59:59.000Z

70

Implications of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG emissions: Supplementary Information  

E-Print Network [OSTI]

/MJ = 59 kg CO2 e/MWh Combustion emissions at natural gas plant A in ERCOT: 500 kg CO2 e/MWh Annual = 59 kg CO2 e/MWh / 40% = 148 kg CO2 e/MWh Combustion emissions per MWh = 500 kg CO2 e/MWh Life cycle-level combustion emissions at fossil fuel plants in ERCOT, MISO and PJM. The red lines represent median values

Jaramillo, Paulina

71

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network [OSTI]

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid waste

Brown, Sally

72

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Andress, Comparison of Ethanol Fuel Cycles in the GHG ModelsD. Pimentel, Ethanol Fuels: Energy Balance, Economics, andUsing Corn Stover for Fuel Ethanol, Journal of Industrial

Delucchi, Mark

2006-01-01T23:59:59.000Z

73

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network [OSTI]

manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

Edwards, Paul N.

74

Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions  

E-Print Network [OSTI]

Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging demand. While many low-energy innovations represent relatively incremental changes to existing on energy demand and carbon emissions; and to provide practical recommendations for UK energy and climate

Jensen, Max

75

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

life-cycle energy requirements (e total ) and global warmingtotal life-cycle global warming impacts. Chapter 3 Life-cycle Energy and Global

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

76

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

EnergyandEmissionsInventoriesforMotorcycles,DieselEnergyandEmissionsInventoriesforMotorcycles,DieselEnergyandEmissionsInventoriesforMotorcycles,Diesel

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

77

Convective Cloud Lifecycles Lunchtime seminar  

E-Print Network [OSTI]

Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

Plant, Robert

78

Buildings GHG Mitigation Estimator Worksheet, Version 1  

Broader source: Energy.gov [DOE]

Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

79

IGES GHG Emissions Data | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS Climate Change andSmart Grids

80

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

bus, theelectricbusesfractionofenergyconsumedwasEnergyandEmissionsInventoriesforMotorcycles,DieselAutomobiles,School Buses,ElectricEnergyandEmissionsInventoriesforMotorcycles,DieselAutomobiles,SchoolBuses,Electric

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

EmissionsInventoriesforMotorcycles,DieselAutomobiles,Chen,K.S. ,etal. ,2003. MotorcycleEmissionsandFuelOnRoad MopedsandMotorcycles. Availableonlineat

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

82

INVESTMENT PLAN for the Alternative and  

E-Print Network [OSTI]

and renewable fuel's lifecycle carbon footprint and increase sustainability; · Install alternative and competitive market; and decrease, lifecycle, GHG emissions, air and water pollutants; reduce or avoid

83

EPA-GHG Inventory Targeted Data Collection Strategies and Software...  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools (Redirected from US EPA GHG Inventory Targeted Data Collection Strategies and Software Tools) Jump to:...

84

Project Information Form Project Title Exploring Unintended Environmental and SocialEquity Consequences of  

E-Print Network [OSTI]

. The MOVES vehicle emissions model and an economic lifecycle #12;assessment model will be used to examine GHG

California at Davis, University of

85

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

86

Achieving Californias Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms  

E-Print Network [OSTI]

policy at the US state level to decrease GHG emissions?ABU.S. has failed to adopt GHG reduction policies at the national levelU.S. has failed to adopt GHG reduction policies at the national level

Shaheen, Susan A.; Bejamin-Chung, Jade; Allen, Denise; Howe-Steiger, Linda

2009-01-01T23:59:59.000Z

87

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

88

Performance and Emissions of a Second Generation Biofuel -DME  

E-Print Network [OSTI]

, and end use GHG emissions. KEY: DME dimethyl ether; MeOH methanol; CNG compressed natural gas; RME

Minnesota, University of

89

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network [OSTI]

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear, photovoltaic, nuclear, life cycle 1 #12;Introduction The production of energy by burning fossil fuels generates, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

90

The DCC Curation Lifecycle Model  

E-Print Network [OSTI]

The DCC Curation Lifecycle Model provides a graphical high level overview of the stages required for successful curation and preservation of data from initial conceptualisation or receipt. The model can be used to plan activities within...

Higgins, Sarah

2009-01-01T23:59:59.000Z

91

Geographically Differentiated Life-cycle Impact Assessment of Human Health  

E-Print Network [OSTI]

indicators in life-cycle assessment (LCA). Human Ecologicalindicators in life-cycle assessment (LCA). Human EcologicalI explore how life-cycle assessment (LCA) results can

Humbert, Sebastien

2009-01-01T23:59:59.000Z

92

Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.  

SciTech Connect (OSTI)

This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

Xie, X.; Wang, M.; Han, J. (Energy Systems)

2011-04-01T23:59:59.000Z

93

Lifecycle Cost and GHG Implications of a Hydrogen Energy Storage Scenario (Presentation)  

SciTech Connect (OSTI)

Overview of life cycle cost and green house gas implications of a hydrogen energy storage scenario presented at the National Hydrogen Association Conference & Expo, Long Beach, CA, May 3-6, 2010

Steward, D. M.

2010-05-01T23:59:59.000Z

94

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect (OSTI)

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

95

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

cost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or enginecost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or engine

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

96

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Extending the EU Emissions Trading Scheme to Aviation.Air Transport Emissions Trading Scheme Workshop, UKaviation in its GHG emission trading system (i.e. , by

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

97

Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept  

E-Print Network [OSTI]

urban areas US national-level data on transportation and land use Purpose Development of sector GHG emissions inventories

Aden, Nathaniel

2011-01-01T23:59:59.000Z

98

The Impacts of Alternative Patterns of Urbanization on Greenhouse Gas Emissions in an Agricultural County  

E-Print Network [OSTI]

building emissions somewhat lower, and single- family detached homes producing 33% more GHG (as CO 2 equivalent) from energy

Wheeler, Stephen

2013-01-01T23:59:59.000Z

99

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2011-12-01T23:59:59.000Z

100

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

yield. A hybrid life cycle assessment (LCA) model is used;more accurate life-cycle assessment (LCA) of electronicthe purposes of life-cycle assessment (LCA). While it may be

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

102

Insights from Agricultural GHG Offset studies  

E-Print Network [OSTI]

Sequestration MMt arising at an offset price giving $/tonne carbon equiv ·Many contributions ·DifferentInsights from Agricultural GHG Offset studies Bruce A. McCarl Regents Professor of Agricultural Economics Texas A&M University Presented at EPRI Workshop on Terrestrial Carbon Sequestration Alexandria VA

McCarl, Bruce A.

103

Discounts, Fungibility and Agricultural GHG Offset projects  

E-Print Network [OSTI]

arising at an offset price giving $/tonne carbon equiv ·Assumes offsets are perfect substitutes ·Different of Carbon Equivalents Biofuel Offsets Discount for Saturating Sinks No Sink Discounting #12;PortfolioDiscounts, Fungibility and Agricultural GHG Offset projects Bruce A. McCarl Regents Professor

McCarl, Bruce A.

104

Life-Cycle Assessment of Pyrolysis Bio-Oil Production  

SciTech Connect (OSTI)

As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

2012-02-01T23:59:59.000Z

105

Lifecycle-analysis for heavy vehicles.  

SciTech Connect (OSTI)

Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

Gaines, L.

1998-04-16T23:59:59.000Z

106

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

DEFRA), 2005a. UK Emissions Trading Scheme. London: DEFRA.Energy/GHG Tax Emissions trading Target Setting Penaltiesthe European Union Emissions Trading Scheme and a lack of

Price, Lynn

2010-01-01T23:59:59.000Z

107

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

108

Recent increases in global HFC-23 emissions  

E-Print Network [OSTI]

of U.S. greenhouse gas emissions and sinks: 1990-2007, Rep.A. Lindley (2007), Global emissions of HFC-23 estimated to2009), Greenhouse Gas Emissions Data, http://unfccc.int/ghg_

2010-01-01T23:59:59.000Z

109

Forecasting and Capturing Emission Reductions Using Industrial Energy Management and Reporting Systems  

E-Print Network [OSTI]

The Mandatory 2010 Green House Gas (GHG) Reporting Regulations and pending climate change legislation has increased interest in Energy Management and Reporting Systems (EMRS) as a means of both reducing and reporting GHG emissions. This paper...

Robinson, J.

2010-01-01T23:59:59.000Z

110

China-GHG Monitoring | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator JumpforPFAN) |GIZ-China GHG

111

China-GHG Monitoring | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator JumpforPFAN) |GIZ-China GHG-

112

PRODUCT REPRESENTATION IN LIGHTWEIGHT FORMATS FOR PRODUCT LIFECYCLE MANAGEMENT (PLM)  

E-Print Network [OSTI]

PRODUCT REPRESENTATION IN LIGHTWEIGHT FORMATS FOR PRODUCT LIFECYCLE MANAGEMENT (PLM) Lian Ding environments and the entire product lifecycle. There are new requirements for product representations, including: platform/application independence, support for the product lifecycle, rapidly sharing information

Rzepa, Henry S.

113

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

114

South Africa-Quantifying Emission Reduction Opportunities in...  

Open Energy Info (EERE)

AgencyCompany Organization Ecofys Sector Energy Topics Background analysis, GHG inventory, Low emission development planning, Pathways analysis Website http:www.ecofys.com...

115

Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental Externalities  

E-Print Network [OSTI]

emissions, it is clear that the energy usage will be subject to corresponding policies. Many have pointed of greenhouse gases (GHG) through net emissions reduction is needed to mitigate climate change. Energy estimated to account for 7.2 percent of all US GHG emissions, while total net sequestration from land

McCarl, Bruce A.

116

LifeCycle Water Consumption of  

E-Print Network [OSTI]

­ LCAbased policies ­ CA LCFS 3. But a good GHG LCA does not a responsible product make "Sustainability Heat loss into soil "Vapor pressure deficit" Solar radiation Wind speed Constant related to humidity

Keller, Arturo A.

117

Environmental life-cycle assessment of highway construction projects  

E-Print Network [OSTI]

Finland (Junnila et al 2003). The energy use and emissions from the life-cycle of the office building was assessed assuming fifty years as its service life. This study conducted an inventory as well as impact assessment on the office building as given... of office buildings in Finland. The practical aspects of this study are that more environmentally-conscious design can be made but further studies have to be conducted to standardize the results of this study in countries in a different geographic...

Rajagopalan, Neethi

2009-05-15T23:59:59.000Z

118

CEC-500-2010-FS-XXX Life-Cycle Energy  

E-Print Network [OSTI]

CEC-500-2010-FS-XXX Life-Cycle Energy Assessment of Smart Growth Strategies TRANSPORTATION ENERGY growth strategies at reducing energy use, greenhouse gas emissions, and criteria pollutants remains. An analysis of local planning and policy options for reducing embedded energy in the transport system

119

New Jersey: EERE-Supported Technology Lowers GHG Emissions 70...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovation Recognized by R&D Magazine for Fuel-Saving Product Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Project Overview...

120

Methodology for Estimating Reductions of GHG Emissions from Mosaic  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric CoMeridian

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to: navigation, searchThe GermanThe

122

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to: navigation, searchThe GermanTheMobil

123

Attachment C - Summary GHG Emissions Data FINAL | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access toEnergy 5 BTOoftheAModifications

124

Capturing Fugitives to Reduce DOE's GHG Emissions | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6CleanCaithness ShepherdsCapturing Fugitives to

125

Attachment C Summary GHG Emissions Data FINAL | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges toReport |2013-04 on Executive Compensation |A Page

126

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-Business GuideRoundtable Jump

127

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-Business GuideRoundtable Jumpand Air

128

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon TransitionENERGY STAR

129

Catalyst Paper No-Carb Strategy for GHG Reduction  

E-Print Network [OSTI]

The Catalyst Paper strategy to manage GHG exposure is a combination of energy reduction initiatives in manufacturing and the effective use of biomass and alternative fuels to produce mill steam and electricity from the powerhouse. The energy...

McClain, C.; Robinson, J.

2008-01-01T23:59:59.000Z

130

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Energy Savers [EERE]

More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...

131

Lifecycle analysis: Uses and pitfalls  

SciTech Connect (OSTI)

Lifecycle analysis (LCA) is a powerful tool, often used as an aid to decision making in industry and for public policy. LCA forms the foundation of the newly-invented field of industrial ecology. There are several possible uses and users for this tool. It can be used to evaluate the impacts from a process or from production and use of a product. Impacts from competing products or processes can be compared to help manufacturers or consumers choose among options, including foregoing the service the product or process would have provided because the impacts are too great. Information about impacts can be used by governments to set regulations, taxes, or tariffs; to allocate funds for research and development (R&D) or low-interest loans; or to identify projects worthy to receive tax credits. In addition, LCA can identify key process steps and, most important, key areas where process changes, perhaps enabled by R&D, could significantly reduce impacts. Analysts can use the results to help characterize the ramifications of possible policy options or technological changes.

Gaines, L.; Stodolsky, F.

1997-04-01T23:59:59.000Z

132

A review of battery life-cycle analysis : state of knowledge and critical needs.  

SciTech Connect (OSTI)

A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

Sullivan, J. L.; Gaines, L.; Energy Systems

2010-12-22T23:59:59.000Z

133

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

134

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

Not Available

2012-11-01T23:59:59.000Z

135

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

US cities (McGuckin and Srinivasan Figures 5.3 through 5.5 present the change in total GHG emissions

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

136

Sharing the Burden of GHG Reductions  

E-Print Network [OSTI]

The G8 countries propose a goal of a 50% reduction in global emissions by 2050, in an effort that needs to take account of other agreements specifying that developing countries are to be provided with incentives to action ...

Jacoby, Henry D.

137

GREET Development and Applications for Life-Cycle Analysis of...  

Energy Savers [EERE]

GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems 2013 DOE...

138

Life-cycle assessment of NAND flash memory  

E-Print Network [OSTI]

this possibility, a life-cycle assessment (LCA) of NAND ?ashstudy presents a life-cycle assessment (LCA) of ?ash memoryInput- Output Life Cycle Assessment (EIO-LCA), US 1997

Boyd, Sarah; Horvath, A; Dornfeld, David

2010-01-01T23:59:59.000Z

139

Life-Cycle Analysis Results of Geothermal Systems in Comparison...  

Energy Savers [EERE]

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

140

Allocation of Energy Use LCA Case Studies LCA Case Studies Allocation of Energy Use in Petroleum Refineries to Petroleum Products Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels  

E-Print Network [OSTI]

Aim, Scope, and Background. Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products

Michael Wang; Hanjie Lee; John Molburg

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)  

SciTech Connect (OSTI)

With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

Whitaker, M.; Heath, G.

2009-03-01T23:59:59.000Z

142

Life-Cycle Civil Engineering Biondini & Frangopol (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46857-2  

E-Print Network [OSTI]

total life cycle energy by 15% and 72%, greenhouse gas (GHG) emissions by 32% and 37%, and costs by 40 US roads a grade of D (poor condition). This poor road condition costs US motorists an estimated $54, maintenance and rehabilitation are required to pro- vide a high level of safety and service (Huang 2004

Lepech, Michael D.

143

TRANSPORTATION SYSTEMS AND THE BUILT ENVIRONMENT:1 A LIFE-CYCLE ENERGY CASE STUDY AND ANALYSIS2  

E-Print Network [OSTI]

up to 320%29 more embodied energy, 150% more operational energy, and about 160% more total life duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy32 use energy policy has large implications for global GHG emissions and the energy industry. The5 U

Kockelman, Kara M.

144

Extracting Artifact Lifecycle Models from Metadata History  

E-Print Network [OSTI]

Extracting Artifact Lifecycle Models from Metadata History Olga Baysal, Oleksii Kononenko, Reid, Canada {obaysal, okononen, rtholmes, migod}@cs.uwaterloo.ca Abstract--Software developers and managers make decisions based on the understanding they have of their software systems. This understanding

Godfrey, Michael W.

145

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network [OSTI]

Emissions Surcharge Revenues Oil Price Price elas= -0.1 elasEmissions Surcharge Revenues Oil Price Price elas= -0.1 elasQuantity Daily GhG Emissions Oil Price Price elas= -0.1 elas

Borenstein, Severin

2008-01-01T23:59:59.000Z

146

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

147

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks  

E-Print Network [OSTI]

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks. #12;2 Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry

McCarl, Bruce A.

148

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

of U.S. Croplands for Biofuels Increases Greenhouse GasesGHG Emissions from Biofuels . in STEPS Research Symposium .NRDC, Growing Energy: How Biofuels Can Help End America's

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

149

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network [OSTI]

Basis 5 Burning oil is also known as kerosene or paraffin used for heating systems. Aviation Turbine biomass heating systems. The emission factors are based on the factor provided in SAP2005, Table 12. Page - Imports and Exports Last updated: Jun-05 Total emissions (kg CO2) Total electricity produced Total heat

150

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network [OSTI]

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

151

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

Not Available

2012-11-01T23:59:59.000Z

152

Using Section 111 of the Clean Air Act for Cap-and-Trade of Greenhouse Gas Emissions: Obstacles and Solutions  

E-Print Network [OSTI]

focused nitro- gen oxide emissions-trading program for largeNSPS program could use emissions trading, including cap-and-regulations that allow emissions trading, to achieve GHG

Enion, Rhead M.

2012-01-01T23:59:59.000Z

153

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

SciTech Connect (OSTI)

Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

Ruth, M.; Laffen, M.; Timbario, T. A.

2009-09-01T23:59:59.000Z

154

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

Fuel Cell Technologies Publication and Product Library (EERE)

Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

155

Economics of Lifecycle analysis and greenhouse gas regulations  

E-Print Network [OSTI]

2 The role of economics in lifecycle environmental impact3 Economics of biofuels: Impact on food and 3.1Agricultural & Resource Economics, UCB, page 1058, 2008. [5

Rajagopal, Deepak

2009-01-01T23:59:59.000Z

156

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...  

Broader source: Energy.gov (indexed) [DOE]

compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES). Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

157

active stage lifecycle: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Transportation Fuels and Vehicle with life-cycle analysis (LCA). In fact, LCA of transportation fuels and vehicle systems has a history Bustamante, Fabin E. 89...

158

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps JumpToolIGES GHG

159

Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities  

E-Print Network [OSTI]

and use of a new life-cycle assessment (LCA) model forknown as life-cycle assessment (LCA). An LCA employs dataliterature related to life-cycle assessment (LCA) applied to

Stadel, Alexander

2013-01-01T23:59:59.000Z

160

Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities  

E-Print Network [OSTI]

The use of life-cycle assessment (LCA) to understand theIntroduction Life-cycle assessment (LCA) is an important

Lu, Hongyou

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guidance on Life-Cycle Cost Analysis Required by Executive Order...  

Energy Savers [EERE]

Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -...

162

Briefing Note 2010 7 4 June 2010  

E-Print Network [OSTI]

for the environmental performance fuels like corn-based ethanol. However, the final standard was not as comprehensive indirect land use change impacts from corn ethanol and therefore an improved GHG lifecycle performance lifecycle analysis of GHG emissions from renewable fuels, biofuels such as corn-based ethanol will meet

Pedersen, Tom

163

UNFCCC Individual Reviews of GHG Inventories | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development Reports JumpUNF Energyof GHG

164

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvancedGHG Information

165

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information -  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvancedGHG

166

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources andPlansGHG

167

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHG Information This section

168

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHG Information This section-

169

Climate VISION: Private Sector Initiatives: Magnesium: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHGGHGResultsGHG Information

170

Climate VISION: Private Sector Initiatives: Magnesium: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links - TechnicalGHGGHGResultsGHG

171

Climate VISION: Private Sector Initiatives: Minerals: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results At this time, given theGHG

172

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results AtTechnicalGHG Information

173

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -Results AtTechnicalGHG

174

Climate VISION: Private Sector Initiatives: Semiconductors: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science,Links -ResultsLinks - EnergyLinks -ResultsGHG

175

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

SciTech Connect (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

176

Biochar amendment and greenhouse gas emissions from agricultural soils  

E-Print Network [OSTI]

The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide ...

Case, Sean Daniel Charles

2013-11-28T23:59:59.000Z

177

Reversing Climate Change: Using Carbon Technology to Offset Carbon Emissions  

E-Print Network [OSTI]

Reversing Climate Change: Using Carbon Technology to Offset Carbon Emissions Climate change is real not only emitting less greenhouse gas (GHG), but actually sources of negative carbon. We then present two

178

Comparative Life-Cycle Air Emissions of Coal, Domestic Natural  

E-Print Network [OSTI]

come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy calls

Jaramillo, Paulina

179

Amendment: Lifecycle Emissions Data Worksheet (December 30, 2008) |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All OtherDepartment ofThisDepartment ofDepartment

180

Economics of Lifecycle analysis and greenhouse gas regulations  

E-Print Network [OSTI]

estimate 8. Price of coal energy: average delivered price toin gCO2e/liter Price of coal energy 0.0020 ($/MJ) Price of0.09 uses only coal based energy net GHG displacement if

Rajagopal, Deepak

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized.

182

Insights from Agricultural and Forestry GHG Offset Bruce A. McCarl  

E-Print Network [OSTI]

Insights from Agricultural and Forestry GHG Offset Studies Bruce A. McCarl Regents Professor EPA but with contributions from USDA and DOE. Presented at the EPRI Workshop on Terrestrial Carbon Agricultural and Forestry GHG Offset Studies that Might Influence IAM Modeling," that will appear in the book

McCarl, Bruce A.

183

Lifecycle Value Framework for Tactical Aircraft Product Development  

E-Print Network [OSTI]

Due to a dramatic reduction in defense procurement, the benchmark for developing new defense systems today is performance at an affordable cost. In an attempt to encircle a more holistic perspective of value, lifecycle ...

Hallander, Ingrid

184

Colectica for Excel: Using DDI Lifecycle with Spreadsheets  

E-Print Network [OSTI]

software, a free tool to document statistical data using open standards. The software implements leading open standards including the Data Documentation Initiative (DDI) Lifecycle version 3 and ISO 11179. Using this software allows organizations to both...

Smith, Dan

2013-04-02T23:59:59.000Z

185

Life-Cycle Analysis and Energy Efficiency in State Buildings  

Broader source: Energy.gov [DOE]

Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings...

186

RESEARCH AND ANALYSIS Comparison of Life-Cycle  

E-Print Network [OSTI]

-output life-cycle assessment (EIO-LCA) model; and SimaPro software equipped with the Franklin database. EIO-LCA model estimated for emis- sions of particulate matter less than 10 micrograms (PM10) resulting from wind

Illinois at Chicago, University of

187

Paper Number Whole Lifecycle Electrical Design Analysis in Foresight  

E-Print Network [OSTI]

and Effects Analysis (FMEA) or Sneak Circuit Analysis (SCA) is typically carried out once in the lifecycle techniques have been developed. FMEA. Failure mode and effects analysis considers the effect on an overall

Snooke, Neal

188

Summary of Environmental Performance at Harvard Greenhouse Gas Emissions from Harvard University  

E-Print Network [OSTI]

or usage). The data at the left indicates a 6.9% decline in Harvard's overall GHG Emissions since Fiscal exclude growth. The graph below illustrates the following emissions: Direct (Scope 1) Emissions, including emissions from campus operations and energy sources owned by Harvard; and Indirect (Scope 2) Emissions

Prentiss, Mara

189

The principles of life-cycle analysis  

SciTech Connect (OSTI)

Decisionmakers representing government agencies must balance competing objectives when deciding on the purchase and sale of assets. The goal in all cases should be to make prudent or financially {open_quotes}cost-effective{close_quotes} decisions. That is, the revenues from the purchase or sale of assets should exceed any out-of-pocket costs to obtain the revenues. However, effects external to these financial considerations such as promoting environmental quality, creating or maintaining jobs, and abiding by existing regulations should also be considered in the decisionmaking process. In this paper, we outline the principles of life-cycle analysis (LCA), a framework that allows decisionmakers to make informed, balanced choices over the period of time affected by the decision, taking into account important external effects. Specifically, LCA contains three levels of analysis for any option: (1) direct financial benefits (revenues) and out-of-pocket costs for a course of action; (2) environmental and health consequences of a decision; and (3) other economic and socio-institutional effects. Because some of the components of LCA are difficult to value in monetary terms, the outcome of the LCA process is not generally a yes-no answer. However, the framework allows the decisionmaker to at least qualitatively consider all relevant factors in analyzing options, promoting sound decisionmaking in the process.

Hill, L.J.; Hunsaker, D.B.; Curlee, T.R.

1996-05-01T23:59:59.000Z

190

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory  

E-Print Network [OSTI]

. Activity levels are derived from reports documenting consumption for fuels and energy. These reports · Fugitive emissions from electrical switches, fire suppression equipment, lab chemicals, and refrigerants. Scope 2 includes all indirect emissions from the university's purchased energy, including

Abolmaesumi, Purang

191

Market-Based Emissions Regulation and Industry Dynamics  

E-Print Network [OSTI]

. Examples include the Emissions Trading Scheme (ETS) in the European Union and California's greenhouse gas (GHG) emissions trading program. In these "cap-and-trade" (CAT) programs, regulators impose a cap- sions is that, provided a series of conditions are met, an emissions trading program designed to equate

Fowlie, Meredith

192

Market-Based Emissions Regulation and Industry Dynamics  

E-Print Network [OSTI]

. The authors gratefully acknowledge the support of NSF grant SES-0922401. 1 #12;Emissions Trading Scheme (ETS) in the European Union and California's greenhouse gas (GHG) emissions trading program. In these "cap is that, provided a series of conditions are met, an emissions trading program designed to equate marginal

Fowlie, Meredith

193

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network [OSTI]

.S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;Center% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCsTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

194

Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry  

SciTech Connect (OSTI)

Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

Price, Lynn; Murtishaw, Scott; Worrell, Ernst

2003-06-01T23:59:59.000Z

195

Automated analysis for lifecycle assembly processes  

SciTech Connect (OSTI)

Many manufacturing companies today expend more effort on upgrade and disposal projects than on clean-slate design, and this trend is expected to become more prevalent in coming years. However, commercial CAD tools are better suited to initial product design than to the product`s full life cycle. Computer-aided analysis, optimization, and visualization of life cycle assembly processes based on the product CAD data can help ensure accuracy and reduce effort expended in planning these processes for existing products, as well as provide design-for-lifecycle analysis for new designs. To be effective, computer aided assembly planning systems must allow users to express the plan selection criteria that apply to their companies and products as well as to the life cycles of their products. Designing products for easy assembly and disassembly during its entire life cycle for purposes including service, field repair, upgrade, and disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and constraints (compared to initial assembly) require one to re-visit the significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or applied studies of life cycle assembly processes, which give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for; optimize, and analyze life cycle assembly processes.

Calton, T.L.; Brown, R.G.; Peters, R.R.

1998-05-01T23:59:59.000Z

196

Life-cycle assessment of corn-based butanol as a potential transportation fuel.  

SciTech Connect (OSTI)

Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

2007-12-31T23:59:59.000Z

197

Development and Update of Models for Long-Term Energy and GHG...  

Office of Environmental Management (EM)

Update of Models for Long-Term Energy and GHG Impact Evaluation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

198

A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions  

E-Print Network [OSTI]

With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

Prinn, Ronald G.

199

Investigating greenhouse gas emission pathways In selected OECD countries using a hybrid energy-economy approach.  

E-Print Network [OSTI]

??This report outlines the development and analysis of CIMS OECD-EPM. CIMS OECD-EPM is a hybrid energy-economy model that forecasts energy consumption and GHG emissions in (more)

Goldberg, Suzanne

2009-01-01T23:59:59.000Z

200

Rogatus a planned open source toolset to cover the whole lifecycle  

E-Print Network [OSTI]

During the last years several different tools for DDI Lifecycle have been published. Nevertheless none of the current tools is able to cover the full lifecycle from beginning to end. This presentation wants to show a first outlook into Rogatus...

Barkow, Ingo; Schiller, David

2013-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

All but two Life-Cycle Assessment (LCA) studies make nofuels. The term life-cycle assessment (LCA) is used toInput-Output Life Cycle Assessment (EIO-LCA) US 2002 (428)

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

202

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

Area,Chicago,andNewYorkCity are evaluated capturing passenger transportation life?cycle energyArea, Chicago, and New York City are evaluated capturing passenger trans- portation life-cycle energy

Chester, Mikhail V

2008-01-01T23:59:59.000Z

203

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

204

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Handbook describes the...

205

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

206

Commissioning tools for life-cycle building performance assurance  

SciTech Connect (OSTI)

This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

Piette, M.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-05-01T23:59:59.000Z

207

A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring  

E-Print Network [OSTI]

1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

Stanford University

208

A game theory framework for cooperative management of refillable and disposable bottle lifecycles  

E-Print Network [OSTI]

A game theory framework for cooperative management of refillable and disposable bottle lifecycles applies game theory to the lifecycle of bottle packaging, and presents a framework for analysis. Keywords: Lifecycle management; Reuse; Packaging; Industrial ecology 1. Introduction One of the fundamental

Illinois at Chicago, University of

209

A Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits  

E-Print Network [OSTI]

. Life-Cycle Assessment (LCA) has been increasingly used to assess environmental implicationsA Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits Yanzhi Wang, Ying Zhang as the next-generation semiconductor technology. This paper is the first attempt in reporting the life-cycle

Pedram, Massoud

210

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United Wildland fires can be an important source of greenhouse gases as well as black carbon emissions that have of climate response to fire emissions compared to other emission sources of GHG, aerosols, and black carbon

211

An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels  

E-Print Network [OSTI]

-fired alone??????????????????.. 52 4.11 GHG emissions from post combustion activities????????... 53 4.12 Net energy gain of switchgrass as a bioenergy feedstock?????... 54 4.13 GHG emissions from switchgrass alone and from 10% cofiring... of the prospects for switchgrass as a bioenergy feedstock into electricity generation using lifecycle and environmental biocomplexity analysis. ? Examine how potential GHG emission pricing alternatives might influence the relative efficiencies of alternative...

Mohan, Tanya

2007-04-25T23:59:59.000Z

212

Safety Criteria and Safety Lifecycle for Artificial Neural Networks  

E-Print Network [OSTI]

Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical applications. However, many of these techniques provide inadequate forms of safety arguments required

Kelly, Tim

213

Safety Lifecycle for Developing Safety Critical Artificial Neural Networks  

E-Print Network [OSTI]

Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly. There are many techniques that aim to improve the performance of neural networks for safety-critical systems. Consequently, their role in safety-critical applications, if any, is typically restricted to advisory systems

Kelly, Tim

214

Empirical Study of Life-Cycle Cost Analysis for Bridges  

E-Print Network [OSTI]

Bridge and the Golden Gate Bridge · Step three: Obtain data from highway bridges of different structuralEmpirical Study of Life-Cycle Cost Analysis for Bridges Progress Report Ahmad Hadavi, PhD, PE and their timing during the life of a bridge to achieve the 50- to 100-year service life that many bridge

215

Greenhouse Gas emissions from California Geothermal Power Plants  

SciTech Connect (OSTI)

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

2014-03-14T23:59:59.000Z

216

Greenhouse Gas emissions from California Geothermal Power Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

217

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model  

E-Print Network [OSTI]

Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

Morris, Jennifer

218

Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels  

E-Print Network [OSTI]

The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

Stratton, Russell William

2010-01-01T23:59:59.000Z

219

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

SciTech Connect (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

220

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

be used. The total energy consumption for thesecontributions to total energy consumption and GHGlargecontributortototal energyconsumptionduetolarge

Chester, Mikhail V

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network [OSTI]

Life-cycle Assessment (LCA)..comprehensive life-cycle assessment (LCA) models to quantifyat each stage. Life-cycle Assessment (LCA) The vehicles,

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

222

Geothermal completion technology life-cycle cost model (GEOCOM)  

SciTech Connect (OSTI)

GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

Mansure, A.J.; Carson, C.C.

1982-01-01T23:59:59.000Z

223

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

SciTech Connect (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

224

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US  

E-Print Network [OSTI]

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models marginal cost, as well as a smaller contribution from energy efficiency relative to other abatement of energy efficiency potential and green- house gas (GHG) abatement potential that have been highly

225

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network [OSTI]

in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA resultsSimplified life cycle approach: GHG variability assessment for onshore wind electricity based performed by the IPCC [1]. Such result might lead policy makers to consider LCA as an inconclusive method [2

Paris-Sud XI, Université de

226

Julian Cleary, Nigel T. Roulet and Tim R. Moore Greenhouse Gas Emissions  

E-Print Network [OSTI]

) emissions from land use, fossil fuel combustion, and peat decomposition, contributes to Canada's net the rate of in situ decomposition through greater diffusion of oxygen, increasing CO2 emissions, manufacturing, use, and disposition (12, 13). GHG emissions, comprising carbon dioxide (CO2), methane (CH4

Roulet, Nigel T.

227

2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors  

E-Print Network [OSTI]

Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: hmsolicensing at the end of each of the relevant following sections. 2. Since the previous update, significant work has

228

Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa (Poster)  

SciTech Connect (OSTI)

Approximately 1.6 billion people worldwide do not have access to electricity, and roughly 2.4 billion people rely on traditional biomass fuels to meet their heating and cooking needs. Lack of access to and use of energy - or energy poverty - has been recognized as a barrier to reaching the Millennium Development Goals (MDGs) and other targeted efforts to improve health and quality of life. Reducing reliance on traditional biomass can substantially reduce indoor air pollution-related morbidity and mortality; increasing access to lighting and refrigeration can improve educational and economic opportunities. Though targeted electrification efforts have had success within Latin America and East Asia (reaching electrification rates above 85%), sub-Saharan Africa has maintained electrification rates below 25% (IEA 2004).

Cowlin, S.; Heimiller, D.; Bilello, D.; Renne, D.

2008-10-01T23:59:59.000Z

229

Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion Emissions Profile, November 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview FlowControlIndian1and U.S.

230

Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions Profile, November 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic ModelingChemicals

231

New Jersey: EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells |Energy ServicesInvestment100

232

Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | Department ofSecretary for Management69 2.4

233

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis JumpMetzger,Energy| Open

234

Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJune 20,AmongDevelopmentJulyInvoluntaryIowa Iowa99

235

Development and Update of Long-Term Energy and GHG Emission Macroecono...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

use in study of VT program government performance and results DOE Hydrogen and Fuel Cells Program: Potential Transportation Oil Savings with FCVs Impact of...

236

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20Emission Reduction

237

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

238

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

239

Scientific perspectives on MRV: approaches, techniques, and requirements of quantifying GHG  

E-Print Network [OSTI]

Scientific perspectives on MRV: approaches, techniques, and requirements of quantifying GHG-up inventories - measure changes in stocks or flows of carbon, extrapolate to all ecosystems. ~Bottom-up TBMs to Bedrich Benes, Jason Lambert, Yuyu Zhou #12;INFLUX Background CO2, CH4 WindWind Urban CO2, CH4 Thanks

240

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG  

E-Print Network [OSTI]

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In todays world of volatile fuel prices and climate

Kockelman, Kara M.

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels.  

E-Print Network [OSTI]

??Lifecycle Assessment (LCA) is undergoing a period of rapid change as it strives to become more policy-relevant. Attributional LCA, the traditional LCA category, is beginning (more)

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

242

Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

243

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

28 2.2.5.1. Hydrogen productionLifecycle Assessment of Hydrogen Production via Natural Gasconsidered: onsite hydrogen production via small-scale steam

Wang, Guihua

2008-01-01T23:59:59.000Z

244

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

245

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

led to an explosion of government and academic studies on the lifecycle effects of solid waste disposal options like landfilling, recycling,

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

246

Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method  

E-Print Network [OSTI]

Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Results 6.1 Life-Cycle Assessment (LCA) . . . . . 6.1.1Analysis (LCEA) 4. Life-Cycle Assessment (LCA) 5. Exergetic

Lettieri, David

2012-01-01T23:59:59.000Z

247

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Life-cycle Assessment (LCA)comprehensive life-cycle assessment (LCA) models to quantifyUCB-ITS-VWP-2007-7 Life-cycle Assessment (LCA) The vehicles,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

248

TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.  

SciTech Connect (OSTI)

Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

Willenbring, James M.; Bartlett, Roscoe Ainsworth (Oak Ridge National Laboratory, Oak Ridge, TN); Heroux, Michael Allen

2012-01-01T23:59:59.000Z

249

Characterization of EGS Fracture Network Lifecycles  

SciTech Connect (OSTI)

Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nations resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or EGS) experiments performed at the Coso geothermal field, in order to enhance productivity there. Task 3 was to interpret the results jointly with other geological information in order to provide a consistent physical model. All of the original goals of the project have been achieved. An existing program for calculating accurate relative earthquake locations has been enhanced by a technique to improve the accuracy of earthquake arrival-time measurements using waveform cross-correlation. Error analysis has been added to pre-existing moment tensor software. New seismic tomography software has been written to calculate changes in structure that could be due, for example, to reservoir depletion. Data processing procedures have been streamlined and web tools developed for rapid dissemination of the results, e.g., to on-site operations staff. Application of the new analysis tools to the Coso geothermal field has demonstrated the effective use of the techniques and provided important case histories to guide the style of future applications. Changes in reservoir structure with time are imaged throughout the upper 3 km, identifying the areas where large volumes of fluid are being extracted. EGS hydrofracturing experiments in two wells stimulated a nearby fault to the south that ruptured from south to north. The position of this fault could be precisely mapped and its existence was confirmed by surface mapping and data from a borehole televiewer log. No earthquakes occurred far north of the injection wells, suggesting that the wells lie near the northern boundary of the region of critically stressed faults. Minor en-echelon faults were also activated. Significant across-strike fluid flow occurred. The faults activated had significant crack-opening components, indicating that the hydraulic fracturing created open cavities at depth. The fluid injection changed the local stress field orientation and thus the mode of failure was different from the normal background. Initial indications are that the injections modulated stress release, seismicity and natural fracture system evolution for periods of up to months. The research demon

Gillian R. Foulger

2008-03-31T23:59:59.000Z

250

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

251

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

Jaramillo, Paulina

252

Strategic capacity in post devolution government in the UK: A comparative analysis of the lifecycle of central strategy units  

E-Print Network [OSTI]

This thesis analyses the changing role of central government strategy units in the devolved UK polity using a lifecycle model. At each stage of the lifecycle the units develop a different aim, undertake different tasks and follow different working...

MacDougall, Audrey

2007-06-27T23:59:59.000Z

253

The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions  

E-Print Network [OSTI]

and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

Zhou, Yaoqi

254

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines  

E-Print Network [OSTI]

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

Stanford University

255

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

256

5x20 Matrix for Knowledge Management Lifecycle Based on the Five C's Model and a Critical Review  

E-Print Network [OSTI]

5x20 Matrix for Knowledge Management Lifecycle Based on the Five C's Model and a Critical Review the previous efforts that have investigated the models and frameworks of KM lifecycles. Furthermore of coming out and arising the five C's model to be adopted in organizations vis-à-vis other KM lifecycles

257

Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting  

SciTech Connect (OSTI)

Highlights: GHG savings are in the order of 6001000 kg CO{sub 2}-eq. per Mg of MBM treated. Energy recovery differed in terms of energy products and efficiencies. The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used eventually after upgrading for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 6001000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

Cascarosa, Esther [Thermochemical Processes Group, Aragn Institute for Engineering Research (I3A), Universidad de Zaragoza (Spain); Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, Thomas [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark)

2013-11-15T23:59:59.000Z

258

Geographically Differentiated Life-cycle Impact Assessment of Human Health  

E-Print Network [OSTI]

therefore stack emissions of coal power plant have the samecaused by stack emissions of the coal-power plant. Thiscoal power-plants generally involve high-stack emissions).

Humbert, Sebastien

2009-01-01T23:59:59.000Z

259

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

260

REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING  

E-Print Network [OSTI]

mitigation effort post-2012. Reducing GHG emissions from Deforestation and Degradation (REDD)2 in developing of Environment of Mexico1 Esteve Corbera and Katrina Brown Tyndall Centre for Climate Change Research, UK School of Mexico or the Mexican Government. #12;ABSTRACT This paper provides a critical perspective to the debate

Watson, Andrew

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power  

E-Print Network [OSTI]

as deaths and emissions per unit electric energy generated, for relevant electricity sources (Table 1 Nuclear energy (and other low-carbon/carbon-free energy sources) could help to mitigate both deaths and GHG emissions, we start with data for global annual electricity generation by energy source

262

Atmospheric Environment 38 (2004) 49214929 Qualitative assessment of methane emission inventory from  

E-Print Network [OSTI]

assurance/quality control (QA/QC) and uncertainty estimation in national GHG emission inventories haveAtmospheric Environment 38 (2004) 4921­4929 Qualitative assessment of methane emission inventory May 2004 Abstract In developing countries like India, urban solid waste (SW) generation is increasing

Columbia University

263

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems  

E-Print Network [OSTI]

to pessimistic scenarios are used for system operation. Slow pyrolysis is compared to fast pyrolysis and biomass co-firing for GHG abatement and electricity production, using various scenarios for availability of indigenous Scottish feedstocks....

Hammond, James A R

2009-01-01T23:59:59.000Z

264

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

The IEAs Energy Policies of IEA Countries Japan 1999also. The IEAs Energy Policies of IEA Countries Turkey 2001The IEAs Energy Policies of IEA Countries Australia 2001

Delucchi, Mark

2003-01-01T23:59:59.000Z

265

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

97 BTUs of refinery energy per BTU of dieseland hydrogen) per BTU of diesel produced, depending onof refinery energy per BTU of diesel fuel In the real world

Delucchi, Mark

2003-01-01T23:59:59.000Z

266

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

However, in the case of biomass feedstocks and fuels, LNG,NGL57/LRG43 LDVs, biomass feedstocks (versus 26 mpg LDGV)NGL57/LRG43 HDVs, biomass feedstocks (versus 6 mpg HDDV)

Delucchi, Mark

2003-01-01T23:59:59.000Z

267

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

liquefaction and small-scale liquefaction at servicehydrogen or small-scale liquefaction). In the case ofassume 0.20 for small-scale liquefaction at the site of

Delucchi, Mark

2003-01-01T23:59:59.000Z

268

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

soil, related to cultivation of energy-crop system E insteadto cultivation is a function of both the type of energy cropcultivation per se, independent of the use of fertilizer, in energy-crop

Delucchi, Mark

2003-01-01T23:59:59.000Z

269

An Optimizing Algorithm for Automating Lifecycle Assembly Processes  

SciTech Connect (OSTI)

Designing products for ~ assembly and disassembly during its entire Iifecycle for purposes including service, field repair, upgrade, and disposal is a process that involves many disciplines. In additiou finding the best solution often involves considering the design as a whole and by considering its intended Iifecycle. DifFerent goals and cortstmints (compared to initial assembly) require us to re-visit the significant fi,mdamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of assembly planning or applied studies of lifecycle assembly processes, which give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, analyze, and optimize the disassembly and assembly processes.

Brown, R.G.; Calton, T.L.

1998-12-09T23:59:59.000Z

270

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network [OSTI]

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On reductions in GHG, and b) use analytical tools/methods to assess the emissions reductions possible through and prioritized based on factors such as cost effectiveness, potential for emission reductions, and applicability

271

The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland,  

E-Print Network [OSTI]

The impacts of congestion on time-definitive urban freight distribution networks CO2 emission Accepted 29 November 2010 Keywords: Vehicle routing Time-dependent travel time speed GHG or CO2 emissions pressures to limit the impacts associated with CO2 emissions are mounting rapidly. A key challenge

Bertini, Robert L.

272

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen Energy Information EPA-GHG

273

Lifecycle Environments: A Retrospective View of the Contributions of Leon J.  

E-Print Network [OSTI]

Lifecycle Environments: A Retrospective View of the Contributions of Leon J. Osterweil Lori A@cs.umass.edu Abstract Throughout his career, Leon Osterweil has made significant contribu- tions that have impacted

Massachusetts at Amherst, University of

274

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

275

An Experimental Methodology to Evaluate Concept Generation Procedures Based on Quantitative Lifecycle Performance  

E-Print Network [OSTI]

This study presents an experimental methodology to measure how concept generation procedures can affect the anticipated lifecycle performance of engineering systems design concepts. The methodology is based on objective ...

Cardin, Michel-Alexandre

276

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

277

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

144 Figure 63: Impact of Hydroelectricity on the Life-Cycle157 Figure 64: Impact of Hydroelectricity on the Water68 Table 14: Hydroelectricity-Related FWSE (Data Source: (

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

278

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

147 Lifecycle cost (break-even gasoline price): base-casegrease. 37B part: Fuel Gasoline, for the conventional ICEVs.BTU-from-battery to mi/BTU-gasoline. C OST SUMMARY (F ORD T

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

279

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products  

Broader source: Energy.gov [DOE]

This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

280

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NISTIR 85-3273-29 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2014 Annual Supplement to NIST Handbook 135 Amy S. Rushing Joshua D. Kneifel Priya...

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lifecycle Energy Management in the Tohoku Electric Power headquarters building-APCBC  

E-Print Network [OSTI]

Lifecycle Energy Management in the Tohoku Electric Power Company Head Office Building Hideki Yuzawa (NIKKEN SEKKEI Research Institute) Takeshi Kondo (NIKKEN SEKKEI Research Institute) Shinji Okuda (Tohoku Electric Power) APCBC presentation...th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 ICEBO2014 NSRI Hideki Yuzawa ?2014 yuzawa@nikken.jp Passion for sustainable cities 4 What is Lifecycle energy management ? 4 #1 Defined the energy...

Yuzawa, H.

2014-01-01T23:59:59.000Z

282

Alternative water sources: Desalination model provides life-cycle costs of facility  

E-Print Network [OSTI]

Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

Supercinski, Danielle

2009-01-01T23:59:59.000Z

283

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

Michalek, Jeremy J.

284

Progress in Photovoltaics Research and Applications, 14:179-190, 2006 Energy Pay-Back and Life Cycle CO2 Emissions of the BOS in an  

E-Print Network [OSTI]

Cycle CO2 Emissions of the BOS in an Optimized 3.5 MW PV Installation J.M. Mason1 , V.M. Fthenakis2 , T-cycle greenhouse gas emissions are 29 kg CO2-eq. /m2 . From field measurements, the energy payback time (EPT, energy payback, greenhouse gas emissions #12;INTRODUCTION This study is a life-cycle analysis

285

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

286

Life-cycle framework for assessment of site remediation options: Method and generic survey  

SciTech Connect (OSTI)

To address burdens associated with contaminated sites and issuing from remediation activities, a life-cycle framework (LCF) was developed, including an approach based on life-cycle management (LCM) and an adaptation of life-cycle assessment (LCA). Intended for application to a wide range of remediation options, the objective of the LCF is to broaden consideration of potential impacts beyond the contaminated site and over a prolonged time frame. The LCM approach is a qualitative method for investigating remediation activities from a life-cycle perspective. This adaptation of the more rigorous, quantitative LCA method has involved specifying appropriate life-cycle stages, a long-term time horizon, a spatial boundary encompassing the contaminated site and other affected locations, a process boundary containing the contaminated soil, and an impact assessment method that considers site- and process-related metrics. To assess the suitability of LCM as a decision-making tool, six generic site remediation options were investigated: no action, encapsulation, excavation and disposal, vapor extraction, in situ bioremediation, and soil washing. The analysis exemplified tradeoffs between the streamlined LCM, and comprehensive, quantitative LCA approaches, and highlighted potential environmental and human health impacts arising from the six technologies investigated.

Diamond, M.L.; Page, C.A. [Univ. of Toronto, Ontario (Canada). Dept. of Geography; Campbell, M. [Toronto Public Health, North York, Ontario (Canada); McKenna, S. [City of Toronto, Ontario (Canada). Community and Neighbourhood Services; Lall, R. [R. Addison Lall and Associates, Toronto, Ontario (Canada)

1999-04-01T23:59:59.000Z

287

Life-cycle assessments: Linking energy, economics, and the environment. Paper No. 571  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory has been involved in a number of life-cycle assessment (LCA) projects that assess the complete lifetime energy, economic, and environmental impacts of alternative technology options. Life-cycle assessments offer one-stop shopping answers to the total energy and environmental implications of alternative technologies, as well as providing employment and income consequences. In one recently completed study, the lifetime impacts of scenarios involving the production and use of biomass ethanol transportation fuels were assessed. In an ongoing study, the lifetime impacts of electric-powered vehicles versus conventional fuels are being assessed. In a proposed study, the impacts of recycled office paper versus office paper from virgin sources would be assessed. A LCA proceeds by developing mass and energy inventories during all phases of the life-cycle. Special attention is given to energy consumption and environmental releases. Economics are incorporated by evaluating the macroeconomic impacts of the alternative policies, such as employment, wages, and output. Economics can also be incorporated by attempting to place values on the damages imposed by the environmental releases associated with alternative scenarios. This paper discusses life-cycle assessment techniques and their application to building energy issues. Life-cycle assessments show great promise for analysis of buildings energy policy questions.

Shankle, S.A.

1994-08-01T23:59:59.000Z

288

U.S. Government Supports Low Emission Economic Growth (Fact Sheet)  

SciTech Connect (OSTI)

Countries around the world face the challenge of maintaining long-term sustainable economic growth and development under the threat of climate change. By identifying and pursuing a sustainable development pathway now, they are better positioned to reach their economic growth goals while addressing climate change impacts and lowering greenhouse gas (GHG) emissions. Low emission development strategies - development plans that promote sustainable social and economic development while reducing long-term GHG emissions - provide a pathway to preparing for a global low emission future. Partner country governments are working with the U.S. government through the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to further their national development objectives.

Watson, A.; Sandor, D.; Butheau, M.

2013-11-01T23:59:59.000Z

289

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

SciTech Connect (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

290

Life-Cycle Energy Demand of Computational Logic:From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

291

Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU  

E-Print Network [OSTI]

Boyd et al. : Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

Bol, David; Boyd, Sarah; Dornfeld, David

2011-01-01T23:59:59.000Z

292

Use of life-cycle costing in the development of standards. Master's thesis  

SciTech Connect (OSTI)

This thesis set out to determine how, and to what extent, life-cycle costing is used in the development of voluntary consensus standards. It explains how several organizations in the commercial sector develop voluntary standards. Among these organizations was ASHRAE, who is currently developing a standard based on life-cycle costing. Standard 90.2 Energy Efficient Design of New Low-Rise Residential Buildings prescribes the insulation values for the envelope of a building. The economic methodology was based on marginal analysis by considering an upgraded construction component and then determining the incremental energy-cost savings to the incremental modification costs over a specified life-cycle period. Questions arose concerning the economic assumptions used in developing the standard. It is recommended that an impact study be performed to evaluate the cost-estimating techniques and the basic economic assumptions.

Underwood, J.M.

1988-12-01T23:59:59.000Z

293

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network [OSTI]

Natural Gas CO2 Emissions A Bridge to a Low Carbon Future, or the Future? 815 1,190 lbs/MWh Gas CCCT has ~35% of coal emissions on a per-MWh basis Gas CT has ~50% of coal emissions on a per-MWh basis 119 119 210 CCCT CT Colstrip 3/4 #12;6/5/2013 2 Avista CO2 Emissions Forecast Rising emissions overall

294

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network [OSTI]

Energy Agency, Energy Policies of IEA Countries, Japan 1999Energy Agency, Energy Policies of IEA Countries, Germanyfrom IEAs Energy Policies of IEA Countries Japan 1999

Delucchi, Mark

2005-01-01T23:59:59.000Z

295

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network [OSTI]

Energy Agency, Energy Policies of IEA Countries, Japan 1999Energy Agency, Energy Policies of IEA Countries, Germanyfrom IEAs Energy Policies of IEA Countries Japan 1999

Delucchi, Mark

2005-01-01T23:59:59.000Z

296

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network [OSTI]

P. 2010. From net energy to zero energy buildings: DefiningP. 2010. From net energy to zero energy buildings: Defining

Aden, Nathaniel

2010-01-01T23:59:59.000Z

297

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network [OSTI]

case studies and academic articles. However consistent,are published in academic articles, reports, and graduate

Aden, Nathaniel

2010-01-01T23:59:59.000Z

298

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network [OSTI]

gasoline LDVs or diesel HDVs. BTUs of process and end-useBTU) with theirs for oil-to- gasoline, oil-to-diesel, coal-BTU energy-conversion efficiency of the AFV engine or powertrain relative to that of the baseline gasoline or diesel

Delucchi, Mark

2005-01-01T23:59:59.000Z

299

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network [OSTI]

gasoline LDVs or diesel HDVs. BTUs of process and end-useBTU) with theirs for oil-to- gasoline, oil-to-diesel, coal-BTU energy-conversion efficiency of the AFV engine or powertrain relative to that of the baseline gasoline or diesel

Delucchi, Mark

2005-01-01T23:59:59.000Z

300

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Corrosion of ably moreefficient--up to 98%,if a long charging seals and casings is not a problem,and the lithium

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

302

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

sauga, Canada. metal/air batteries--then EVswould becomemuchis shown Table 1. in metal-air batteries have the potentialexcluding the metal/air batteries: zinc/bro- development.

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

303

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network [OSTI]

Situation of Chinas Clean Coal Technology, Energy forfor the development of clean-coal technologies (p. 84).

Delucchi, Mark

2005-01-01T23:59:59.000Z

304

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network [OSTI]

Situation of Chinas Clean Coal Technology, Energy forfor the development of clean-coal technologies (p. 84).

Delucchi, Mark

2005-01-01T23:59:59.000Z

305

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network [OSTI]

in the LCA of low energy buildings, Energy and Buildingsin the LCA of low energy buildings, Energy and Buildingsof conventional and low-energy buildings: A review article,

Aden, Nathaniel

2010-01-01T23:59:59.000Z

306

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

307

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network [OSTI]

of Chinas Clean Coal Technology, Energy for Sustainablethe development of clean-coal technologies (p. 84). APERC (

Delucchi, Mark

2005-01-01T23:59:59.000Z

308

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network [OSTI]

of Chinas Clean Coal Technology, Energy for Sustainablethe development of clean-coal technologies (p. 84). APERC (

Delucchi, Mark

2005-01-01T23:59:59.000Z

309

Dataset Lifecycle Policy Development & Implementation at the PO.DAAC AGU Paper Number: IN53C-1579  

E-Print Network [OSTI]

Dataset Lifecycle Policy Development & Implementation at the PO.DAAC AGU Paper Number: IN53C-1579 Dataset Lifecycle Policy Development & Implementation at the PO.DAAC National Aeronautics and Space Aeronautics and Space Administration Jet Propulsion Laboratory/California Institute of Technology II. Dataset

Wright, Dawn Jeannine

310

World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS  

E-Print Network [OSTI]

IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

311

Transportation and Greenhouse Gas Emissions Trading. Final Technical Report  

SciTech Connect (OSTI)

The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

Steve Winkelman; Tim Hargrave; Christine Vanderlan

1999-10-01T23:59:59.000Z

312

The Role of Modeling in Clinical Information System Development Life-Cycle Mor Peleg, Department of Information Systems, University of Haifa, Haifa, Israel  

E-Print Network [OSTI]

The Role of Modeling in Clinical Information System Development Life-Cycle Mor Peleg, Department different stake holders. Conceptual modeling can play important roles in the development life-cycle. If these requirements are identified early in the development life-cycle then it is easier and more cost

Peleg, Mor

313

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

314

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

315

Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications  

SciTech Connect (OSTI)

This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

2004-08-15T23:59:59.000Z

316

LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)  

SciTech Connect (OSTI)

Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

Not Available

2013-11-01T23:59:59.000Z

317

2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting  

E-Print Network [OSTI]

is available on the Defra website and has been produced by Nikolas Hill (AEA) for the Department of Energy) 34 Direct Emissions from Light Goods Vehicles (LGVs) 38 Direct Emissions from Rail Freight 39 Direct 57 Other bioenergy 58 Waste 59 X. OVERSEAS ELECTRICITY EMISSION FACTORS (ANNEX 10) 63 Summary

318

Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report  

SciTech Connect (OSTI)

The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

2012-05-01T23:59:59.000Z

319

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

320

Vehicle Technologies Office Merit Review 2014: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

Jaramillo, Paulina

322

Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security  

E-Print Network [OSTI]

on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

Jaramillo, Paulina

323

The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project  

E-Print Network [OSTI]

Online at stacks.iop.org/ERL/8/015038 Abstract The sustainable development of brownfields reflects and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ: sustainable brownfield development, life-cycle assessment, built environment, embodied energy, cumulative

Illinois at Chicago, University of

324

CURATION AND PRESERVATION OF CAD ENGINEERING MODELS IN PRODUCT LIFECYCLE MANAGEMENT  

E-Print Network [OSTI]

purchased as services rather than artefacts. For engineering companies, this shift entails a commitment practices. This business model is applicable in the engineering, manufacturing, contracting and serviceCURATION AND PRESERVATION OF CAD ENGINEERING MODELS IN PRODUCT LIFECYCLE MANAGEMENT M. Patel a , A

Rzepa, Henry S.

325

A review of life-cycle analysis studies on liquid biofuel systems for the transport sector  

E-Print Network [OSTI]

"Advanced" (or second generation) biofuels Bioethanol (E100, E85, E10, ETBE) from lignocellu- losicA review of life-cycle analysis studies on liquid biofuel systems for the transport sector Eric D interest in biofuels for climate change mitigation. This article reviews the rich literature of published

326

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect (OSTI)

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

327

MANAGING SHORT-LIFECYCLE TECHNOLOGY PRODUCTS FOR AGERE S. David Wu  

E-Print Network [OSTI]

characterization tools for capacity planning and capacity negotiation with their global supply partners with correlation values ranging from 0.51 to 0.95. These findings have significant implications to capacity classification: 1. An Overview of Short-Lifecycle Technology Markets In the mid to late 1990's, high- tech

Wu, David

328

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING  

E-Print Network [OSTI]

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

Stanford University

329

Basic and Applied Ecology 12 (2011) 540551 Microclimate and habitat heterogeneity through the oil palm lifecycle  

E-Print Network [OSTI]

Abstract The rapid expansion of oil palm cultivation and corresponding deforestation has invoked widespread addresses how habitat characteristics change when (1) forest is converted to oil palm, or (2) through the dynamic 25­30-year oil palm lifecycle. These two questions are fundamental to understanding how

Silver, Whendee

330

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network [OSTI]

fuel providers to meet annual carbon intensity targets. These targets are based on carbon intensityProject Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start

California at Davis, University of

331

Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign  

E-Print Network [OSTI]

Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign Wil M.P. van der.aalst,m.netjes,h.a.reijers@tm.tue.nl Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life

van der Aalst, Wil

332

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network [OSTI]

The environmental impacts of electricity production systems have been widely assessed over the past years with many published LCAs in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA results variability observed is very high, for example ranging from 2 to 81 g CO2eq/kWh in a literature review performed by the IPCC [1]. Such result might lead policy makers to consider

Pierryves Padey; Denis Le Boulch; Isabelle Blanc

2013-01-01T23:59:59.000Z

333

Geographical scenario uncertainty in generic fate and exposure factors of toxic pollutants for life-cycle impact assessment  

SciTech Connect (OSTI)

In environmental life-cycle assessments (LCA), fate and exposure factors account for the general fate and exposure properties of chemicals under generic environmental conditions by means of 'evaluative' multi-media fate and exposure box models. To assess the effect of using different generic environmental conditions, fate and exposure factors of chemicals emitted under typical conditions of (1) Western Europe, (2) Australia and (3) the United States of America were compared with the multi-media fate and exposure box model USES-LCA. Comparing the results of the three evaluative environments, it was found that the uncertainty in fate and exposure factors for ecosystems and humans due to choice of an evaluative environment, as represented by the ratio of the 97.5th and 50th percentile, is between a factor 2 and 10. Particularly, fate and exposure factors of emissions causing effects in fresh water ecosystems and effects on human health have relatively high uncertainty. This uncertainty i s mainly caused by the continental difference in the average soil erosion rate, the dimensions of the fresh water and agricultural soil compartment, and the fraction of drinking water coming from ground water.

Huijbregts, Mark A.J.; Lundi, Sven; McKone, Thomas E.; van de Meent, D.

2003-02-01T23:59:59.000Z

334

Avoiding deforestation in Panamanian protected areas: An analysis of protection effectiveness and implications for reducing emissions from deforestation and  

E-Print Network [OSTI]

-energy sector GHG emissions and to encourage broader participation in climate change mitigation by generally, Col. Country Club, Guadalajara, Jalisco, Mexico, C.P. 45010, Mexico 1. Introduction: avoiding deforestation and protected areas In the last decade, climate change mitigation has received much international

Bermingham, Eldredge

335

1 Forecasting Greenhouse Gas Emissions from Urban Regions: 2 Microsimulation of Land Use and Transport Patterns in Austin, Texas  

E-Print Network [OSTI]

45 rural demands for travel and energy.46 The U.S. Energy Information Administration (EIA 2005 2030 household energy 26 demands and GHG emissions estimates are compared under five different land use the highest rates of increase. Average energy consumption per household is estimated to fall over 30 time (by

Kockelman, Kara M.

336

Microsoft PowerPoint - FNC NEPA GHG Climate Slides -- 16Jan2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

REVISED DRAFT GUIDANCE ON CONSIDERATION OF GREENHOUSE GAS EMISSIONS AND THE EFFECTS OF CLIMATE CHANGE IN NATIONAL ENVIRONMENTAL POLICY ACT REVIEWS HORST G GRECZMIEL ASSOCIATE...

337

Article published Greenhouse Gases: Science and Technology DOI: 10.1002/ghg.1395  

E-Print Network [OSTI]

for pipelines that are robust to a priori uncertainty in CO2 production from industrial sources and CO2 storage emissions from electric power plants that emit CO2 as a consequence of combusting fossil fuels (namely coal% of anthropogenic CO2 emissions,5 whereas steel production emitted approximately 2.7 GtCO2 in 2011.6 CO2 capture

Paris-Sud XI, Universit de

338

Wind load and life-cycle testing of second generation heliostats  

SciTech Connect (OSTI)

As technical manager of the Second Generation Heliostat development contracts for the Department of Energy, Sandia National Laboratories has evaluated four heliostat designs. The evaluation of the heliostats included the life-cycling and simulated wind load testing of prototype heliostats and foundations. All of the heliostats had minor problems during this testing; as a result, specific design improvements were identified for each drive mechanism and for two of the four foundations.

Rorke, W.S. Jr.

1983-11-01T23:59:59.000Z

339

Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridges  

E-Print Network [OSTI]

Mauricio Sanchez-Silva Colleen Murphy Head of Department, David Rosowsky December 2007 Major Subject: Civil Engineering iii ABSTRACT Effect of Cumulative Seismic Damage and Corrosion on Life-Cycle Cost.... Paolo Gardoni for his technical guidance and for helping with financial support during my study period. I thank Dr. Mauricio Sanchez-Silva for helping me at all stages with his promptness to clear my doubts anytime I approached him. I acknowledge...

Kumar, Ramesh

2009-05-15T23:59:59.000Z

340

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An issue of trust: state corruption, responsibility and greenhouse gas emissions This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Contact us My IOPscience #12;IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 5 (2010 uncontroversial, since the economic theory of externalities suggests that, given some level of external cost imposed by the anthropogenic release of greenhouse gases (GHG), some reduction of emissions 4 Author

Kammen, Daniel M.

342

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network [OSTI]

Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

343

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

A Life-Cycle Model of an Automobile, Environmental Science &Pollutant Inventories of Automobiles, Buses, Light Rail,Pollutant Inventories of Automobiles, Buses, Light Rail,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

344

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California  

SciTech Connect (OSTI)

In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

2009-01-09T23:59:59.000Z

345

The process of life-cycle cost analysis on the Fernald Environmental Management Project  

SciTech Connect (OSTI)

The Estimating Services Department of the Fernald Environmental Restoration Management Corporation (FERMCO) is formalizing the process of life-cycle cost analysis (LCCA) for the Fernald Environmental Management Project (FEMP). The LCCA process is based on the concepts, principles, and guidelines described by applicable Department of Energy`s (DOE) orders, pertinent published literature, and the National Bureau of Standards handbook 135. LCC analyses will be performed following a ten-step process on the FEMP at the earliest possible decision point to support the selection of the least-cost alternatives for achieving the FERMCO mission.

Chang, D.Y.; Jacoboski, J.A.; Fisher, L.A.; Beirne, P.J.

1993-10-07T23:59:59.000Z

346

Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergyGreensburgUMTRCA Title IGuidance on Life-Cycle

347

Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the United States  

E-Print Network [OSTI]

............................................................................ 14 2.2.2 Agriculture - A GHG Sequestering Sink............................................... 15 vi Page 2.2.2.1 Soil Sequestration ........................................................................ 15 2.2.2.2 Forest Sequestration... systems (Flach, Barnwell, and Crosson). Similarly, total forestland in the U.S. has been slightly increasing during the last decade (U.S. Forest Service). In countries with large rates of deforestation emissions are important. Houghton estimates...

Schneider, Uwe A.

2000-01-01T23:59:59.000Z

348

HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134  

SciTech Connect (OSTI)

Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

PIERSON KL; MEINERT FL

2012-01-26T23:59:59.000Z

349

Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol  

E-Print Network [OSTI]

Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol This article has been downloaded from IOPscience. Please scroll for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis

Kammen, Daniel M.

350

Semantic Awareness in Product Lifecycle Management Systems Casey James Baker, Douglas Eddy, Dr. Sundar Krishnamurty, Dr. Ian Grosse, Dr. Jack Wileden  

E-Print Network [OSTI]

Semantic Awareness in Product Lifecycle Management Systems Casey James Baker, Douglas Eddy, Dr enterprises turn to Product Lifecycle Management (PLM) systems to organize product development and to reduce), in which the PLM system was used to help with the design and fabrication of a product. Windchill

Mountziaris, T. J.

351

Supporting the BPM life-cycle with FileNet Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst  

E-Print Network [OSTI]

Supporting the BPM life-cycle with FileNet Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst, The Netherlands m.netjes@tm.tue.nl Abstract. Business Process Management (BPM) systems provide a broad range for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes

van der Aalst, Wil

352

Waste management activities and carbon emissions in Africa  

SciTech Connect (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

353

Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products , Chase L.D.C.b  

E-Print Network [OSTI]

1 Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products Bessou C.1016/j.jclepro.2013.12.008 (Pre-proof version) ABSTRACT The Roundtable on Sustainable Palm Oil (RSPO) is a non-profit association promoting sustainable palm oil through a voluntary certification scheme. Two

Paris-Sud XI, Université de

354

Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy, and Economic Life-Cycle Analysis  

E-Print Network [OSTI]

virgatum) as a replacement for coal in power generation. To examine the effects of such a substitution1 Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy into modules. The greenhouse gas (GHG) mitigation during co-firing of switchgrass with coal is found

McCarl, Bruce A.

355

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect (OSTI)

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

356

Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility  

SciTech Connect (OSTI)

The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

Umphrey, M.R. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-16T23:59:59.000Z

357

Design and life-cycle considerations for unconventional-reservoir wells  

SciTech Connect (OSTI)

This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

Miskimins, J.L. [Colorado School of Mines, Golden, CO (United States)

2009-05-15T23:59:59.000Z

358

Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced  

SciTech Connect (OSTI)

To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing depots, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

2014-11-01T23:59:59.000Z

359

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Coal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissions

Wang, Guihua

2008-01-01T23:59:59.000Z

360

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Challenge of Limiting Greenhouse Gas Emissions Through Activities implemented Jointly in Developing Countries: A Brazilian Perspective  

SciTech Connect (OSTI)

This paper addresses, from the Brazilian perspective, the main problems with Joint Implementation/Activities Implemented Jointly (JI/AIJ) between industrialized (Annex I) and developing (non-Annex I) countries, as defined by the United Nations Framework Convention on Climate Change (UNFCCC). Four possible GHG emissions abatement measures are presented for Brazil: forest protection, reforestation projects for carbon sequestration or charcoal manufacturing, use of ethanol produced from sugar cane as a car fuel, and electrical energy conservation through an increase in end-use efficiencies. These four case studies form the basis of a discussion regarding the validity of developing countries' concerns about JI/AIJ. Recommendations are offered for overcoming the present shortcomings of JI/AIJ in developing countries. The primary conclusion is that Annex I countries' funding of JI/AIJ projects in developing countries in return for GHG emissions credits is not the best means to implement the UNFCCC. However, JI/AIJ projects can be a productive means of preventing global climate change if combined with other measures, including GHG emissions reduction targets for all countries involved in JI/AIJ projects and limits on the percentage of industrialized countries' emissions reductions that can be met through projects in developing countries.

La Rovere, E.L.

1998-11-01T23:59:59.000Z

362

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

363

Service Engineering Life-cycles Jean-Luc Garnier Jean-Philippe Auzelle Claude Pourcel Marc Peyrichon  

E-Print Network [OSTI]

1/15 Service Engineering Life-cycles Jean-Luc Garnier Jean-Philippe Auzelle Claude Pourcel Marc, this paper provides foundation principles of service engineering with description of terms and concepts; life this period, as no real engineering process and business logic were foreseen, "SOA (service-oriented approach

Boyer, Edmond

364

Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas  

E-Print Network [OSTI]

Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol Anand R Gopal1,4,6 and Daniel M Kammen1,2,3,5 1 Energy supplying country for the production of sugarcane ethanol; fresh mill-pressed cane juice from a Brazilian

Kammen, Daniel M.

365

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect (OSTI)

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

366

FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

Templeton, K.J.

1996-05-23T23:59:59.000Z

367

Material and energy recovery in integrated waste management systems: A life-cycle costing approach  

SciTech Connect (OSTI)

Highlights: > The study aims at assessing economic performance of alternative scenarios of MSW. > The approach is the life-cycle costing (LCC). > Waste technologies must be considered as complementary into an integrated strategy. - Abstract: A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.

Massarutto, Antonio [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy); Carli, Alessandro de, E-mail: alessandro.decarli@unibocconi.it [IEFE, Bocconi University, Milan (Italy); Graffi, Matteo [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy)

2011-09-15T23:59:59.000Z

368

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

SciTech Connect (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

369

Integrating a life-cycle assessment with NEPA: Does it make sense?  

SciTech Connect (OSTI)

The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

ECCLESTON, C.H.

1998-09-03T23:59:59.000Z

370

Life-cycle cost and payback period analysis for commercial unitary air conditioners  

SciTech Connect (OSTI)

This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

2004-03-31T23:59:59.000Z

371

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

372

Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro  

SciTech Connect (OSTI)

Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

2013-05-15T23:59:59.000Z

373

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

were "in" the petroleum refinery, EPA also pointed out thatintegral part" of the refinery. ' 3 ' The court, however,part of the adjacent petroleum refinery nor necessary to the

Hagan, Colin R.

2012-01-01T23:59:59.000Z

374

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

Diesel fuel Steel Aluminum Plastics Concrete Generic chemicals Fertilizer Corn Soybeans Grass Trees Land g/BTU

Delucchi, Mark

2005-01-01T23:59:59.000Z

375

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

Hagan, Colin R.

2012-01-01T23:59:59.000Z

376

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

control technology.1 46 sions from the list of regulated hazardous air pollutantsAir Act includes "only those pollutants subject to a statutory or regulatory provision that requires actual control

Hagan, Colin R.

2012-01-01T23:59:59.000Z

377

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

SciTech Connect (OSTI)

A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

Greenblatt, Jeffery B.

2013-10-10T23:59:59.000Z

378

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network [OSTI]

urban buses 38 Table 30 - Fundamental Environmental Factors for Onroad Modes.. 39 Table 31 - Onroad energy inventory .. 40 Table 32 - Onroad GHG inventory ..

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

379

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

SciTech Connect (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

380

Development of a local carbon dioxide emissions inventory based on energy demand and waste production  

SciTech Connect (OSTI)

The paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998 - 2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information. 11 refs., 12 tabs.

Joao Gomes; Joana Nascimento; Helena Rodrigues [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal)

2007-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles  

SciTech Connect (OSTI)

As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

Marr, W.W.; He, J.

1995-07-01T23:59:59.000Z

382

ICPP tank farm closure study. Volume 3: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates  

SciTech Connect (OSTI)

This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option.

NONE

1998-02-01T23:59:59.000Z

383

FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2  

SciTech Connect (OSTI)

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

Valero, O.J.

1996-04-23T23:59:59.000Z

384

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

385

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

386

What life-cycle assessment does and does not do in assessments of waste management  

SciTech Connect (OSTI)

In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.

Ekvall, Tomas [IVL Swedish Environmental Research Institute, P.O. Box 5302, SE-400 14 Goeteborg (Sweden)], E-mail: tomas.ekvall@ivl.se; Assefa, Getachew [Industrial Ecology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Bjoerklund, Anna [Environmental Strategies Research - FMS, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Eriksson, Ola [Technology and Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden); Finnveden, Goeran [Environmental Strategies Research - FMS, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2007-07-01T23:59:59.000Z

387

Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities  

SciTech Connect (OSTI)

The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

Lu, Hongyou; Masanet, Eric; Price, Lynn

2009-05-29T23:59:59.000Z

388

Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health  

SciTech Connect (OSTI)

Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.50.2, 1.30.6, and 2.21.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

2013-10-01T23:59:59.000Z

389

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network [OSTI]

to GHG/kWh of the USA electricity supply chain are coalGHG/kWh of electricity example based on USA. Distributionnuclear (USA) are different because of the electricity mix

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

390

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

inLife?Cycle InventoriesUsingHybridApproaches. EEA2006]EmissionInventoryGuidebook;Activities080501?I:NationalLightingInventoryand EnergyConsumption

Chester, Mikhail V

2008-01-01T23:59:59.000Z

391

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

Theemissionsfromdiesel,gasoline,andelectricGSEatgeneration for electric trains and diesel fueldieselpowered),the relativeperformanceofanelectric

Chester, Mikhail V

2008-01-01T23:59:59.000Z

392

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network [OSTI]

A Life-Cycle Model of an Automobile, Environmental Science &Cycle Assessment of Automobile/Fuel Options, EnvironmentalCycle Energy Analysis for Automobiles, Society of Automotive

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

393

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY VEHICLES Vehicle

394

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Consumption and CO2 Emissions for Selected Crude Oils in the U.S.U.S. Electricity Production B.3 Electricity Mixes Used for Inventory Processes Process: Crude Oil Extraction for Consumption

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

395

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Emissions On This Page Concerns about GHG... Growth of carbon... Sulfur dioxide emissions... Nitrogen oxide emissions... Concerns about GHG legislation affect the long-term outlook...

396

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

if supplied with coal power; at emissions rates equal torates). If coal power Electricity GHG emissions rate (gCOlower GHG emissions rates than coal power supplying non-

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

397

Brice Nichols and Kara Kockelman URBAN FORM AND LIFE-CYCLE ENERGY CONSUMPTION  

E-Print Network [OSTI]

a holistic analysis of energy demands by sector and usage phase, at a large scale. Pivoting off previous work) and provide a rare view of total annual energy demands from the urban residential and commercial sectors gas emissions via transport behavior and building energy use, very little work actually aggregates

Kockelman, Kara M.

398

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

399

An Analysis of the Economic and Financial Life-Cycle Costs of Reverse-Osmosis Desalination in South Texas: A Case Study of the Southmost Facility  

E-Print Network [OSTI]

for $26.2 million, an implicit commitment for another $39.1 million (basis 2006 dollars) was also made for Continued and Capital Replacement costs. Investigation into life-cycle costs during the design and planning stages of a desalination facility can...

Sturdivant, A.; Rister, M.; Rogers, C.; Lacewell, R.; Norris, J.; Leal, J.; Garza, J.; Adams, J.

400

Climate balance of biogas upgrading systems  

SciTech Connect (OSTI)

One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PARALLEL SESSION 6a: Tools and Databases 8th Int. Conference on LCA in the  

E-Print Network [OSTI]

it to a user-friendly software. Keywords: palm oil, biodiesel, GHG, calculator, RSPO, PalmGHG 1. IntroductionGHG calculator provides an estimate of the net GHG emissions produced during the palm oil and palm biodiesel

Boyer, Edmond

402

Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy  

SciTech Connect (OSTI)

This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

Oladosu, Gbadebo A [ORNL

2012-01-01T23:59:59.000Z

403

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

404

Implementation, Enforcement, & Moderator: Benjamin Gramig, Purdue University  

E-Print Network [OSTI]

in GHG Emissions Trading Debbie marketpaymentsforthesupplyofclimateregulatingecosystemservices. Becausethereareprivatecostsavingstofarmersandsocialbenefitsfrom 23Emissions Trading Workshop #12

405

Net Energy Payback and CO{sub 2} Emissions from Three Midwestern Wind Farms: An Update  

SciTech Connect (OSTI)

This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO{sub 2} analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO{sub 2} analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO{sub 2} emissions, in tonnes of CO{sub 2} per GW{sub e}h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.

White, Scott W. [University of Kansas, Kansas Geological Survey (United States)], E-mail: whites@kgs.ku.edu

2006-12-15T23:59:59.000Z

406

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

407

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect (OSTI)

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

408

IS THE TAIL WAGGING THE DOG? AN EMPIRICAL ANALYSIS OF CORPORATE CARBON FOOTPRINTS AND FINANCIAL PERFORMANCE  

E-Print Network [OSTI]

Supply Chain GHG Emissions Controls Water Abstraction General Waste VOCs HeavySupply Chain GHG Emissions Controls Water Abstraction General Waste VOCs HeavySupply Chain GHG Emissions Water Abstraction General Waste Volatile Organic Compounds (VOC) Heavy

Delmas, Magali A; Nairn-Birch, Nicholas S.

2011-01-01T23:59:59.000Z

409

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

stabilize US GHG emissions at their 2010 levels until thefor US light-duty vehicle GHG emissions under varying levelsUS GHG emissions would be stabilized at 2010 levels by 2020

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

410

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network [OSTI]

US 1990 GHG emissions None 684 US cities representing 26% ofGHG emissions by states sources and sectors 684 US cities,The overall US GHG emissions effect of the state and city

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

411

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

412

Mexico joins the venture: Joint Implementation and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Joint Implementation (JI) and its pilot phase of Activities Implemented Jointly (AIJ) are envisioned as an economic way of reducing global emissions of greenhouse gases. This paper draws upon the Mexican experience with AIJ to identify Mexican concerns with AIJ/JI and proposed solutions to these. Three approved Mexican AIJ projects (Ilumex, Scolel Te, and Salicornia) are described in detail. The Ilurnex project promotes the use of compact fluorescent lamps in Mexican homes of the States of Jalisco and Nuevo Leon, to reduce electric demand. Scolel Te is a sustainable forest management project in Chiapas. Salicornia examines the potential for carbon sequestration with a Halophyte-based crop irrigated with saline waters in Sonora. These three projects are reviewed to clarify the issues and concerns that Mexico has with AIJ and JI and propose measures to deal with them. These initial Mexican AIJ projects show that there is a need for creation of standard project evaluation procedures, and criteria and institutions to oversee project design, selection, and implementation. Further JI development will be facilitated by national and international clarification of key issues such as additionality criteria, carbon-credit sharing, and valuation of non-GHG environmental and/or social benefits and impacts for AIJ projects. Mexico is concerned that JI funding could negatively impact official development assistance or that OECD countries will use JI to avoid taking significant GHG mitigation actions in their own countries. The lack of carbon credit trading in the AIJ stage must be removed to provide useful experience on how to share carbon credits. National or international guidelines are needed to ensure that a portion of the carbon credits is allocated to Mexico.

Imaz, M.; Gay, C.; Friedmann, R.; Goldberg, B.

1998-11-01T23:59:59.000Z

413

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportatio...  

Open Energy Info (EERE)

and Energy Use in Transportation (GREET) Model AgencyCompany Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools...

414

Rapid Assessment of City Emissions (RACE): Case of Batangas City...  

Open Energy Info (EERE)

building activities include development of climate change policies and preparation of GHG inventories. Identified capacity building needs include technical assistance to the...

415

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov [DOE]

For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey.

416

An assessment of potential for benefit from integrating geographic information systems technology into life-cycle management of infrastructures a focus for infrastructure management practice  

E-Print Network [OSTI]

: Dr. Robert L. Lytton Infrastructure life-cycle management phases with the greatest potential for benefit from Geographic Information Systems (GIS), is the subject of this thesis. The planning, design, construction, operations, maintenance... then focuses on analysis of data collected by a questionnaire sent to in&astructure managers in Texas. The survey was made to assess how important and frequently they deal with issues associated with the planning, design, construction, operation, maintenance...

Millegan, Harold Lynn

1997-01-01T23:59:59.000Z

417

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

to overtake the US in energy consumption and GHG emissionsto overtake the US in energy consumption and greenhouse

Lin, Jiang

2006-01-01T23:59:59.000Z

418

Three Essays in Business Management, the Natural Environment, and Environmental Policy  

E-Print Network [OSTI]

Supply Chain GHG Emissions -0.762 Controls Water Abstraction General Waste VOCs HeavySupply Chain GHG Emissions Water Abstraction General Waste Volatile Organic Compounds (VOC) Heavy

Nairn-Birch, Nicholas Simon

2012-01-01T23:59:59.000Z

419

anemia mga1 region: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Plants Websites Summary: 652013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions - Outlook June 4, 2013...

420

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Three Essays in Business Management, the Natural Environment, and Environmental Policy  

E-Print Network [OSTI]

Strength Resolutions CA RGGI RPS GHG Emissions GHG EmissionsGreenhouse Gas Initiative (RGGI); or (3) has enactedthese variables, respectively: CA, RGGI, and RPS. We include

Nairn-Birch, Nicholas Simon

2012-01-01T23:59:59.000Z

422

Federal Agency Progress Toward Greenhouse Gas Reduction Targets  

Broader source: Energy.gov [DOE]

Excel spreadsheet shows overall government and federal agency reductions in scope 1 and 2 greenhouse gas (GHG) emissions and in indirect scope 3 GHG emissions categories.

423

Mercury emissions control technologies for mixed waste thermal treatment  

SciTech Connect (OSTI)

EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)

1997-12-31T23:59:59.000Z

424

The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM  

E-Print Network [OSTI]

The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of $\\Sigma_{_{\\rm GAS}} = 10 \\;{\\rm M}_\\odot/{\\rm pc}^2$. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H$_2$ and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of ...

Walch, S K; Naab, T; Gatto, A; Glover, S C O; Wnsch, R; Klessen, R S; Clark, P C; Peters, T; Baczynski, C

2014-01-01T23:59:59.000Z

425

Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions  

SciTech Connect (OSTI)

To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

Stork, K.C.; Singh, M.K.

1995-04-01T23:59:59.000Z

426

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

InventoriesforMotorcycles,DieselAutomobiles,SchoolInventoriesforMotorcycles,DieselAutomobiles,SchoolInventoriesforMotorcycles,DieselAutomobiles,School

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

427

Evaluacin de la generacin de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment of greenhouse gases emissions associated to colombian biofuels lifecycle.  

E-Print Network [OSTI]

??Valencia Botero, Monica Julieth (2012) Evaluacin de la generacin de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment (more)

Valencia Botero, Monica Julieth

2012-01-01T23:59:59.000Z

428

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

captured for both diesel and electric vehicles. Thefortheurbandieselbus, theelectricbusesfractionofMotorcycles,DieselAutomobiles,School Buses,Electric

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

429

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

Motorcycles,DieselAutomobiles,School Buses,ElectricforMotorcycles,DieselAutomobiles,SchoolBuses,ElectricLife?cycleModelofanAutomobile. EnvironmentalScience&

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

430

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network [OSTI]

Environmental life-cycle assessment (LCA) is a powerful tool52] EIO-LCA, Economic input-output life cycle assessment,

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

431

A greenhouse-gas information system monitoring and validating emissions reporting and mitigation  

SciTech Connect (OSTI)

Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

2011-09-26T23:59:59.000Z

432

Unintended Impacts of Increased Truck Loads on Pavement Supply-chain Emissions  

E-Print Network [OSTI]

of environmental life-cycle assessment (LCA) has also comeInput-Output Life Cycle Assessment (EIO-LCA) Model. Greenanalysis-based life-cycle assessment (EIO-LCA) tool is used

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer M

2009-01-01T23:59:59.000Z

433

Vehicle Emissions Review - 2011  

Broader source: Energy.gov (indexed) [DOE]

Emissions Review - 2011 (so far) Tim Johnson October 4, 2011 DOE DEER Conference, Detroit JohnsonTV@Corning.com 2 Summary * California LD criteria emission regs are tightening....

434

Late-time particle emission from laser-produced graphite plasma S. S. Harilal,a)  

E-Print Network [OSTI]

ablated plasma.15,16 Hence, a fundamental under- standing of the lifecycle of carbon plasma is important

Harilal, S. S.

435

GHG Management Institute GHG MRV Curriculum | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier,Jump to:Wilmette, Jump to:SOURCEGHD Inc

436

Spatial Disaggregation of CO2 Emissions for the State of California  

SciTech Connect (OSTI)

This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

2008-06-11T23:59:59.000Z

437

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

438

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

439

Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China  

SciTech Connect (OSTI)

China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

Lin, Jiang

2006-07-10T23:59:59.000Z

440

The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan  

SciTech Connect (OSTI)

The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production  

SciTech Connect (OSTI)

Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents dangerous anthropogenic interference with the planets climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

Parker, Graham B.; Dahowski, Robert T.

2007-07-11T23:59:59.000Z

442

Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.  

SciTech Connect (OSTI)

Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

Wang, M.; Huo, H.; Arora, S. (Energy Systems)

2011-01-01T23:59:59.000Z

443

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect (OSTI)

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

444

MIT Joint Program on the Science and Policy of Global Change  

E-Print Network [OSTI]

regulation and have gained attention recently within the context of greenhouse gas (GHG) emissions trading

445

Technical Report NREL/TP-6A2-48258  

E-Print Network [OSTI]

Emissions Trading Scheme (European Union) EU European Union GHG greenhouse gas ITC investment tax credit MWh

446

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

SciTech Connect (OSTI)

The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

Zheng, Nina; Zhou, Nan; Fridley, David

2010-09-01T23:59:59.000Z

447

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

2004). www.bioproducts- bioenergy.gov/pdfs/NRDC-Growing-as Feedstock for a Bioenergy and Bioproducts Industry: Theof Biobased Polymers and Bioenergy, Journal of Industrial

Delucchi, Mark

2006-01-01T23:59:59.000Z

448

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

into a synthesis gas (syngas) consisting of CO, H 2 , CO 2 ,DRAFT WORKING MANUSCRIPT The syngas exiting the gasifier isdownstream catalysts. The syngas then undergoes a series of

Delucchi, Mark

2006-01-01T23:59:59.000Z

449

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Energy Balance of Corn Ethanol, Agricultural Economic Report Number 721, Economic Research Service, United States

Delucchi, Mark

2006-01-01T23:59:59.000Z

450

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

the production of a primary resource, such as crude oil,production: the transformation of a primary resource, such as crude oilproduction facility. For example, the transport of crude oil

Delucchi, Mark

2006-01-01T23:59:59.000Z

451

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

switchgrass, and wood; biodiesel from soy No model per se;Diesel (crude oil) (g/mi) Biodiesel (SD100 (soy)) Ethanol (switchgrass, and wood; biodiesel from soybeans; methanol,

Delucchi, Mark

2006-01-01T23:59:59.000Z

452

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

The syngas exiting the gasifier is cooled and then quenchedThe equipment downstream of the gasifier for conversion to

Delucchi, Mark

2006-01-01T23:59:59.000Z

453

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

between grain-to-ethanol processes and cellulose-to-ethanolcorn ethanol from corn, cellulose ethanol from corn stoverfrom corn - 50% to -10% Ethanol from cellulose -100% to -40%

Delucchi, Mark

2006-01-01T23:59:59.000Z

454

BP's Perspective on Emissions Purdue Emissions Trading Workshop  

E-Print Network [OSTI]

BP's Perspective on Emissions Trading Purdue Emissions Trading Workshop April 30, 2010 Mark - Government policies can create a carbon price via three primary mechanisms: - Emissions trading (BP's strong

455

Excess Emissions (New Mexico)  

Broader source: Energy.gov [DOE]

This regulation establishes requirements for a source whose operation results in an excess emission and to establish criteria for a source whose operation results in an excess emission to claim an...

456

Emissions Trading and Social Justice  

E-Print Network [OSTI]

David M. Driesen, Does Emissions Trading Encourage Jason Coburn, Emissions Trading and Environmental Szambelan, U.S. Emissions Trading Markets for SO 2

Farber, Daniel A

2011-01-01T23:59:59.000Z

457

Spatial assessment of net mercury emissions from the use of fluorescent bulbs  

SciTech Connect (OSTI)

While fluorescent lighting is an important technology for reducing electrical energy demand, mercury used in the bulbs is an ongoing concern. Using state and country level data, net emissions of mercury from the marginal use of fluorescent lightbulbs are examined for a base year of 2004 for each of the 50 United States and 130 countries. Combustion of coal for electric power generation is generally the largest source of atmospheric mercury pollution; reduction in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. This analysis considers the local mix of power sources, coal quality, thermal conversion efficiencies, distribution losses, and any mercury control technologies that might be in place. Emissions of mercury from production and end-of-life treatment of the bulbs are also considered, providing a life-cycle perspective. Net reductions in mercury over the entire life cycle range from -1.2 to 97 mg per bulb depending on the country. The consequences for atmospheric mercury emissions of several policy scenarios are also discussed. 46 refs., 4 figs., 3 tabs.

Matthew J. Eckelman; Paul T. Anastas; Julie B. Zimmerman [Yale University, New Haven, CT (United States). Department of Chemical Engineering

2008-11-15T23:59:59.000Z

458

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

459

Using Dashboards to Improve Energy and Comfort in Federal Buildings  

E-Print Network [OSTI]

gases (GHG) or carbon footprint, and public education onand lowering the carbon footprint or GHG emissions forby reducing carbon footprint. Compare buildings energy

Marini, Kyle

2011-01-01T23:59:59.000Z

460

actor-partner interdependence models: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sixth in the US for total GHG emissions. The agricultural a comprehensive greenhouse gas (GHG) inventory, which the Florida Department of Environmental Protection will develop over...

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington  

SciTech Connect (OSTI)

Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to 262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of 117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 10-6 and 5.6 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reachand CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

2013-03-15T23:59:59.000Z

462

Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps  

SciTech Connect (OSTI)

In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

2001-10-10T23:59:59.000Z

463

Global and regional emission estimates for HCFC-22  

E-Print Network [OSTI]

HCFC-22 (CHClF[subscript 2], chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning ...

Saikawa, Eri

464

Anomalous Microwave Emission  

E-Print Network [OSTI]

Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

A. Kogut

1999-02-22T23:59:59.000Z

465

SPECIAL REPORT 298: EFFECTS OF LAND DEVELOPMENT PATTERNS ON MOTORIZED TRAVEL, ENERGY, AND CO2 EMISSIONS  

E-Print Network [OSTI]

, plug-in hybrid purchases, home heating and cooling practices, and power generation processes alternative to gasoline and diesel, achieving significant GHG and petroleum savings. However, biofuels

Kockelman, Kara M.

466

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

467

Impact of Extreme Weather on Power System Blackouts and Forced Outages: New Challenges  

E-Print Network [OSTI]

in industrialized countries have adopted GHG emission reduction targets and have taken measures to implement them. It is estimated that the United States is the source of one- fourth of the world's GHG emissions and that the electric power industry accounts for one-third of the nation's GHG emissions. Within the total GHG

Dobson, Ian

468

Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model  

SciTech Connect (OSTI)

The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

2012-06-01T23:59:59.000Z

469

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

470

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

471

Page 1 of 10 Department for Environment, Food and Rural Affairs  

E-Print Network [OSTI]

removals and emissions from domestic woodland creation and deforestation .........................................................................................................................3 Step 3: Account for GHG emissions from deforestation

472

Greenhouse Gas Management Program Overview  

Broader source: Energy.gov [DOE]

Fact sheet describes the federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources.

473

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

474

Air Emission Inventory for the INEEL -- 1999 Emission Report  

SciTech Connect (OSTI)

This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

Zohner, Steven K

2000-05-01T23:59:59.000Z

475

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

476

Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia  

SciTech Connect (OSTI)

The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (??target area?), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

J. Daniel Arthur

2012-03-31T23:59:59.000Z

477

Spontaneous Emission Rate Enhancement Using Optical Antennas  

E-Print Network [OSTI]

of Spontaneous Emission in a Semiconductor nanoLED, emission rate enhancement using the Fluorescent Emission by Lattice Resonances in

Kumar, Nikhil

2013-01-01T23:59:59.000Z

478

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

479

Contraction & Convergence: UK carbon emissions and the  

E-Print Network [OSTI]

the EU's emissions trading scheme will do little to mitigate carbon emissions 4) Aviation growth must emissions. Keywords Contraction & Convergence; aviation; emissions trading; passengers; carbon dioxide #12

Watson, Andrew

480

Emission Abatement System  

DOE Patents [OSTI]

Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

2003-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "lifecycle ghg emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Emission Standards for Contaminants (Iowa)  

Broader source: Energy.gov [DOE]

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

482

Intelligent field emission arrays  

E-Print Network [OSTI]

Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current ...

Hong, Ching-yin, 1973-

2003-01-01T23:59:59.000Z

483

Photon enhanced thermionic emission  

DOE Patents [OSTI]

Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

2014-10-07T23:59:59.000Z

484

Greenhouse Gas Emissions (Minnesota)  

Broader source: Energy.gov [DOE]

This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

485

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

SciTech Connect (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

486

Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

2012-03-15T23:59:59.000Z

487

Field emission electron source  

DOE Patents [OSTI]

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

488

Life Cycle Assessment Applied to 95 Representative U.S. Farms  

E-Print Network [OSTI]

or are considering the regulation of greenhouse gas (GHG) emission to mitigate the global warming effect. Because agriculture accounts for a large portion of anthropogenic greenhouse gas emissions, it is necessary to establish a baseline measure of the GHG emission...

Rutland, Christopher T.

2012-10-19T23:59:59.000Z

489

Guidance on measuring and reporting Greenhouse Gas  

E-Print Network [OSTI]

Guidance on measuring and reporting Greenhouse Gas (GHG) emissions from freight transport This guidance provides clear instructions on calculating the greenhouse gas (GHG) emissions from freight and report your greenhouse gas emissions', by providing more specific information and examples relating

490

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

SciTech Connect (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

491

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

492

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

493

Optimal irreversible stimulated emission  

E-Print Network [OSTI]

We studied the dynamics of an initially inverted atom in a semi-infinite waveguide, in the presence of a single propagating photon. We show that atomic relaxation is enhanced by a factor of 2, leading to maximal bunching in the output field. This optimal irreversible stimulated emission is a novel phenomenon that can be observed with state-of-the-art solid-state atoms and waveguides. When the atom interacts with two one-dimensional electromagnetic environments, the preferential emission in the stimulated field can be exploited to efficiently amplify a classical or a quantum state.

D Valente; Y Li; J P Poizat; J M Gerard; L C Kwek; M F Santos; A Auffeves

2012-08-28T23:59:59.000Z

494

Controlled spontaneous emission  

E-Print Network [OSTI]

The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.

Jae-Seung Lee; Mary A. Rohrdanz; A. K. Khitrin

2007-07-03T23:59:59.000Z

495

Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

PM Daling; SB Ross; BM Biwer

1999-12-17T23:59:59.000Z

496

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.  

SciTech Connect (OSTI)

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

Han, J.; Mintz, M.; Wang, M. (Energy Systems)

2011-12-14T23:59:59.000Z

497

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect (OSTI)

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

498

Emissions Trading and Air Toxics Emissions: RECLAIM and Toxics Regulation in the South Coast Air Basin  

E-Print Network [OSTI]

fugitive emissions in an emissions trading program, as theexists between an emissions trading program that allows aircreation of other ROC emissions trading programs. JOURNAL OF

Cohen, Nancy J.

1993-01-01T23:59:59.000Z

499

Secondary emission gas chamber  

E-Print Network [OSTI]

For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

V. In'shakov; V. Kryshkin; V. Skvortsov

2014-12-10T23:59:59.000Z

500

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of