Sample records for life safety code

  1. Certification plan for safety and PRA codes

    SciTech Connect (OSTI)

    Toffer, H.; Crowe, R.D. (Westinghouse Hanford Co., Richland, WA (United States)); Ades, M.J. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1990-05-01T23:59:59.000Z

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan's objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

  2. Certification plan for safety and PRA codes

    SciTech Connect (OSTI)

    Toffer, H.; Crowe, R.D. [Westinghouse Hanford Co., Richland, WA (United States); Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1990-05-01T23:59:59.000Z

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA&PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan`s objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

  3. Health and Safety Policy Category: Campus Life

    E-Print Network [OSTI]

    Management System; 2.4.2. Promote an organisational culture that adopts health and safety as an integralHealth and Safety Policy Category: Campus Life 1. PURPOSE To provide a healthy and safe workplace to providing and maintaining high standards of health and safety in the workplace. It is our belief that all

  4. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01T23:59:59.000Z

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  5. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  6. Page 1 of 24 Environment Health & Safety, Building Code Enforcement Program

    E-Print Network [OSTI]

    Wu, Dapeng Oliver

    , stability, sanitation, adequate light and ventilation, energy conservation, and safety to life and property.2.3 Florida Building Code, Residential Construction standards or practices which are not covered by Florida, Building. 101.3 Intent. The purpose of this code is to establish the minimum requirements to safeguard

  7. The Life Safety Program Criteria Excerpt from Life Safety Funding Project Eligibility Criteria, dated 3/90.

    E-Print Network [OSTI]

    The Life Safety Program Criteria Excerpt from Life Safety Funding Project Eligibility Criteria, dated 3/90. Projects eligible for Life Safety Funding should generally meet all of the following properly. 3. The unsafe /unhealthful condition may not be caused by a change in size or scope of the work

  8. Interface design of VSOP'94 computer code for safety analysis

    SciTech Connect (OSTI)

    Natsir, Khairina, E-mail: yenny@batan.go.id; Andiwijayakusuma, D.; Wahanani, Nursinta Adi [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Yazid, Putranto Ilham [Center for Nuclear Technology, Material and Radiometry- National Nuclear Energy Agency, Jl. Tamansari No.71, Bandung 40132 (Indonesia)

    2014-09-30T23:59:59.000Z

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  9. Safety, Codes, and Standards | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety for UsersSafety,

  10. Safety, Codes, and Standards Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety DesignEnergySAFETY Fuel

  11. Safety, Codes, and Standards Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety DesignEnergySAFETY FuelFuel

  12. Safety, Codes, and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety DesignEnergySAFETY

  13. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01T23:59:59.000Z

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  14. FPS 12.1 Life Safety, 5/24/2000

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is for the Facility Representative to verify that conditions in the plant provide an appropriate level of life safety for workers conducting operations in the...

  15. AGR-1 Safety Test Predictions using the PARFUME code

    SciTech Connect (OSTI)

    Blaise Collin

    2012-05-01T23:59:59.000Z

    The PARFUME modeling code was used to predict failure probability of TRISO-coated fuel particles and diffusion of fission products through these particles during safety tests following the first irradiation test of the Advanced Gas Reactor program (AGR-1). These calculations support the AGR-1 Safety Testing Experiment, which is part of the PIE effort on AGR-1. Modeling of the AGR-1 Safety Test Predictions includes a 620-day irradiation followed by a 300-hour heat-up phase of selected AGR-1 compacts. Results include fuel failure probability, palladium penetration, and fractional release of fission products. Results show that no particle failure is predicted during irradiation or heat-up, and that fractional release of fission products is limited during irradiation but that it significantly increases during heat-up.

  16. Criticality Safety Code Validation with LWBR’s SB Cores

    SciTech Connect (OSTI)

    Putman, Valerie Lee

    2003-01-01T23:59:59.000Z

    The first set of critical experiments from the Shippingport Light Water Breeder Reactor Program included eight, simple geometry critical cores built with 233UO2-ZrO2, 235UO2-ZrO2, ThO2, and ThO2-233UO2 nuclear materials. These cores are evaluated, described, and modeled to provide benchmarks and validation information for INEEL criticality safety calculation methodology. In addition to consistency with INEEL methodology, benchmark development and nuclear data are consistent with International Criticality Safety Benchmark Evaluation Project methodology.Section 1 of this report introduces the experiments and the reason they are useful for validating some INEEL criticality safety calculations. Section 2 provides detailed experiment descriptions based on currently available experiment reports. Section 3 identifies criticality safety validation requirement sources and summarizes requirements that most affect this report. Section 4 identifies relevant hand calculation and computer code calculation methodologies used in the experiment evaluation, benchmark development, and validation calculations. Section 5 provides a detailed experiment evaluation. This section identifies resolutions for currently unavailable and discrepant information. Section 5 also reports calculated experiment uncertainty effects. Section 6 describes the developed benchmarks. Section 6 includes calculated sensitivities to various benchmark features and parameters. Section 7 summarizes validation results. Appendices describe various assumptions and their bases, list experimenter calculations results for items that were independently calculated for this validation work, report other information gathered and developed by SCIENTEC personnel while evaluating these same experiments, and list benchmark sample input and miscellaneous supplementary data.

  17. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects Photo ofSafety, Codes,

  18. Sandia National Laboratories: Hydrogen Safety, Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle Technologies On NovemberSafety, Codes and

  19. AGR-2 Safety Test Predictions Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2014-09-01T23:59:59.000Z

    This report documents calculations performed to predict failure probability of TRISO-coated fuel particles and diffusion of fission products through these particles during safety tests following the second irradiation test of the Advanced Gas Reactor program (AGR-2). The calculations include the modeling of the AGR-2 irradiation that occurred from June 2010 to October 2013 in the Advanced Test Reactor (ATR) and the modeling of a safety testing phase to support safety tests planned at Oak Ridge National Laboratory and at Idaho National Laboratory (INL) for a selection of AGR-2 compacts. The heat-up of AGR-2 compacts is a critical component of the AGR-2 fuel performance evaluation, and its objectives are to identify the effect of accident test temperature, burnup, and irradiation temperature on the performance of the fuel at elevated temperature. Safety testing of compacts will be followed by detailed examinations of the fuel particles to further evaluate fission product retention and behavior of the kernel and coatings. The modeling was performed using the particle fuel model computer code PARFUME developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact). PARFUME calculates the release fraction as the ratio of the number of atoms released from the compact to the amount produced in the compact fuel kernels and through uranium contamination. These safety test predictions aim at giving guidance for the upcoming safety tests to be conducted at ORNL and INL. The AGR-2 compacts modeled in this study belong to the four U.S. capsules of the AGR-2 irradiation test train. For each capsule, the compacts with the lowest and highest burnups were selected to provide a prediction envelope. The objective of this document is to present results of calculations and analyses made by PARFUME on these selected AGR-2 compacts. These results include: • Fuel failure probability • Palladium penetration • Fractional release of fission products Details associated with completion of these calculations are provided in the remainder of this document: the AGR-2 Safety Testing plan is briefly introduced in Section 2, PARFUME modeling is outlined in Section 3, results are described in Section 4, conclusions are given in Section 5, and references are listed in Section 6.

  20. CODE OF ETHICAL PRACTICE ON RESEARCH/EXPERIMENTATION WITH HEALTH AND SAFETY IMPLICATIONS

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    The University has obligations under the Health and Safety at Work etc Act 1974. Its Health and Safety Policy of health and safety; (c) researchers are responsible for the conduct of practical work in a mannerCODE OF ETHICAL PRACTICE ON RESEARCH/EXPERIMENTATION WITH HEALTH AND SAFETY IMPLICATIONS 1

  1. Proving the Absence of RunTime Errors in SafetyCritical Avionics Code

    E-Print Network [OSTI]

    Cousot, Patrick

    , time­triggered, real­time, safety critical, embedded software as found in earth transportation, nuclearProving the Absence of Run­Time Errors in Safety­Critical Avionics Code Patrick Cousot École is not acceptable in safety and mission crit­ ical applications. An avenue is therefore opened for formal methods

  2. Comparison between VNIIEF computer programs used to study NPP safety and similar western codes

    SciTech Connect (OSTI)

    Pevnitsky, A.V.; Tarasov, V.A.; Solovyev, V.P. [and others

    1995-12-31T23:59:59.000Z

    This report gives schematic comparison between VNIIEF computer programs used to study NPP safety and similar western codes. This comparison is schematic and in no way pretends to be complete.

  3. SACRD: a data base for fast reactor safety computer codes, operational procedures

    SciTech Connect (OSTI)

    Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.

    1980-09-01T23:59:59.000Z

    SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.

  4. Certification process of safety analysis and risk management computer codes at the Savannah River Site

    SciTech Connect (OSTI)

    Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Toffer, H.; Lewis, C.J.; Crowe, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-05-01T23:59:59.000Z

    The commitment by Westinghouse Savannah River Company (WSRC) to bring safety analysis and risk management codes into compliance with national and sitewide quality assurance requirements necessitated a systematic, structured approach. As a part of this effort, WSRC, in cooperation with the Westinghouse Hanford Company, has developed and implemented a certification process for the development and control of computer software. Safety analysis and risk management computer codes pertinent to reactor analyses were selected for inclusion in the certification process. As a first step, documented plans were developed for implementing verification and validation of the codes, and establishing configuration control. User qualification guidelines were determined. The plans were followed with an extensive assessment of the codes with respect to certification status. Detailed schedules and work plans were thus determined for completing certification of the codes considered. Although the software certification process discussed is specific to the application described, it is sufficiently general to provide useful insights and guidance for certification of other software.

  5. Certification process of safety analysis and risk management computer codes at the Savannah River Site

    SciTech Connect (OSTI)

    Ades, M.J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Toffer, H.; Lewis, C.J.; Crowe, R.D. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-01-01T23:59:59.000Z

    The commitment by Westinghouse Savannah River Company (WSRC) to bring safety analysis and risk management codes into compliance with national and sitewide quality assurance requirements necessitated a systematic, structured approach. As a part of this effort, WSRC, in cooperation with the Westinghouse Hanford Company, has developed and implemented a certification process for the development and control of computer software. Safety analysis and risk management computer codes pertinent to reactor analyses were selected for inclusion in the certification process. As a first step, documented plans were developed for implementing verification and validation of the codes, and establishing configuration control. User qualification guidelines were determined. The plans were followed with an extensive assessment of the codes with respect to certification status. Detailed schedules and work plans were thus determined for completing certification of the codes considered. Although the software certification process discussed is specific to the application described, it is sufficiently general to provide useful insights and guidance for certification of other software.

  6. SCALE 6: Comprehensive Nuclear Safety Analysis Code System

    SciTech Connect (OSTI)

    Bowman, Stephen M [ORNL

    2011-01-01T23:59:59.000Z

    Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

  7. Hydrogen Safety, Codes and Standards Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact SheetThermochemicalSafety

  8. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect (OSTI)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01T23:59:59.000Z

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

  9. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    RESEARCH SAFETY RADIATION SAFETY ENVIRONMENTAL PROGRAMS HAZARDOUS MATERIALS CONTROLLED SUBSTANCES INTEGRATED WASTE MANAGEMENT LABORATORY SAFETY AUDITS & COMPLIANCE BIOSAFETY and ENVIRONMENTAL HEALTH EMERGENCY MANAGEMENT and MISSION CONTINUITY FIRE PREVENTION and LIFE SAFETY GENERAL SAFETY TRAINING

  10. Texas A&M AgriLife Research Procedures 24.01.01.A0.04 Occupational Safety and Health

    E-Print Network [OSTI]

    Life Research/AgriLife Extension Service Safety Coordinator; D. Establish and maintain a culture of safetyTexas A&M AgriLife Research Procedures 24.01.01.A0.04 Occupational Safety and Health Approved Scheduled Review: August 27, 2014 Texas A&M AgriLife Research Procedure 24.01.01.A0.04 Occupational Safety

  11. SECTION 6-RESIDENCE HALL SAFETY Safety for residents, staff, and visitors to the residence halls is the responsibility of the Residential Life

    E-Print Network [OSTI]

    Selmic, Sandra

    halls is the responsibility of the Residential Life Department. The department reports unsafe hazards for the purpose of insuring a safe residential environment administered by Residential Life shall be as follows: SAFETY INSPECTIONS OF RESIDENT HALLS Residential Hall rooms shall be inspected monthly for fire safety

  12. Uncertainty quantification in safety codes using a Bayesian approach with data from separate and integral effect tests

    E-Print Network [OSTI]

    Yurko, Joseph Paul

    2014-01-01T23:59:59.000Z

    Uncertainty quantification in thermal-hydraulic safety codes is a very challenging and computationally expensive endeavor. Methods are therefore needed to reduce that computational burden, while still providing a reasonable ...

  13. Computer code for space-time diagnostics of nuclear safety parameters

    SciTech Connect (OSTI)

    Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A. [National Research Nuclear Univ. MEPhI, Kashirskoe, 31, 115409, Moscow (Russian Federation)

    2012-07-01T23:59:59.000Z

    The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)

  14. Evaluation of temporary non-code repairs in safety class 3 piping systems

    SciTech Connect (OSTI)

    Godha, P.C.; Kupinski, M.; Azevedo, N.F. [Northeast Utilities System, Hartford, CT (United States)

    1996-12-01T23:59:59.000Z

    Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference.

  15. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2011-12-01T23:59:59.000Z

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  16. Memorandum, CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

    Broader source: Energy.gov [DOE]

    CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

  17. Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States

    SciTech Connect (OSTI)

    Conover, David R.

    2014-08-22T23:59:59.000Z

    This report acquaints stakeholders and interested parties involved in the development and/or deployment of energy storage systems (ESS) with the subject of safety-related codes, standards and regulations (CSRs). It is hoped that users of this document gain a more in depth and uniform understanding of safety-related CSR development and deployment that can foster improved communications among all ESS stakeholders and the collaboration needed to realize more timely acceptance and approval of safe ESS technology through appropriate CSR.

  18. Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance

    SciTech Connect (OSTI)

    Conover, David R.

    2014-09-11T23:59:59.000Z

    The purpose of this document is to identify laws, rules, model codes, codes, standards, regulations, specifications (CSR) related to safety that could apply to stationary energy storage systems (ESS) and experiences to date securing approval of ESS in relation to CSR. This information is intended to assist in securing approval of ESS under current CSR and to identification of new CRS or revisions to existing CRS and necessary supporting research and documentation that can foster the deployment of safe ESS.

  19. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01T23:59:59.000Z

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  20. Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.04 Occupational Safety and Health

    E-Print Network [OSTI]

    and maintain a culture of safety within their unit; E. Ensure employees are aware of the AgriLife ExtensionTexas A&M AgriLife Extension Service Procedures 24.01.01.X0.04 Occupational Safety and Health.04 Occupational Safety and Health Page 1 of 3 PROCEDURE STATEMENT The goal of Texas A&M AgriLife Extension

  1. Radiation Safety Training Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-03-17T23:59:59.000Z

    This Guide provides an acceptable methodology for establishing and operating a radiation safety training program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart J of 10 CFR 835. Canceled by DOE G 441.1-1B.

  2. SAS4A/SASSYS-1: Fast Reactor Safety Analysis Code | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and systems analysis features are applicable to other liquid-metal cooled reactor concepts. Applications Safety analysis of fast reactors Simulations for...

  3. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91)

    SciTech Connect (OSTI)

    Ho, S.K.; Fowler, T.K.; Holdren, J.P. (eds.)

    1991-11-01T23:59:59.000Z

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  4. Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.

    SciTech Connect (OSTI)

    Podlazov, L. N.

    1998-07-29T23:59:59.000Z

    Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

  5. Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code

    SciTech Connect (OSTI)

    Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

    2009-09-01T23:59:59.000Z

    Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

  6. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-01-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  7. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VI. Safety and Codes & Standards

    E-Print Network [OSTI]

    to H2 from 0-100% at 450o C in N2 background Future Directions · Fabricate 2nd generation sensors.A Safety VI.A.1 Gallium Nitride Integrated Gas/Temperature Sensors for Fuel Cell System Monitoring catalytic gate field effect transistor (FET) sensors to resolve and detect carbon monoxide (CO

  8. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01T23:59:59.000Z

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  9. Post-test analysis of dryout test 7B' of the W-1 Sodium Loop Safety Facility Experiment with the SABRE-2P code. [LMFBR

    SciTech Connect (OSTI)

    Rose, S.D.; Dearing, J.F.

    1981-01-01T23:59:59.000Z

    An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.

  10. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect (OSTI)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2014-02-12T23:59:59.000Z

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  11. Radiation Safety

    Broader source: Energy.gov (indexed) [DOE]

    Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations *...

  12. FIRE SAFETY PROGRAM TABLE OF CONTENTS

    E-Print Network [OSTI]

    Lin, Zhiqun

    FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

  13. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards

    Broader source: Energy.gov [DOE]

    Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

  14. INL Fusion Safety Program - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brad Merrill Fusion Safety Program Group Leader Group Leader for the Fusion Safety Program. Technical lead for computer code development for fusion safety. Work in licensing,...

  15. National electrical code changes for 1996 and USA participation in International Energy Agency activities related to photovoltaics safety and grid interconnection

    SciTech Connect (OSTI)

    Bower, W.

    1995-01-01T23:59:59.000Z

    As photovoltaic (PV) systems gain more acceptance in utility-interactive applications throughout the world, many organizations are placing increasingly higher priorities on writing guidelines, codes and standards. These guidelines and codes are being written to improve safety, installation, acceptance, listing or certification of the PV components or systems. Sandia National Laboratories` PV System Applications Department is working closely with the PV industry to address issues that are associated with fire and personnel safety and with National Electrical Code (NEC) requirements. Additionally, the United States has agreed to participate in two of the International Energy Agency (IEA) Annexes (topical tasks) of the Implementing Agreement for a Cooperative Programme on Photovoltaic Power Systems. This paper describes events and activities associated with the NEC and the IEA that are being led by Sandia National Laboratories with broad participation by the US PV industry.

  16. Advanced Modeling of Multicomponent Vaporization/Condensation Phenomena for a Reactor Safety Analysis Code SIMMER-III

    SciTech Connect (OSTI)

    Koji Morita; Tatsuya Matsumoto; Ryo Akasaka; Kenji Fukuda [Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-81 (Japan); Tohru Suzuki; Yoshiharu Tobita; Hidemasa Yamano; Satoru Kondo [Japan Nuclear Cycle Development Institute 4002, Narita, O-arai, Ibaraki 311-1393 (Japan)

    2002-07-01T23:59:59.000Z

    It is believed that the numerical simulation of thermal-hydraulic phenomena of multiphase, multicomponent flows in a reactor core is essential to investigate core disruptive accidents (CDAs) of liquid-metal fast reactors. A new multicomponent vaporization/condensation (V/C) model was developed to provide a generalized model for a fast reactor safety analysis code SIMMER-III, which analyzes relatively short-time-scale phenomena relevant to accident sequences of CDAs. The model characterizes the V/C process associated with phase transition through heat-transfer and mass-diffusion limited models to follow the time evolution of the rector core under CDA conditions. The heat-transfer limited model describes the nonequilibrium phase-transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of noncondensable gases and multicomponent mixture on V/C processes. Verification of the model and method employed in the multicomponent V/C model of SIMMER-III was performed successfully by analyzing two series of condensation experiments. (authors)

  17. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01T23:59:59.000Z

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  18. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Doucet, M.; Durant Terrasson, L.; Mouton, J. [AREVA-NP (France)

    2006-07-01T23:59:59.000Z

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)

  19. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and Standards Multi-Year Research,

  20. Code development incorporating environmental, safety, and economic aspects of fusion reactors (FY 89--91). Final report

    SciTech Connect (OSTI)

    Ho, S.K.; Fowler, T.K.; Holdren, J.P. [eds.

    1991-11-01T23:59:59.000Z

    This report discusses the following aspects of Fusion reactors.: Activation Analysis; Tritium Inventory; Environmental and Safety Indices and Their Graphical Representation; Probabilistic Risk Assessment (PRA) and Decision Analysis; Plasma Burn Control -- Application to ITER; and Other Applications.

  1. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, building design and code review, fire safety, and...

  2. Local Safety Committee Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code J. Pannell ECE Support Engineer x Ken Jodrey E-Shops, for B. Wilson x * co-chairs Brad Hayes Safety, no report. Pending C. Safety Day Planning Committee Planning for Safety Days on Sept. 10 & 11 continues

  3. Local Safety Committee Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code-Shops Tech x R. Dahlgren Safety Resources x L. Wilson (support) Dean's Office x D. Hart Safety Resources x T involving chemicals. C. Safety Day Planning Committee L. Roth reported that the schedule of speakers

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

  5. Brain surgery breathes new life into aging plants

    SciTech Connect (OSTI)

    Makansi, J. [Pearl Street Inc. (United States)

    2006-04-15T23:59:59.000Z

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  6. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    SciTech Connect (OSTI)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

    2011-01-01T23:59:59.000Z

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  7. Correlation of nuclear criticality safety computer codes with plutonium benchmark experiments and derivation of subcritical limits. [MGBS, TGAN, KEFF, HRXN, GLASS, ANISN, SPBL, and KENO

    SciTech Connect (OSTI)

    Clark, H.K.

    1981-10-01T23:59:59.000Z

    A compilation of benchmark critical experiments was made for essentially one-dimensional systems containing plutonium. The systems consist of spheres, series of experiments with cylinders and cuboids that permit extrapolation to infinite cylinders and slabs, and large cylinders for which separability of the neutron flux into a product of spatial components is a good approximation. Data from the experiments were placed in a form readily usable as computer code input. Aqueous solutions of Pu(NO/sub 3/)/sub 4/ are treated as solutions of PuO/sub 2/ in nitric acid. The apparent molal volume of PuO/sub 2/ as a function of plutonium concentration was derived from analyses of solution density data and was incorporated in the Savannah River Laboratory computer codes along with density tables for nitric acid. The biases of three methods of calculation were established by correlation with the benchmark experiments. The oldest method involves two-group diffusion theory and has been used extensively at the Savannah River Laboratory. The other two involve S/sub n/ transport theory with, in one method, Hansen-Roach cross sections and, in the other, cross sections derived from ENDF/B-IV. Subcritical limits were calculated by all three methods. Significant differences were found among the results and between the results and limits currently in the American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactor (ANSI N16.1), which were calculated by yet another method, despite the normalization of all four methods to the same experimental data. The differences were studied, and a set of subcritical limits was proposed to supplement and in some cases to replace those in the ANSI Standard, which is currently being reviewed.

  8. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  9. Safety First Safety Last Safety Always When using warning line systems, comply with the following

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always When using warning line systems, comply with the following into the work area. Warning Lines Safety Tip #17 Don't put your life on the line. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

  10. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  11. Community Development Department Building & Safety Division

    E-Print Network [OSTI]

    BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

  12. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

  13. Dam Safety (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

  14. Technical Standards, CFAST-Code Guidance- July 23, 2004

    Broader source: Energy.gov [DOE]

    DOE-EH-4.2.1.4-CFAST-Code Guidance, CFAST Computer Code Application Guidance for Documented Safety Analysis

  15. ACTION: Technical Position on the Use of National Consensus and Building Codes to Meet DOE Order 420.18, Facility Safety, Albright, 9/13/07

    Broader source: Energy.gov [DOE]

    The attached technical position was developed in response to line organization requests for clarification and it will be posted on the Office ofNuclear Safety and Environmental Policy web page for...

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  18. Course Code: Course Title

    E-Print Network [OSTI]

    Painter, Kevin

    - Frameworks; Decision Making Development life-cycle of a software system Bi-directional influence between-Critical Systems; Technology & Society. Brave New Worlds - Co-operative Computing; eLife. Learning OutcomesCourse Code: F29PD Course Title: Professional Development Course Co-ordinator: Sandy Jean

  19. Code Description Code Description

    E-Print Network [OSTI]

    Leave* 5127 Officials 5217 Faculty Sick Leave Payment 5124 Personal Service Contracts 5211 Research Services Contracts Scholarships & Fellowships Faculty Fringe Contract Services #12;Banner Account Code

  20. Safety First Safety Last Safety Always Safety Shoes

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Safety Shoes and Boots Safety Tip #21 Don't let your day guards) can be used in conjunction with standard safety shoes. Safety boots Safety boots come in many varieties, and which you will use will depend on the specific hazards you face. Boots offer more protection

  1. Safety harness

    DOE Patents [OSTI]

    Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

    1993-01-01T23:59:59.000Z

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  2. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  3. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  4. Safety First Safety Last Safety Always General site safety

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always General site safety During the course of construction barrier at least 5 feet (1.5m) high having a fire-resistance rating of at least one half hour. Site Safety and Clean-up Safety Tip #20 Safety has no quitting time. All contractors should clean up their debris, trash

  5. Safety First Safety Last Safety Always Safety Tip #22

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Safety Tip #22 Mowing Operations Mowing unsafely just doesn for out-of-control vehicles. Wear hearing protection and a safety vest. Wear a hard hat and safety goggles of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

  6. Hydrogen Production CODES & STANDARDS

    E-Print Network [OSTI]

    Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

  7. SafeCert 2008 Deriving Safety Cases for the Formal Safety

    E-Print Network [OSTI]

    SafeCert 2008 Deriving Safety Cases for the Formal Safety Certification of Automatically Generated Southampton, SO17 1BJ, UK Abstract We present an approach to systematically derive safety cases for automatically generated code from information collected during a formal, Hoare-style safety certification

  8. UNBC SAFETY CHECKLIST SAFETY CHECKLIST

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety. The safety checklist also helps you to establish due diligence under Federal and Provincial safety laws

  9. Toolbox Safety Talk Ladder Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Ladder Safety Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry elevated work tasks. Like any tool, ladders must be used properly to ensure employee safety. GENERAL

  10. Spinal codes

    E-Print Network [OSTI]

    Perry, Jonathan, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the ...

  11. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect (OSTI)

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  12. Advanced Reactor Safety Research Division quarterly progress report, January 1-March 31, 1981

    SciTech Connect (OSTI)

    Cerbone, R.J.; Ginsberg, T.; Guppy, J.G.; Sastre, C.

    1981-05-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  13. Advanced Reactor Safety Research Division. Quarterly progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    Ramano, A.J. (comp.)

    1980-11-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  14. Advanced Reactor Safety Research Division quarterly progress report, 1 October-31 December 1980

    SciTech Connect (OSTI)

    Cerbone, R.J.; Ginsberg, T.; Guppy, J.G.; Sastre, C.

    1981-02-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, LMFBR Safety Experiments, SSC Code Development, and Fast Reactor Safety Code Validation.

  15. Advanced Reactor Safety Research Division. Quarterly progress report, July 1-September 30, 1979

    SciTech Connect (OSTI)

    Romano, A.J.

    1980-01-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  16. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Romano, A.J.

    1980-01-01T23:59:59.000Z

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  17. Designing polysensory experiences to improve motorcycle safety.

    E-Print Network [OSTI]

    Frith, Sebastian

    2014-01-01T23:59:59.000Z

    ??Since motorcyclists figure disproportionately in accident statistics, safety feedback devices can be important life saving measures. Motorcycles also face a woefully underdeveloped set of tools… (more)

  18. National Construction Safety Team Act Annual Report

    E-Print Network [OSTI]

    Magee, Joseph W.

    National Construction Safety Team Act Annual Report Fiscal Year 2008 Summary This annual report to Congress for FY 2008 is required by the National Construction Safety Team Act. NIST completed its federal report. The ICC Codes are widely adopted and used as the basis for state and local construction codes

  19. Safety First Safety Last Safety Always Requirements for employers

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Requirements for employers · Fallprotectionsandproperuseofrelated-safety equipmentsuchaslifelines,harness · Properuseofdangeroustools,thenecessaryprecautionstotake,andtheuseof theprotectiveandemergencyequipmentrequired. Safety Training and Education Safety Tip #18 Get smart. Use safety from the start. All

  20. 4-H Club Health/Safety Officer Handbook 1 Health/Safety Officer

    E-Print Network [OSTI]

    4-H Club Health/Safety Officer Handbook 1 4-H Club Health/Safety Officer Handbook Family & Consumer Sciences website: http://fcs.tamu.edu (click on Health and Safety) Texas 4-H website: http://texas4-h Health/Safety Officer Handbook2 This handbook was created by the following Texas A&M AgriLife Extension

  1. Laser Code of Practice November 2011 Code of Practice for Working

    E-Print Network [OSTI]

    Doran, Simon J.

    Laser Code of Practice November 2011 1 Code of Practice for Working Safely with Lasers #12;Laser What? ... 05 8. Organisation of Laser Safety ... 07 Appendices 1. Getting Started ... 08 2. Laser Risk Assessment (Forms LRA1, LRA2 & LSW1) ... 11 3. Laser Safety Information Folder ... 20 4. Ocular Accident

  2. UNBC SAFETY CHECKLIST SAFETY CHECKLIST

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety to remain safe here at UNBC. The safety checklist also helps you to establish due diligence under Federal

  3. Toolbox Safety Talk Safety Data Sheets (SDS)

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Safety Data Sheets (SDS) Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. Chemical manufacturers are required to produce Safety Data Sheets (SDS) for all chemicals produced. "Safety Data Sheets", previously referred

  4. Developing High Capacity, Long Life Anodes

    Broader source: Energy.gov (indexed) [DOE]

    long life and improved Safety for PHEV and EV applications. Objectives Develop a low cost synthesis methods to prepare high energy anodes Full structural and...

  5. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable

  6. Technical Standards, ALOHA-Code Guidance - June 22, 2004 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Guidance - June 22, 2004 June 22, 2004 DOE-EH-4.2.1.4-ALOHA-Code Guidance, ALOHA Computer Code Application Guidance for Documented Safety Analysis This document provides...

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  8. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-09-08T23:59:59.000Z

    The guide was developed in support of Title 10 Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management. It provides guidance for the requirements defined in 10 CFR §830.205, Technical Safety Requirements.

  9. Correctness of Source-Level Safety Policies Ewen Denney

    E-Print Network [OSTI]

    safety policy. Recent work has thus concentrated on ways to guarantee the correctness of safety policies safety policies [13]. However, all these approaches work on the object code level, and cannot di- rectlyCorrectness of Source-Level Safety Policies Ewen Denney and Bernd Fischer QSS / RIACS NASA Ames

  10. Department of Energy Office of Nuclear Safety and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Safety, must comply with national consensus industry standards and the model building codes applicable for the state or region in which the facility is located. Certain...

  11. Introduction to Algebraic Codes

    E-Print Network [OSTI]

    codes. Since the elementary coding theory is assumed to be of interest only to ... the algebraic codes, mainly BCH codes, Reed-Solomon codes and classical ...

  12. Holographic codes

    E-Print Network [OSTI]

    Latorre, Jose I

    2015-01-01T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  13. Holographic codes

    E-Print Network [OSTI]

    Jose I. Latorre; German Sierra

    2015-02-23T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  14. Tag: Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8all en Best Practices Workshop for Safety Culture http:www.y12.doe.goveshbest-practices-workshop-safety-culture

  15. Safety Information for Families

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Information for Families Checking your home for hazards 22 safety items no home should be without Home Safety Checklists Helpful links Home Safety Council Hunter Safety:...

  16. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  1. Model-based Safety Risk Assessment

    E-Print Network [OSTI]

    Lindsay, Peter

    development life-cycle, in order to identify critical system requirements, such as safety requirements their effectiveness, early in the system development life-cycle, on models derived directly from natural language of functional requirements of arbitrary detail ­ whether it is very early in the life-cycle when functions

  2. Building America Expert Meeting: Combustion Safety

    SciTech Connect (OSTI)

    Brand, L.

    2013-03-01T23:59:59.000Z

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  3. ENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION

    E-Print Network [OSTI]

    : FS Vancouver: Ops CHEMICAL SAFETY 27265 CONTRACTOR SAFETY 23867 EARLY RETURN TO WORK 23011 EMERGENCYENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION SIMON FRASER UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY DEPARTMENT Discovery Park - MTF 8888 University Drive Burnaby, British Columbia Canada V5

  4. Pressure Safety Program Implementation at ORNL

    SciTech Connect (OSTI)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.

  5. High Performance “Reach” Codes

    E-Print Network [OSTI]

    Edelson, J.

    2011-01-01T23:59:59.000Z

    Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

  6. Safety Values

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Work-related injuries, illnesses and environmental incidents are preventable. * A just culture exists where safety and environmental concerns are brought forward without fear of...

  7. Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications

    E-Print Network [OSTI]

    Griggs, D. P.

    1981-01-01T23:59:59.000Z

    The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

  8. CC: Security, Residential Life Evacuation Assistance Form

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    CC: Security, Residential Life Evacuation Assistance Form Voluntary Self-Identification If you have will be kept confidential and used only by Environmental Health and Safety, Residential Life (if applicable:_______________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ #12;CC: Security, Residential Life If this is a temporary request, please provide a date when

  9. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    -fired heaters 2. Heaters that lack a nationally recognized testing laboratory (NRTL) listing sticker 3. Radiant

  10. NFPA's Hydrogen Technologies Code Project

    SciTech Connect (OSTI)

    Rivkin, C. H.

    2008-12-01T23:59:59.000Z

    This article discusses the development of National Fire Protection Association 2 (NFPA), a comprehensive hydrogen safety code. It analyses the contents of this document with particular attention focused on new requirements for setting hydrogen storage systems. These new requirements use computational fluid dynamic modeling and risk assessment procedures to develop requirements that are based on both technical analyses and defined risk criteria. The intent is to develop requirements based on procedures that can be replicated based on the information provided in the code document. This code will require documentation of the modeling inputs and risk criteria and analyses in the supporting information. This article also includes a description of the codes and standards that address hydrogen technologies in general.

  11. Department of Energy Construction Safety Reference Guide

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  12. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08T23:59:59.000Z

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  13. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect (OSTI)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01T23:59:59.000Z

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  14. Issues affecting advanced passive light-water reactor safety analysis

    SciTech Connect (OSTI)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-08-01T23:59:59.000Z

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

  15. Fire and Life Safety Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and EventsFiberFire

  16. 27Student Life Student Life

    E-Print Network [OSTI]

    Dresden, Gregory

    26 III Student LIfe #12;27Student Life Student Life The student conduct. The University over the years has adopted rules and regulations coveringacademicmattersandstudentdeportment. But if students conduct themselves honorably at all times, they will have little trouble

  17. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  18. Department Safety Representatives Department Safety Representative

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

  19. Idaho National Laboratory Safety Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Hand Tool Safety * Protect Your Hearing * Water Safety * Home Firearms Safety * Bicycle Safety * Pedestrian Safety * Others Outdoor Survival Safety (K-Middle School) What to...

  20. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  2. Toolbox Safety Talk Hot Work Safety Procedures

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Hot Work Safety Procedures Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. "Hot Work" is defined as any temporary WORK Obtain a hot work permit from your supervisor or safety rep. Ensure fire/smoke detection

  3. Toolbox Safety Talk Machine Shop Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Machine Shop Safety Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University be taken seriously. Many of the most frequently cited OSHA safety standards pertain to machine safeguarding

  4. ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL

    E-Print Network [OSTI]

    Maroncelli, Mark

    ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

  5. LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Houston, Paul L.

    LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

  6. Safety, Security & Fire Report

    E-Print Network [OSTI]

    Straight, Aaron

    2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

  7. Elements of a nuclear criticality safety program

    SciTech Connect (OSTI)

    Hopper, C.M.

    1995-07-01T23:59:59.000Z

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance.

  8. Certification plan for reactor analysis computer codes

    SciTech Connect (OSTI)

    Toffer, H.; Crowe, R.D.; Schwinkendorf, K.N. [Westinghouse Hanford Co., Richland, WA (United States); Pevey, R.E. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1990-01-01T23:59:59.000Z

    A certification plan for reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations has been prepared. An action matrix, checklists, a time schedule, and a resource commitment table have been included in the plan. These items identify what is required to achieve certification of the codes, the time table that this will be accomplished on, and the resources needed to support such an effort.

  9. ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Brownstone, Rob

    ENVIRONMENTAL HEALTH & SAFETY ORIENTATION HANDBOOK Environmental Health and Safety Office safety & Safety Office 494-2495 (Phone) 494-2996 (Fax) Safety.Office@dal.ca (E-mail) www.dal.ca/safety (Web) Radiation Safety Office 494-1938 (Phone) 494-2996 (Fax) Melissa.Michaud@dal.ca (E-mail) University

  10. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  11. Generalized concatenated quantum codes

    E-Print Network [OSTI]

    Grassl, Markus

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using ...

  12. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  13. Electrical Safety Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANL Electrical Safety Page DOE Electrical Safety Handbook General Statement Home & Office Equipment Statement APS Electrical Safety Update Guidelines for Working on Voltages < 240...

  14. Safety Overview Committee (SOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SOC) Charter 1. Purpose The Safety Overview Committee establishes safety policies and ad hoc safety committees. 2. Membership Membership will include the following individuals:...

  15. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  16. Asymptotic Safety

    E-Print Network [OSTI]

    R. Percacci

    2008-11-18T23:59:59.000Z

    Asymptotic safety is a set of conditions, based on the existence of a nontrivial fixed point for the renormalization group flow, which would make a quantum field theory consistent up to arbitrarily high energies. After introducing the basic ideas of this approach, I review the present evidence in favor of an asymptotically safe quantum field theory of gravity.

  17. Concatenated Conjugate Codes

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-31T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  18. Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS · Safety glasses with side shields distance away from moving machine parts, work pieces, and cutters. · Use hand tools for their designed to oil, clean, adjust, or repair any machine while it is running. Stop the machine and lock the power

  19. OCCUPATIONAL SAFETY and HEALTH

    E-Print Network [OSTI]

    Weaver, Harold A. "Hal"

    MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM Complaints about State Program administration may be made to Regional Administrator, Occupational Safety

  20. OCCUPATIONAL HEALTH AND SAFETY

    E-Print Network [OSTI]

    OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

  1. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01T23:59:59.000Z

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  3. Russell Furr Laboratory Safety &

    E-Print Network [OSTI]

    Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

  4. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect (OSTI)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01T23:59:59.000Z

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  5. Homological stabilizer codes

    SciTech Connect (OSTI)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15T23:59:59.000Z

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  6. Environmental Health & Safety Office of Radiological Safety

    E-Print Network [OSTI]

    Houston, Paul L.

    Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

  7. Environmental Health and Instructional Safety Employee Safety

    E-Print Network [OSTI]

    de Lijser, Peter

    Environmental Health and Instructional Safety #12;Employee Safety Page 1 To our University an environment for students, faculty, staff, and visitors that will not adversely affect their health and safety task that is unsafe or hazardous. Environmental Health and Instructional Safety can assist departments

  8. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  9. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  10. Code validation with EBR-II test data

    SciTech Connect (OSTI)

    Herzog, J.P.; Chang, L.K.; Dean, E.M.; Feldman, E.E.; Hill, D.J.; Mohr, D.; Planchon, H.P.

    1992-01-01T23:59:59.000Z

    An extensive system of computer codes is used at Argonne National Laboratory to analyze whole-plant transient behavior of the Experimental Breeder Reactor 2. Three of these codes, NATDEMO/HOTCHAN, SASSYS, and DSNP have been validated with data from reactor transient tests. The validated codes are the foundation of safety analyses and pretest predictions for the continuing design improvements and experimental programs in EBR-II, and are also valuable tools for the analysis of innovative reactor designs.

  11. Code validation with EBR-II test data

    SciTech Connect (OSTI)

    Herzog, J.P.; Chang, L.K.; Dean, E.M.; Feldman, E.E.; Hill, D.J.; Mohr, D.; Planchon, H.P.

    1992-07-01T23:59:59.000Z

    An extensive system of computer codes is used at Argonne National Laboratory to analyze whole-plant transient behavior of the Experimental Breeder Reactor 2. Three of these codes, NATDEMO/HOTCHAN, SASSYS, and DSNP have been validated with data from reactor transient tests. The validated codes are the foundation of safety analyses and pretest predictions for the continuing design improvements and experimental programs in EBR-II, and are also valuable tools for the analysis of innovative reactor designs.

  12. Code validation with EBR-II test data

    SciTech Connect (OSTI)

    Herzog, J.P.; Chang, L.K.; Dean, E.M.; Feldman, E.E.; Hill, D.J.; Mohr, D.; Planchon, H.P.

    1991-01-01T23:59:59.000Z

    An extensive system of computer codes is used at Argonne National Laboratory to analyze whole-plant transient behavior of the Experiment Breeder Reactor 2. Three of these codes, NATDEMO/HOTCHAN, SASSYS, and DSNP have been validated with data from reactor transient tests. The validated codes are the foundation of safety analyses and pretest predictions for the continuing design improvements and experimental programs in EBR-2, and are also valuable tools for the analysis of innovative reactor designs. 29 refs., 6 figs.

  13. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety

  14. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 RS-PO-0001-001.docW. J:.EnergySafety Home

  15. JLF Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan Target Chamber The JupiterJLF Safety

  16. Life sciences

    SciTech Connect (OSTI)

    Day, L. (ed.)

    1991-04-01T23:59:59.000Z

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  17. Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department

    E-Print Network [OSTI]

    Arnold, Jonathan

    Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department Environmental Safety Division University of Georgia Adapted from the Safety Guidelines for Field Researchers published by the Office of Environment, Health & Safety at University of California, Berkeley #12;Safety Guidelines

  18. COG - Special Features of Interest to Criticality Safety Practitioners

    SciTech Connect (OSTI)

    Buck, R M; Heinrichs, D P; Krass, A W; Lent, E M

    2010-01-14T23:59:59.000Z

    COG is a modern, general-purpose, high fidelity, multi-particle transport code developed at the Lawrence Livermore National Laboratory specifically for use in deep penetration (shielding) and criticality safety calculations. This paper describes some features in COG of special interest to criticality safety practitioners.

  19. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-24T23:59:59.000Z

    This Guide provides information to assist in the implementation and interpretation of Title 10 Code of Federal Regulations (CFR) Part 830.203, Unreviewed Safety Question Process, of the Nuclear Safety Management Rules for applicable nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Canceled by DOE N 251.93.

  20. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-07-24T23:59:59.000Z

    This Guide provides information to assist in implementation of Title 10 Code of Federal Regulations Part 830.203, "Unreviewed Safety Question Process," of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy, including the National Nuclear Security Administration. Cancels DOE G 424.1-1.

  1. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Grassl, Markus

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are ...

  2. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  3. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect (OSTI)

    Romano, A.J. (comp.)

    1980-06-01T23:59:59.000Z

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  4. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01T23:59:59.000Z

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  5. Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Andrew Cross; Graeme Smith; John A. Smolin; Bei Zeng

    2007-09-27T23:59:59.000Z

    We present a unifying approach to quantum error correcting code design that encompasses additive (stabilizer) codes, as well as all known examples of nonadditive codes with good parameters. We use this framework to generate new codes with superior parameters to any previously known. In particular, we find ((10,18,3)) and ((10,20,3)) codes. We also show how to construct encoding circuits for all codes within our framework.

  6. Generalized Concatenated Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter Shor; Graeme Smith; John Smolin; Bei Zeng

    2009-01-09T23:59:59.000Z

    We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.

  7. Encoding Subsystem Codes

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli; Andreas Klappenecker

    2008-06-30T23:59:59.000Z

    In this paper we investigate the encoding of operator quantum error correcting codes i.e. subsystem codes. We show that encoding of subsystem codes can be reduced to encoding of a related stabilizer code making it possible to use all the known results on encoding of stabilizer codes. Along the way we also show how Clifford codes can be encoded. We also show that gauge qubits can be exploited to reduce the encoding complexity.

  8. Student Life 407 Student Life

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    Student Life 407 Student Life The University of North Carolina at Charlotte provides a comfortable and enjoyable environment for students that is conducive to studying. The services, facilities, and programs of the University promote individual student development and foster a community which promotes the involvement

  9. 374 STUDENT LIFE Student Life

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    374 STUDENT LIFE Student Life The University of North Carolina at Charlotte provides a comfortable and enjoyable environment for students that is conducive to studying. The services, facilities, and programs of the University promote individual student development and foster a community which promotes the involvement

  10. Student Life 7 STUDENT LIFE

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    Student Life 7 STUDENT LIFE ACTIVITIES Students at UNC Charlotte are encouraged to participate in extracurricular activities. The Student Government Association, the Campus Activities Board, and Student Media are a few of the available activities that can play a significant role in each student's development

  11. SCHOOL OF EDUCATION SAFETY STATEMENT

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    ................................................................... 13 #12;HEALTH & SAFETY Health & Safety is important. The Safety, Health and Welfare at Work Act 1989SCHOOL OF EDUCATION SAFETY STATEMENT March 2009 1 #12;2 Health & Safety Statement Contents HEALTH & SAFETY................................................................... 3 EMERGENCY DETAILS

  12. Campus Public Safety Office Michael Soto, Director of Public Safety

    E-Print Network [OSTI]

    Bertini, Robert L.

    Campus Public Safety Office Michael Soto, Director of Public Safety Service Resource, teaching, research and service. Michael D. Soto Director of Public Safety Public Safety Office Service

  13. National Safety Council Safety Share | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Safety Council Safety Share National Safety Council Safety Share May 16, 2013 Presenter: Joe Yanek, Fluor Government Group, Washington, D.C. Topics Covered: The Campbell Institute...

  14. On optimal constacyclic codes

    E-Print Network [OSTI]

    Giuliano G. La Guardia

    2013-11-11T23:59:59.000Z

    In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as well as families of asymmetric quantum MDS codes derived from (classical-block) constacyclic codes. These results are mainly derived from the investigation of suitable properties on cyclotomic cosets of these corresponding codes.

  15. EMPLOYEE SAFETY ORIENTATION

    E-Print Network [OSTI]

    Bolch, Tobias

    Page | 0 EMPLOYEE SAFETY ORIENTATION _________________ Risk, Safety & Security 3333 University Way to be acquainted with the safety program, welcome! Risk, Safety & Security at UNBC is dynamic. With more than 3 worksite and safe work procedures which pertain to your job. The role of the Risk and Safety Office

  16. ENVIRONMENTAL, HEALTH AND SAFETY

    E-Print Network [OSTI]

    California at Davis, University of

    ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

  17. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect (OSTI)

    Buden, D.

    1992-01-01T23:59:59.000Z

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  18. Tutorial on nuclear thermal propulsion safety for Mars

    SciTech Connect (OSTI)

    Buden, D.

    1992-08-01T23:59:59.000Z

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

  19. RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND

    E-Print Network [OSTI]

    Rubloff, Gary W.

    RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND RADIATION SAFETY MANUAL UNIVERSITY OF MARYLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Radiation Safety Committee (RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Radiation Safety Office (RSO

  20. Texas Safe Communities Texans Discovering Traffic Safety Solutions

    E-Print Network [OSTI]

    Texas Safe Communities Texans Discovering Traffic Safety Solutions Texas A&M AgriLife Extension their cell phones while driving. The survey found that during daylight hours, the number of people using cell

  1. Safety Culture Best Practices agenda/presentations | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Life Workplace Improvement Dave Maguire CNS, Y-12 11:30 Effective Safety Communication Planning - Improving Workforce Perception Kathryn King CNS, Y-12UPF 12:00 Lunch - Hosted...

  2. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect (OSTI)

    VINCENT, Andrew

    2005-07-14T23:59:59.000Z

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

  3. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  4. 004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop

    E-Print Network [OSTI]

    004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 ­ all metal

  5. EHS DSP Authorization Request Form 2012-001 Safety & Risk Management

    E-Print Network [OSTI]

    , regulations and Driver safety Program requirements. I authorize Safety & Risk Management to enroll me or more persons in one accident; $5,000 property damage). Vehicle Code Section 16020 (effective July 1EHS DSP Authorization Request Form 2012-001 Safety & Risk Management Request for Authorization

  6. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  7. Unreviewed Safety Question Requirements

    Broader source: Energy.gov (indexed) [DOE]

    Unreviewed Safety Question Requirements FUNCTIONAL AREA GOAL: A fully compliant Unreviewed Safety Question (USQ) program is implemented and maintained across the site....

  8. Nuclear criticality safety guide

    SciTech Connect (OSTI)

    Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

    1996-09-01T23:59:59.000Z

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  9. Dam Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

  10. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    RADIATION SAFETY TRAINING MANUAL Radiation Safety Office 130 DeSoto Street G-7 Parran with sources of ionizing radiation are required to be instructed in the basic principles of radiation protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide

  11. Public Safety at Yale University publicsafety.yale.edu

    E-Print Network [OSTI]

    Public Safety at Yale University publicsafety.yale.edu #12;Emergency 911 Yale Police 203.facebook.com/YalePolice Connect with us on Twitter twitter.com/YPD1 To request a Public Safety orientation, please e-mail safe, culture and rich diversity of experience that city life brings. If you are new to the area, we urge you

  12. Public Safety at Yale University publicsafety.yale.edu

    E-Print Network [OSTI]

    Lee, Daeyeol

    Public Safety at Yale University publicsafety.yale.edu #12;contact information 2 Connect with us.com/YPD1 https://twitter.com/YaleSecuritySys To request a Public Safety orientation, please e-mail safe of New Haven, a vibrant city with all the arts, culture and rich diversity of experience that city life

  13. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter W. Shor; Bei Zeng

    2009-05-04T23:59:59.000Z

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are found, including both stabilizer codes as well as so-called nonadditive codes.

  14. SHSD Manager Safety Engineering Group Manager

    E-Print Network [OSTI]

    Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

  15. Automation of System Safety Analysis: Possibilities and Pitfalls Andrew Galloway, University of York, Heslington, York YO10 5DD UK

    E-Print Network [OSTI]

    Pumfrey, David

    evolved to support safety analysis work (in this paper, we use the term "safety analysis" to encompass all, safety engineers may only achieve closure at the end of a system's working life, when it is possibleAutomation of System Safety Analysis: Possibilities and Pitfalls Andrew Galloway, University

  16. SAFETY AND THE Office of Environmental Health and Instructional Safety

    E-Print Network [OSTI]

    de Lijser, Peter

    SAFETY AND THE SUPERVISOR Office of Environmental Health and Instructional Safety #12;Safety to University safety, health, and environmental compliance strategies. Every employee is entitled to a safe standard practices, and administering your overall safety, health, and environmental responsibilities

  17. Graph concatenation for quantum codes

    E-Print Network [OSTI]

    Beigi, Salman

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code and every codeword stabilized code can be described by a graph and a classical code. For the ...

  18. Life Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE CAnalyticalOpportunityLiekoLifeLife

  19. CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES John M. Shea, Florida Abstract--Turbo-codes provide communications near capac- ity when very large interleavers (and parity-check code can be used as an outer code with a turbo code as an inner code in a serial

  20. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26T23:59:59.000Z

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  1. Materials Safety Data Sheets

    E-Print Network [OSTI]

    Schweik, Charles M.

    Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

  2. Environmental Health and Safety

    E-Print Network [OSTI]

    Shoubridge, Eric

    Environmental Health and Safety EHS-FORM-022 v.1.1 Page 1 of 1 Laboratory safety self NA Radioactive materials [MNI Radiation Safety Manua ]l MNI: contact Christian Janicki christian.janicki@mcgill.ca 8888-43866 ANSI (American National Standards Institute) Class 3b or 4 lasers Biological safety

  3. Effectiveness Safety Committee

    E-Print Network [OSTI]

    Farritor, Shane

    Increase the Effectiveness of Your Safety Committee Lisa Tobiason An equal opportunity educator 302 Acres. ­ East Campus 338 Acres. #12;UNL Safety Committees · Chancellors University Safety Committee (CUSC). · Unit Safety Committees. ­ Thirty-two active committees representing Lincoln campuses

  4. SAFETY MANUAL ENVIRONMENTAL

    E-Print Network [OSTI]

    Firestone, Jeremy

    HAZARDOUS MATERIALS SAFETY MANUAL ENVIRONMENTAL HEALTH & SAFETY #12;Emergency Phone Numbers Newark-800-722-7112 National .....................................1-800-222-1222 July 2007 Environmental Health and Safety://www.udel.edu/ehs #12;University Of Delaware Safety Policy Number 7-1 The policy of the University of Delaware

  5. CHEMICAL SAFETY Emergency Numbers

    E-Print Network [OSTI]

    Bolch, Tobias

    - 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

  6. Joint Source-Channel Coding via Turbo Codes

    E-Print Network [OSTI]

    Alajaji, Fady

    Joint Source-Channel Coding via Turbo Codes by Guang-Chong Zhu A dissertation submitted coding. One of the most exciting break- throughs in channel coding is the invention of Turbo codes, whose- tigate three joint source-channel coding issues in the context of Turbo codes. In the #12;rst part

  7. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06T23:59:59.000Z

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  8. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  9. List decoding of subspace codes and rank-metric codes

    E-Print Network [OSTI]

    Mahdavifar, Hessam

    2012-01-01T23:59:59.000Z

    2.2.2 Koetter-Kschischang Codes . . . . . . . . . . . .of Subspace Codes . . . . . . . . . . . . . . 2.3.1 OverviewList-decodable Codes of Arbitrary Dimension . . . . . . .

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  12. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  13. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  15. Specification of advanced safety modeling requirements (Rev. 0).

    SciTech Connect (OSTI)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30T23:59:59.000Z

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will target leadership-class computing architectures for massively-parallel high-fidelity computations while providing continued support for rapid prototyping using modest fidelity computations on multiple-core desktop platforms.

  16. Homological Product Codes

    E-Print Network [OSTI]

    Sergey Bravyi; Matthew B. Hastings

    2013-11-04T23:59:59.000Z

    Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $\\sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

  17. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2001-08-01T23:59:59.000Z

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

  18. SAS4A LMFBR whole core accident analysis code

    SciTech Connect (OSTI)

    Weber, D.P.; Birgersson, G.; Bordner, G.L.; Briggs, L.L.; Cahalan, J.E.; Dunn, F.E.; Kalimullah; Miles, K.J.; Prohammer, F.G.; Tentner, A.M.

    1985-01-01T23:59:59.000Z

    To ensure that public health and safety are protected even under accident conditions in an LMFBR, many accidents are analyzed for their potential consequences. Extremely unlikely accidents that might lead to melting of reactor fuel and release of radioactive fission products are referred to as hypothetical core disruptive accidents (HCDAs). The evaluation of such accidents involves the simultaneous evaluation of thermal, mechanical, hydraulic and neutronic processes and their interactions. The complexity of this analysis requires the use of large, integrated computer codes which address the response of the reactor core and several important systems. The SAS family of codes, developed at Argonne National Laboratory, provides such an analysis capability. The SAS4A code, the latest generation of this series of codes, has recently been completed and released for use to the LMFBR safety community. This paper will summarize the important new capabilitites of this analysis tool and illustrate an application of the integrated capability, while highlighting the importance of specific phenomenological models.

  19. Sustainable Acquisition Coding System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

  20. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  1. Understanding Perception Through Neural 'Codes'

    E-Print Network [OSTI]

    Freeman, Walter J III

    2011-01-01T23:59:59.000Z

    Perception Through Neural ‘Codes’. In: Special Issue on “Perception Through Neural ‘Codes’. In: Special Issue on “Perception Through Neural ‘Codes’. In: Special Issue on “

  2. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Environmental Management (EM)

    Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD...

  3. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  4. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  5. Shortened Turbo Codes

    E-Print Network [OSTI]

    David J.C. MacKay

    Simple arguments suggest that shortened codes must have distance properties equal to or better than those of their parent codes, and that they should be equally practical to decode. This relationship holds true in the case of low density generator codes and low density parity check codes. We investigate the properties of shortened turbo codes. I. Motivation for Shortening In our previous work on codes based on very sparse matrices we have observed that while codes with a low density generator matrix [1] are asymptotically bad, codes with a low density parity check matrix [2] are asymptotically good [3, 4, 5]. One way of viewing the relationship between low density generator matrix codes and low density parity check matrix codes is that one obtains a low density parity check matrix by taking the M \\Theta N parity check matrix [P IM ] of a (N; K) low density generator matrix code and chopping off its right-most M columns (where M = N \\Gamma K), to yield an M \\Theta K matrix [P], which...

  6. Health & Safety Plan Last Updated

    E-Print Network [OSTI]

    Anderson, Richard

    Health & Safety Plan Last Updated March 2008 1 #12;A. SCOPE AND RESPONSIBILITY....................................................................................................................................... 3 2. Safety and Health Policy...................................................................................................................... 3 4. Safety Coordinator

  7. Nuclear Safety Research and Development...

    Energy Savers [EERE]

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  8. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  9. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  10. Safety Case Depictions vs. Safety Cases Would the Real Safety Case Please Stand Up?

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Case Depictions vs. Safety Cases ­ Would the Real Safety Case Please Stand Up? Ibrahim Habli York, UK ibrahim.habli@cs.york.ac.uk, tim.kelly@cs.york.ac.uk Keywords: Safety Cases, Safety Arguments, GSN, Safety Assurance, Certification Abstract The integrity of the safety case depends primarily

  11. Life Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser TheLessonsLienert NamedExtensionLife

  12. Code Red 2 kills off Code Red 1

    E-Print Network [OSTI]

    Paxson, Vern

    #12;#12;Code Red 2 kills off Code Red 1 Code Red 2 settles into weekly pattern Nimda enters the ecosystem Code Red 2 dies off as programmed CR 1 returns thanks to bad clocks #12;Code Red 2 dies off as programmed Nimda hums along, slowly cleaned up With its predator gone, Code Red 1 comes back, still

  13. Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes

    E-Print Network [OSTI]

    Boyer, Edmond

    - ing sensitivity indices. Numerical tests performed on several analytical examples and scientific applications, such as nuclear safety assessment, meteorology or oil reservoir forecasting. Simulations are performed with complex computer codes that model diverse complex real world phenomena. Inputs

  14. Codes and Standards

    Broader source: Energy.gov [DOE]

    A primary objective of DOE's technology validation efforts is developing testing, monitoring, and analysis protocols for validating the performance, reliability, and safety of solar photovoltaic ...

  15. FACILITY SAFETY (FS)

    Broader source: Energy.gov (indexed) [DOE]

    FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

  16. Dam Safety (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

  17. Dam Safety Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

  18. Nuclear Engineer (Criticality Safety)

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  19. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  20. General Engineer (Nuclear Safety)

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

  1. For Safety and Code Officials | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdf Flash2010-57.pdfFletcherControlIndian7, 2011

  2. Code of Federal Regulations NUCLEAR SAFETY MANAGEMENT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean,Coalbed

  3. DOE Safety, Codes, and Standards Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy

  4. Safety, Codes and Standards - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Response EventsSafeguards & Security

  5. Current Approaches to Safety, Codes and Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site | Department ofHighly31, 2015 |Dollars

  6. Safety, Codes and Standards Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global Forum Round-UpSTATE ENERGYof Energy

  7. Safety, Codes, and Standards Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global Forum Round-UpSTATE ENERGYof EnergyFuel Cell Technologies

  8. Safety, Codes, and Standards Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global Forum Round-UpSTATE ENERGYof EnergyFuel Cell

  9. Technical Standards, Safety Analysis Toolbox Codes - November 2003 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical Evaluation of

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department of EnergyJanuaryTransmissionMaterials | Department

  11. Annual Security and Fire Safety Report | 2010 public safety

    E-Print Network [OSTI]

    Kim, Philip

    Annual Security and Fire Safety Report | 2010 col u m bia univer sity public safety #12;Contents A Message from the Vice President for Public Safety.............................................1 The Clery .............................................................................................................2 The Department of Public Safety

  12. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  13. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  14. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  15. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  16. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  17. Health, Safety & Wellbeing Policy

    E-Print Network [OSTI]

    Mottram, Nigel

    Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

  18. Environmental Health and Safety

    E-Print Network [OSTI]

    Shoubridge, Eric

    Environmental Health and Safety Approved by Document No. Version Date Replaces Page EHS EHS-FORM-072 1.0 15-May-2008 N/A 1 of 4 Laboratory Safety Orientation Checklist Name (Print) Department Supervisor Date (DD/MM/YY) A Laboratory Safety Orientation Checklist should be completed within one month

  19. SYSTEM SAFETY PROGRESS REPORT,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    SYSTEM SAFETY PROGRESS REPORT, ALSEP Array E NO. ATM 1034 1 PAGE REV. NO. OF 3 DATE 26 July 1971 This A TM documents the progress of the System Safety Program for ALSEP Array E. -~/ Prepared by: · /~t:A~.., Approved by: W. · Lavin, Jr System Safety Engineer / /' J. P. ~/ es, Supervisor · , ALSEF Support

  20. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  1. Annual Fire Safety Report

    E-Print Network [OSTI]

    Loudon, Catherine

    2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

  2. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    SciTech Connect (OSTI)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States)] Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)] J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01T23:59:59.000Z

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  3. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-08T23:59:59.000Z

    This Guide, including its attachments, provides information to assist in the implementation of Title 10 Code of Federal Regulations (CFR) Section 830.203, “Unreviewed Safety Question Process,” of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Cancels DOE G 424.1-1A. Admin Chg 1 dated 4-12-13.

  4. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  5. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  6. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated Environmental Health and Safety, Stanford University, Stanford California #12; CREDITS This Radiation Safety

  7. Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner

    E-Print Network [OSTI]

    Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner Finance (FO-P's). Implementation of the Index has greatly decreased data entry coding ­ Account (object) - Program (FOAP) code numbers on any of your accounting forms (Contracts, Purchase Orders

  8. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  9. Graph Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Salman Beigi; Isaac Chuang; Markus Grassl; Peter Shor; Bei Zeng

    2010-02-03T23:59:59.000Z

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.

  10. Safety Manual Prepared by the

    E-Print Network [OSTI]

    Alpay, S. Pamir

    IMS Safety Manual Prepared by the IMS Safety Committee January 1991 (revised 1/2009) Institute 2 Introduction 3 IMS Laboratory Safety Reporting Policy 4 IMS Safety Committee 5 Fire Safety and Emergency Procedures 6 First Aid and Emergency Response 8 General Laboratory Safety 10 Chemical Spills

  11. Applications of nuclear data covariances to criticality safety and spent fuel characterization

    SciTech Connect (OSTI)

    Williams, Mark L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL; Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Covariance data computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. Applications in criticality safety calculations and used nuclear fuel analysis are discussed.

  12. CORCON-MOD1 preliminary evaluation and application to safety analysis of a large LMFBR plant

    SciTech Connect (OSTI)

    Chen, K.H.; Ray, K.S.

    1981-06-30T23:59:59.000Z

    The CORCON-MOD1 core material-concrete interaction code, developed at the Sandia Laboratories for LWR safety analysis, was adapted for analyzing a postulated LMFBR core melt accident.

  13. BICYCLE SAFETY--WHAT YOU NEED TO KNOW Obey all traffic laws while riding your bike.

    E-Print Network [OSTI]

    Straight, Aaron

    942012 BICYCLE SAFETY--WHAT YOU NEED TO KNOW · Obey all traffic laws while riding your bike. · According the California Vehicle Code, every person riding a bicycle upon a street or highway has all

  14. 42 Home Power #19 October/November 1990 Code Corner

    E-Print Network [OSTI]

    Johnson, Eric E.

    supply power even at times when it is not wanted. From a safety point of view, the National Electric Code that the equipment will not work. Heavy duty copper terminals and connectors must be used especially in inverter almost maintenance free THINGS THAT WORK! HP11 · Pure water returned to the battery cell · Explosive

  15. Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many potential and strength and meet all manufacturer specifications. Abrasive Wheel Machinery and Tools Safety Tip #1

  16. Traffic Safety Culture Center for Transportation Safety

    E-Print Network [OSTI]

    generally opposed to raising the state's gasoline tax to pay for new roads or to make the roads safer. The Texas Traffic Safety Culture Survey was conducted at ten driver license stations operated by the Texas

  17. PHENOMENON OF CORROSION AND THE INDUSTRIAL SAFETY

    E-Print Network [OSTI]

    Bensaada S; Bouziane M. T; Mohammedi F; Achour B

    The problem of corrosion has taken nowadays a considerable importance considering the great use more and more of metals and alloys in our modern life. From the economic point of view and safety, the corrosion is a real thread. The replacement of corroded material composes for the industrie a financial burden which is very high. I taws estimated that more than 100 milliards of dollars constituting the yearly lusts caused by the corrosion in the American economy. The corrosion also can be translated by a modification and weakening of mechanical properties of corroded materials, consequentially it can’t fill in all safety its functions to which it is distinated. The aim of this study is to evident links which existed between corrosion and safety of materials and persons.

  18. Safety of Department of Energy-Owned Nuclear Reactors

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23T23:59:59.000Z

    To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

  19. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  20. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  1. Safety First Safety Last Safety Always Three soil types, plus rock, determine the slope or

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always · Three soil types, plus rock, determine the slope or safety to be at least 2 feet from the edge. Excavation Requirements Safety Tip #10 If you see a mistake and don't fix it on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

  2. Safety First Safety Last Safety Always Over the years, many techniques and methods have been

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Over the years, many techniques and methods have been, especially to the lower back. DON'T TWIST! Safe Lifting Techniques Safety Tip #6 Don't learn safety of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

  3. Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves at an unsafe speed · Failure to check mirrors often Fleet Safety: Backing Accidents Safety Tip #2 Accidents hurt-- safety doesn't. All backing accidents are preventable. The key is to plan ahead to avoid backing

  4. Status of the VIM Monte Carlo neutron/photon transport code.

    SciTech Connect (OSTI)

    Blomquist, R.N.

    2002-01-22T23:59:59.000Z

    Recent work on the VIM Monte Carlo code has aimed at advanced data libraries, ease of use, availability to users outside of Argonne, and fission source convergence algorithms in eigenvalue calculations. VIM is one of three US Monte Carlo codes in the USDOE Nuclear Criticality Safety Program, and is available through RSICC and the NEA Data Bank.

  5. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect (OSTI)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01T23:59:59.000Z

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  6. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01T23:59:59.000Z

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  7. Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

    E-Print Network [OSTI]

    Kapralova, Olga

    2013-01-01T23:59:59.000Z

    Linear codes . . . . . . . . . . . . . . . . . . . . . . .3.3 Code parameters . . . . . . . . . . . . . .of linear codes . . . . . . . . . . . . 1.5 Reed-Muller

  8. Universal space-time codes from demultiplexed trellis codes

    E-Print Network [OSTI]

    Kose, Cenk; Wesel, R D

    2006-01-01T23:59:59.000Z

    and A. R. Calderbank, “Space-time codes for high data ratePerformance criteria and code construction,” IEEE Trans.of space–time trellis codes,” IEEE Trans. Commun. , vol. 51,

  9. Relation Between Surface Codes and Hypermap-Homology Quantum Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli

    2014-03-14T23:59:59.000Z

    Recently, a new class of quantum codes based on hypermaps were proposed. These codes are obtained from embeddings of hypergraphs as opposed to surface codes which are obtained from the embeddings of graphs. It is natural to compare these two classes of codes and their relation to each other. In this context two related questions are addressed in this paper: Can the parameters of hypermap-homology codes be superior to those of surface codes and what is precisely the relation between these two classes of quantum codes? We show that a canonical hypermap code is identical to a surface code while a noncanonical hypermap code can be transformed to a surface code by CNOT gates alone. Our approach is constructive; we construct the related surface code and the transformation involving CNOT gates.

  10. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  11. ME 379M-Nuclear Safety and Security ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 379M- Nuclear Safety and Security Page 1 ABET EC2000 syllabus ME 379M Nuclear Safety assessment models and nuclear non-proliferation. Failure classifications, failure modes, effects, and criticality analysis (FMECA), fault and event trees, reliability block diagrams. Specific areas from the code

  12. Water Reactor Safety Research Division. Quarterly progress report, October 1-December 31, 1980

    SciTech Connect (OSTI)

    Cerbone, R.J.; Saha, P.; van Rooyen, D.

    1981-02-01T23:59:59.000Z

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: Stress Corrosion Cracking of PWR Steam Generator Tubing, Advanced Code Evaluation, Simulator Improvement Program, and LWR Assessment and Application.

  13. Implementation Guide for Use with 10 CFR Part 851, Worker Safety and Health Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-27T23:59:59.000Z

    This Guide provides supplemental information and describes implementation practices to assist contractors in effectively developing, managing and implementing worker safety and health programs required by 10 Code of Federal Regulations, Part 851, Worker Safety and Health Program. Canceled by DOE G 440.1-1B.

  14. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  15. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  16. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  17. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  18. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  19. Mine Safety & Health Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Carlsbad Field Office (CBFO) Mine Safety & Health Specialist and is primarily responsible for inspecting and evaluating the performance...

  20. FACILITY SAFETY (FS)

    Broader source: Energy.gov (indexed) [DOE]

    and effectively implemented, with line management responsibility for control of safety. (Old Core Requirement 11) Criteria 1. Operations and support personnel fully...

  1. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  2. Gas Safety Law (Florida)

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

  3. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  4. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  5. Safety Margin Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk-Informed Safety Margin Characterization (RISMC) Pathway Curtis L. Smith RISMC Pathway Lead Idaho National Laboratory Light Water Reactor Sustainability (LWRS) Program Goals...

  6. Lift truck safety review

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1997-03-01T23:59:59.000Z

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  7. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Koploy, M.A. (General Atomics, San Diego, CA (United States))

    1992-01-01T23:59:59.000Z

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  8. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States); Koploy, M.A. [General Atomics, San Diego, CA (United States)

    1992-08-01T23:59:59.000Z

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  9. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 10: Laser Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 10: Laser Safety Laser Service Subcontractor Work is unavailable), and the subcontractor. 2 Procedures The LSO will review the work plans, provide safety oversight that on-site work will be done that requires Site-specific safety plan (SSSP) and job safety analysis

  10. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical applications. However, many of these techniques provide inadequate forms of safety arguments required

  11. Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS

    E-Print Network [OSTI]

    Wang, Hai

    2011- 2012 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS of aviation safety. Endings signal new beginnings and new beginnings mean evolving challenges for safety. This was the world in which the USC Aviation Safety and Security Program was born in 1952 and this is the world

  12. Public Safety Team (PST) Organizational Structure for Public Safety Management

    E-Print Network [OSTI]

    Public Safety Team (PST) President Organizational Structure for Public Safety Management for public safety· Coordinates public communications, legal,· and IT support for public safety Maintains· response to safety issues involving individual students and student behavior Ensures appropriate

  13. Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS

    E-Print Network [OSTI]

    Wang, Hai

    2010- 2011 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS Relevance and currency -- that is what drives the Aviation Safety and Security Program of the USC Viterbi that our core course, Aviation Safety Management Systems, is so necessary in ensuring the safety

  14. Food Safety and Technology Food Safety and Technology

    E-Print Network [OSTI]

    Heller, Barbara

    Food Safety and Technology Food Safety and Technology Institute for Food Safety and Health IIT Program Manager: Renee McBrien The Institute for Food Safety and Health (IFSH), with IIT faculty, U ground for individuals seeking graduate edu- cation in food safety and technology and food process

  15. SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014

    E-Print Network [OSTI]

    SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

  16. SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103

    E-Print Network [OSTI]

    SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

  17. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    Software Safety Tutorial Status Update 1 Software Safety Tutorial (Status Update) Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 Topics · Project Overview · Software Safety Overview · Project Tasks/Schedule/Progress Jeff Tian August 31, 2007 #12;Software Safety Tutorial Status Update 2 What Is Software Safety

  18. Laboratory Safety Manual Office of Environment, Health and Safety

    E-Print Network [OSTI]

    Jalali. Bahram

    Prevention Plan is a key step in strengthening the safety culture in laboratories. The UCLA Injury#12;Laboratory Safety Manual Office of Environment, Health and Safety December 201 #12;UCLA Laboratory Safety Manual Introduction Laboratory safety is an integral part of laboratory research

  19. Quantum convolutional stabilizer codes

    E-Print Network [OSTI]

    Chinthamani, Neelima

    2004-09-30T23:59:59.000Z

    constructions of good quantum error-correcting codes were given by Steane [2] and Calderbank and Shor [3]. These codes protect the quantum information using additional qubits and make it possible to reverse the e®ects of the most likely errors. 10 Encouraged... is that accurate computation does not require perfect physical devices. B. Background The Żrst quantum error correcting codes were discovered independently by Shor [1] and Steane [2], as mentioned in the previous section. Shor proved that 9 qubits could be used...

  20. Runtime Detection of C-Style Errors in UPC Code

    SciTech Connect (OSTI)

    Pirkelbauer, P; Liao, C; Panas, T; Quinlan, D

    2011-09-29T23:59:59.000Z

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the global address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.

  1. Recent advances in the CONTAIN code

    SciTech Connect (OSTI)

    Bergeron, K.D.; Carroll, D.E.; Gelbard, F.; Murata, K.K.; Valdez, G.D.; Washington, K.E.

    1987-10-01T23:59:59.000Z

    An update is given on very recent developments involving CONTAIN, the USNRC's principal mechanistic code for severe accident containment analysis. First, the features are outlined in two major new releases of CONTAIN. Revision 1.06 was released in February; the major improvements include full integration of the CORCON and VANESA models for debris concrete interactions and concomitant aerosol generation, more detailed and more flexible radiation heat transfer options, and a number of minor improvements. The most recent new version of the code is CONTAIN 1.1, which was released in October. The principal new features relate to the Boiling Water Reactor. In particular, working models are included for Pressure Suppression Pools and Safety Relief Valves. In addition, this version of the code has a much-improved treatment of fision product hosting, user-defined material property options, and a number of other improvements. A second major area of progress involves the aerosol models. Previously, numerical diffusion limited the accuracy of the calculation of the concentration of the smallest particles and, there was no accounting for the effects of soluble salts or surface tension on the equilibrium water vapor pressure. All of these problems have now been solved with a stand-alone aerosol modeling code which uses a suite of new numerical approaches. The new methods have been incorporated into CONTAIN. Example calculations are presented. 7 refs., 4 figs., 1 tab.

  2. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli

    2008-10-14T23:59:59.000Z

    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.

  3. Unequal Error Protection Turbo Codes

    E-Print Network [OSTI]

    Henkel, Werner

    Unequal Error Protection Turbo Codes Diploma Thesis Neele von Deetzen Arbeitsbereich Nachrichtentechnik School of Engineering and Science Bremen, February 28th, 2005 #12;Unequal Error Protection Turbo Convolutional Codes / Turbo Codes 18 3.1 Structure

  4. Rateless Codes for AVC Models

    E-Print Network [OSTI]

    Sarwate, A D; Gastpar, M

    2010-01-01T23:59:59.000Z

    2004. [7] M. Luby, “LT codes,” in Proc. 43rd Ann. IEEE Symp.8] A. Shokrollahi, “Fountain codes,” in Proc. 41st AllertonChannel capacities for list codes,” J. Appl. Probabil. ,

  5. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  6. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    W by 2010. · Develop a distributed generation PEM fuel cell system operating on natural gas or propane) 45% (w/ reformer) Fuel Cell System WeightWeightLifeLifeCostCost, etc. #12;6 Fuel Cell R&D Activities are Based on the Critical Challenges · Cost ­ Lowering the cost

  7. Aerial Work Platform Safety Program

    E-Print Network [OSTI]

    Holland, Jeffrey

    Aerial Work Platform Safety Program Updated: July 22, 2013 #12;Aerial Work Platform Safety Program ..........................................................................................................11 #12;Aerial Work Platform Safety Program 1 The official version of this information will only for establishing and maintaining the Aerial Work Platform Safety Program. Appropriate safety equipment (e

  8. SEAS LABORATORY SAFETY OFFICER ORIENTATION

    E-Print Network [OSTI]

    Investigators. Safety Officers work to develop safety procedures, educate research personnel, identify safety who no longer work in lab Note: Online General Lab Safety and Lab Biosafety courses replace classroom) #12;If assigned by PI, work with other experienced personnel in lab to conduct lab-specific safety

  9. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05T23:59:59.000Z

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  10. No Code: Null Programs

    E-Print Network [OSTI]

    Montfort, Nick

    2014-06-05T23:59:59.000Z

    To continue the productive discussion of uninscribed artworks in Craig Dworkin’s No Medium, this report discusses, in detail, those computer programs that have no code, and are thus empty or null. Several specific examples ...

  11. The role of the PIRT process in identifying code improvements and executing code development

    SciTech Connect (OSTI)

    Wilson, G.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Boyack, B.E. [Los Alamos National Lab., NM (United States)

    1997-07-01T23:59:59.000Z

    In September 1988, the USNRC issued a revised ECCS rule for light water reactors that allows, as an option, the use of best estimate (BE) plus uncertainty methods in safety analysis. The key feature of this licensing option relates to quantification of the uncertainty in the determination that an NPP has a {open_quotes}low{close_quotes} probability of violating the safety criteria specified in 10 CFR 50. To support the 1988 licensing revision, the USNRC and its contractors developed the CSAU evaluation methodology to demonstrate the feasibility of the BE plus uncertainty approach. The PIRT process, Step 3 in the CSAU methodology, was originally formulated to support the BE plus uncertainty licensing option as executed in the CSAU approach to safety analysis. Subsequent work has shown the PIRT process to be a much more powerful tool than conceived in its original form. Through further development and application, the PIRT process has shown itself to be a robust means to establish safety analysis computer code phenomenological requirements in their order of importance to such analyses. Used early in research directed toward these objectives, PIRT results also provide the technical basis and cost effective organization for new experimental programs needed to improve the safety analysis codes for new applications. The primary purpose of this paper is to describe the generic PIRT process, including typical and common illustrations from prior applications. The secondary objective is to provide guidance to future applications of the process to help them focus, in a graded approach, on systems, components, processes and phenomena that have been common in several prior applications.

  12. Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes

    E-Print Network [OSTI]

    Dave Bacon; Andrea Casaccino

    2006-10-17T23:59:59.000Z

    The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of Shor's original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the number of stabilizer measurements needed in their error recovery routines.

  13. Quantum error control codes

    E-Print Network [OSTI]

    Abdelhamid Awad Aly Ahmed, Sala

    2008-10-10T23:59:59.000Z

    QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  14. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

  15. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  16. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  18. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  19. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  20. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  1. SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC

    E-Print Network [OSTI]

    Weston, Ken

    SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-24 VISITOR AND CONTRACTOR SAFETY DIRECTOR, ENVIRONMENTAL, HEALTH, SAFETY & SECURITY Angela Sutton

  2. WEB-BASED RESOURCES ENHANCE HYDROGEN SAFETY KNOWLEDGE

    SciTech Connect (OSTI)

    Weiner, Steven C.; Fassbender, Linda L.; Blake, Chad; Aceves, Salvador; Somerday, Brian P.; Ruiz, Antonio

    2013-06-18T23:59:59.000Z

    The U.S. Department of Energy’s Fuel Cell Technologies Program addresses key technical challenges and institutional barriers facing the development and deployment of hydrogen and fuel cell technologies with the goal of decreasing dependence on oil, reducing carbon emissions and enabling reliable power generation. The Safety, Codes & Standards program area seeks to develop and implement the practices and procedures that will ensure safety in the operation, handling and use of hydrogen and hydrogen systems for all projects and utilize these practices and lessons learned to promote the safe use of hydrogen. Enabling the development of codes and standards for the safe use of hydrogen in energy applications and facilitating the development and harmonization of international codes and standards are integral to this work.

  3. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  4. CRAD, Facility Safety- Unreviewed Safety Question Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.

  5. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  6. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  7. Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS

    Broader source: Energy.gov [DOE]

    All new construction required to follow the provisions of Department of Energy(DOE) Order 420. lB, Facility Safety, must comply with national consensus industrystandards and the model building...

  8. Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle-mounted

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle, if they can be installed safely. Aerial Lifts Safety Tip #11 A spill, a slip, a hospital trip #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet

  9. Safety First Safety Last Safety Always The term competent person comes up often in the

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always The term competent person comes up often in the Occupational Safety and Health Administration (OSHA) construction regulations. OSHA defines a competent person as "one Person Safety Tip #13 Being safe is like breathing. You never want to stop. #12;Additional Information

  10. Safety First Safety Last Safety Always Construction employers are required to provide medical

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Construction employers are required to provide medical at Construction Job Sites Safety Tip #7 Falling objects can be brutal if you don't protect your noodle. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

  11. Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision of an

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision displacement. Scaffolding 101: The Basics Safety Tip #9 A safer you is a safer me. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

  12. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days the victim liquids to drink. Treat for shock until professional medical help arrives. Heat Stress Safety Tip the information provided on the reverse side of this safety tip sheet. Please refrain from reading the information

  13. Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

  14. Safety First Safety Last Safety Always OSHA has developed extensive regulations detailing operator

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always OSHA has developed extensive regulations detailing operator Operation Safety Tip #3 Chance takers are accident makers. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from reading the information

  15. Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated the design requirements in "American National Standards Institute Safety Requirements for Explosive Actuated on the other side. Portable Power Tools Safety Tip #14 Don't be a fool. Inspect your tools. Operators

  16. Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits to

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits it is not immediately visible to the occupants. Means of Egress Safety Tip #15 Ignoring a warning can cause much of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

  17. Safety First Safety Last Safety Always Personal fall-protection systems include a body harness (safe-

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Personal fall-protection systems include a body harness so they will not be damaged. Personal Fall-Protection Systems Safety Tip #8 Just because you always;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

  18. Safety Reports Series No. 11, Developing Safety Culture in Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities:...

  19. Surveillance Guide - FPS 12.1 Life Safety

    Broader source: Energy.gov (indexed) [DOE]

    system is required in the building (normally when building is considered occupied by ten or more people (See NFPA 101, Section 7.2.1.1.3)? (Reference: NFPA 101, 2000 Edition,...

  20. Integrating Loran and GNSS for Safety of Life Applications

    E-Print Network [OSTI]

    Stanford University

    of Homeland Security (DHS) announced that eLoran will be implemented to provide "an independent national and global navigation satellite system (GNSS) is one combination that has been examined in the past. The GPS solution can be adversely affected by GPS satellite clock drift for some time prior to detection

  1. Nested Quantum Error Correction Codes

    E-Print Network [OSTI]

    Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

    2009-09-28T23:59:59.000Z

    The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

  2. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    , training requirements, work planning and control, traffic safety, Building 76 emergency information be applied · Recognize who is accountable for safety · Describe the purpose of a work authorization · Recall11/22/2011 _____________________________ Environment, Health, & Safety

  3. Occupational Health and Safety Manual

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Addressing Health and Safety Concerns and Resolution of Work RefusalsOccupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs

  4. TRADE UNION APPOINTED SAFETY RESPRESENTATIVES

    E-Print Network [OSTI]

    representatives. The guidance note will focus on the Safety Representatives and Safety Committees Regulations within the workplace. The HSC and the Health and Safety Executive (HSE) make it clear that employers

  5. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  6. Code: A Lightweight and Flexible Mobile Code Toolkit

    E-Print Network [OSTI]

    Picco, Gian Pietro

    evaluation of mobile code technology does not exist yet, some studies already evidenced that the powerful of client­server and mobile code in reducing the network traffic generated by management. The theoreticalŻCode: A Lightweight and Flexible Mobile Code Toolkit Gian Pietro Picco Dip. Automatica e

  7. 3698 A. Hernandez-Solis et al. / Nuclear Engineering and Design 241 (2011) 36973706 The need to validate and refine BE codes that are used in

    E-Print Network [OSTI]

    Demazière, Christophe

    to validate and refine BE codes that are used in the predictions of relevant reactor safety parameters, led), and offers a good opportunity to assess the accuracy of thermal­hydraulic codes in predicting, among other of thermal hydraulic codes in predicting radial and axial assembly void dis- tributions, under both steady

  8. Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-03-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

  9. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2013-11-06T23:59:59.000Z

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical basis be developed to enable code bodies to write requirements for the range of enclosures from the smallest to the largest.

  10. MHD Generation Code

    E-Print Network [OSTI]

    Frutos-Alfaro, Francisco

    2015-01-01T23:59:59.000Z

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  11. Extended quantum color coding

    SciTech Connect (OSTI)

    Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)

    2005-01-01T23:59:59.000Z

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  12. Coding for Cooperative Communications

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21T23:59:59.000Z

    develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c... modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeat- accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel...

  13. Fast reactor safety: proceedings of the international topical meeting. Volume 2. [R

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 2 include: safety design concepts; operational transient experiments; analysis of seismic and external events; HCDA-related codes, analysis, and experiments; sodium fires; instrumentation and control/PPS design; whole-core accident analysis codes; and impact of safety design considerations on future LMFBR developments.

  14. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety Non-green Work Laboratory Environment, Safety, Health, and Quality Division Chapter 42 | Non-green Work Procedure Step is classified as green, follows the Subcontractor Safety: Green Work Procedure. If not, continues

  15. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    Radiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual ­ Dec 2012 Page 1 Table of Contents Introduction Chapter I: Radiation Safety Program A. Program

  16. Safety Lifecycle for Developing Safety Critical Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly. There are many techniques that aim to improve the performance of neural networks for safety-critical systems. Consequently, their role in safety-critical applications, if any, is typically restricted to advisory systems

  17. Safety-Oriented Design of Component Assemblies using Safety Interfaces

    E-Print Network [OSTI]

    FACS 2006 Safety-Oriented Design of Component Assemblies using Safety Interfaces Jonas Elmqvist¨oping, Sweden Abstract This paper promotes compositional reasoning in the context of safety-critical systems, and demonstrates a safety-oriented component model using an application from the automotive industry: an Adaptive

  18. Safety and Security What do Safety/Security work with?

    E-Print Network [OSTI]

    Safety and Security on campus #12;Agenda · What do Safety/Security work with? · If something happens · Opening hours · Remember · Website · How to find us #12;The Section for Safety and Security work with Police reports · Education in "First medical aid" · Education in laboratory safety #12;If something

  19. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;Radiation Safety Department, University of Tennessee Purpose: To provide basic radiation safety training to the users of sealed sources located

  20. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;#12;Radiation Safety Department, University of Tennessee Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers

  1. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01T23:59:59.000Z

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  4. Reliability and Safety

    Broader source: Energy.gov [DOE]

    DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

  5. Phenomenology of asymptotic safety 

    E-Print Network [OSTI]

    Gerwick, Erik

    2011-11-23T23:59:59.000Z

    In this work we explore the collider prospects for the asymptotic safety scenario being realized as a quantum theory of gravity. Testing gravity at colliders becomes a real possibility in the case of extra dimensional ...

  6. Wildland Fire Safety Enhancements

    Broader source: Energy.gov (indexed) [DOE]

    OPERATIONS OFFICE MANAGERS DOE FUXD OFFICE MANAGERS BILL RIcHARDsoN L%@ WILDLAND FIRE SAFETY ENHAN&MENTS By memorandum dated October 22000, I directed several actions & part of a...

  7. Dam Safety Regulation (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

  8. ENVIRONMENTAL, HEALTH AND SAFETY

    E-Print Network [OSTI]

    California at Davis, University of

    Professonal Education Showcase New! Professional Concentration in Environmental Management for Industry HEALTH AND SAFETY PROGRAMS #12;NEW Professional Concentration in Environmental Management for Industry management, air quality, water quality and hazardous materials transportation. Acquire the knowledge to help

  9. High Voltage Safety Act

    Broader source: Energy.gov [DOE]

    The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

  10. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  12. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  14. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  15. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  16. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B. Admin Chg 1, dated 6-22-11, cancels DOE O 440.2C.

  17. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  18. Laser Safety Introduction

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Laser Safety #12;Introduction · A Laser is a device that controls the way energized atoms release photons. · LASER is an acronym for "Light Amplification by Stimulated Emission of Radiation" · The light emitted by a laser is non

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  20. FLINDERS UNIVERSITY Guidelines for Contractor Safety

    E-Print Network [OSTI]

    FLINDERS UNIVERSITY Guidelines for Contractor Safety INTRODUCTION............................................................................................................3 PERMITS TO WORK.........................................................................................4 SAFETY SIGNS

  1. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  2. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  3. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  4. Chaotic Turbo Codes

    E-Print Network [OSTI]

    S. Adrian Barbulescu; Andrew Guidi; Steven S. Pietrobon

    This paper describes a new class of codes, chaotic turbo codes. They were born from a symbiosis between a chaotical digital encoder and a turbo code. This paper investigates the most important properties of both chaotic digital encoders and turbo encoders in order to understand how the two complement each other. A Chaotic Turbo Encoder is then described and initial results will be presented. I. INTRODUCTION A chaotic digital encoder was defined for the first time in [1] as a non--linear digital filter with finite precision (8 bits) which behaves in a quasi--chaotic fashion, both with zero and nonzero input sequences. A simple chaotic encoder is shown in Figure 1 [1]. D Y k X k LCIRC D Figure 1: Chaotic Digital Encoder Mapper L L L L L L 1 The main features of chaotic digital encoders that are used in this paper are: # The system is digital which makes possible its integration with a turbo code. # The output of a chaotic digital encoder with arbitrary inputs has a broad...

  5. Minor Codes Accounting 1100

    E-Print Network [OSTI]

    Bolding, M. Chad

    Minor Codes Accounting 1100 Adult/Extension Education 1220 Aerospace Studies 1225 Agricultural Business Management 1250 Agricultural Mechanization and Business 1600 American Sign Language Studies 5650 and Policy 3790 Equine Business 4690 Film Studies 7756 Financial Management 3900 Food Science 4100 Forest

  6. CAHNRS Safety Committee Meeting Minutes

    E-Print Network [OSTI]

    Collins, Gary S.

    that although the law states that PIs are responsible for the safety of all employees in their work siteCAHNRS Safety Committee Meeting Minutes December 10, 2013 Present: Daniel Edge-Garza, Rick Rupp lab safety specialist, replacing Sarah Greer. Tom will eventually be the lab safety manager. He

  7. Toolbox Safety Talk Woodworking Machines

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Woodworking Machines Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University for many student courses and elective activities. Woodworking machines can pose a myriad of hazards

  8. Food Safety and Meat Microbiology

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Food Safety and Meat Microbiology School July 17-19, 2012 Master Meat Crafter Program Department) and the University of Wisconsin-Madison Meat Science Laboratory are again hosting the Food Safety and Meat your food safety systems and the safety of your products. Topics will include microbiology, sanitation

  9. Food Safety Policy December 2011

    E-Print Network [OSTI]

    Doran, Simon J.

    Food Safety Policy December 2011 #12;www.surrey.ac.uk2 Food Safety Policy Some Useful Telephone) Security Extension Number: 2002 or from external phones: (01483) 682002 Health and Safety Department the line to be put through to an operator. www.surrey.ac.uk 3 Food Safety Policy Contents Page 1

  10. Toolbox Safety Talk Articulating Boom Work Platforms

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Articulating Boom Work Platforms Environmental Health & Safety Facilities sign-in sheet to Environmental Health & Safety for recordkeeping. Articulating boom work platforms Articulating Boom Work Platforms Environmental Health & Safety Facilities Safety & Health Section 395 Pine Tree

  11. University Life Strategic Plan UNIVERSITY LIFE

    E-Print Network [OSTI]

    for the demands of work, social responsibility, and life in an ever-changing global society. Through a range well-being, post-graduation success Increased retention and timely degree completion Increased Engagement) #12;2 University Life is committed to preparing students for the demands of work, social

  12. Status of the MELTSPREAD-1 computer code for the analysis of transient spreading of core debris melts

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.; Chu, C.C.

    1992-01-01T23:59:59.000Z

    A transient, one dimensional, finite difference computer code (MELTSPREAD-1) has been developed to predict spreading behavior of high temperature melts flowing over concrete and/or steel surfaces submerged in water, or without the effects of water if the surface is initially dry. This paper provides a summary overview of models and correlations currently implemented in the code, code validation activities completed thus far, LWR spreading-related safety issues for which the code has been applied, and the status of documentation for the code.

  13. Status of the MELTSPREAD-1 computer code for the analysis of transient spreading of core debris melts

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.; Chu, C.C.

    1992-04-01T23:59:59.000Z

    A transient, one dimensional, finite difference computer code (MELTSPREAD-1) has been developed to predict spreading behavior of high temperature melts flowing over concrete and/or steel surfaces submerged in water, or without the effects of water if the surface is initially dry. This paper provides a summary overview of models and correlations currently implemented in the code, code validation activities completed thus far, LWR spreading-related safety issues for which the code has been applied, and the status of documentation for the code.

  14. Erasure Techniques in MRD codes

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; R. Sujatha; R. S. Raja Durai

    2012-05-03T23:59:59.000Z

    This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.

  15. SECTION 4-FIRE SAFETY, INCLUDING LIFE SAFETY STANDARDS FIRE HAZARDS ON CAMPUS

    E-Print Network [OSTI]

    Selmic, Sandra

    for the chemical to determine safe storage and handling procedures. Appliances- Careless use of heat laid down while they are on or used to dry clothes. · Portable space heaters placed near combustibles the directions of the fire extinguisher(s) in their area. A WATER extinguisher is designated by an "A" inside

  16. Environment/Health/Safety (EHS): Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment, SafetyEHS Radiation

  17. Texas AgriLife Extension Service Texas A&M University System

    E-Print Network [OSTI]

    12.1 Texas AgriLife Extension Service Texas A&M University System Eat Smart for Food Safety Storage, supermarkets to restaurants -- are required by law to follow strict food safety regulations, which of foodborne illness starts with your trip to the supermarket. If food is not properly handled, its storage

  18. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-08T23:59:59.000Z

    This Guide, including its attachments, provides information to assist in the implementation of Title 10 Code of Federal Regulations (CFR) Section 830.203, “Unreviewed Safety Question Process,” of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Cancels DOE G 424.1-1A. Admin Chg 1 dated 4-12-13. Admin Chg 2, dated 6-12-13, cancels DOE G 424.1-1B Admin Chg 1.

  19. Nuclear criticality safety tools in the Chernobyl-4 accident analysis

    SciTech Connect (OSTI)

    Landeyro, P.A.

    1988-01-01T23:59:59.000Z

    The collaboration with the Italian Safety Authority (DISP), started in July 1986, has the aim of studying, from a neutronic point of view, the possible initiator event and the accident dynamics in unit four of the Chernobly nuclear power plant. This report was produced within the framework of that collaboration. A main condition of the present work was making use of standard calculational methods employed in nuclear criticality safety analysis. This means that the neutron multiplication factor calculation should be made with the modules and the cross-section libraries of the SCALE system or in any case with some KENO IV version and the burnup calculation with the ORIGEN code.

  20. REDUCED-COMPLEXITY DECODING FOR CONCATENATED CODES BASED ON RECTANGULAR PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    AND TURBO CODES John M. Shea and Tan F. Wong University of Florida Department of Electrical and Computer-check code (RPCC) with a turbo code. These concatenated codes are referred to as RPCC+turbo codes. RPCC+turbo codes have been shown to significantly outperform turbo codes in several scenarios [1],[2]. One

  1. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  2. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  3. Adaptive code generators for tree coding of speech

    E-Print Network [OSTI]

    Dong, Hui

    1998-01-01T23:59:59.000Z

    Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The best predictor designed...

  4. New enhancements to SCALE for criticality safety analysis

    SciTech Connect (OSTI)

    Hollenbach, D.F.; Bowman, S.M.; Petrie, L.M.; Parks, C.V. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

    1995-09-01T23:59:59.000Z

    As the speed, available memory, and reliability of computer hardware increases and the cost decreases, the complexity and usability of computer software will increase, taking advantage of the new hardware capabilities. Computer programs today must be more flexible and user friendly than those of the past. Within available resources, the SCALE staff at Oak Ridge National Laboratory (ORNL) is committed to upgrading its computer codes to keep pace with the current level of technology. This paper examines recent additions and enhancements to the criticality safety analysis sections of the SCALE code package. These recent additions and enhancements made to SCALE can be divided into nine categories: (1) new analytical computer codes, (2) new cross-section libraries, (3) new criticality search sequences, (4) enhanced graphical capabilities, (5) additional KENO enhancements, (6) enhanced resonance processing capabilities, (7) enhanced material information processing capabilities, (8) portability of the SCALE code package, and (9) other minor enhancements, modifications, and corrections to SCALE. Each of these additions and enhancements to the criticality safety analysis capabilities of the SCALE code system are discussed below.

  5. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  6. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  7. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Matlab-Kinect Interface Code

    E-Print Network [OSTI]

    Kowalski, Kevin

    2012-06-01T23:59:59.000Z

    This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

  9. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code (Chapter 25-2) of the Austin City Code provides a height limitation exemption for solar installations. Solar installations may exceed the zoning district height limit by 15% or the...

  10. Code of Practice Research Degrees

    E-Print Network [OSTI]

    Evans, Paul

    ........................................................................ 15 Section Ten: FacilitiesCode of Practice For Research Degrees 2014/15 #12;2 Contents Section One: Preface ­ the purpose of the Code........................................................ 3 Section Two: Context

  11. What's coming in 2012 codes

    E-Print Network [OSTI]

    Lacey, E

    2011-01-01T23:59:59.000Z

    Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

  12. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G. (ed.)

    1983-09-01T23:59:59.000Z

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  13. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is Safety for

  14. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is Safety

  15. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety for Users PrintSafety

  16. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    SciTech Connect (OSTI)

    Luxat, J.C.; Liu, W.S.; Leung, R.K. [Ontario Hydro, Toronto (Canada)] [and others

    1997-07-01T23:59:59.000Z

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically on CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.

  17. Energy Codes and Standards: Facilities

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01T23:59:59.000Z

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  18. Design of proximity detecting codes

    E-Print Network [OSTI]

    Perisetty, Srinivas

    1997-01-01T23:59:59.000Z

    class of codes called Proximity Detecting Codes can be used to overcome this problem associated with asynchronous channels. A t-proximity detecting (t-PD) code can detect when a received word is within distance t from the transmitted codeword, when using...

  19. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  20. PERFORMANCE EVALUATION OF TURBO CODES

    E-Print Network [OSTI]

    Alajaji, Fady

    PERFORMANCE EVALUATION OF TURBO CODES by Guangchong Zhu A project submitted to the Department named ``Turbo codes'' which claims an extraordinary performance with reasonable decoding complexity. In this project, we begin with a study on the structure and principle of Turbo codes. We then investigate

  1. Travel Codes Traveler Is Employee

    E-Print Network [OSTI]

    Arnold, Jonathan

    Travel Codes Traveler Is Employee: 64100-Domestic Travel 64150-Mileage 64200-International Travel Supplies & Expense Codes 71410-Office Supplies 71430-Lab/Research Supplies (dollar value of each item less Charges Equipment Codes 84320-Equipment (non-computer & peripherals) with a cost of $5,000.00 or more per

  2. Safety aspects of EB melting

    SciTech Connect (OSTI)

    Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

  3. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  4. 2013 Reporting Unit Codes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 Reporting Unit Codes 2013 Reporting Unit Codes CFC Reporting Unit Codes 2013.pdf More Documents & Publications EA-0372: Final Environmental Assessment Alignment: Achieving...

  5. Pressure Safety of JLAB 12GeV Upgrade Cryomodule

    SciTech Connect (OSTI)

    Cheng, Gary [JLAB; Wiseman, Mark A. [JLAB; Daly, Ed [JLAB

    2009-11-01T23:59:59.000Z

    This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

  6. Error Floors of LDPC Codes and Related Topics

    E-Print Network [OSTI]

    Butler, Brian K.

    Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 LDPC Codes . . . . . . . .2.1 Binary Linear Block Codes . . . . . . .

  7. Energy Codes at a Glance

    SciTech Connect (OSTI)

    Cole, Pamala C.; Richman, Eric E.

    2008-09-01T23:59:59.000Z

    Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energy’s Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code® and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

  8. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  9. Material Safety Data Sheets | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

  10. Nuclear Safety Information Dashboard | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

  11. Nuclear Safety News | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

  12. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  13. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  14. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  15. JOB SAFETY ASSESSMENT ENVIRONMENTAL

    E-Print Network [OSTI]

    Hartman, Chris

    /Bump Cap Respirator (air purifying/supplied air) Emergency Escape Breathing Apparatus Filters (specific/Coat Fall Protection Equipment Traction Devices Cooling Vest High Visibility Clothing/Safety Vest MSDS (for any chemicals being used) Emergency Equipment/Supplies Other:____________________________ NOTES: Use

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14T23:59:59.000Z

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

  17. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04T23:59:59.000Z

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  18. DOE HANDBOOK ELECTRICAL SAFETY

    E-Print Network [OSTI]

    DOE HANDBOOK ELECTRICAL SAFETY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 of 139 3.0 HAZARD ANALYSIS 3.1 INTRODUCTION This chapter provides tools for assessing electrical hazards). The risk of a worker to an exposed electrical hazard is determined by (a) the classification

  19. EFCOG / DOE Electrical Safety

    E-Print Network [OSTI]

    EFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement Electrical Severity Measurement Tool Revision 1 April 16, 2007 #12;Electrical Severity Measurement Tool Purpose: This tool is intended to determine the severity of an electrical energy event based

  20. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  2. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  3. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  4. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  5. Committee on Microbiological Safety

    E-Print Network [OSTI]

    Goodrich, Lisa V.

    standards and best practices for the oversight and administration of research with recombinant or synthetic of the research are conducted in a safe manner using established biosafety standards, principles and practices, or environmental risks, including, for example, requirements for education and training and for laboratory safety

  6. Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding

    E-Print Network [OSTI]

    Yang, Yang

    2005-11-01T23:59:59.000Z

    to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

  7. Fusion Safety Program annual report, fiscal year 1992

    SciTech Connect (OSTI)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01T23:59:59.000Z

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG&G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

  8. Fusion Safety Program annual report, fiscal year 1992

    SciTech Connect (OSTI)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01T23:59:59.000Z

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study.

  9. Visual Arts Safety Plan: 1. Visual Arts Safety Manual

    E-Print Network [OSTI]

    Maroncelli, Mark

    and guidance to help you conduct your work safely and in compliance with environmental health and safety. The Visual Arts Safety plan should be made available to all workers and all persons in your area who work for good practice. The requirements for working with Lasers can be found in SY-17. This Penn State Safety

  10. Arguing Safety -- A Systematic Approach to Managing Safety Cases

    E-Print Network [OSTI]

    Timothy Patrick Kelly

    1998-01-01T23:59:59.000Z

    A safety case should present a clear, comprehensive and defensible argument that a system is acceptably safe to operate within a particular context. However, many existing safety cases, in their attempt to manage potentially complex arguments, are poorly structured, presented and understood. This creates problems in developing and maintaining safety cases, and in capturing successful safety arguments for use on future projects. This thesis defines and demonstrates a coherent approach to the development, presentation, maintenance and reuse of the safety arguments within a safety case. This approach is based upon a graphical technique -- the Goal Structuring Notation (GSN) -- and has three strands. Firstly, a method for the use of GSN is defined together with an approach to supporting incremental safety case development. Secondly, the thesis presents a systematic process for the maintenance of a GSN-structured safety argument. Thirdly, the concept of `Safety Case Patterns' is defined as a means of supporting and promoting the reuse of successful safety arguments between safety cases. Examples of the approach are provided throughout. Evaluation of the approach is described through tool implementation, case studies, pilot projects and industrial project applications. Through these activities the approach has been shown to be both a valid and capable tool for safety case management.

  11. Radiation Safety Manual August 1999 UW Environmental Health and Safety

    E-Print Network [OSTI]

    Wilcock, William

    Page v Radiation Safety Manual August 1999 UW Environmental Health and Safety Glossary accelerator target and uncharged high-energy radiation is subsequently produced (neutrons or x-rays). ALARA - An acronym formed from the phrase "As Low as Reasonably Achievable." The phrase refers to a radiation safety

  12. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01T23:59:59.000Z

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  13. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  14. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13T23:59:59.000Z

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  15. Midwest Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project 2014

  16. Events Beyond Design Safety Basis Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Events Beyond Design Safety Basis Analysis Events Beyond Design Safety Basis Analysis March 23, 2011 Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis This Safety...

  17. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  18. PACER -- A fast running computer code for the calculation of short-term containment/confinement loads following coolant boundary failure. Volume 1: Code models and correlations

    SciTech Connect (OSTI)

    Sienicki, J.J.

    1997-06-01T23:59:59.000Z

    A fast running and simple computer code has been developed to calculate pressure loadings inside light water reactor containments/confinements under loss-of-coolant accident conditions. PACER was originally developed to calculate containment/confinement pressure and temperature time histories for loss-of-coolant accidents in Soviet-designed VVER reactors and is relevant to the activities of the US International Nuclear Safety Center. The code employs a multicompartment representation of the containment volume and is focused upon application to early time containment phenomena during and immediately following blowdown. Flashing from coolant release, condensation heat transfer, intercompartment transport, and engineered safety features are described using best estimate models and correlations often based upon experiment analyses. Two notable capabilities of PACER that differ from most other containment loads codes are the modeling of the rates of steam and water formation accompanying coolant release as well as the correlations for steam condensation upon structure.

  19. Preservation of FFTF Data Related to Passive Safety Testing

    SciTech Connect (OSTI)

    Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.

    2010-10-01T23:59:59.000Z

    One of the goals of the Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). A key area deserving special attention for preservation is the data relating to passive safety testing that was conducted in FFTF and EBR-II during the 1980’s. Accidents at Unit 4 of the Chernobyl Station and Unit 2 at Three Mile Island changed the safety paradigm of the nuclear power industry. New emphasis was placed on assured safety based on intrinsic plant characteristics that protect not only the public, but the significant investment in the plant as well. Plants designated to perform in this manner are considered to be passively safe since no active sensor/alarm system or human intervention is required to bring the reactor to a safe shutdown condition. The liquid metal reactor (LMR) has several key characteristics needed for a passively safe reactor: reactor coolant with superior heat transfer capability and very high boiling point, low (atmospheric) system pressures, and reliable negative reactivity feedback. The credibility of the design for a passively safe LMR rests on two issues: the validity of analytic methods used to predict passive safety performance and the availability of relevant test data to calibrate design tools. Safety analysis methods used to analyze LMRs under the old safety paradigm were focused on calculating the source term for the Core Disruptive Accident. Passive safety design requires refined analysis methods for transient events because treatment of the detailed reactivity feedbacks is important in predicting the response of the reactor. Similarly, analytic tools should be calibrated against actual test experience in existing LMR facilities. The principal objectives of the combined FFTF natural circulation and Passive Safety Testing program were: 1) to verify natural circulation as a reliable means to safely remove decay heat, 2) to extend passive safety experience to a large-size LMR and obtain data for validating design analysis computer codes, and 3) to develop and test passive safety enhancements that might be used for future LMRs. These tests were designed to provide data sufficient to allow separation of fuel temperature effects from structural temperature effects. The data developed through this testing program were used to verify the predictive capability of passive safety analysis methods as well as provide a data base for calibrating design tools such as the SASSYS/SAS4A codes. These tests were instrumental in improving understanding of reactivity feedback mechanisms in LMRs and demonstrating passive safety margins available in an LMR. Knowledge preservation at the FFTF is focused on the areas of design, construction, startup, and operation of the reactor. This information may be of potential use for international exchanges with other LMR programs around the world. This information provides the basis for creating benchmarks for validating and testing large scale computer programs. All information preserved to date is now being stored and categorized consistent with the IAEA international standardized taxonomy. The test results information exists in several different formats depending upon the final stage of the test evaluation. Over 100 documents relevant to passive safety testing have been identified and are being recovered, scanned, and catalogued. Attempts to recover plant data tapes are also in progress. Documents related to passive safety testing are now being categorized consistent with internationally agreed upon IAEA standards. Documents are being converted to electronic format compatible with a general search engine being developed by INL. The data from the FFTF passive safety tests provides experimental verification of structural reactivity effects that should be very useful to innovative designers seeking to optimize passive safety in the design of new LMRs.

  20. TUFTS UNIVERSITY LASER SAFETY PROGRAM

    E-Print Network [OSTI]

    Dennett, Daniel

    with engineering controls and good work practices. The Tufts University Laser Safety Officer (LSO) along safety liaison to work with the EH&S Office and the LSO to fulfill the requirements outlined operating procedures for these laser installations, and laser safety training for persons working