National Library of Energy BETA

Sample records for life insurance fegli

  1. Federal Employees' Group Life Insurance (FEGLI) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Types of Coverage Available Basic Life Basic life is based on your annual basic rate ... FEGLI insurance is a term insurance policy and has no cash value. Optional Insurance There ...

  2. Federal Employee Group Life Insurance (FEGLI) | Department of Energy

    Energy Savers [EERE]

    Group Life Insurance (FEGLI) Federal Employee Group Life Insurance (FEGLI) The Federal Employees' Group Life Insurance (FEGLI) Program is a group term life insurance program for Federal and Postal employees and retirees. The Office of Personnel Management administers the Program and sets the premiums. OPM has a contract with the Metropolitan Life Insurance Company (MetLife) to provide this life insurance. The MetLife has an office called Office of Federal Employees' Group Life Insurance

  3. Page 5, Federal Employees' Group Life Insurance (FEGLI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 of 11 Previous Page Federal Employees' Group Life Insurance (FEGLI) Initial Enrollment Period All Employees in eligible positions are automatically enrolled in Basic Life...

  4. Life Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Insurance Life Insurance A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Life Insurance The Lab offers a variety of life insurance options through The Hartford to help you protect your loved ones. Life insurance provides financial assistance to help cover the rising costs of final expenses and any outstanding debts you leave behind. Resources Rates » Provider

  5. Insurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insurance Insurance As a Federal employee, you may be able to enroll in health, dental, vision and life insurance, flexible spending accounts, and apply for long term care insurance. Federal Employee Health Benefits Program (FEHB) Federal Employee Group Life Insurance (FEGLI) Federal Employee Dental and Vision Program (FEDVIP) Federal Long Term Care Insurance Program (FLTCIP) Flexible Spending Accounts (FSAFEDS) Life Events For additional assistance with insurance programs for federal

  6. Life Insurance | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Insurance | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  7. Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insurance Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  8. New Employee Orientation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees' Group Life Insurance (FEGLI) Thrift Savings Plan (TSP) A Family-Friendly Workplace Benefit Forms DOE Substance Abuse Testing Program Security Forms and Information...

  9. Retiree Dental, Vision, Legal, Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dental, Vision, Legal Retiree Dental, Vision, Legal Insurance Additional insurance coverage during retirement. Contact Retiree Insurance Providers Dental, vision, legal benefits...

  10. Retiree AD&D Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AD&D Insurance Retiree AD&D Insurance AD&D coverage during retirement. Contact Retiree Insurance Providers Accidental death & dismemberment (AD&D) benefits for retirees The AD&D...

  11. State Farm Insurance | Open Energy Information

    Open Energy Info (EERE)

    Farm Insurance Jump to: navigation, search Name: State Farm Insurance Place: Bloomington, IL Website: www.statefarminsurance.com References: State Farm Insurance1 Information...

  12. National Flood Insurance Act | Open Energy Information

    Open Energy Info (EERE)

    the Federal Insurance Administration and made flood insurance available for the first time. The Flood Disaster Protection Act of 1973 made the purchase of flood insurance...

  13. Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)

    SciTech Connect (OSTI)

    Speer, B.; Mendelsohn, M.; Cory, K.

    2010-02-01

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

  14. Mutual Insurance Company of West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call 800-247-4184 or visit ARAGLegalCenter.com. Limitations and exclusions apply. Insurance products are underwritten by ARAG Insurance Company of Des Moines, Iowa, GuideOne ...

  15. Life Events | Department of Energy

    Energy Savers [EERE]

    Life Events Life Events Life Events is a listing of common events that may occur during or after your Federal career. It's divided into three sections: me/my family, job, and retirement. When you click on a question, you will see what actions you may need to take for each of the following programs: Federal Employees Health Benefits (FEHB) Program, Federal Employees Dental and Vision Insurance Program (FEDVIP), Federal Flexible Spending Account Program (FSAFEDS), Federal Long Term Care Insurance

  16. Insurance Provider Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provider Contacts Retiree Insurance Provider Contacts Employees and retirees are the building blocks of LANL's success. Our employees get to contribute to the most pressing issues facing the nation.Retiree health and welfare benefits are managed by AonHewitt and Associates. Contact information for retiree providers LANS Pension Administrator - Hewitt AonHewitt & Associates Website Your Pension Resources (YPR) Member Services (866) 370-7301 Retiree Benefits Administrator - Empyrean Empyrean

  17. Mutual Insurance Company of West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Step : On the right side of the homepage under "Identity The Protection," click on "Create Member Account." Once you log in, create an additional username and password to For more information call - - or visit ARAGLegalCenter.com. Limitations and exclusions apply. Insurance products are underwritten by ARAG Insurance Company of Des Moines, Iowa, GuideOne ® Mutual Insurance Company of West Des Moines, Iowa or GuideOne Specialty Mutual Insurance Company of West Des Moines,

  18. Energy Insurance Brokers | Open Energy Information

    Open Energy Info (EERE)

    Insurance Brokers Jump to: navigation, search Name: Energy Insurance Brokers Place: Palm Springs, California Zip: 92262 Sector: Renewable Energy, Wind energy Product: Specializes...

  19. Health Insurance Marketplace Notice New Health Insurance Marketplace Coverage Options and Your Health Coverage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insurance Marketplace Notice New Health Insurance Marketplace Coverage Options and Your Health Coverage PART A: General Information When key parts of the health care law take effect in 2014, there will be a new way to buy health insurance: the Health Insurance Marketplace. To assist you as you evaluate options for you and your family, this notice provides some basic information about the new Marketplace and employment based health coverage offered by your employer. What is the Health Insurance

  20. FEMA - National Flood Insurance Program Elevation Certificate...

    Open Energy Info (EERE)

    and Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program Elevation Certificate and Instructions...

  1. "Insurance as a Risk Management Instrument for Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) "Insurance as a Risk Management Instrument for Energy ...

  2. Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC PDF icon Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC

  3. Workplace Charging Success: MetLife | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife Workplace Charging Success: MetLife October 2, 2014 - 6:26pm Addthis Workplace Charging Success: MetLife MetLife is talking the "green" talk and walking the walk. The insurance company has long encouraged its policyholders to live environmentally-conscious lifestyles, and continues to embrace emerging technologies, work with green products, and utilize environmentally-friendly services. As part of their commitment to environmental sustainability, MetLife provides alternative

  4. Global warming, insurance losses and financial industry

    SciTech Connect (OSTI)

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  5. Federal Long Tern Care Insurance Program (FLTCIP) | Department of Energy

    Energy Savers [EERE]

    Federal Long Tern Care Insurance Program (FLTCIP) Federal Long Tern Care Insurance Program (FLTCIP) The Federal Long Term Care Insurance Program (FLTCIP) provides long term care insurance to help pay for costs of care when enrollees need help with activities they perform every day, or you have a severe cognitive impairment, such as Alzheimer's disease. Most Federal employees and annuitants, active and retired members of the uniformed services, and their qualified relatives are eligible to apply

  6. Risk transfer via energy savings insurance

    SciTech Connect (OSTI)

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self-insure th e savings. ESI encourages those implementing energy saving projects to go beyond standard, tried-and-true measures and thereby achieve more significant levels of energy savings; and ESI providers stand to be proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy savings objectives and perhaps elevating the quality of information available for program evaluation. Governmental agencies have been pioneers in the use of ESI and could continue to play a role in developing this innovative risk-transfer mechanism. There is particular potential for linkages between ESI and the ENERGY STAR (registered trademark) Buildings Program. It is likely that ENERGY STAR (registered trademark)-labeled commercial buildings (which have lower performance risk thanks to commissioning) would be attractive to providers of energy savings insurance. Conversely, the award of energy savings insurance to an ENERGY STAR (registered trade mark)-labeled building would raise the perceived credibility of the Label and energy savings attributed to the Program.

  7. FEMA - National Flood Insurance Program webpage | Open Energy...

    Open Energy Info (EERE)

    webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program webpage Abstract This webpage provides information on...

  8. Audit of the Department of Energy's Contractor Liability Insurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The other types of liability insurance reported included fidelitycrime, fiduciary, medical malpractice, directors' and officers', and pollution. In addition to obtaining ...

  9. Secretary Bodman Announces Federal Risk Insurance for Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman ...

  10. DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The rule establishes the requirements for risk insurance to cover costs associated with certain regulatory or litigation-related delays in the start-up of new nuclear power plants. ...

  11. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  12. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  13. DOE Releases Filing Instructions for Federal Risk Insurance for New Nuclear

    Energy Savers [EERE]

    Power Plants | Department of Energy Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants DOE Releases Filing Instructions for Federal Risk Insurance for New Nuclear Power Plants December 21, 2007 - 4:58pm Addthis Outlines Five Steps for New Nuclear Plant Sponsors to Enter Into a Conditional Agreement for Risk Insurance WASHINGTON, DC - The U.S. Department of Energy (DOE) today released instructions for companies building new nuclear power plants in the United States to

  14. From Risk to Opportunity. How Insurers Can Proactively and Profitably Manage Climate Change

    SciTech Connect (OSTI)

    Mills, E.; Lecomte, E.

    2006-08-15

    Last year's USD 45 billion of insured losses from Hurricane Katrina was only the latest reminder of why investors and consumers are concerned about the impacts of climate change on the insurance industry. Twelve months after the devastating storm hit New Orleans, insurers and their shareholders are still feeling the ripples. Record insured losses, rating downgrades, coverage pullbacks and class-action lawsuits are just a few of the reverberations that have been felt across the industry. Meanwhile, consumers are feeling the combined sting of price shocks and reduced availability. So serious is the issue that 20 leading investors, representing over $800 billion in assets, called on the nation's largest insurance companies to disclose their financial exposure from climate change and steps they are taking to reduce those financial impacts. But, while most of the attention is focused on the growing risks, climate change also creates vast business opportunities to be part of the solution to global warming. Just as the industry has historically asserted its leadership to minimize risks from building fires and earthquakes, insurers have a huge opportunity today to develop creative loss-prevention products and services that will reduce climate-related losses for consumers, governments and insurers, while trimming the emissions causing global warming. This report focuses on the encouraging progress made by insurers to develop these new products and services. It identifies more than 190 concrete examples available, or soon-to-be-available, from dozens of insurance providers in 16 countries. In addition to benefiting insurers' core business and investment activities, these programs afford insurers the opportunity to differentiate their products from their competitors, while also enhancing their reputation with customers who are increasingly looking for all sectors of the industry to come forward with effective responses to the threats caused by climate change. More than half of the products come from U.S. companies, covering such services as green building design, hurricane-resistant construction, carbon emissions trading and renewable energy.

  15. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  16. Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience Report Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released a report that examines the key risks confronting critical energy infrastructure and ways in which the insurance industry can help manage these risks. In most developed countries, insurance is one of the principal risk management instruments for aiding in recovery after a disaster and for encouraging future investments that are more resilient to potential hazards.

  17. NREL Report Says Insurance Industry Can Benefit by Using Solar Power for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disaster Management Report Says Insurance Industry Can Benefit by Using Solar Power for Disaster Management For more information contact: Kerry Masson 303-275-4083 e:mail: Kerry Masson Golden, Colo., Sept. 3, 1999 — The insurance industry can save millions of dollars in property claims resulting from natural disasters by adopting solar and other renewable energy technologies when planning for nature's fury. A report from the U.S. Department of Energy's National Renewable Energy Laboratory

  18. "Insurance as a Risk Management Instrument for Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security and Resilience" Report (March 2013) | Department of Energy "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) The Office of Electricity Delivery and Energy Reliability has released a report that examines the key risks confronting critical energy infrastructure and ways in which the

  19. A scoping study on the costs of indoor air quality illnesses:an insurance loss reduction perspective

    SciTech Connect (OSTI)

    Chen, Allan; Vine, Edward L.

    1998-08-31

    The incidence of commercial buildings with poor indoor air quality (IAQ), and the frequency of litigation over the effects of poor IAQ is increasing. If so, these increases have ramifications for insurance carriers, which pay for many of the costs of health care and general commercial liability. However, little is known about the actual costs to insurance companies from poor IAQ in buildings. This paper reports on the results of a literature search of buildings-related, business and legal databases, and interviews with insurance and risk management representatives aimed at finding information on the direct costs to the insurance industry of poor building IAQ, as well as the costs of litigation. The literature search and discussions with insurance and risk management professionals reported in this paper turned up little specific information about the costs of IAQ-related problems to insurance companies. However, those discussions and certain articles in the insurance industry press indicate that there is a strong awareness and growing concern over the "silent crisis" of IAQ and its potential to cause large industry losses, and that a few companies are taking steps to address this issue. The source of these losses include both direct costs to insurers from paying health insurance and professional liability claims, as weIl as the cost of litigation. In spite of the lack of data on how IAQ-related health problems affect their business, the insurance industry has taken the anecdotal evidence about their reality seriously enough to alter their policies in ways that have lessened their exposure. We conclude by briefly discussing four activities that need to be addressed in the near future: (1) quantifying IAQ-related insurance costs by sector, (2) educating the insurance industry about the importance of IAQ issues, (3) examining IAQ impacts on the insurance industry in the residential sector, and (4) evaluating the relationship between IAQ improvements and their impact on energy use.

  20. Life Extension Program

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  1. Life Extension Programs

    National Nuclear Security Administration (NNSA)

    B61-12 Life Extension Program Milestone: First Full-System Mechanical Environment Test Completed Successfully http:nnsa.energy.govmediaroompressreleasesb61lep

  2. Battery Life Data Analysis

    Energy Science and Technology Software Center (OSTI)

    2008-07-01

    The FreedomCar Partnership has established life goals for batteries. Among them is a 15 year calendar life. The software and the underlying methodology attempt to predict cell and battery life using, at most, two years of test data. The software uses statistical models based on data from accelerated aging experiments to estimate cell life. The life model reflects the average cell performance under a given set of stress conditions with time. No specific form ofmore » the life model is assumed. The software will fit the model to experimental data. An error model, reflecting the cell-to-cell variability and measurement errors, is included in the software. Monte Carlo simulations, based on the developed models, are used to assess Lack-of-fit and develop uncertainty limis for the average cell life. The software has three operating modes: fit only, fit and simulation and simulation only. The user is given these options by means of means and alert boxes.« less

  3. Life Extension Programs

    National Nuclear Security Administration (NNSA)

    in the U.S. and abroad.

    B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test http:www.nnsa.energy.govmediaroompressreleaseswindtunnel

  4. Battery Life Predictive Model

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  5. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace » Work/Life Balance /careers/_assets/images/careers-icon.jpg Work/Life Balance Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. What our employees say: Health & Wellness "The Lab pays 80 percent of my family's medical premiums with Blue Cross Blue Shield of New Mexico." Retirement & Savings "With the Lab matching my

  6. Life With Energy

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will describe ways in which technology affects the environment, both negatively and positively, and identify different forms of energy and their advantages/disadvantages. They will also determine the benefits as well as the environmental harms of using energy to improve our quality of life.

  7. Creating New Incentives for Risk Identification and Insurance Process for the

    Office of Scientific and Technical Information (OSTI)

    Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (initial award through Award Modification 2); Energy & Risk Transfer Assessment (Award Modifications 3 - 6) Final Technical Report for DOE Award DE-FG26-04NT42250 Issued by The Center for Infrastructure Protection (formerly the Critical Infrastructure Protection Program) The Hon. Claude M. "Mick" Kicklighter Director and Principal Investigator George Mason University School of

  8. LIFE IC | Open Energy Information

    Open Energy Info (EERE)

    Zip: S60 5WG Product: LIFE-IC is a UK national resource centre for the development of all new energy technology innovations. References: LIFE-IC1 This article is a stub. You can...

  9. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  10. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  11. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  12. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  13. Program Evaluation: Program Life Cycle

    Broader source: Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  14. Life Sciences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Sciences Having a healthy impact on energy, medicine and the environment Argonne National Laboratory's life sciences research has yielded a portfolio of advanced technologies that are having a profound impact on medical technologies and therapies, energy production and sustainability, and bioremediation. Argonne's roster of world-class biology and environmental scientists develop viable technologies - from cancer therapies and antibody engineering to biological methane production and

  15. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  16. Work & Life at Munich | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Munich Work & Life at Munich Living at Germany's Cosmopolitan Crossroads offers easy access to outdoor pursuits in the Alps and travel throughout Europe. Click to...

  17. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  18. Powering the Future with LIFE

    SciTech Connect (OSTI)

    Moses, E I; Diaz de la Rubia, T

    2009-04-28

    This month's issue has the following articles: (1) Leveraging the National Ignition Facility to meet the climate-energy challenge; (2) The journal into a new era of scientific discoveries; and (3) Safe and sustainable energy with LIFE (Laser Inertial Fusion Energy).

  19. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADCLES Chemistry, Life, and Earth Sciences The CLES Directorate is home to world class capabilities in chemistry, bioscience, and earth and environmental sciences. Structural protein research Structural protein research A wide range of protein folding research Field Instrument Deployments and Operations (FIDO) Field Instrument Deployments and Operations (FIDO) Atmospheric science research Quantum Dots Quantum Dots Quantum dot research for energy and light Contact Us Associate Director Nan Sauer

  20. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory...

  1. Licensable Life Science Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensable Life Science Technologies A selection of biology-based technologies available for licensing PDF icon licensable_biological_technologies

  2. Title: The Life-cycle

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author affiliation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also affiliated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, ejalm@lbl.gov, phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720

  3. Life extension system for fossil power plants

    SciTech Connect (OSTI)

    Isreb, M.

    1996-11-01

    A general, multi-disciplinary life extension system for new and existing power plants has been absent in the literature. The present paper presents a general, multi-disciplinary life extension system for new and existing fossil power plants. The paper formulates the optimization problem framework for plants` components. The paper discusses the framework of the iterative process, objective functions, plant components, life extension constraints, new life or remnant life parameters and optimization techniques. Other system attributes discussed in the paper include: design invariant parameters, relationships between plant components and objective functions and a strategy for system sizing and simulation.

  4. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  5. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Life Cycle Modeling of Propulsion Materials Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle ...

  6. Limited-life cartridge primers

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Rosen, Robert S. (San Ramon, CA)

    1998-01-01

    A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.

  7. Limited-life cartridge primers

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Rosen, Robert S.

    2005-04-19

    A cartridge primer which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML's would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers.

  8. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  9. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. Limited-life cartridge primers

    DOE Patents [OSTI]

    Makowiecki, D.M.; Rosen, R.S.

    1998-06-30

    A cartridge primer is described which utilizes an explosive that can be designed to become inactive in a predetermined period of time: a limited-life primer. The explosive or combustible material of the primer is an inorganic reactive multilayer (RML). The reaction products of the RML are sub-micron grains of non-corrosive inorganic compounds that would have no harmful effects on firearms or cartridge cases. Unlike use of primers containing lead components, primers utilizing RML`s would not present a hazard to the environment. The sensitivity of an RML is determined by the physical structure and the stored interfacial energy. The sensitivity lowers with time due to a decrease in interfacial energy resulting from interdiffusion of the elemental layers. Time-dependent interdiffusion is predictable, thereby enabling the functional lifetime of an RML primer to be predetermined by the initial thickness and materials selection of the reacting layers. 10 figs.

  11. Fire and Life Safety Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Department Fire and Life Safety Information Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department Fire and Life Safety Information Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Fire Extinguishers Fire Extinguisher PDF, 182 Kb Fire Extinguishers - Fast Facts (PDF) PDF, 182 Kb Fire Extinguishers - U.S Fire Administration Website PDF, 182 Kb

  12. Life Cycle Inventory Database | Department of Energy

    Energy Savers [EERE]

    Past Projects » Life Cycle Inventory Database Life Cycle Inventory Database The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for information about the total energy and resource impacts of developing and using various commercial building materials, components, and assemblies. The database helps manufacturers, building designers, and developers select energy-efficient and environmentally friendly materials, products, and processes for their projects based on the

  13. Patent: Long life lithium batteries with stabilized electrodes | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Long life lithium batteries with stabilized electrodes Citation Details Title: Long life lithium batteries with stabilized electrodes

  14. Extend the Operating Life of Your Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In such cases, motor life can be extended by purchasing special motors, such as those conforming to the Institute of Electrical and Electronics Engineers (IEEE) 841 specifcations, ...

  15. Life Extension Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Life Extension Programs Life Extension Programs NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Sandia California works on nuclear weapon W80-4 Life Extension Program The W80-4 mechanical team at Sandia National Laboratories reviews the

  16. Life Extension Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The term "life extension program (LEP)" means a program to repairreplace components of nuclear weapons to ensure the ability to meet military requirements. By extending the ...

  17. HEV America End of Life Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    END OF LIFE TEST SEQUENCE Revision 0 September 1, 2006 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Roberta Brayer Approved by: _________ _________________________________ Date: _______________ _____ Donald B. Karner ©2005 Electric Transportation Applications All Rights Reserved HEV America End of Life Test Sequence Page 1 HEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of HEV America

  18. Work and Life Balance | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Balancing Work with Life Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Flex Ability: Balancing Work with Life Achieving work/life balance is a much-talked-about topic. According to GE Healthcare's Kelly Piacsek, "GE hires people for what's inside their head-what they know-and the specific hours you spend at work

  19. Updating the LED Life Cycle Assessment

    Energy Savers [EERE]

    Part 2: LED Manufacturing and Performance 7 Goal of the New Study Review new literature on the life- cycle assessment of LED products. Determine if newer A-19 products...

  20. Work & Life at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Niskayuna Living in New York's Tech Valley provides easy access to arts, culture and the great outdoors. Click to email this to a friend (Opens in new window)...

  1. Life at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media Life at Argonne What's it like to work at Argonne? You've come to a place...

  2. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  3. Life-Cycle Analysis of Geothermal Technologies

    Broader source: Energy.gov [DOE]

    The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects.

  4. Work-Life Balance | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to my work, and when I go home, I'm able to have a life outside work. I used to play soccer, so I'm looking to join a women's soccer team in the Chicago suburbs." - Emily...

  5. Life Extension Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Alvin Leung and Matt H. B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA)...

  6. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospective Life Cycle and Technology Analysis Advanced Manufacturing Office Peer Review May 28, 2015 Diane J. Graziano E. Masanet R. Huang M.E. Riddle This presentation does not contain any proprietary, confidential, or otherwise restricted information. DOE-AMO Analysis Summary - ANL/NU * Quantifying, from a life-cycle perspective, the enabling effects of advanced manufacturing in achieving AMO's mission for energy savings across the economy * Assessing net energy, emissions, and economic

  7. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity

  8. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  9. How the Weatherization Assistance Program Changed Jasmine's Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky...

  10. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle ... Analysis Activities at National Renewable Energy Laboratory Life Cycle Assessment of ...

  11. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM ...

  12. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products PDF icon ...

  13. Bioproduct Life Cycle Analysis with the GREET Model | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioeconomy Bioproduct Life Cycle Analysis with the GREETTM Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory PDF icon ...

  14. LEP: Extending stockpile life | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear weapons are intricate and, in a sense, ...

  15. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Our Mission Maintaining the Stockpile Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are ...

  16. Recommendations for Maximizing Battery Life in Photovoltaic Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons ...

  17. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  18. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  19. Page 8, Benefit Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits Registration Form - 853 Kb - Allows an employee to enroll or waive health insurance coverage. SF-2817 - Life Insurance Election Form (Federal Employee Group Life...

  20. Quality of Work Life brochure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality of Work Life brochure PDF icon 2013_08_29 hr_worklifepolicies brochure

  1. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  2. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technologys life capability with a high degree of confidence.

  3. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  4. Life Redefined: Microbes Built with Arsenic

    SciTech Connect (OSTI)

    Webb, Sam

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  5. Sandia National Laboratories: Careers: Life at Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life at Sandia Karla Software Developer and Mechanical Engineer "There is always something new and exciting to learn. Sandia gives me the opportunity to collaborate with the best scientists and engineers in bioscience, climate, microsystems, and combustion." Karla - Software Developer and Mechanical Engineer Kelsey Aerospace Engineer "Sandia provides amazing educational opportunities and career path flexibility. All of my teammates are motivated and passionate about our work. I

  6. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  7. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Michael Wang, Amgad Elgowainy, Jeongwoo Han Argonne National Laboratory The 2014 DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting Washington, DC June 18, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: van002 Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete: 70% (for FY14)  Indicators and

  8. Extend the Operating Life of Your Motor

    Broader source: Energy.gov [DOE]

    Certain components of motors degrade with time and operating stress. Electrical insulation weakens over time with exposure to voltage unbalance, over and undervoltage, voltage disturbances, and temperature. Contact between moving surfaces causes wear. Wear is affected by dirt, moisture, and corrosive fumes and is greatly accelerated when lubricant is misapplied, becomes overheated or contaminated, or is not replaced at regular intervals. When any components are degraded beyond the point of economical repair or replacement, the motor’s economic life ends.

  9. INSURANCE-ELIGIBILITY.pdf

    Energy Savers [EERE]

  10. Behavioral Health Insurance Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavioral Health Behavioral Health Preauthorization from BCBSNM is required for all behavioral health services. Contact Behavioral Health Unit Mental health services for retirees BlueCross BlueShield of New Mexico (BCBSNM) helps LANL employees identify and benefit from the mental health and substance abuse services they may need through a network of providers, programs and facilities. Use the BCBSNM Provider Finder to select an independently contracted and licensed behavioral health

  11. Insurance Issues for Paratransit

    Office of Environmental Management (EM)

    CONFERENCE of STATE LEGISLATURES The Forum for America's Ideas Tax Policies and Incentives and Energy Development Jim Reed, Group Director for Environment, Energy and Transportation, NCSL Jacquelyn Pless, Policy Associate, NCSL Energy Program NATIONAL CONFERENCE of STATE LEGISLATURES The Forum for America's Ideas NCSL Overview  Bipartisan organization  Serves the 7,382 legislators and 30,000+ legislative staff of the nation's 50 states, its commonwealths and territories  Covers all

  12. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect (OSTI)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

  13. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part I: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED ...

  14. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, ...

  15. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle ...

  16. Bioproduct Life Cycle Analysis with the GREET Model

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  17. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Breakout Session 2D-Building Market ...

  18. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  19. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  20. Day4 Energy Certus Life Cycle JV | Open Energy Information

    Open Energy Info (EERE)

    Day4 Energy Certus Life Cycle JV Jump to: navigation, search Name: Day4 Energy & Certus Life Cycle JV Place: Italy Product: JV company will develop photovoltaic power projects in...

  1. Planetary formation theory developed, tested: predicts timeline for life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary formation theory developed, tested: predicts timeline for life After the Big Bang: Theory suggests first planets formed after first generations of stars The researchers' calculations predict properties of first planet and timeline for life. May 3, 2012 image description The researchers state that the formation of Earth-like planets is not itself a sufficient prerequisite for life. Early galaxies contained strong sources of life-threatening radiation, such as supernovae and black holes.

  2. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    SciTech Connect (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-11

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  3. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    ScienceCinema (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-12

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  4. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  5. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  6. Curiosity rover zaps Mars for life signs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curiosity rover zaps Mars for life signs Mars rover depends on three LANL technologies Curiosity zaps Mars for vital signs: Designed by Lab team, ChemCam looks for crucial elements such as carbon, nitrogen and oxygen. July 30, 2012 Curiosity rover zapping rocks on Mars Power up! The third part of the "LANL Visits Mars" trio is an essential component of the heat-producing Multi-Mission Radioisotope Thermoelectric Generator unit. It powers the rover and keeps the instruments from

  7. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  8. Improving thermocouple service life in slagging gasifiers

    SciTech Connect (OSTI)

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

  9. Evaluation of HEPA filter service life

    SciTech Connect (OSTI)

    Fretthold, J.K.; Stithem, A.R.

    1997-07-14

    Rocky Flats Environmental Technology Site (RFETS), has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and potential accidents. This report summarizes the results of destructive and non-destructive tests on HEPA filters obtained from a wide variety of ages and service conditions. These tests were performed to determine an acceptable service life criteria for HEPA filters used at Rocky Flats Environmental Technology Site (RFETS). A total of 140 filters of various ages (1972 to 1996) and service history (new, aged unused, used) were tested. For the purpose of this report, filter age from manufacture date/initial test date to the current sample date was used, as opposed to the actual time a filter was installed in an operating system.

  10. Life assessments of a boiler economizer unit

    SciTech Connect (OSTI)

    Lichti, K.A.; Thomas, C.W.; Wilson, P.T.; Julian, W.

    1997-09-01

    An economizer which experienced pitting corrosion during a cleaning accident was subject to recurring corrosion fatigue failures. A condition assessment was undertaken to assess the risk of further failures through metallurgical assessment, extreme value pitting assessments, and on-site NDT condition assessment with on-site extreme value pitting analysis. This was followed by a fatigue life assessment in accordance with PD6493. Condition assessment work and lifetime prediction progressed from initial failure investigation through to final recommendations in a stepwise process. Each stage of the work was followed by a review of the findings and an economic assessment of the alternative options i.e. continue with assessment, full economizer replacement or partial replacement. Selective replacement of a portion of the economizer was recommended.

  11. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  12. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  13. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. PDF icon 27637.pdf More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone

  14. Computing, Environment and Life Sciences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events Advancing the Frontiers of Knowledge More The mission of Argonne's Computing, Environment, and Life Sciences (CELS) directorate is to enable groundbreaking scientific and technical accomplishments in areas of critical importance to the 21st century. The CELS directorate integrates Argonne's research in the life sciences with the environmental

  15. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States On May 29, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report).

  16. DOE ESPC Life of Contract Plan Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ESPC Life of Contract Plan Template DOE ESPC Life of Contract Plan Template Document describes the energy savings performance contract (ESPC) Life of Contract (LOC) Plan template. It provides guidance to agency personnel during the post installation performance period of a Department of Energy's (DOEs) Energy Savings Performance Contract (ESPC) project. This document will assist the agency in effective ESPC project administration and management. It is intended to be a guide and may be modified

  17. Recommendations for Maximizing Battery Life in Photovoltaic Systems: A

    Energy Savers [EERE]

    Review of Lessons Learned | Department of Energy Information Resources » Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned Notes, observations and recommendations about the use of batteries in small stand-alone photovoltaic system drawn from over a decade of research at FSEC. The most critical findings were battery life and the importance of an

  18. Briefing: DOE and the Life and Medical Sciences

    Broader source: Energy.gov [DOE]

    Aristides Patrinos, Deputy Director for Research, NYU Center for Urban Science and Progress, discussed DOE and the Life and Medical Sciences in his presentation entitled, The Promise and Challenges of the Human Genome Program. Sharlene Weatherwax, Associate Director, Biological and Environmental Research, Office of Science, DOE, discussed DOE and the Life and Medical Sciences in her presentation entitled, The Department of Energy's Activities Supporting the Life and Medical Sciences.

  19. EV Everywhere: Electric Car Safety, Maintenance, and Battery Life |

    Energy Savers [EERE]

    Department of Energy Electric Vehicle Basics » EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life EV Everywhere: Electric Car Safety, Maintenance, and Battery Life Plug-in electric vehicles (also known as electric cars or EVs) are as safe and easy to maintain as conventional vehicles. While driving conditions and habits will impact vehicle operation and vehicle range, some best practices can help you maximize

  20. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm001_das_2010_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle Modeling of Propulsion Materials

  1. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Life Cycle Cost Programs Building Life Cycle Cost Programs The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Programs to provide computational support for the analysis of capital investments in buildings. They include BLCC5, the Energy Escalation Rate Calculator, Handbook 135, and the Annual Supplement to Handbook 135. BLCC5 Program Register and download. BLCC 5.3-15 (for Windows or Mac OS X). BLCC version 5.3-15 contains the

  2. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on

    Office of Environmental Management (EM)

    Exporting Liquefied Natural Gas from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States

  3. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Environmental Management (EM)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  4. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Part 2: LED Manufacturing and Performance Scholand, Michael; Dillon, Heather E. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE;...

  5. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  6. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model...

  7. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle...

  8. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  9. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  10. Battery Life Estimation (BLE) and Data Analysis - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Battery Life Estimation (BLE) and Data Analysis Argonne National Laboratory Contact ANL About...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting ...

  12. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental ...

  13. High Performance Builder Spotlight: LifeStyle Homes

    SciTech Connect (OSTI)

    2011-01-01

    LifeStyle Homes of Melbourne, Florida, is aiming for affordable net zero energy homes with help from Building America research partner Florida Solar Energy Center.

  14. NREL: U.S. Life Cycle Inventory Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental impact. This database provides individual gate-to-gate, cradle-to-gate and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with

  15. Residual Stresses for Structural Analysis and Fatigue Life Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual ...

  16. Prospective Longitudinal Assessment of Quality of Life for Liver...

    Office of Scientific and Technical Information (OSTI)

    Cancer Patients Treated With Stereotactic Body Radiation Therapy Citation Details In-Document Search Title: Prospective Longitudinal Assessment of Quality of Life for Liver Cancer ...

  17. Harmonizing Technological Innovation and End-of-Life Strategy

    Energy Savers [EERE]

    Mangold & R. Simon 2015 Pearson Economics 2013 7 Launch Growth Maturity Decline Time Revenue Product Life Span Technology Pulse Estimated U.S. consumer electronic sales 1980 to...

  18. Understanding Battery Life from Atoms to Electrodes. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Battery Life from Atoms to Electrodes. Abstract not provided. Authors: Sullivan, John P Publication Date: 2013-05-01 OSTI Identifier: 1083664 Report Number(s):...

  19. Delaware Company Breathes New Life into Old Post Office Building |

    Office of Environmental Management (EM)

    Department of Energy Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local

  20. Observing the Sparks of Life | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing the Sparks of Life December 31, 2013 Observing the Sparks of Life EFRC researchers isolate a photosynthetic complex - arguably the most important bit of organic chemistry on the planet - in its complete functioning state. http://science.energy.gov/discovery-and-innovation/stories/2013/127045/ In the News

  1. Computing, Environment & Life Sciences Directorate Organization Chart |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Events About Us Organization Chart Staff Directory Career Opportunities Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events About Us Organization Chart Staff Directory Career Opportunities Computing, Environment & Life Sciences Directorate Organization Chart PDF icon cels_org_chart.pdf

  2. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm001_das_2011_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Multi-Material Joining: Challenges and Opportunities

  3. Thermal and Mechanical Design Aspects of the LIFE Engine

    SciTech Connect (OSTI)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  4. Solar Decathlon 2013: Life After the Competition | Department of Energy

    Energy Savers [EERE]

    Life After the Competition Solar Decathlon 2013: Life After the Competition September 30, 2013 - 12:45pm Addthis Following the competition, Norwich University's Delta T-90 House will make its way to Frank Lloyd Wright’s Westcott House in Springfield, Ohio, where it will take on new life as the “Westcott Experiential Design Lab.” | Photo courtesy of Norwich University. Following the competition, Norwich University's Delta T-90 House will make its way to Frank Lloyd Wright's

  5. Application of Distribution Transformer Thermal Life Models to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... based on standard IEC 60076- 7:2005 "Loading guide for oil-immersed power transformers" 4. ... M. Lehtonen, H. Nordman, Effect of Harmonics on Transformers Loss of life, IEEE, ...

  6. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a users guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  7. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Life Cycle GHG Perspective Report.pdf More Documents & Publications Cameron LNG LLC Final Order Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. ...

  8. Physical and Life Sciences 2008 Science & Technology Highlights

    SciTech Connect (OSTI)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  9. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

  10. FPS 12.1 Life Safety, 5/24/2000

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is for the Facility Representative to verify that conditions in the plant provide an appropriate level of life safety for workers conducting operations in the...

  11. Extended Battery Life in Electric Vehicles | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, Ford, University of Michigan Extend Battery Life for EVs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  12. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  13. VIDEO: Bringing This Year's Energy Pumpkins to Life | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the test and carved some energy pumpkins of our own. In the video above, see a CFL, solar panels, an atom and a wind turbine come to life in spooky, candlelit time-lapse --...

  14. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  15. Woman Credits JLab Technology With Saving Her Life | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2008 -- When Sue Parham underwent tests prior to undergoing surgery for breast cancer, she had no idea how much her life was about to change. Parham's surgeon had sent her...

  16. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  17. LIFE Materials: Thermomechanical Effects Volume 5 - Part I

    SciTech Connect (OSTI)

    Caro, M; DeMange, P; Marian, J; Caro, A; Fluss, M; Zepeda-Ruiz, L

    2009-05-07

    Improved fuel performance is a key issue in the current Laser Inertial-Confinement Fusion-Fission Energy (LIFE) engine design. LIFE is a fusion-fission engine composed of a {approx}40-tons fuel blanket surrounding a pulsed fusion neutron source. Fusion neutrons get multiplied and moderated in a Beryllium blanket before penetrating the subcritical fission blanket. The fuel in the blanket is composed of millions of fuel pebbles, and can in principle be burned to over 99% FIMA without refueling or reprocessing. This report contains the following chapters: Chapter A: LIFE Requirements for Materials -- LIFE Fuel; Chapter B: Summary of Existing Knowledge; Chapter C: Identification of Gaps in Knowledge & Vulnerabilities; and Chapter D: Strategy and Future Work.

  18. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News,...

  19. Wallace to bring earthquakes to life for Caf Scientifique New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wallace to bring earthquakes to life for Caf Scientifique New Mexico series The fun, free conversation series provides a way for teens to explore the latest ideas in science and...

  20. Statement on B61 Life Extension Program and Future Stockpile...

    National Nuclear Security Administration (NNSA)

    to discuss the President's plans for nuclear weapon modernization focused on the B61 Life Extension Program (LEP) and the Nuclear Weapons Council (NWC) approved "3+2 Strategy." ...

  1. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect (OSTI)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.

  2. Workshop to develop deep-life continental scientific drilling projects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  3. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Improved Galvanizing Bath Hardware and Materials Result in Energy and Cost Savings Flat-rolled surface-coated steel, including galvanized and aluminized sheet, is one of the fastest growing, most profitable sectors of the U.S. steel industry. Coating steel sheets by continuous hot dipping in a molten metal bath of zinc and aluminum is

  4. Aluminum Bronze Alloys to Improve Furnace Component Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aluminum Bronze Alloys to Improve Furnace Component Life Aluminum Bronze Alloys to Improve Furnace Component Life Improved System Increases Steelmaking Furnace Efficiency, Safety, and Productivity Hoods, roofs, and sidewall systems in basic oxygen furnaces (BOFs) and electric arc furnaces (EAFs) enable effluent gases in excess of 3000°F to be properly captured, cooled, and processed prior to delivery to the environmental control equipment. Traditionally, these carbon steel components

  5. Meraculous: Deciphering the 'Book of Life' With Supercomputers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meraculous: Deciphering the 'Book of Life' With Supercomputers Meraculous: Deciphering the 'Book of Life' With Supercomputers Novel Berkeley Algorithms and Computational Techniques Speed Up Genome Assembly, from Months to Minutes June 1, 2015 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Genomev1.jpg Human Chromosomes. Credit: Jane Ades, NHGRI Genomes are like the biological owner's manual for all living things. Cells read DNA instantaneously, getting instructions necessary for an organism to

  6. NREL Battery Thermal and Life Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt079_es_keyser_2011_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization Battery Thermal Modeling and Testing Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

  7. Residual Stresses for Structural Analysis and Fatigue Life Prediction in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE Hydrogen Program

  8. COLLOQUIUM: Chance, Necessity, and the Origins of Life | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab December 2, 2015, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Chance, Necessity, and the Origins of Life Professor Robert Hazen Carnegie Institute of Washington & George Mason University Earth's 4.5 billion year history is a complex tale of deterministic physical and chemical processes, as well as 'frozen accidents'. Most models of life's origins also invoke chance and necessity. Recent research adds two important insights to this discussion. First, chance versus

  9. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Researchers have developed a new technology to advance the life of lithium-ion batteries. A catechol-based polymer binder, developed at Berkeley Lab, interacting with the oxide layer on the surface of commercial silicon (Si), generates powerful adhesion strength and maintains electrode integrity during the drastic volume changes

  10. Bioproduct Life Cycle Analysis with the GREETTM Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproduct Life Cycle Analysis with the GREET TM Model Jennifer B. Dunn Biofuel Life Cycle Analysis Team Lead Systems Assessment Group Argonne National Laboratory Biomass 2014 July 29 and 30, 2014 Selection of bioproducts based on a high-level market analysis 2 Algae Glycerol 1,3-Propanediol Propylene glycol Lipid extraction and hydrogenation Catalytic hydrogenolysis Fermentation Acrylic acid 1,4-Butanediol Clean sugars Isobutanol Polyethylene 3-Hydroxypropionic acid Succinic acid Sugars Corn

  11. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm001_das_2012_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview

  12. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 1 life cycle management solutions GENERATING SUCCESS --- FOR 100 YEARS Tritium Separation at Cernavoda Nuclear - Romania A. Antoniazzi TFG May 5-7, 2015 Copyright © 2015 Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 2 life cycle management solutions Background - Cernavoda Nuclear * SNN-CNE has 2 operating CANDU 6 Heavy Water reactors (706 MWe) * U1 operational 1996,

  13. Green Power Transmission Line Given New Life | Department of Energy

    Office of Environmental Management (EM)

    Power Transmission Line Given New Life Green Power Transmission Line Given New Life March 11, 2010 - 4:34pm Addthis Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Stephen Graff Former Writer & editor for Energy Empowers, EERE Thanks to funds from the American Recovery and Reinvestment Act, construction of a green power

  14. How Particle Physics Improves Your Life | Department of Energy

    Office of Environmental Management (EM)

    Particle Physics Improves Your Life How Particle Physics Improves Your Life April 5, 2013 - 10:33am Addthis Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov Learn More Visit

  15. How the Weatherization Assistance Program Changed Jasmine's Life |

    Office of Environmental Management (EM)

    Department of Energy How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky Mountain Youth Corps The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of

  16. How the Weatherization Assistance Program Changed Jasmine's Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life January 6, 2016 - 11:06am Addthis The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky Mountain Youth Corps. The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of

  17. VIDEO: Bringing Energy Pumpkins to Life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VIDEO: Bringing Energy Pumpkins to Life VIDEO: Bringing Energy Pumpkins to Life October 28, 2015 - 12:26pm Addthis In the video above, the Energy Department's digital team promotes National Energy Action Month by carving some energy pumpkins. | Video by Matty Greene, Energy Department. Marissa Newhall Marissa Newhall Director of Digital Strategy & Communications How can I participate? Download our energy pumpkin carving patterns, or design your own. Be sure to carve carefully with adult

  18. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  19. AVTA: Testing Results on the USPS Long-life Vehicle Conversions...

    Broader source: Energy.gov (indexed) [DOE]

    AEV conversions (2010) - EDAG report USPS e-Long Life Vehicle AEV conversions (2010) - Quantum report USPS e-Long Life Vehicle AEV conversions (2010) - Zap report USPS e-Long Life...

  20. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This ...

  1. Next Generations Safeguards Initiative: The Life of a Cylinder

    SciTech Connect (OSTI)

    Morgan, James B; White-Horton, Jessica L

    2012-01-01

    The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

  2. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  3. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  4. Work & Life at Rio de Janeiro | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Rio de Janeiro Work & Life at Rio de Janeiro Brazil's Research and Development Hub offers the bustle of one of South America's biggest cities alongside world-famous beaches. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Employee Organizations GE Volunteers Council of Rio de Janeiro This group of

  5. Longer life for glyco-based stationary engine coolants

    SciTech Connect (OSTI)

    Hohlfeld, R.

    1996-07-01

    Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

  6. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  7. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  8. Advanced Energy Storage Life and Health Prognostics (INL)

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2011-11-01

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: (1) Developing a statistically robust battery life estimator tool based on both testing and simulation, (2) Developing rapid impedance spectrum measurement techniques that enable onboard power assessment, and (3) Developing an energy storage monitoring system that incorporates both passive and active measurements for onboard systems.

  9. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  10. SLAC-Built Detector Prepares for Life at Jefferson Lab (SLAC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:news.slac.stanford.eduimageslac-built-detector-prepares-life-jefferson-lab Submitted: Tuesday, April 17...

  11. Health Insurance Marketplace Notice New Health Insurance Marketplace...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eligible for a tax credit that lowers your monthly premium or a reduction in certain cost-sharing if your employer does not offer coverage to you at all or does not offer coverage...

  12. Brain surgery breathes new life into aging plants

    SciTech Connect (OSTI)

    Makansi, J.

    2006-04-15

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  13. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm034_das_2010_p.pdf More Documents & Publications Life Cycle Modeling of Propulsion Materials Materials for Advanced Turbocharger Designs CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components

  14. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Associate director for Physical and Life Sciences, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  15. DOE Publishes Report on Accelerated Life Testing of SSL Luminaires

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published the findings of a new study utilizing a highly accelerated life-test method (called the "hammer test") intended to produce failures in SSL luminaires in a reasonable test period, with the goal

  16. Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. MetLife embraces its role as a responsible corporate citizen through implementing energy management policies and investing in renewable energy projects throughout its global enterprise. As part of this commitment to environmental sustainability, MetLife provides alternative commuting options for associates, including encouraging electric vehicle adoption. As of 2014, the company

  17. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results. PDF icon 45153.pdf More Documents & Publications Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Vehicle

  18. 100,000 hour design life of turbo compressor packages

    SciTech Connect (OSTI)

    1998-05-20

    Many turbomachinery manufacturers and operators typically quote 100,000 hours as a design limit for service life of turbo compressor components. The Pipeline Research Committee initiated this study to review the life limiting criteria for certain critical components and determine if the design target of 100,000 hours can be safely and reliably met or extended with special component management practices. The first phase of the project was to select the turbomachinery components that would be included in the review. Committee members were surveyed with a detailed questionnaire designed to identify critical components based on: high hours (e.g. at or approaching 100,000 hours) the most common engine types operated by the member organizations, and the components of greatest concern from a risk and expense point of view. The selection made covers a wide range of engine types that are of interest to most of the committee companies. This selection represents some 78% of the high hour units operated by the committee and includes components from GE Frame 3 and Frame 5, Solar Saturn, Rolls Royce Avon, and Cooper RT56 engines. The report goes into detail regarding the various damage mechanism which can be the main life limiting factor of the component; creep, fatigue, environmental attack, wear and microstructure instability. For each of the component types selected, the study identifies the life limiting criteria and outlines how the components may be managed for extended life. Many of the selected components can be reliably operated beyond 100,000 hours by following the management practices set out in the report.

  19. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria Hanrot, Francois Ablitzer, Denis

    2008-10-15

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  20. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  1. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect (OSTI)

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  2. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  3. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei

    1997-12-31

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  4. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind/Electrolysis: Milestone Completion Report | Department of Energy Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis. PDF icon 35404.pdf More Documents & Publications Analysis Activities at National Renewable Energy

  5. GPFS for Life Sciences at NERSC-- GPFSug 2015.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC & JGI collaborative effort! Jason Hick, Rei Lee, Ravi Cheema, and Kjiersten Fagnan! ! GPFS User Group meeting! GPFS for Life Sciences at NERSC --- 1 --- May 2 0, 2 015 Overview of Bioinformatics --- 2 --- A High-level Summary --- 3 --- Bioenergy Carbon C ycling Biogeochemistry Metagenomes Plants Fungi Microbes DNA S ynthesis Science DNA Sequencing Advanced Genomic Technologies ComputaFonal Analysis DNA S ynthesis Metagenome Analysis --- 4 --- Reads (short segments of DNA) generated by

  6. NREL: Transportation Research - NREL's Battery Life Predictive Model Helps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Take Charge NREL's Battery Life Predictive Model Helps Companies Take Charge October 26, 2015 A series of batteries hooked together next to a monitor. An example of a stationary, grid-connected battery is the NREL project from Erigo/EaglePicher Technologies, LLC Technologies. Inverters and nickel cadmium batteries inside of a utility scale 300 kW battery storage system will support Department of Defense micro-grids. Photo by Dennis Schroeder / NREL 32696 Companies that rely on

  7. Microbial Life on the Seafloor: Where's the Energy?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microbial Life on the Seafloor: Where's the Energy? image 1 Pillow basalts on the side of the volcano. image 2 Pillow basalts from from inside the Pisces V. During the past 10 years there has been a growing recognition that the vast expanse of bare, unsedimented rocks on the seafloor harbor abundant and diverse microbial communities. Surprisingly, biofilms rapidly develop as volcanic rocks are produced at the mid-ocean ridges and Seamounts, and these types of microbial biomes are relatively

  8. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S.; Paterson, S.R.; Grunloh, H.

    1995-08-01

    Creep rupture failure of superheater(SH)/-reheater(RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI researchers has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assemblies is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growth laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establish a road map for assessing the remaining life of SH/RH tubes.

  9. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S. ); Paterson, S.R. ); Grunloh, H. )

    1994-02-01

    Creep rupture failure of superheater (SH)/reheater (RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI and its contractors has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive, and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assembly is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk'' category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growths laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establishes a road map for assessing the remaining life of SH/RH tubes.

  10. Stirling engine: Available tools for long-life assessment

    SciTech Connect (OSTI)

    Halford, G.R.; Bartolotta, P.A.

    1991-01-01

    A review is presented for the durability approaches applicable to long-time life assessment of Stirling engine hot-section components. The crucial elements are experimental techniques for generating long-time materials property data (both monotonic and cyclic flow and failure properties); analytic representations of slow strain rate material stress-strain response characteristics (monotonic and cyclic constitutive relations) at high temperatures and low stresses and strains; analytic creep-fatigue-environmental interaction life prediction methods applicable to long lifetimes at high temperatures and small stresses and strains; and experimental verification of life predictions. Long-lifetime design criteria for materials of interest are woefully lacking. Designing against failures due to creep, creep-rupture, fatigue, environmental attack, and creep-fatigue-environmental interaction will require considerable extrapolation. Viscoplastic constitutive models and time-temperature parameters will have to be calibrated for the hot-section materials of interest. Analysis combined with limited verification testing in a short-time regime will be required to build confidence in long-lifetime durability models.

  11. Stirling engine---available tools for long-life assessment

    SciTech Connect (OSTI)

    Halford, G.R.; Bartolotta, P.A. )

    1991-01-05

    A review is presented of the durability approaches applicable to long-time life assessment of Stirling engine hot-section components. The crucial elements are: (i) experimental techniques for generating long-time materials property data (both monotonic and cyclic flow and failure properties), (ii) analytic representations of slow strain rate material stress-strain response characteristics (monotonic and cyclic constitutive relations) at high temperatures and low stresses and strains, (iii) analytic creep-fatigue-environmental interaction life prediction methods applicable to long lifetimes at high temperatures and small stresses and strains, and (iv) experimental verification of life predictions. Long-lifetime design criteria for materials of interest are woefully lacking. Designing against failures due to creep, creep-rupture, fatigue, environmental attack, and creep-fatigue-environmental interaction will require considerable extrapolation. Viscoplastic constitutive models and time-temperature parameters will have to be calibrated for the hot-section materials of interest. Analysis combined with limited verification testing in a short-time regime will be required to build confidence in long-term durability models. A strong need exists for improved long-lifetime durability models.

  12. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  13. The winds of (evolutionary) change: Breathing new life into microbiology

    SciTech Connect (OSTI)

    Olsen, G.J.; Woese, C.R.; Overbeek, R.A.

    1996-03-01

    To date, over 1500 prokaryotes have been characterized by small subunit rRNA sequencing and molecular phylogeny has had an equally profound effect on our understanding of relationship among eukaryotic microorganisms. The universal phylogenetic tree readily shows however how artificial the strong distinction between the eukaryote and prokaryotes has become. The split between the Archaea and the Bacteria is now recognized as the primary phylogenetic division and that the Eucarya have branched from the same side of the tree as the Archaea. Both prokaryotic domains would seem to be of thermophilic origin suggesting that life arose in a very warm environment. Among the Archaea, all of the Crenarchaeota cultured to date are thermophiles, and the deepest euryarchaeal branchings are represented exclusively by thermophiles. Among the Bacteria, the deepest known branchings are again represented exclusively by thermophiles, and thermophilia is widely scattered throughout the domain. The Archaea comprise a small number of quite disparate phenotypes that grow in unusual niches. All are obligate or facultative anaerobes. All cultured crenarchaeotes are thermophilic, some even growing optimally above the normal boiling temperature of water. The Archaeoglobales are sulfate reducers growing at high temperatures. The extreme halophiles grow only in highly saline environments. The methanogens are confined to a variety of anaerobic niches, often thermophilic. The Bacteria, on the other hand, are notable as being the source of life`s photosynthetic capacity. Five kingdoms of bacteria contain photosynthetic species; and each of the five manifests a distinct type of (chlorophyll-based) photosynthesis.

  14. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    SciTech Connect (OSTI)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  15. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual...

  16. Life Cycle Cost (LCC) Handbook Final Version 9-30-14

    Broader source: Energy.gov [DOE]

    This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform appropriate life-cycle cost analyses (LCCA) for capital projects. LCC Handbook – Final, September 2014

  17. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  18. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies...

  19. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  20. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Office presentation icon 16_life_revision_previsic_update.ppt More Documents & Publications 2014 Water Power Program

  1. Genome To Life Report | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Genome To Life Report Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Charges/Reports Genome To Life Report Print Text Size: A A A FeedbackShare Page DOE Genomes to Life Program Information External link BRINGING THE GENOME TO LIFE - Energy Related Biology in the New Genomic World - A New Research

  2. Improved Die Casting Process to Preserve the Life of the Die Casting Dies

    SciTech Connect (OSTI)

    None

    2004-11-01

    Study the combined effects of die design, proper internal cooling and efficient die lubricants on die life.

  3. Developing A New High Capacity Anode With Long Cycle Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A New High Capacity Anode With Long Cycle Life Developing A New High Capacity Anode With Long Cycle Life 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es020_amine_2012_o.pdf More Documents & Publications Developing High Capacity, Long Life Anodes Developing High Capacity, Long Life Anodes FY 2011 Annual Progress Report for Energy Storage R&D

  4. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  5. Going with the flow: Life cycle costing for industrial pumpingsystems

    SciTech Connect (OSTI)

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-07-08

    Industries worldwide depend upon pumping systems for theirdaily operation. These systems account for nearly 20 percent of theworld's industrial electrical energy demand and range from 25-50 percentof the energy usage in certain industrial plant operations. Purchasedecisions for a pump and its related system components are typicallybased upon a low bid, rather than the cost to operate the system over itslifetime. Additionally, plant facilities personnel are typically focussedon maintaining existing pumping system reliability rather than optimizingthe systems for best energy efficiency. To ensure the lowest energy andmaintenance costs, equipment life, and other benefits, the systemcomponents must be carefully matched to each other, and remain sothroughout their working lives. Life Cycle Cost (LCC) analysis is a toolthat can help companies minimize costs and maximize energy efficiency formany types of systems, including pumping systems. Increasing industryawareness of the total cost of pumping system ownership through lifecycle cost analysis is a goal of the US Department of Energy (DOE). Thispaper will discuss what DOE and its industry partners are doing to createthis awareness. A guide book, Pump Life Cycle Costs: A Guide to LCCAnalysis for Pumping Systems, developed by the Hydraulic Institute (HI)and Europump (two pump manufacturer trade associations) with DOEinvolvement, will be overviewed. This guide book is the result of thediligent efforts of many members of both associations, and has beenreviewed by a group of industrial end-users. The HI/Europump Guideprovides detailed guidance on the design and maintenance of pumpingsystems to minimize the cost of ownership, as well as LCC analysis. DOE,Hydraulic Institute, and other organizations' efforts to promote LCCanalysis, such as pump manufacturers adopting LCC analysis as a marketingstrategy, will be highlighted and a relevant case studyprovided.

  6. Background and Reflections on the Life Cycle Assessment Harmonization Project

    Broader source: Energy.gov [DOE]

    Despite the ever-growing body of life cycle assessment literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights.

  7. Ask a scientist: Battery life and care | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 issue of Argonne Now, the laboratory science magazine. Sign Up Sign up to receive Argonne Now, the laboratory's biannual science magazine. More » Ask a scientist: Battery life and care By Louise Lerner * July 1, 2012 Tweet EmailPrint This story was originally published in volume 6, issue 1 of Argonne Now, the laboratory's biannual science magazine. I heard I can make my battery last longer if I let it run out before I charge it. Is that true? Dan Abraham, Argonne materials scientist: No, not

  8. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  9. The Brief Life of a Hadron: QCD unquenched

    SciTech Connect (OSTI)

    Pennington, Michael R.

    2015-03-01

    Once upon a time, the picture of hadrons was of mesons made of a quark and an antiquark, and baryons of three quarks. Though hadrons heavier than the ground states inevitably decay by the strong interaction, the successes of the quark model might suggest their decays are a mere perturbation. However, Eef van Beveren, whose career we celebrate here, recognised that decays are an integral part of the life of a hadron. The channels into which they decay are often essential to their very existence. These hold the secrets of strong coupling QCD and teach us the way quarks really build hadrons.

  10. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies determine the life-cycle cost for investments required by Executive Order 13123. PDF icon lcc_guide_05.pdf More Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Life Cycle Cost (LCC) Handbook Final Version 9-30-14 High Impact Technology

  11. Long-Life Self-Renewing Solar Reflector Stack

    DOE Patents [OSTI]

    Butler, Barry Lynn (Solana Beach, CA)

    1997-07-08

    A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.

  12. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    SciTech Connect (OSTI)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  13. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  14. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  15. Technology development: HEPA filter service life test plan

    SciTech Connect (OSTI)

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  16. Preliminary studies to determine the shelf life of HEPA filters

    SciTech Connect (OSTI)

    Gilbert, H.; Fretthold, J.K.; Rainer, F.; Bergman, W.; Beason, D.

    1994-07-18

    We have completed a preliminary study using filter media tests and filter qualification tests to investigate the effect of shelf-life on HEPA filter performance. Our media studies showed that the tensile strength decreased with age, but the data were not sufficient to establish a shelf-life. Thermogravimetric analyses demonstrated that one manufacturer had media with low tensile strength due to insufficient binder. The filter qualification tests (heated air and overpressure) conducted on different aged filters showed that filter age is not the primary factor affecting filter performance; materials and the construction design have a greater effect. An unexpected finding of our study was that sub-standard HEPA filters have been installed in DOE facilities despite existing regulations and filter qualification tests. We found that the filter with low tensile strength failed the overpressure test. The same filter had passed the heated air test, but left the filter so structurally weak, it was prone to blowout. We recommend that DOE initiate a filter qualification program to prevent this occurrence.

  17. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  18. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    SciTech Connect (OSTI)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics into courses or independent research projects requires infrastructure for organizing and assessing student work. Here, we present a new platform for faculty to keep current with the rapidly changing field of bioinformatics, the Integrated Microbial Genomes Annotation Collaboration Toolkit (IMG-ACT). It was developed by instructors from both research-intensive and predominately undergraduate institutions in collaboration with the Department of Energy-Joint Genome Institute (DOE-JGI) as a means to innovate and update undergraduate education and faculty development. The IMG-ACT program provides a cadre of tools, including access to a clearinghouse of genome sequences, bioinformatics databases, data storage, instructor course management, and student notebooks for organizing the results of their bioinformatic investigations. In the process, IMG-ACT makes it feasible to provide undergraduate research opportunities to a greater number and diversity of students, in contrast to the traditional mentor-to-student apprenticeship model for undergraduate research, which can be too expensive and time-consuming to provide for every undergraduate. The IMG-ACT serves as the hub for the network of faculty and students that use the system for microbial genome analysis. Open access of the IMG-ACT infrastructure to participating schools ensures that all types of higher education institutions can utilize it. With the infrastructure in place, faculty can focus their efforts on the pedagogy of bioinformatics, involvement of students in research, and use of this tool for their own research agenda. What the original faculty members of the IMG-ACT development team present here is an overview of how the IMG-ACT program has affected our development in terms of teaching and research with the hopes that it will inspire more faculty to get involved.

  19. Archaeopteryx: Bringing the Dino-Bird to Life

    SciTech Connect (OSTI)

    Bergmann, Uwe

    2011-01-25

    Some 150 million years ago, a strange creature died in a tropical lagoon that today is located in Bavaria, Germany. In 1861, a single feather of this creature was discovered. Not long afterward, a complete fossil was found with the same bird-like feathers but dinosaur-like anatomical features. Darwin had just published 'On the Origin of Species'; could this be the missing link that Darwin's supporters hoped to find? Recently, two of the now eleven discovered Archaeopteryx fossils, and that first feather, were brought to SLAC, where, using the intense X-ray beam, researchers searched for the chemical remains of the original living creatures. Please join us for this lecture, which will explain how the studies attempt to bring the original dino-bird back to life.

  20. 9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY

    SciTech Connect (OSTI)

    Daugherty, W.; Dunn, K.; Hackney, B.; Hoffman, E.; Skidmore, E.

    2011-01-06

    Results from the 9975 Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Materials Storage (KAMS) facility from 10 years to 15 years. This justification is established with the stipulation that surveillance activities will continue throughout this extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The current 10 year storage life was developed prior to storage. A subsequent report was later used to extend the qualification of the 9975 shipping packages for 2 years for shipping plus 10 years for storage. However the qualification for the storage period was provided by the monitoring requirements of the Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the surveillance program began. KAMS is a zero-release facility that depends upon containment by the 9975 to meet design basis storage requirements. Therefore, to confirm the continued integrity of the 9975 packages while stored in KAMS, a 9975 Storage and Surveillance Program was implemented alongside the DOE required Integrated Surveillance Program (ISP) for 3013 plutonium-bearing containers. The 9975 Storage and Surveillance Program performs field surveillance as well as accelerated aging tests to ensure any degradation due to aging, to the extent that could affect packaging performance, is detected in advance of such degradation occurring in the field. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. As such the primary emphasis of the on-going 9975 Surveillance Program is an aging study of the 9975 Viton(reg.sign) GLT containment vessel O-rings and the Celotex(reg.sign) fiberboard thermal insulation at bounding conditions of radiation and elevated temperatures. Other materials of construction, however, are also discussed.

  1. Test results and commercialization plans for long life Stirling generators

    SciTech Connect (OSTI)

    Erbeznik, R.M.; White, M.A.

    1996-12-31

    Many optimistic predictions regarding commercialization of Stirling engines have been announced over the years, but to date no real successes have emerged. STC is excited to announce the availability of beta prototypes for its RemoteGen{trademark} family of free-piston Stirling generators. STC is working with suppliers, manufacturers, and beta customers to commercialize the RemoteGen family of generators. STC is proving that these machines overcome previously inhibiting barriers by providing long life, high reliability, cost effective mass production, and market relevance. Stirling power generators are generally acknowledged to offer much higher conversion efficiencies than direct energy conversion systems. Life and reliability, on the other hand, are generally considered superior for direct conversion systems, as established by the exceptional endurance records (though with degradation) for thermoelectric (TE) and photovoltaic (PV) systems. STC`s unique approaches combine dynamic system efficiency with static system reliability. The RemoteGen family presently includes a 10-watt RG-10, a 350-watt RG-350, and with 1-kW and 3-kW sizes planned for the future. They all use the same basic configuration with flexure bearings, clearance seals, and moving iron linear alternators. The third generation RG-10 has entered limited production with a radioisotope-fueled version, and a niche market for a propane-fueled version has been identified. Market analysis has led STC to focus on early commercial production of the RG-350. The linear alternator power module portion of the RG-350 is also used in its sister BeCool{trademark} family of coolers as the linear motor. By using a common power module, both programs will benefit by each other`s commercialization efforts. The technology behind the RemoteGen generators, test results, and plans for commercialization are described in this paper.

  2. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    SciTech Connect (OSTI)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  3. Outpatient radiographic exposure in the first five years of life

    SciTech Connect (OSTI)

    Fosarelli, P.D.; DeAngelis, C.

    1987-06-01

    Young children receive a variety of diagnostic radiographs over time. In some cases the exposure to radiation may be unwarranted because the films may yield confusing results, or may also need to be repeated because of poor technical quality. Even when the results are clearly negative, the subsequent treatment may proceed as if the film had been positive because of the child's clinical condition. The cumulative effect of such low-dose radiation on infants and children over time is unknown. The number and types of outpatient radiographs received by a cohort of poor children from a hospital-based continuity clinic during their first 5 years of life were reviewed. Also noted were the reason for obtaining the film, whether it was positive for that reason or another, whether the child had a chronic condition that prompted the use of radiograph, and the child's sex, race, and age when the film was obtained. Of the 218 children, 132 (60.6%) received 349 sets of films in their first 5 years. There was no difference in the number of films by race or sex. Chest and posttrauma bone or joint films accounted for 315 sets of films or 90.3% of the total. Overall, 25.8% of the 267 chest films were positive; this varied by age. Only 15% of the chest films were positive in the first year compared with 29 to 49% in the second through fifth years (p less than 0.001). Cough was the respiratory symptom most reliably associated with a positive chest film, both for the cohort (p less than 0.0001) and for children in the first year of life (p less than 0.01).

  4. An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components

    SciTech Connect (OSTI)

    H. Ozaltun; M. H.H. Shen; T. George; C. Cross

    2011-06-01

    An energy based fatigue life prediction framework has been developed for calculation of remaining fatigue life of in service gas turbine materials. The purpose of the life prediction framework is to account aging effect caused by cyclic loadings on fatigue strength of gas turbine engines structural components which are usually designed for very long life. Previous studies indicate the total strain energy dissipated during a monotonic fracture process and a cyclic process is a material property that can be determined by measuring the area underneath the monotonic true stress-strain curve and the sum of the area within each hysteresis loop in the cyclic process, respectively. The energy-based fatigue life prediction framework consists of the following entities: (1) development of a testing procedure to achieve plastic energy dissipation per life cycle and (2) incorporation of an energy-based fatigue life calculation scheme to determine the remaining fatigue life of in-service gas turbine materials. The accuracy of the remaining fatigue life prediction method was verified by comparison between model approximation and experimental results of Aluminum 6061-T6. The comparison shows promising agreement, thus validating the capability of the framework to produce accurate fatigue life prediction.

  5. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and NBS Special Publication 709. PDF icon ashb15.pdf More Documents & Publications Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter

  6. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This brochure is a management tool that can help companies minimize waste and maximize energy efficiency for pumping systems. PDF icon Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary (January 2001) More Documents & Publications Variable Speed

  7. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle

  8. Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione Discovery could mean ingredients for life are abundant on icy space bodies. March 5, 2012 Curiosity rover bears three LANL technologies Inside Titan: This artist's concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA's Cassini spacecraft. Scientists have been trying to determine what is under Titan's

  9. Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sauer named AD for Chemistry, Life, and Earth Sciences Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences Sauer has a distinguished track record as a research scientist with more than 60 publications and technical reports in archival journals. August 9, 2011 Nan Sauer Nan Sauer Contact Communications Office (505) 667-7000 LOS ALAMOS, New Mexico, August 9, 2011- Nancy ("Nan") Sauer is the new associate director for Chemistry, Life, and Earth Sciences (ADCLES) at

  10. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and

  11. Developing a new high capacity anode with long life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new high capacity anode with long life Developing a new high capacity anode with long life 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_11_amine.pdf More Documents & Publications Developing High Capacity, Long Life, and High Power Anodes New High Power Li2MTi6O14Anode Material Cathodes

  12. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our

  13. SEP Success Story: Delaware Company Breathes New Life into Old Post Office

    Energy Savers [EERE]

    Building | Department of Energy Delaware Company Breathes New Life into Old Post Office Building SEP Success Story: Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 10:00am Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design

  14. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Energy Savers [EERE]

    Products | Department of Energy Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL alternatives. The reports for Parts 1 and 2 were published in February 2012 and June 2012, respectively,

  15. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions | Department of Energy GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions November 23, 2015 - 2:57pm Addthis GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model allows researchers and analysts to fully evaluate the energy and emission

  16. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon

  17. Text-Alternative Version: CALiPER Round 7 Testing Results and SSL Product Life Issues

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the CALiPER Round 7 Testing Results and SSL Product Life Issues webcast.

  18. FEMP Offers New eTraining Core Course on Fundamentals of Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metrics and tools for energy-efficient and sustainable buildings and implementing life cycle costing methods and procedures. He is also responsible for the software tool ...

  19. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  20. Tests with Sandia's Davis gun aid B61-12 life extension effort...

    National Nuclear Security Administration (NNSA)

    Tests with Sandia's Davis gun aid B61-12 life extension effort | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  1. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department...

    Office of Environmental Management (EM)

    Final Version 9-30-14 This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform...

  2. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  3. New Materials for High-Energy, Long-Life Rechargeable Batteries...

    Office of Science (SC) Website

    New Materials for High-Energy, Long-Life Rechargeable Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding ...

  4. Life at the Frontiers of Energy Research Video Contest | U.S...

    Office of Science (SC) Website

    Life at the Frontiers of Energy Research Video Contest Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events ...

  5. Night of the Living Trash: Bringing Your Waste Back to Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Night of the Living Trash: Bringing Your Waste Back to Life Night of the Living Trash: Bringing Your Waste Back to Life October 30, 2015 - 12:33pm Addthis Night of the Living Trash: Bringing Your Waste Back to Life Dr. Valerie Sarisky-Reed Dr. Valerie Sarisky-Reed Deputy Director, Bioenergy Technologies Office This Halloween season, the U.S. Department of Energy's Bioenergy Technologies Office (BETO) is highlighting how waste can be "brought back to life" and turned into

  6. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (2015) - Carbon efficiency 85% * Followed ISO 14040 and convened Critical Review Panel to ... following procedures established under ISO 14040 standards on Life Cycle Analyses * ...

  7. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  8. Ensuring the 50 year life of a fissile material container

    SciTech Connect (OSTI)

    Glass, R.E.; Towne, T.L.

    1997-12-01

    Sandia was presented with an opportunity in 1993 to design containers for the long term storage and transport of fissile material. This program was undertaken at the direction of the US Department of Energy and in cooperation with Lawrence Livermore National Laboratory and Los Alamos National Laboratory which were tasked with developing the internal fixturing for the contents. The hardware is being supplied by Allied Signal Federal Manufacturing and Technologies, and the packaging will occur at Mason and Hangar Corporation`s Pantex Plant. The unique challenge was to design a container that could be sealed with the fissile material contents; and, anytime during the next 50 years, the container could be transported with only the need for the pre-shipment leak test. This required not only a rigorous design capable of meeting the long term storage and transportation requirements, but also resulted in development of a surveillance program to ensure that the container continues to perform as designed over the 50-year life. This paper addresses the design of the container, the testing that was undertaken to demonstrate compliance with US radioactive materials transport regulations, and the surveillance program that has been initiated to ensure the 50-year performance.

  9. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect (OSTI)

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  10. Parameter Study of the LIFE Engine Nuclear Design

    SciTech Connect (OSTI)

    Kramer, K J; Meier, W R; Latkowski, J F; Abbott, R P

    2009-07-10

    LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power is held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.

  11. Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals

    SciTech Connect (OSTI)

    Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

    1997-12-31

    The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

  12. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  13. Genomes to Life Project Quartely Report October 2004.

    SciTech Connect (OSTI)

    Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel; Geist, Al; Gorin, Andrey; Xu, Ying; Palenik, Brian

    2005-02-01

    This SAND report provides the technical progress through October 2004 of the Sandia-led project, %22Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,%22 funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these - 4 - pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort. More information about this project, including a copy of the original proposal, can be found at www.genomes-to-life.org Acknowledgment We want to gratefully acknowledge the contributions of the GTL Project Te

  14. End-of-life flows of multiple cycle consumer products

    SciTech Connect (OSTI)

    Tsiliyannis, C.A.

    2011-11-15

    Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g. electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g. Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is useful, the latter being the target of enacted legislation aiming at increasing reuse.

  15. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  16. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  17. Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Benefits Welcome to the Department of Energy's benefits page! There are many benefit entitlements for Federal employees and their families. Some new employees and employees converting from a temporary position to a permanent may be able to enroll in health insurance, dental insurance, vision insurance, flexible spending account, life insurance, and/or apply for long term care insurance. Your appointment type determines your eligibility for enrollment. There are specific timeframes

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  20. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Patents [OSTI]

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  1. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Ryan, Jack L. (West Richland, WA)

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  2. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead Scientist : Gannet Hallar For data sets, see below. Abstract Current estimates indicate that new particle formation globally account for a majority of Cloud

  3. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  4. The Life of Enrico Fermi | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The Life of Enrico Fermi The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us The Life of Enrico Fermi Print Text Size: A A A FeedbackShare Page Enrico Fermi Click for a story about the photograph On December 2, 1942, Enrico Fermi and his team of

  5. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUMP LIFE CYCLE COSTS: PUMP LIFE CYCLE COSTS: A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS EXECUTIVE SUMMARY T O F E N E R G Y DE P A R T M EN U E N I T E D S T A T S O F A E R IC A M A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Hydraulic Institute Europump uropump Introduction Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems is the result of a collaboration between the Hydraulic

  6. Developing High Capacity, Long Life, and High Power Anodes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Life, and High Power Anodes Developing High Capacity, Long Life, and High Power Anodes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es020_amine_2010_o.pdf More Documents & Publications Developing a new high capacity anode with long life Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2009 Energy Storage R&D Annual

  7. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our

  8. Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into

  9. Building America Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LifeStyle Homes Melbourne, Florida PARTNER INFORMATION Builder: LifeStyle Homes Location: Melbourne, FL Building America Partnership for Improved Residential Construction, ba-pirc.org Partner Products: SunSmart, solar- powered homes, and zero energy homes Application: New, single-family Partnership Period: 2009-present Climate Zone: Hot-humid PERFORMANCE DATA SunSmart HERS Index Score: ≤ 60 Example Home: Size: 2,313 ft 2 Value of SunSmart package (included in all LifeStyle Homes and including

  10. CALiPER Round 7 Testing Results and SSL Product Life Issues | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7 Testing Results and SSL Product Life Issues CALiPER Round 7 Testing Results and SSL Product Life Issues This April 9, 2009 webcast provided an overview of CALiPER's Round 7 testing results, and an update on the emerging understanding of service life and long-term reliability for solid-state lighting products. Heidi Steward of Pacific Northwest National Laboratory (PNNL) highlighted the testing results from CALiPER Round 7, including featured product categories outdoor lighting,

  11. Life-threatening Cerebral Edema Caused by Acute Occlusion of a Superior Vena Cava Stent

    SciTech Connect (OSTI)

    Sofue, Keitaro Takeuchi, Yoshito Arai, Yasuaki; Sugimura, Kazuro

    2013-02-15

    A71-year-old man with advanced lung cancer developed a life-threatening cerebral edema caused by the acute occlusion of a superior vena cava (SVC) stent and was successfully treated by an additional stent placement. Although stent occlusion is a common early complication, no life-threatening situations have been reported until now. Our experience highlights the fact that acute stent occlusion can potentially lead to the complete venous shutdown of the SVC, resulting in life-threatening cerebral edema, after SVC stent placement. Immediate diagnosis and countermeasures are required.

  12. Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life

    Office of Environmental Management (EM)

    Extension R&D | Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D September 29, 2010 - 11:38am Addthis The U.S. Department of Energy (DOE), U.S. Nuclear Regulatory Commission (NRC), and the Nuclear Energy Institute (NEI) will co-sponsor a "Second Workshop on U.S. Nuclear Power Plant Life Extension Research and Development" planned for February 22-24,

  13. Genomes to life project quarterly report June 2004.

    SciTech Connect (OSTI)

    Heffelfinger, Grant S.

    2005-01-01

    This SAND report provides the technical progress through June 2004 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort.

  14. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  15. To bolster lithium battery life, add a little salt > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Genius Award' In This Section EMC2 News Archived News Stories To bolster lithium battery life, add a little salt August 13th, 2014 By Blaine Friedlander Archer Lu...

  16. DOE Brochure Highlights Ethanol Life-Cycle Results Obtained with GREET

    SciTech Connect (OSTI)

    2009-01-18

    The U.S. Department of Energy (DOE) recently published a brochure highlighting the efficacy of Argonne National Laboratory's GREET model in evaluating the complete energy life cycle for ethanol.

  17. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  18. Rare earths for life: an 85th birthday visit with Mr. Rare Earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who's being honored for over...

  19. Moving from Petroleum to Plants to Energize our World (A "Life...

    Office of Scientific and Technical Information (OSTI)

    for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the 'Life at the ... for Direct Catalytic Conversion of Biomass to Biofuels) Publication Date: 2011-05-01 ...

  20. The significance of Li-ion batteries in electric vehicle life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction Title The significance of Li-ion batteries in...

  1. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect (OSTI)

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  2. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  3. Life at the Frontiers of Energy Research Video Contest | U.S...

    Office of Science (SC) Website

    Life at the Frontiers of Energy Research Video Contest News News Home Featured Articles ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  4. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Broader source: Energy.gov (indexed) [DOE]

    Power Systems | Department of Energy A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon lifecycle_analysis_of_geothermal_systems_draft.pdf More Documents & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the

  5. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin PDF icon 2004_deer_abbott.pdf More Documents & Publications Shell Gas to Liquids in

  6. Researchers Funded by the DOE "Genomes to Life" Program Achieve Important

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advance in Developing Biological Strategies to Produce Hydrogen, Sequester Carbon Dioxide and Clean up the Environment | Department of Energy Researchers Funded by the DOE "Genomes to Life" Program Achieve Important Advance in Developing Biological Strategies to Produce Hydrogen, Sequester Carbon Dioxide and Clean up the Environment Researchers Funded by the DOE "Genomes to Life" Program Achieve Important Advance in Developing Biological Strategies to Produce Hydrogen,

  7. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries Citation Details In-Document Search Title: Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon

  8. Improving the Cycling Life of Aluminum and Germanium Thin Films for use as

    Office of Scientific and Technical Information (OSTI)

    Anodic Materials in Li-Ion Batteries. (Technical Report) | SciTech Connect Technical Report: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. Abstract not provided. Authors: Hudak, Nicholas ; Huber, Dale L. ; Gulley, Gerald Publication Date: 2014-09-01 OSTI Identifier:

  9. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two

  10. High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon highpressure_fuelcylinders_ostw.pdf More Documents & Publications Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels The Compelling Case for Natural Gas Vehicles U.S. Department of Energy

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  12. Advanced Energy Storage Life and Health Prognostics (INL) FY 2012 Annual Progress Report

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-10-01

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: A statistically robust offline battery calendar life estimator tool based on both testing and simulation, and Novel onboard sensor technology for improved online battery diagnostics and prognostics.

  13. Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Life Cycle of Tribal Clean Energy Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy June 29, 2016 11:00AM to 12:30PM MDT According to DOE's National Renewable Energy Laboratory, most of the hundreds of lifecycle assessments published on electricity generation technologies over the last 30 years only assemble lifecycle inventories, quantifying the emissions to the environment or the use of resources rather than reporting effects on environmental

  14. Observing the Sparks of Life | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Observing the Sparks of Life Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 12.30.13 Observing the Sparks of Life Print Text Size: A A A Subscribe FeedbackShare Page EFRC researchers isolate a photosynthetic complex - arguably the most important bit of organic chemistry on the planet - in its complete functioning state. This work, featured in the Office of

  15. Ideal balance of work, play makes outdoor enthusiast's James Miller life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enviable Ideal balance of work, play makes outdoor enthusiast's life enviable Ideal balance of work, play makes outdoor enthusiast's James Miller life enviable Nuclear engineer graduate research assistant gets valuable experience while taking advantage of local outdoor recreational activities. August 2, 2012 James Miller Miller first came to the Lab in 2006 as a summer student. His college advisor, a former Laboratory employee, found him an internship through the student programs office.

  16. Fall Lectures Feature Life of Einstein; Exploring Our World With Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators | Jefferson Lab Fall Lectures Feature Life of Einstein; Exploring Our World With Particle Accelerators NEWPORT NEWS, Va., Sept. 22, 2010 - Jefferson Lab's first 2010 Fall Science Series lecture, "Einstein For Everyone," is set for Tuesday, Oct. 5, and will feature the life, challenges and achievements of the young Albert Einstein. Einstein was a rebel who seemed doomed to fail, according to guest lecturer Robert Piccioni, author of "Everyone's Guide to Atoms,

  17. Life at the Frontiers of Energy Research Video Contest | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Life at the Frontiers of Energy Research Video Contest Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 04.22.11 Life at the Frontiers of Energy Research Video Contest Print Text Size: A A A Subscribe FeedbackShare Page April 22, 2011 :: The Office of Science announced the winners of the Energy Frontier Research Centers Video Contest External

  18. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to

  19. VP 100: Illinois Wind Farm Breathes New Life Into Businesses | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Illinois Wind Farm Breathes New Life Into Businesses VP 100: Illinois Wind Farm Breathes New Life Into Businesses September 23, 2010 - 12:46pm Addthis The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County Economic Development Council The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County Economic Development Council Stephen Graff Former Writer

  20. ESPC Best Practices from Life of Contract Field Reviews | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Best Practices from Life of Contract Field Reviews ESPC Best Practices from Life of Contract Field Reviews Presentation discusses energy savings performance contract (ESPC) project field review observations, pre-award planning, post-award management of changes, and more best practices. PDF icon 5_12_espcbestpractices.pdf More Documents & Publications Energy Savings Performance Contract ENABLE Briefing Federal Utility Partnership Working Group Meeting: Washington Update Federal

  1. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  2. Bringing Fundamental Energy Concepts to Life ... en Español | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bringing Fundamental Energy Concepts to Life ... en Español Bringing Fundamental Energy Concepts to Life ... en Español May 5, 2015 - 10:15am Addthis Stephanie von Numers Communications and Web Coordinator, Education & Workforce Development What are the key facts? Find energy-related educational materials in Spanish, including an Energy Literacy video series developed by the Energy Department, the American Geosciences Institute, and the National Center for Science Education.

  3. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer used for Corn, Soybean, and Stover Production | Department of Energy Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a

  4. Washington: When Life Gives You Solar, Make Syngas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When Life Gives You Solar, Make Syngas Washington: When Life Gives You Solar, Make Syngas November 8, 2013 - 12:00am Addthis Pacific Northwest National Laboratory (PNNL) is developing a new method for combining solar energy with modified natural gas power plants. This concentrating solar power (CSP) system harnesses sunlight to produce syngas, which is a fuel capable of driving a standard heat engine to produce electricity. In addition to offsetting the need for fossil fuels in traditional power

  5. EERE Success Story-Washington: When Life Gives You Solar, Make Syngas |

    Office of Environmental Management (EM)

    Department of Energy When Life Gives You Solar, Make Syngas EERE Success Story-Washington: When Life Gives You Solar, Make Syngas November 8, 2013 - 12:00am Addthis Pacific Northwest National Laboratory (PNNL) is developing a new method for combining solar energy with modified natural gas power plants. This concentrating solar power (CSP) system harnesses sunlight to produce syngas, which is a fuel capable of driving a standard heat engine to produce electricity. In addition to offsetting

  6. Evaluation of Hose in Hose Transfer Line Service Life for Hanford's Interim Stabilization Program

    SciTech Connect (OSTI)

    TORRES, T.D.

    2000-08-24

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program, defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program, has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will be exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning. Prudent engineering dictates that the equipment placed in service have a working life in excess of this forecasted time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer and published literature. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are process fluid characteristics, ambient environmental conditions, and the manufacturer's stated shelf life. This evaluation examines the manufacturer's certification of shelf life, the manufacturer's certifications of chemical compatibility with waste, and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials to evaluate transfer line service life.

  7. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  8. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Ryan, Jack L. (West Richland, WA)

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  9. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOE Patents [OSTI]

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  10. A review of the effects of coolant environments on the fatigue life of LWR structural materials.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.

    2009-04-01

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code specifies design curves for the fatigue life of structural materials in nuclear power plants. However, the effects of light water reactor (LWR) coolant environments were not explicitly considered in the development of the design curves. The existing fatigue-strain-versus-life ({var_epsilon}-N) data indicate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives in water relative to those in air can be a factor of 15 lower for austenitic stainless steels and a factor of {approx}30 lower for carbon and low-alloy steels. This paper reviews the current technical basis for the understanding of the fatigue of piping and pressure vessel steels in LWR environments. The existing fatigue {var_epsilon}-N data have been evaluated to identify the various material, environmental, and loading parameters that influence fatigue crack initiation and to establish the effects of key parameters on the fatigue life of these steels. Statistical models are presented for estimating fatigue life as a function of material, loading, and environmental conditions. An environmental fatigue correction factor for incorporating the effects of LWR environments into ASME Code fatigue evaluations is described. This paper also presents a critical review of the ASME Code fatigue design margins of 2 on stress (or strain) and 20 on life and assesses the possible conservatism in the current choice of design margins.

  11. A Statistical Method Analyzing LED Lumen Depreciation and Projecting LED Life

    SciTech Connect (OSTI)

    Qiao, Hong; Pulsipher, Trenton C.; Hathaway, John E.; Richman, Eric E.; Radkov, Emil

    2010-05-30

    There is a strong need for a method to represent the potential life of LED products as a critical part of design decisions including cost-effectiveness analysis. The IES LM-80 test method is in place to collect lumen depreciation data but it does not provide for estimation of future long term depreciation. Separate estimation methods are being considered (TM-21) and this paper describes the analysis of a series of LED degradation models and subsequent development of an estimation method. The work involves analysis of a set of engineering models to determine their applicability and define a structure for their use in LED lumen output life based on a lumen output level such as the L70 metric. The analysis has provided valuable information on methods effectively estimating LED life time, and impacts of measurement uncertainties, test duration, interval and other test conditions on selecting degradation models and LED life time projection. A set of guidelines are recommended to estimate LED life from data obtained using the current LM-80 test method.

  12. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  13. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  14. Insurance under M&O Contracts

    National Nuclear Security Administration (NNSA)

    ... * No Special Nuclear Material protection requirements * Primary protection for Classified Information via Physical and Cyber means * NewModern concepts employed at NSC-KC and ...

  15. Cavity degradation risk insurance assessment. Final report

    SciTech Connect (OSTI)

    Hampson, C.; Neill, P.; de Bivort, L.

    1980-01-01

    This study examined the risks and risk management issues involved with the implementation by electric power utilities of compressed air energy storage and underground pumped hydro storage systems. The results are listed in terms of relative risks for the construction and operation of these systems in different geologic deposits, with varying amounts of pressurization, with natural or man-made disasters in the vicinity of the storage equipment, and with different modes of operating the facilities. (LCL)

  16. Insurance under M&O Contracts

    National Nuclear Security Administration (NNSA)

    Security Campus Preproposal Conference & Site Tour 1 Ground Rules * The RFP is the controlling document; nothing said today changes the RFP. Only a formal, written RFP amendment can change the RFP. * If you've heard something that's inconsistent with the RFP, please raise the issue in an email to SEB4@nnsa.doe.gov . * Only written questions will be accepted. Though some questions might be answered today, all questions will be answered via the NSC Competition website. 2 Ground Rules (Cont.) *

  17. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  18. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    SciTech Connect (OSTI)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory. Preliminary design studies looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system.

  19. The Tapestry of Life: Lateral Transfers of Heritable Elements - Scientific Meeting

    SciTech Connect (OSTI)

    Claire M. Fraser, Ph.D.

    2005-12-31

    The Sackler Colloquium The Tapestry of Life: Lateral Transfers of Heritable Elements was held on December 12-13, 2005. What Darwin saw as a tree of life descending in a linear fashion, is now more accurately seen as a tapestry of life, an anastomosing network, with important lateral transfers of heritable elements among parallel lines of descent These transfers range in complexity from small insertion sequences, to whole genes, gene islands, and portions of whole genomes which may be combined in symbiogenesis. The colloquium brought together researchers, empirical and theoretical, working at all levels on genomics, comparative genomics, and metagenomics to identify common and differentiating features of lateral gene transfer and to examine their implications for science and for human concerns.

  20. Effect of decontamination on aging processes and considerations for life extension

    SciTech Connect (OSTI)

    Diercks, D.R.

    1987-10-01

    The basis for a recently initiated program on the chemical decontamination of nuclear reactor components and the possible impact of decontamination on extended-life service is described. The incentives for extending plant life beyond the present 40-year limit are discussed, and the possible aging degradation processes that may be accentuated in extended-life service are described. Chemical decontamination processes for nuclear plant primary systems are summarized with respect to their corrosive effects on structural alloys, particularly those in the aged condition. Available experience with chemical cleaning processes for the secondary side of PWR steam generators is also briefly considered. Overall, no severe materials corrosion problems have been found that would preclude the use of these chemical processes, but concerns have been raised in several areas, particularly with respect to corrosion-related problems that may develop during extended service.

  1. Product Life-Cycle Management: The future of product and packaging design

    SciTech Connect (OSTI)

    Jung, L.B. )

    1993-01-01

    Product Life-Cycle Management (PLCM) is the control of environmental impacts associated with all the life phases of a product, from design through manufacture, packaging and disposal. PLCM dictates that products be manufactured using less harmful chemicals and fewer resources. Product packaging must be minimal and made of renewable and recyclable resources. Both the product and the package must contain recycled material. Packaging and products must also be collected for recycle at the end of their intended use, requiring infrastructure to collect, transport and process these materials. European legislation now requires the return and recycle of packaging materials by the end of 1993. Requirements are also being imposed on manufacturers of automobile related products; automotive batteries, tires and even automobiles themselves must now be accepted back and recycled. Increasing public concerns and awareness of environmental impacts plus the decreasing availability of natural resources will continue to push product life-cycle legislation forward.

  2. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  3. An Industry Approach to Sealed Source Management at the End of Useful Life

    SciTech Connect (OSTI)

    Malkoske, G.; Gray, P.; Fasten, W.

    2008-07-01

    Radioactive sources provide significant benefits which enhance the general welfare of mankind. These beneficial applications include medical treatment, sterilization of single use medical devices, food safety and agriculture, as well as industrial safety and exploration. The radioisotope sector is broad, diverse, and well established, with a culture of safety and security. ISSPA's mission is to ensure that the beneficial use of radioactive sources continues to be regarded by the public, the media, legislators, and regulators as a safe, secure, viable technology for medical, industrial, and research applications. A key consideration of a vibrant safety and security culture is the comprehensive life cycle management of radioactive sources which ensures effective control throughout their life span. Closely linked to this is the commitment by responsible suppliers to take back radioactive sources at the end of their useful life. This is an essential obligation of ISSPA members, as stated in the framework for the ISSPA Code of Good Practice. This presentation will discuss the above topics and will provide some examples which demonstrate how ISSPA members have effectively managed sources at the end of their useful life. In conclusion: Sealed radioactive sources play a major and very important role in global industry and health. Their applications are varied and they are produced and shipped in the thousands each year around the world. The importance of an effective life cycle management is imperative to the safety and security of these sources. A multi-faceted approach to sealed source life cycle management between manufacturers/distributors, shippers, customers/users, and those involved in disposition of disused sources is critical. The IAEA Code of Conduct, from a regulatory perspective, and the ISSPA Code of Good Practice, from an industry perspective, will help to ensure that sealed sources are able to be effectively utilized to the benefit of mankind for generations to come. (authors)

  4. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  5. ARM - Publications: Science Team Meeting Documents: The life stage of deep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    convection defined by the MSG multi-channel data and rainfall type observed by PR/TRMM The life stage of deep convection defined by the MSG multi-channel data and rainfall type observed by PR/TRMM Inoue, Toshiro MRI/JMA The life cycle of deep convection is characterized as the cumulus/cumulonimbus type cloud classified by the method is dominant at the earlier stage and cirrus type cloud (anvil) is dominant at the decaying stage for no-split/no-merge case. We also know that convective rain is

  6. Accurately Analyzing Malaria Tests a Matter of Life and Death | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Ralf Lenigk 2015.02.13 Having lived for several years in Southeast Asia, I

  7. Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at the San José Convention Center | Department of Energy Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof

  8. Lithium / Sulfur Cells with Long Cycle Life and High Specific Energy -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lithium / Sulfur Cells with Long Cycle Life and High Specific Energy Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Song, M-K., Zhang, Y., Cairns, E.J., "A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance," NanoLetters, November 12, 2013 (web). (437 KB) Technology Marketing Summary A team of Berkeley Lab battery researchers led by Elton Cairns has

  9. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel | Department of Energy Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  10. Vacuum Performance and Beam Life Time in the PEP-II Storage Rings

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Vacuum Performance and Beam Life Time in the PEP-II Storage Rings Citation Details In-Document Search Title: Vacuum Performance and Beam Life Time in the PEP-II Storage Rings × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources

  11. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  12. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  13. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  14. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  15. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  16. An Explainer: How "Grid Modernization" Could Improve Your Life |

    Energy Savers [EERE]

    Department of Energy An Explainer: How "Grid Modernization" Could Improve Your Life An Explainer: How "Grid Modernization" Could Improve Your Life January 14, 2016 - 1:10pm Addthis Understanding how the grid works is the first step to understanding our grid modernization efforts. This new video breaks it down. | Video by Simon Edelman, Energy Department. Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy KEY FACTS U.S. Department of Energy

  17. Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

    2013-12-01

    There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

  18. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3D Printing Brings Classic Shelby Cobra to Life Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life April 15, 2015 - 4:02pm Addthis Zero to 60 in under five seconds. Concept to reality in just six weeks. 1 of 22 Zero to 60 in under five seconds. Concept to reality in just six weeks. The classic Shelby Cobra roadster turns 50 in 2015. To celebrate, a team of engineers at the Department of Energy's Oak Ridge National Laboratory set out to create a replica of this iconic

  19. Planning for Life On or Off the Grid: Part One | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning for Life On or Off the Grid: Part One Planning for Life On or Off the Grid: Part One August 6, 2014 - 12:18pm Addthis Producing clean energy not only saves money in the long term, but also provides independence and the satisfaction of knowing your actions are helping the environment.|Photo courtesy of Jim Green, National Renewable Energy Lab. Producing clean energy not only saves money in the long term, but also provides independence and the satisfaction of knowing your actions are

  20. From the Lab to the Showroom: How the Electric Car Came to Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy From the Lab to the Showroom: How the Electric Car Came to Life From the Lab to the Showroom: How the Electric Car Came to Life October 17, 2011 - 11:02am Addthis An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image courtesy of General Motors. An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image

  1. An overview of remaining life assessment methods for high temperature components operating in the power and petrochemical industries

    SciTech Connect (OSTI)

    Middleton, C.J.; Townsend, R.D.

    1998-12-31

    The capability to assess the secure remaining life of components operating in the creep range, thereby assuring integrity between inspection intervals, has become a major factor in the economic operation of power and petrochemical plant which has passed the original design life, frequently by a considerable margin. An overview is given of the nature of remaining life assessment and examples given of methods developed for headers, seam-welded pipe and fired heaters. The more common problems associated with weldments are also reviewed.

  2. Audit Letter Report: OAS-L-09-12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    procedures in Section 11 of the Bulletin to assess the reasonableness of life insurance, health benefits, and retirement with holdings and contributions. Topic: Management...

  3. Agreed-lJpon Procedures for Federal Payroll, OAS-L-08-16 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    procedures in Section I I of the Bulletin to assess the reasonableness of life insurance, health benefits, and retirement withholdings and contributions. In Fiscal Year...

  4. Vermont Flood Hazard Area and River Corridor Rule | Open Energy...

    Open Energy Info (EERE)

    compliance with National Flood Insurance Program (NFIP) criteria and enhance flood resilience. (b) Avoid and minimize the loss of life and property, the disruption of commerce,...

  5. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from cradle to grave. It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  6. Proceedings: Advances in Life Assessment and Optimization of Fossil Power Plants

    SciTech Connect (OSTI)

    2002-06-01

    Condition and remaining life assessment (CARLA) technology has assumed great importance in the context of the reliability, availability, and maintainability (RAM) of fossil power plants. These proceedings summarize a 3-day conference on CARLA technology for boiler, steam turbine, and combustion turbine components operating at elevated temperatures that included a session on maintenance planning and optimization based upon economics and risk assessment.

  7. Method and apparatus to predict the remaining service life of an operating system

    DOE Patents [OSTI]

    Greitzer, Frank L.; Kangas, Lars J.; Terrones, Kristine M.; Maynard, Melody A.; Pawlowski, Ronald A. , Ferryman; Thomas A.; Skorpik, James R.; Wilson, Bary W.

    2008-11-25

    A method and computer-based apparatus for monitoring the degradation of, predicting the remaining service life of, and/or planning maintenance for, an operating system are disclosed. Diagnostic information on degradation of the operating system is obtained through measurement of one or more performance characteristics by one or more sensors onboard and/or proximate the operating system. Though not required, it is preferred that the sensor data are validated to improve the accuracy and reliability of the service life predictions. The condition or degree of degradation of the operating system is presented to a user by way of one or more calculated, numeric degradation figures of merit that are trended against one or more independent variables using one or more mathematical techniques. Furthermore, more than one trendline and uncertainty interval may be generated for a given degradation figure of merit/independent variable data set. The trendline(s) and uncertainty interval(s) are subsequently compared to one or more degradation figure of merit thresholds to predict the remaining service life of the operating system. The present invention enables multiple mathematical approaches in determining which trendline(s) to use to provide the best estimate of the remaining service life.

  8. Evaluation of remaining life of the double-shell tank waste systems

    SciTech Connect (OSTI)

    Schwenk, E.B.

    1995-05-04

    A remaining life assessment of the DSTs (double-shell tanks) and their associated waste transfer lines, for continued operation over the next 10 years, was favorable. The DST assessment was based on definition of significant loads, evaluation of data for possible material degradation and geometric changes and evaluation of structural analyses. The piping assessment was based primarily on service experience.

  9. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  10. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  11. Development of long life three phase uninterruptible power supply using flywheel energy storage unit

    SciTech Connect (OSTI)

    Takahashi, Isao; Okita, Yoshihisa; Andoh, Itaru

    1995-12-31

    According to development of computer applications, uninterruptible power supplies (UPS) are indispensable to the industrial field. But the cost for maintaining the conventional UPS is very high, because frequent replacement of parts which have short life time is necessary. This paper describes the research and development of a new UPS which has long life parts for maintenance free. To lengthen the life time, the following techniques are introduced: (1) a flywheel energy storage unit having more than 20 years life time; (2) electrolytic capacitor less inverter and converter. By using these techniques, a three phase UPS rating 5kVA, 200V is developed, and excellent performance is obtained: input power factor is over 99.7%; output voltage distortion is under 1.5%; transformer less UPS achieves light weight system; the UPS have function of automatic output voltage balance using auxiliary diode rectifier; input current harmonic distortion is less than 1.2%, even if the single phase load is connected.

  12. Vehicle Technologies Office- AVTA: All Electric USPS Long Life Vehicle Conversions

    Broader source: Energy.gov [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes performance data collected from all-electric conversions of U.S. Postal Service (USPS) Long-Life Vehicles. This research was conducted by Idaho National Laboratory, which has several additional reports available.

  13. NNSA Reaches B61-12 Life Extension Program Milestone: First Full-System

    National Nuclear Security Administration (NNSA)

    Mechanical Environment Test Completed Successfully | National Nuclear Security Administration B61-12 Life Extension Program Milestone: First Full-System Mechanical Environment Test Completed Successfully | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are

  14. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    SciTech Connect (OSTI)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-09-15

    Highlights: > End-of-life electrical and electronic equipment (EEE) as secondary metal resources. > The content and the total amount of metals in specific equipment are both important. > We categorized 21 EEE types from contents and total amounts of various metals. > Important equipment types as secondary resources were listed for each metal kind. > Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods were suggested for equipment types that currently have no specific collection systems in Japan, particularly for video games, notebook computers, and mid-size ICT and audio/video equipment.

  15. LIFE Materials: Topical Assessment Report for LIFE Volume 1 TOPIC: Solid First Wall and Structural Components TASK: Radiation Effects on First Wall

    SciTech Connect (OSTI)

    Caro, A

    2008-11-26

    This report consists of the following chapters: CHAPTER A: LIFE Requirements for Materials. Part 1: The structure of the First Wall--Basic requirements; A qualitative view of the challenge; The candidate materials; and Base-line material's properties. CHAPTER B: Summary of Existing Knowledge--Brief historical introduction; Design window; The temperature window; Evolution of the design window with damage; Damage calculations; He and H production; Swelling resistance; Incubation dose for swelling; Design criterion No. 1, Strength; Design criterion No. 2, Corrosion resistance; Design criterion No. 3, Creep resistance; Design criterion No. 4, Radiation induced embrittlement; and Conclusions. CHAPTER C: Identification of Gaps in Knowledge & Vulnerabilities. CHAPTER D: Strategy and Future Work.

  16. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  17. Employee Benefits | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits NETL is an employee-friendly workplace. To help employees deal effectively with personal or family-related pressures while minimizing the disruptions such pressures can cause at the work site, NETL provides: Flexible Work Schedules Annual Leave Sick Leave Family and Medical Leave Holidays Promotions Awards Retirement Thrift Savings Plan (TSP) Life Insurance Health Insurance Federal Long Term Care Insurance Program Dental and Vision Insurance Training Opportunities Child Care Physical

  18. Microsoft Word - Los Alamos National Security, LLC_VOL AD&D BHS.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beneficiary (please see below) a death benefit if you die due to a covered accident while you are insured. It also pays you a benefit for certain accidental losses. Once a group policy is issued to your employer, a certificate of Insurance will be available to explain your coverage in detail. * Death benefits are paid in addition to any life Insurance benefits. * Voluntary Accidental Death & Dismemberment Insurance pays benefits for accidental loss of limbs, thumb and index finger, speech,

  19. Microsoft Word - Los Alamos National Security, LLC_VOL AD&D BHS.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beneficiary (please see below) a death benefit if you die due to a covered accident while you are insured. It also pays you a benefit for certain accidental losses. Once a group policy is issued to your employer, a certificate of Insurance will be available to explain your coverage in detail. x Death benefits are paid in addition to any life Insurance benefits. x Voluntary Accidental Death & Dismemberment Insurance pays benefits for accidental loss of limbs, thumb and index finger, speech,

  20. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. , Santa Clara, CA )

    1992-07-01

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  1. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  2. Characterization of vacuum-multifoil insulation for long-life thermal batteries

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; KAUN,THOMAS

    2000-04-17

    The use of vacuum multifoil (VMF) container for thermal insulation in long-life thermal batteries was investigated in a proof-of-concept demonstration. An InvenTek-designed VMF container 4.9 inches in diameter by 10 inches long was used with an internally heated aluminum block, to simulate a thermal-battery stack. The block was heated to 525 C or 600 C and allowed to cool while monitoring the temperature of the block and the external case at three locations with time. The data indicate that it should be possible to build an equivalent-sized thermal battery that should last up to six hours, which would meet the requirements for a long-life sonobuoy application.

  3. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D.

    1997-12-31

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  4. NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

  5. The Discovery of Archaea, the 'Third Branch of Life', and Its Impacts

    Office of Scientific and Technical Information (OSTI)

    The Discovery of Archaea, the 'Third Branch of Life', and Its Impacts Resources with Additional Information Electron micrograph and genetic map of Methanococcus jannaschii 'In 1996 scientists supported by the DOE's Microbial Genome Program reported the complete genome sequence of Methanococcus jannaschii, a methane-producing microorganism that dwells around "white smokers" on the seafloor. The details of the genome confirm the existence of a third kingdom of living organisms, the

  6. Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries Argonne National Laboratory Contact ANL About This Technology TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right)<br /> TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right) Technology

  7. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    SciTech Connect (OSTI)

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  8. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Trough and its Components - Energy Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life of the Trough and its Components A Method to Selectively Remove & Measure Hydrogen Gas from a Fluid Volume National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Parabolic trough power plants use concentrated solar thermal energy to generate

  9. Los Alamos, New Mexico, January 7, 2010-Life Technologies Corporation recently

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attune acoustic focusing cytometer brings technology developed at LANL to the marketplace January 7, 2010 Applications of first-of-its-kind cytometer system in basic cell biology research and drug discovery Los Alamos, New Mexico, January 7, 2010-Life Technologies Corporation recently announced the release of the Attune Acoustic Focusing Cytometer, a first-of-its-kind cytometer system that uses acoustic waves to precisely control the movement of cells during analysis. Flow cytometry allows

  10. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang Systems Assessment Section Energy Systems Division Argonne National Laboratory Biomass 2014 Washington, D.C., July 30, 2014 2 The GREET TM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model  DOE has been sponsoring GREET development and applications since 1995 - Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO) - Fuel-Cell Technology Office (FCTO) - Energy Policy and

  11. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Michael Wang, Amgad Elgowainy, Jeongwoo Han, Hao Cai Argonne National Laboratory The 2013 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Arlington, VA May 16, 2013 Project ID: van002 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete:

  12. ORNLIRASA-95117 LIFE SCIENCES DIVISION Environmental Restoration and Waste Management Non-Defense Programs

    Office of Legacy Management (LM)

    95117 LIFE SCIENCES DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20 20 01 0; ADS1310AA) Results of the Independent Radiological Verification Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1v) R. E. Rodriguez and C. A. Johnson Date issued -May 1997 Investigation Team R. D. Foley-Measurement Applications and Development Manager M. E. Murray-FUSRAP Project Director R. E. Rodriguez-Field Survey Team

  13. W76-1 Life Extension Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    W76-1 Life Extension Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  14. Sandia California works on nuclear weapon W80-4 Life Extension Program |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration works on nuclear weapon W80-4 Life Extension Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  15. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  16. Some issues in creep fatigue life prediction of fossil power plant components

    SciTech Connect (OSTI)

    Viswanathan, R.; Bernstein, H.

    1996-12-01

    Creep-fatigue damage induced by thermal stresses is of major concern with respect to the integrity of many high temperature components. The concern has been exacerbated in recent years due to cyclic operation of units originally designed for base load service. Much of the past research has been aimed primarily at crack initiation phenomena and, although useful from a design point of view, it is not always relevant to plant operators who in many instances can run components containing tolerable cracks. In terms of both crack initiation and crack growth prediction, variations in material, temperature environment, stress state, etc. have made it impossible to apply a single damage rule for all cases. The need for component-specific life prediction using appropriate material property data generated under conditions relevant to the service and using the proper failure criterion, has become very apparent. In the face of this need, thermomechanical fatigue (TMF) testing, creep-fatigue crack growth testing, and bench marking against field experience is essential. This paper will assess the current state of the art with respect to creep-fatigue life prediction especially with a view to provide a plant user`s perspective to the research community, and to present a case study on TMF life prediction of combustion turbine blades.

  17. Battery Life Estimator (BLE) Data Analysis Software v. 1.2

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The purpose of this software is estimate the useable life of rechargeable batteries (e.g., lithium-ion). The software employs a generalized statistical approach to model cell data in the context of accelerated aging experiments. The cell performance is modeled in two parts. The first part consists of a deterministic degradation model which models the average cell behavior. The second part relates to the statistical variation in performance of the cells (error model). Experimental data from anmore » accelerated aging experiment will be input from an Excel worksheet. The software will then query the user for a specific model form (within the generalized model framework). Model parameters will be estimated by the software using various statistical methodologies. Average cell life will be predicted using the estimated model parameters. The uncertainty in the estimated cell life will also be computed using bootstrap simulations. This software can be used in several modes: 1) fit only, 2) fit and simulation, and 3) simulation only« less

  18. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicles total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  19. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola dEnginyeria dIgualada (EEI), Universitat Politcnica de Catalunya (UPC), Plaa del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comer Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: We developed a methodology useful to environmentally compare industrial waste management options. The methodology uses a Net Energy Demand indicator which is life cycle based. The method was simplified to be widely used, thus avoiding cost driven decisions. This methodology is useful for governments to promote the best environmental options. This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  20. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  1. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  2. Life state response to environmental crisis: the case of the Love Canal, Niagara Falls, New York

    SciTech Connect (OSTI)

    Masters, S.K.

    1986-01-01

    This thesis explored the differences between two life stages - young and old - in perceiving and responding to man-made environmental disaster, as well as the support resources utilized to cope with disaster - personal, familial/friendship, and organizational. Because of the characteristics of man-made environmental disaster, and because of the different conditions of life and constructions of reality of older and younger families, it was expected that definitions of the situation would vary by life stage and locus of control - authoritative and personal. The research took place in the Love Canal neighborhood of Niagara Falls, New York. Fifty-eight families were interviewed in the fall of 1978, and thirty-nine of these families were reinterviewed in the spring of 1979. Interviews were tape recorded, transcribed, and coded. The data were presented in contingency tables and interview excerpts. The interview schedules elicited information of perception of impact, responses to impact, and the utilization of support resources. In an authoritative locus of control situation, the major findings were that both older and younger families perceived impact, that older families were slightly less disrupted, that younger families relied on organizational and familial/friendship support resources, and that older families relied on familial/friendship support resources.

  3. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  4. Visualizing Life Zone Boundary Sensitivities Across Climate Models and Temporal Spans

    SciTech Connect (OSTI)

    Sisneros, Roberto R; Huang, Jian; Ostrouchov, George; Hoffman, Forrest M

    2011-01-01

    Life zones are a convenient and quantifiable method for delineating areas with similar plant and animal communities based on bioclimatic conditions. Such ecoregionalization techniques have proved useful for defining habitats and for studying how these habitats may shift due to environmental change. The ecological impacts of climate change are of particular interest. Here we show that visualizations of the geographic projection of life zones may be applied to the investigation of potential ecological impacts of climate change using the results of global climate model simulations. Using a multi-factor classification scheme, we show how life zones change over time based on quantitative model results into the next century. Using two straightforward metrics, we identify regions of high sensitivity to climate changes from two global climate simulations under two different greenhouse gas emissions scenarios. Finally, we identify how preferred human habitats may shift under these scenarios. We apply visualization methods developed for the purpose of displaying multivariate relationships within data, especially for situations that involve a large number of concurrent relationships. Our method is based on the concept of multivariate classification, and is implemented directly in VisIt, a production quality visualization package.

  5. Using life-cycle cost management to cut costs and reduce waste

    SciTech Connect (OSTI)

    Gess, D.; Cohan, D.; McLearn, M.

    1995-12-01

    Increasing competition is forcing electric utility companies to reduce costs and improve efficiency. At the same time, increasing costs for waste disposal and emissions control and growing environmental regulatory pressure are providing powerful incentives for firms in virtually every industry to investigate opportunities to reduce or even eliminate the adverse environmental impacts associated with their operations. companies are also striving toward environmental stewardship to realize the potential benefits to the firms`s public image, employees, an shareholders. Motivated by these cost and environmental concerns, the Electric Power Research Institute (EPRI), Decision Focus Inc. (DFI), and a consortium of electric utility companies have developed techniques and tools to help electric utility companies to make purchase and operating decisions based on their full life-cycle costs, which explicitly include environmental, health, and safety costs. The process, called Life-Cycle Cost Management (LCCM), helps utilities to efficiently assemble the appropriate life-cycle information and bring it to bear on their business decisions. To date, several utilities have used LCCM to evaluate a range of product substitution and process improvement decisions and to implement cost-savings actions. This paper summarizes some of these applications.

  6. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Interim Study FY13

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Ramuhalli, Pradeep; Pardini, Allan F.; Tedeschi, Jonathan R.; Jones, Anthony M.

    2013-09-27

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models that could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early warning of aging and degradation. Examples of such key indicators include changes in chemical structure, mechanical modulus, and dielectric permittivity. While some of these indicators are the basis of currently used technologies, there is a need to increase the volume of cable that may be inspected with a single measurement, and if possible, to develop techniques for in-situ inspection (i.e., while the cable is in operation). This is the focus of the present report.

  7. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  8. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  9. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOE Patents [OSTI]

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  10. U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada.  The 2007 total system life...

  11. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).

  12. DOE - Office of Legacy Management -- Mound_Benefits

    Office of Legacy Management (LM)

    Ohio > Mound_Benefits Mound, Ohio, Site Former Workers' Employment Verification and Benefits Administration Contractor Employment Verification Mercer, Mound Benefits Center (866) 296-5036 Medical and Life Insurance for Former EG&G, BWXTO, and CH2M HILL Employees For questions about health insurance coverage and/or dependent information, life insurance and/or beneficiaries, etc.: Mercer, Mound Benefits Center P.O. Box 9735, Providence, RI 02940 Benefit Center Website (866) 296-5036 9:00

  13. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  14. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  15. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  16. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  17. Burnup concept for a long-life fast reactor core using MCNPX.

    SciTech Connect (OSTI)

    Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

    2013-02-01

    This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

  18. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  19. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect (OSTI)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ? 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  20. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  1. Prognostication of LED Remaining Useful Life and Color Stability in the Presence of Contamination

    SciTech Connect (OSTI)

    Lall, Pradeep; Zang, Hao; Davis, J Lynn

    2015-06-22

    The reliability of LED products may be affected by both luminous flux drop and color shift. Previous research on the topic focuses on either luminous maintenance or color shift. However, luminous flux degradation usually takes very long time to observe in LEDs under normal operating conditions. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphorconverted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable errorbounds (20%) after a short training of the estimator.

  2. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  3. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    SciTech Connect (OSTI)

    Alderman, C.J.

    1997-06-27

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge.

  4. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    SciTech Connect (OSTI)

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  5. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis March 24, 2015 Conversion Ling Tao†, Jeongwoo Han* †National Renewable Energy Laboratory *Argonne National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of Waste-To-Energy (WTE) pathways to evaluate their economic viability and environmental sustainability - Strategic

  6. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  7. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Florida)

    SciTech Connect (OSTI)

    Zale, A.V.; Merrifield, S.G. )

    1989-07-01

    Species profiles are literature summaries of the taxonomy, morphology, distribution, life history, habitats, and environmental requirements of coastal species of fishes and aquatic invertebrates. They are designed to assist in environmental impact assessment. The tarpon and ladyfish are popular gamefishes. Adults spawn offshore. Larval and juvenile stages inhabit coastal marshes and mangroves. Both species are thermophilic (preferring warm water), euryhaline (tolerant of a wide range of salinity), and are capable of surviving at low oxygen concentrations. Wetlands destruction and degradation negatively affect these species by reducing nursery areas. 3 figs.

  8. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  9. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  10. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect (OSTI)

    Samadi-Dezfouli, Azadeh

    2012-11-14

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  11. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems ANL/ESD/10-5 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Offce of Scientifc and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

  12. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-30 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Annual Supplement to NIST Handbook 135 Priya D. Lavappa Joshua D. Kneifel This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.85-3273-30 U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Prepared for United States Department of Energy Federal Energy Management Program April 2005 NISTIR 85-3273-30 Energy Price Indices

  13. Microsoft Word - HABAdv#223_Life Cycle&TPA Modifications.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: Life Cycle Cost & Schedule Report of the Proposed Consent Decree & TPA Modifications Adopted: November 6, 2009 Page 1 November 6, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Polly Zehm, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Michelle Pirzadeh,

  14. Planning for Life On or Off the Grid: Part Two | Department of Energy

    Energy Savers [EERE]

    Two Planning for Life On or Off the Grid: Part Two August 12, 2014 - 11:44am Addthis Home renewable energy is a wonderful way to produce clean energy, you just need the right system for your home. | Photo courtesy of ©iStockphoto.com/3dts Home renewable energy is a wonderful way to produce clean energy, you just need the right system for your home. | Photo courtesy of ©iStockphoto.com/3dts Paige Terlip Paige Terlip Former Communicator, National Renewable Energy Laboratory What does this mean

  15. AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal deliveries. The conversions were done by different companies and can be compared to understand the benefits of various electric drive and battery technologies. This research was conducted by Idaho National Laboratory.

  16. NNSA, Air Force Complete Successful B61-12 Life Extension Program

    National Nuclear Security Administration (NNSA)

    Development Flight Test at Tonopah Test Range | National Nuclear Security Administration Jul 8, 2015 WASHINGTON, D.C. - The United States Air Force (USAF) and National Nuclear Security Administration (NNSA) completed the first development flight test of a non-nuclear B61-12 gravity bomb at Tonopah Test Range in Nevada on July 1, 2015. "This test marks a major milestone for the B61-12 Life Extension Program, demonstrating end-to-end system performance under representative delivery

  17. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the results into the NEID. 3 Database Organization FEI Quanta 3D FEG Focused Ion Beam SEM Microscope Instruments Facilities Institutions 4 Database Characteristics 34 Federal ...

  18. Half-life determination for {sup 108}Ag and {sup 110}Ag

    SciTech Connect (OSTI)

    Zahn, Guilherme S.; Genezini, Frederico A.

    2014-11-11

    In this work, the half-life of the short-lived silver radionuclides {sup 108}Ag and {sup 110}Ag were measured by following the activity of samples after they were irradiated in the IEA-R1 reactor. The results were then fitted using a non-paralizable dead time correction to the regular exponential decay and the individual half-life values obtained were then analyzed using both the Normalized Residuals and the Rajeval techniques, in order to reach the most exact and precise final values. To check the validity of dead-time correction, a second correction method was also employed by means of counting a long-lived {sup 60}Co radioactive source together with the samples as a livetime chronometer. The final half-live values obtained using both dead-time correction methods were in good agreement, showing that the correction was properly assessed. The results obtained are partially compatible with the literature values, but with a lower uncertainty, and allow a discussion on the last ENSDF compilations' values.

  19. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  20. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  1. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    SciTech Connect (OSTI)

    2015-06-01

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verification and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.

  2. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  3. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratorys Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  4. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    SciTech Connect (OSTI)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.

  5. Accelerated cable life testing of EPR-insulated medium voltage distribution cables

    SciTech Connect (OSTI)

    Walton, M.D. ); Bernstein, B.S. ); Smith, J.T. III ); Thue, W.A. , Stuart, FL ); Groeger, J.H. )

    1994-07-01

    This paper presents results aimed at developing a reliable accelerated aging tank test for EPR-insulated cables. Aging was performed at 2 to 4 times rated voltage on load cycling to temperatures of 45 C, 60 C, 75 C, and 90 C at the conductor with water in the conductor strands and outside the cable. Results show that cable failure is more rapid at the highest electrical stress and lowest conductor load cycle temperature. Cables aged at higher temperatures and various levels of electrical stress rarely failed and retained in excess of 40% of their original breakdown strength after 1,500+ days of aging. Aging performed at 90 C load cycle temperature and 4 times rated voltage with air on the outside and water at the conductor of the cable showed more rapid loss of life than with water outside. Results indicate the optimum aging conditions for EPR-insulated cables in the accelerated cable life test (ACLT) differ significantly from those previously observed for XLPE-insulated cables, and that the appropriate test methodology for EPR-insulated cables requires additional study.

  6. Fatigue Life Prediction in Rapid Die Casting - Preliminary Work in View of Current Research

    SciTech Connect (OSTI)

    Chuan Huat Ng [Faculty of Mechanical and Manufacturing Engineering (FKMP), Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO), P.O.Box 101, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Grote, Karl-Heinrich [Institut fuer Maschinenkonstruktion, Lehrstuhl Konstruktionstechnik, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg (Germany); Baehr, Ruediger [Institut fuer Fertigungstechnik und Qualitaetssicherung, Ur und Umformtechnik, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2007-05-17

    Numerical simulation technique as a prediction tool is slowly adopted in metal casting industry for predicting design modelling solidification analysis. The reasons for this activity is found in the need to further enhance the geometrical design and mechanical properties of the tool design and the correct prediction methodology to fulfil industrial needs. The present state of numerical simulation capabilities in rapid die casting technologies is reviewed and the failure mode mechanisms of thermal fatigue, aimed at developing a numerical simulation with a systematic design guidance for predicting the thermal cyclic loading analysis and improvement is presented along with several other methods. The economic benefits of a numerical simulation technique in die casting are limited to tool life time, mechanical properties and design guidance. The extensive computer capabilities of a numerical simulation with a systematic design guidance methodology are exploited to provide a solution for flexible design, mechanical properties and mould life time. Related research carried out worldwide by different organisations and academic institutions are discussed.

  7. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  8. Measuring Coastal Boating Noise to Assess Potential Impacts on Marine Life

    SciTech Connect (OSTI)

    Matzner, Shari; Jones, Mark E.

    2011-07-01

    Article requested for submission in Sea Technology Magazine describing the Underwater Noise From Small Boats. An Overlooked Component of the Acoustic Environment in Coastal Areas. Underwater noise and its effects on marine life deserve attention as human activity in the marine environment increases. Noise can affect fish and marine mammals in ways that are physiological, as in auditory threshold shifts, and behavioral, as in changes in foraging habits. One anthropogenic source of underwater noise that has received little attention to date is recreational boating. Coastal areas and archipelago regions, which play a crucial role in the marine ecosystem, are often subject to high levels of boat traffic. In order to better understand the noise produced by a small powerboat, a test was conducted in Sequim Bay, Washington, using an instrumented research vessel and multiple acoustic sensors. The broadband noise and narrowband peak levels were observed from two different locations while the boat was operated under various conditions. The results, combined with background noise levels, sound propagation and local boat traffic patterns, can provide a picture of the total boating noise to which marine life may be subjected.

  9. Method of improving fatigue life of cast nickel based superalloys and composition

    DOE Patents [OSTI]

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  10. SAVY-4000 Surveillance and Life Extension Program Fiscal Year 2013 Annual Report

    SciTech Connect (OSTI)

    Stone, Timothy A.; Blair, Michael W.; Weis, Eric; Veirs, Douglas K.; Smith, Paul Herrick; Moore, Murray E.; Reeves, Kirk P.; Kelly, Elizabeth J.; Prochnow, David A.; Worl, Laura A.

    2014-03-03

    The Packaging Surveillance Program section of the DOE M441.1-1/sup>1, Nuclear Material Packaging Manual (DOE, 2008) requires DOE contractors to ensure that a surveillance program is established and implemented to ensure the nuclear material storage package continues to meet its design criteria. In order to ensure continuing safe storage of nuclear material and the maximization of risk reduction, TA-55 has established a Surveillance Program to ensure storage container integrity for operations within its specified design life. The LANL SAVY-4000 Field Surveillance Plan2 defines the near-term field surveillance plan for SAVY-4000 containers as required by the Manual. A long-term surveillance plan will be established based on the results of the first several years of surveillance and the results of the lifetime extension studies as defined in the Accelerated Aging Plan3. This report details progress in positioning the Surveillance Program for successful implementation in FY14 and status of the Design Life Extension Program in terms of its implementation and data collection for FY13.

  11. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2, 2014 Workplace Charging Success: MetLife MetLife is talking the "green" talk and walking the walk. The insurance company has long encouraged its policyholders to...

  12. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  13. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  14. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect (OSTI)

    Spencer, B. W.; Huang, H.; Dolbow, J. E.; Hales, J. D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes discontinuities in both temperature and displacement fields at crack locations has been developed and is being applied to thermal fracture of LWR fuel. A DEM model of coupled heat conduction and solid mechanics has been developed and used to simulate random initiation and propagation of thermally driven cracks during initial power cycles. This DEM model predicts the formation of realistic radial cracking patterns during power rise and circumferential cracks as power is ramped down. These initial results are very encouraging, and these techniques are expected to provide improved understanding of fuel behavior in a wide variety of conditions.

  15. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect (OSTI)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.

  16. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai’i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  17. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  18. Metal fueled long life fast reactor cores with inherent safety features

    SciTech Connect (OSTI)

    Yokoyama, Tsugio; Ninokata, Hisashi; Endo, Hiroshi

    2007-07-01

    A large fast reactor core concept is proposed that has inherent safety characteristics against both the Unprotected Loss of Flow (ULOF) event and the Unprotected Transient of Over-Power (UTOP) event, where commonly used zirconium alloy metal fuel (U-Pu- Zr) is adopted to achieve a long life cycle length up to 5 years. The burn-up reactivity of the core which is equivalent to the maximum insertion reactivity in the UTOP due to the control rod run-out event at the rated power, is reduced to less than 1 $ by introducing minor actinides to the fuel, while the sodium void reactivity is suppressed to be negative by applying a step core concept, where the inner core height is lower than the outer core height, and by deleting the upper axial blanket. (authors)

  19. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    SciTech Connect (OSTI)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  20. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  1. A survey of Asian life scientists :the state of biosciences, laboratory biosecurity, and biosafety in Asia.

    SciTech Connect (OSTI)

    Gaudioso, Jennifer Marie

    2006-02-01

    Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues compared to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.

  2. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  3. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, Mark W. (Los Alamos, NM)

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  4. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  5. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  6. Chemists get a taste of life at gathering in San Diego

    SciTech Connect (OSTI)

    Flam, F.

    1994-04-01

    Chemists often deal with things as inanimate as metals and minerals, but more and more, they find themselves trying to imitate or exploit the chemical talents of life. That trend was amply evident when more than 10,000 members of the American Chemical Society (ACS) met from 13 to 17 March. Among the 5700 papers were presentations on the secret of spider's silk, how to prop up proteins to make a convincing vaccine, and enlisting microorganisms to break down PCBs and make fuel. The process for decontaminating soils contaminated with PCBs is to catalytically remove the chlorine atoms, and then allow ordinary soil bacteria to decompose them. The catalyst used is a titanium-based reducing agent.

  7. Bayesian Models for Life Prediction and Fault-Mode Classification in Solid State Lamps

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2015-04-19

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classifY failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identifY luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. It is expected that, the new test technique will allow the development of failure distributions without testing till L 70 life for the manifestation of failure.

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  10. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    SciTech Connect (OSTI)

    Dunn, K.; Bellamy, S.; Daugherty, W.; Sindelar, R.; Skidmore, E.

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  11. Recycling end-of-life vehicles of the future. Final CRADA report.

    SciTech Connect (OSTI)

    Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

    2010-01-14

    Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

  12. Bayesian probabilistic model for life prediction and fault mode classification of solid state luminaires

    SciTech Connect (OSTI)

    Lall, Pradeep [Auburn Univ., Auburn, AL (United States); Wei, Junchao [Auburn Univ., Auburn, AL (United States); Sakalaukus, Peter [Auburn Univ., Auburn, AL (United States)

    2014-06-22

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminous flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The ?-? plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85C/85%RH during accelerated life test fairly closely within the 20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.

  13. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  14. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  15. Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2010-04-01

    Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

  16. Life Estimation of PWR Steam Generator U-Tubes Subjected to Foreign Object-Induced Fretting Wear

    SciTech Connect (OSTI)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-10-15

    This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube.

  17. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect (OSTI)

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  18. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-510-37500 May 2005 Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production Susan E. Powers Quantifying Cradle-to-Farm Gate Life Cycle Impacts

  19. Apparatus for determining past-service conditions and remaining life of thermal barrier coatings and components having such coatings

    DOE Patents [OSTI]

    Srivastava, Alok Mani (Niskayuna, NY); Setlur, Anant Achyut (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Devitt, John William (Clifton Park, NY); Ruud, James Anthony (Delmar, NY); Brewer, Luke Nathaniel (Rexford, NY)

    2004-05-04

    An apparatus for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises a radiation source that provides the exciting radiation to the TBC to excite a photoluminescent ("PL") material contained therein, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of an emission spectrum of the PL material to the amount of a crystalline phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component or the TBC.

  20. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.