National Library of Energy BETA

Sample records for life cycle emissions

  1. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  2. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  3. Comparison of Life Cycle Emissions and Energy Consumption for

    E-Print Network [OSTI]

    Clarens, Andres

    Comparison of Life Cycle Emissions and Energy Consumption for Environmentally Adapted Metalworking of environmentally adapted lubricants have been proposed in response to the environmental and health impacts/or deliver minimum quantities of lubricant in gas rather than water, with the former strategy being more

  4. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    near projected levels, the average wellhead price of natural gas peaked at $11/Mcf in October 2005 (6Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG

  5. Edinburgh Research Explorer Life Cycle Costs and Carbon Emissions of Offshore Wind Power

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Life Cycle Costs and Carbon Emissions of Offshore Wind Power Citation for published version: Thomson, C & Harrison, G 2015, Life Cycle Costs and Carbon Emissions of Offshore Wind. 2015 #12;Life Cycle Costs and Carbon Emissions of Offshore Wind Power R Camilla Thomson, Gareth P

  6. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  7. Edinburgh Research Explorer Life Cycle Costs and Carbon Emissions of Onshore Wind Power

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Life Cycle Costs and Carbon Emissions of Onshore Wind Power Citation. 2015 #12;Life Cycle Costs and Carbon Emissions of Onshore Wind Power R Camilla Thomson, Gareth P the economics of wind energy is vitally important to ensure a rational discussion about the role of wind power

  8. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    E-Print Network [OSTI]

    Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European 2008 Abstract Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European

  9. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  10. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  11. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  12. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  13. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  14. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  15. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  16. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  17. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Office of Energy Efficiency and Renewable Energy (EERE)

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  18. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  19. Edinburgh Research Explorer Life cycle costs and carbon emissions of wind power: Executive

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Life cycle costs and carbon emissions of wind power: Executive Summary of wind power: Executive Summary. ClimateXChange. Link: Link to publication record in Edinburgh Research of wind power Executive Summary R Camilla Thomson, Gareth P Harrison, University of Edinburgh, 2015

  20. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  1. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  2. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus t In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle t Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles

  3. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  4. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  5. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  6. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results and Findings Life Cycle Greenhouse Gas Emissions from Electricity Generation (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity...

  7. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  8. Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Hall, Sharon J.

    Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas required for building the structure; and 2) the operational energy required for habitation energy used for space heating and cooling during the life of the building. Similar ratios are found

  9. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  10. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    analysis-based life-cycle assessment. ” Doctoral Thesis,International Journal of Life Cycle Assessment, 9(3), 161–International Journal of Life Cycle Assessment, 6(3), 127–

  11. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  12. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  13. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  14. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle...

  15. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  16. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    Bus Life?cycle Inventory  New York City Metro Life?cycle Rail Life?cycle Inventory  New York City Commuter Rail Life?Horvath    Page 44  6.10 New York City Metro Life­cycle 

  17. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01

    E. ; Zappa, S. ; “Life cycle assessment of an integratedare shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  18. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore »that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  19. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  20. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J Han, MQ Wang. "Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States." 2013. Biotechnology for Biofuels, 6:141. * Z...

  1. Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels

    E-Print Network [OSTI]

    Wong, Hsin Min

    2008-01-01

    The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

  2. Green Building- Efficient Life Cycle 

    E-Print Network [OSTI]

    Kohns, R.

    2008-01-01

    the components “Sustainable Building Design”, “Life Cycle Cost Analysis”, “Green Building Certification” and “Natural Resources Management”. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different...

  3. Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle

    E-Print Network [OSTI]

    Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric- and Nuclear., 2002). However, all anthropogenic means of energy production, including solar and nuclear, generate Power: A Life-cycle Study Vasilis M. Fthenakis1,2, * and Hyung Chul Kim1 1 Energy Sciences

  4. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Environmental Management (EM)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  5. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01

    4 Life-cycle Assessment of CMOS Logic5 Life-cycle Assessment of Flash Memory6 Life-cycle Assessment of Dynamic Random Access Memory

  6. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  7. SCORPIO: A deep survey of Radio Emission from the stellar life-cycle

    E-Print Network [OSTI]

    Umana, G; Franzen, T M O; Norris, R P; Leto, P; Ingallinera, A; Buemi, C S; Agliozzo, C; Cavallaro, F; Cerrigone, L

    2015-01-01

    Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array (ATCA), following the same observing setup as that used for the Australia Telescope Large Area Survey (ATLAS) project, this time choosing a region more appropriate for stellar work. In this paper, the SCORPIO project is presented as well as results from the pilot experiment. The achieved rms is about 30 /uJy and the angular resolution ~10 arcsec. About six hundred of point-like sources have been extracted just from the pilot field. A very small percentage of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database (NED). About 80 % of the extracted sources are reported in one of the inspected catalogues and 50...

  8. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  9. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  10. Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle vehicle production emissions and other life cycle emissions. Non- operation emissions are more dominant the need, effectiveness, and policy strategies for capturing life cycle vehicle emissions in LDV GHG

  11. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  12. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01

    Environmental Impacts . . . . . . . . . . . . . . . . . . . . . .Abatement Environmental impactLife-cycle Environmental Impacts . . . . . . . LCA of

  13. Advances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems LIFE CYCLE COST MODEL FOR EVALUATING THE

    E-Print Network [OSTI]

    Lepech, Michael D.

    ). Cement production accounts for 5% of all global anthropogenic carbon dioxide (CO2) emissions #12;AdvancesAdvances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems 143 LIFE CYCLE COST and cost model was developed to evaluate infrastructure sustainability, and compare alternative materials

  14. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  15. The Life Cycle Analysis Toolbox

    SciTech Connect (OSTI)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-02-28

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools.

  16. An Analysis of Measures to Reduce the Life-Cycle Energy Consumption and Greenhouse Gas Emissions of California's Personal Computers

    E-Print Network [OSTI]

    Horvath, A; Masanet, Eric

    2007-01-01

    +C+D+E A+B+C+D+E+F Primary Energy Use (PJ/yr) Direct Total %were converted to primary energy use and GHG emissions inFPD UEC (kWh/yr) Primary Energy Use (MJ/yr) GHG Emissions (

  17. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    McGaughey, Alan

    and GHG emissions of electrified vehicles. c We design PHEVs and BEVs and assign vehicles and charging). Passenger vehicles accounted for 9.5% of 2010 US carbon dioxide emissions (US EPA, 2011) and 19% of 2009Optimal design and allocation of electrified vehicles and dedicated charging infrastructure

  18. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED

    E-Print Network [OSTI]

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL SOILS IN FLORIDA 1/11/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL.............................................................................................. 10 3.3. Life Cycle Impact Assessment Methodology and Impact Categories

  19. Life Cycle Assessment of Three Water Scenarios

    E-Print Network [OSTI]

    Keller, Arturo A.

    1 Life Cycle Assessment of Three Water Scenarios: Importation, Reclamation, and Desalination Erin and Environmental Engineering Arizona State University #12;Life Cycle Assessment · Described by International · Data analyzed and categorized · Find impacts on planet and humans #12;Life Cycle Assessment Extraction

  20. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE

    E-Print Network [OSTI]

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC SOILS IN FLORIDA 1/15/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC.............................................................................................. 10 3.3. Life Cycle Impact Assessment Methodology and Impact Categories

  1. VALUATION FOR LIFE CYCLE ASSESSMENT OF

    E-Print Network [OSTI]

    Bateman, Ian J.

    VALUATION FOR LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT OPTIONS by Jane C. Powell David Pearce and Inger Brisson CSERGE Working Paper WM 95-07 #12;VALUATION FOR LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT-use, recycling and source reduction. The context of the study is life cycle assessment (LCA), which seeks

  2. Life Cycle Assessment of Hydrogen Production via

    E-Print Network [OSTI]

    Gille, Sarah T.

    Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming Revised February 2001 February 2001 · NREL/TP-570-27637 Life Cycle Assessment of Hydrogen Production via Natural Gas Steam particulates benzene Airemissions,excludingCO2(g/kgofH2) EXECUTIVE SUMMARY A life cycle assessment (LCA

  3. The effect of carbonation after demolition on the life cycle assessment of pavements

    E-Print Network [OSTI]

    Rossick, Katelyn M

    2014-01-01

    The high contribution of CO? emissions associated with pavements has driven research to assess the life cycle of concrete versus asphalt structures and to develop a strategy to reduce the carbon footprint. The life cycle ...

  4. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    2006)] SimaPro Life-Cycle Assessment Software by Productin Transportation Life-cycle Assessment Mikhail Chester andin Transportation Life-cycle Assessment Mikhail Chester

  5. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01

    schemes adopted in life-cycle assessment, such as archetypeshealth response in life-cycle assessment using ED10s andmanagement: Life-cycle assessment: Principles and framework.

  6. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  7. The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis 

    E-Print Network [OSTI]

    Storlien, Joseph Orgean

    2013-06-13

    the soil surface and at two depths below 30 cm. Analysis of change in SOC across time to estimate net CO_(2) emissions to the atmosphere revealed bioenergy sorghum production accrued high amounts of SOC annually. Most treatments accrued more than 4 Mg C ha...

  8. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  9. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  10. Prospective Life Cycle and Technology Analysis

    Broader source: Energy.gov (indexed) [DOE]

    understanding of AM process and markets Cradle-to-gate life cycle impacts 5 * Resource production dominates cradle-to-gate energy consumption * Significant materials efficiency...

  11. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01

    J. , Allocation of Energy Use in Petroleum Refineries toexample, the energy consumption of petroleum refineries mayLife-Cycle Energy Use and Emission Inventory of Petroleum

  12. Progress in Photovoltaics Research and Applications, 14:179-190, 2006 Energy Pay-Back and Life Cycle CO2 Emissions of the BOS in an

    E-Print Network [OSTI]

    an innovative PV installation program guided by design optimization and cost minimization. The advanced design. The total cost of the balance of system components was $940 US per kWp of installed PV, another milestone Cycle CO2 Emissions of the BOS in an Optimized 3.5 MW PV Installation J.M. Mason1 , V.M. Fthenakis2 , T

  13. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life...

  14. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    energy  and  GHG performance of Chicago and New York is the Chicago and New York systems where energy and  emissions CO 2 e).  For New York, life?cycle energy and GHG emissions 

  15. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  16. Life-Cycle Analysis of Geothermal Technologies

    Broader source: Energy.gov [DOE]

    The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects.

  17. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  18. Consequential life cycle assessment of policy vulnerability to price effects

    E-Print Network [OSTI]

    Rajagopal, D

    2014-01-01

    Recent developments in life cycle assessment. Journal ofHalog. 2011. Consequential life cycle assessment: A review.Journal of Life Cycle Assessment 16(5): Edwards, R. , S.

  19. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01

    schemes adopted in life-cycle assessment, such as archetypeshealth response in life-cycle assessment using ED10s andglobal warming in life-cycle assessment based on damages to

  20. Life-cycle assessment of NAND flash memory

    E-Print Network [OSTI]

    Boyd, Sarah; Horvath, A; Dornfeld, David

    2010-01-01

    information for life cycle assessment,” Journal of ChemicalInternational Journal of Life Cycle Assessment, vol. 11, no.to final publication. LIFE-CYCLE ASSESSMENT OF NAND FLASH

  1. Life cycle evolution and systematics of Campanulariid hydrozoans

    E-Print Network [OSTI]

    Govindarajan, Annette Frese, 1970-

    2004-01-01

    The purpose of this thesis is to study campanulariid life cycle evolution and systematics. The Campanulariidae is a hydrozoan family with many life cycle variations, and provide an excellent model system to study life cycle ...

  2. Consequential life cycle assessment of policy vulnerability to price effects

    E-Print Network [OSTI]

    Rajagopal, D

    2014-01-01

    Recent developments in life cycle assessment. Journal ofJournal of Life Cycle Assessment 15(1): Laborde, D. 2011.in consequential life-cycle assessment. Journal of Cleaner

  3. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  4. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via...

  5. Life Cycle Cost Analysis for Sustainable Buildings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings & Campuses Life Cycle Cost Analysis for Sustainable Buildings Life Cycle Cost Analysis for Sustainable Buildings To help facility managers make sound...

  6. Energy Price Indices and Discount Factors for Life Cycle Cost...

    Office of Environmental Management (EM)

    Life Cycle Cost Analysis, 2013 Energy Price Indices and Discount Factors for Life Cycle Cost Analysis, 2013 Handbook describes the annual supplements to the NIST Handbook 135 and...

  7. Life Cycle Cost Discount Rates and Energy Price Projections ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Cost Discount Rates and Energy Price Projections Life Cycle Cost Discount Rates and Energy Price Projections Text file containing energy price projections underlying the...

  8. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  9. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    2 Life Cycle AssessmentLife Cycle Assessment . . . . . . . . . . . . . . . . . . . . . .Four phases of life cycle assessment as described by ISO

  10. Life Cycle Cost Housing Need and Sustainability

    E-Print Network [OSTI]

    Life Cycle Cost Housing Need and Sustainability Abstract: Jordan is actually facing a rapid urban became difficult to sustain especially concerning the slum areas and the environmental pollution due which could contribute to increase the productivity and sustainability taking into consideration

  11. Research Life Cycle Max J. Egenhofer

    E-Print Network [OSTI]

    Egenhofer, Max J.

    Research Life Cycle Max J. Egenhofer #12;Five Phases Research Orientation Phase Research Startup Phase Research Proposal Preparation Phase Active Research Phase Harvest #12;Research Orientation Phase Identify the field in which you want to do research Do some selected reading · Identify key concepts

  12. -Successful Integration of Life Cycle Assessment in to Civil Engineering Course -CIVL 498C Life Cycle Analysis of UBC Buildings

    E-Print Network [OSTI]

    - Successful Integration of Life Cycle Assessment in to Civil Engineering Course - CIVL 498C Life to teaching the science-based environmental impact assessment method of Life Cycle Analysis (LCA). Through, through being capable of; · Completing a Life Cycle Assessment (LCA) study in accordance with ISO 14040

  13. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  14. An ideal sealed source life-cycle

    SciTech Connect (OSTI)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  15. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    rail modes, California High Speed  Rail and small to large the following sections:  High Speed Rail (California) Life?Horvath    Page 88  8.1 High Speed Rail (California) Life­

  16. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    bus,  the electric buses’ fraction of energy consumed was Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School  Buses, Electric Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric 

  17. Life-cycle assessment of NAND flash memory

    E-Print Network [OSTI]

    Boyd, Sarah; Horvath, A; Dornfeld, David

    2010-01-01

    information for nand ?ash lca,” Consortium on Green DesignLife Cycle Assessment (EIO-LCA), US 1997 Industry BenchmarkLife Cycle Assessment (EIO-LCA), US 1997 Industry Benchmark

  18. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

  19. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  20. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  1. Bioproduct Life Cycle Analysis with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  2. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Broader source: Energy.gov (indexed) [DOE]

    hydrothermal flash, and hydrothermal binary technologies. lifecycleanalysisofgeothermalsystemsdraft.pdf More Documents & Publications Life-Cycle Analysis Results of...

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Broader source: Energy.gov (indexed) [DOE]

    hydrothermal flash, and hydrothermal binary technologies. lifecycleanalysisofgeothermalsystems.pdf More Documents & Publications Life-Cycle Analysis Results of...

  4. Discovering Life Cycle Assessment Trees from Impact Factor Databases

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    Discovering Life Cycle Assessment Trees from Impact Factor Databases Naren Sundaravaradan and degradation of the envi- ronment. Life cycle assessment (LCA) is a methodol- ogy for quantifying multiple to quantifying broad envi- ronmental impacts is the method of life cycle assessment (LCA) (Baumann and Tillman

  5. Predictive usage mining for life cycle assessment Jungmok Ma a

    E-Print Network [OSTI]

    Kim, Harrison

    Predictive usage mining for life cycle assessment Jungmok Ma a , Harrison M. Kim b, a Department e i n f o Article history: Keywords: Life cycle assessment Usage modeling Time series segmentation Time series analysis a b s t r a c t The usage modeling in life cycle assessment (LCA) is rarely

  6. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    Report IEA-PVPS T12-03:2011 #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment Guidelines on Life-Cycle Assessment of Photovoltaic Electricity IEA PVPS Task 12, Subtask 20, LCA

  7. Automating Threat Modeling through the Software Development Life-Cycle

    E-Print Network [OSTI]

    Miller, Barton P.

    in the development life-cycle reduces its cost dramati- cally. Companies doing software development know this realityAutomating Threat Modeling through the Software Development Life-Cycle Guifr´e Ruiz1 , Elisa process through the development life-cycle. It does not require developers to have any security training

  8. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    2010). Comparative life cycle assessment of rapeseed oil andoil. The International Journal of Life Cycle Assessment 13(oil. The Interna- tional Journal of Life Cycle Assessment

  9. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    in Minnesota, Life Cycle Assessment IX, Boston, MA, 2009;for Environmental Life-Cycle Assessment. EnvironmentalInput-Output Life Cycle Assessment (EIO-LCA) US 2002 (428)

  10. Consumer-oriented Life Cycle Assessment of Food, Goods and Services

    E-Print Network [OSTI]

    Jones, Christopher M; Kammen, Daniel M; McGrath, Daniel T

    2008-01-01

    Input-Output Life Cycle Assessment (EIO-LCA); CarnegieEnvironmental Life Cycle Assessment of Goods and Services:Structure of Life Cycle Assessment; Kluwer Academic

  11. Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach

    E-Print Network [OSTI]

    Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

    2013-01-01

    International Journal of Life Cycle Assessment 2006. [30]management – life cycle assessment – principles andalso has experience with life-cycle assessment of social and

  12. Technology Choices for the PV Industry: A Comparative Life Cycle Assessment

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David A

    2005-01-01

    2000), “Environmental Life Cycle Assessment of Solar HomePV INDUSTRY: A Comparative Life Cycle Assessment Sarah Boydinput-output life cycle assessment (EIOLCA) to capture both

  13. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    Framework for Life Cycle Assessments: 1991; SETAC.   [Fels BuiLCA: Building Life?cycle Assessment Tool; Unpublished Output Based Life?cycle Assessment;  Journal of Industrial 

  14. Life-Cycle Assessment of Concrete: Decision-Support Tool and Case Study Application

    E-Print Network [OSTI]

    Gursel, Aysegul Petek

    2014-01-01

    Example of a Hybrid Life-Cycle Assessment of ConstructionD.W. Pennington, Life cycle assessment: Part 1: Framework,management - Life Cycle Assessment: Principles and

  15. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01

    Cradle-to-Gate Life Cycle Assessment of Clinker Production."International Journal of Life Cycle Assessment 12(5): 282-Environmental life cycle assessment of products. Guide &

  16. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Hellweg, Stefanie

    2010-01-01

    Radioactivity in Life Cycle Assessment of Dwellings - PartInternational Journal of Life Cycle Assessment 2005, 10 ,Radioactivity in Life Cycle Assessment of Dwellings - Part

  17. Life-cycle assessment of computational logic produced from 1995 through 2010

    E-Print Network [OSTI]

    Boyd, Sarah; A. Horvath; Dornfeld, David

    2010-01-01

    S and Inaba A 1997 Life cycle assessment; an approach toE and Zappa S 2001 Life cycle assessment of an integratedenvironmental life cycle assessment for telecommunications

  18. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    2.3. Life cycle assessment . . . . . . . . . . . . . .4), Contadini, J. (2002). Life Cycle Assessment of Fuel Celland A. Moberg (2000). Life cycle assessments of energy from

  19. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01

    Environmental Management: Life Cycle Assessment—RequirementsA, Turkenburg W. 2008. Life cycle assessment of a pulverizedM, Henkel J. 2009. Life cycle assessment of carbon dioxide

  20. Embedded Temporal Difference in Life Cycle Assessment: Case Study on VW Golf A4 Car

    E-Print Network [OSTI]

    Yuan, Chris; Simon, Rachel; Natalie Mady; Dornfeld, David

    2009-01-01

    analyzing uncertainty in life-cycle assessment: a survey of2007. J. W. Owens. “Life cycle assessment: Constraints onEnvironment Results of Life Cycle Assessment,” Energy, 31,

  1. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01

    for environmental life-cycle assessment. Environ. Sci.E. ; Zappa, S. Life Cycle Assessment of an IntegratedInput-Output Life Cycle Assessment (EIO-LCA). http://

  2. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    Framework for Life Cycle Assessments: 1991; SETAC.   [Fels for Environmental Life Cycle Assessment; Environmental and Variability in Life Cycle Assessment;  International 

  3. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    2.3. Life cycle assessment . . . . . . . . . . . . . .and A. Moberg (2000). Life cycle assessments of energy from4), Contadini, J. (2002). Life Cycle Assessment of Fuel Cell

  4. Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach

    E-Print Network [OSTI]

    Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

    2013-01-01

    International Journal of Life Cycle Assessment 2006. [30]management – life cycle assessment – principles andUNEP-SETAC Social Life Cycle Assessment Guidelines suggest

  5. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01

    Environmental life cycle assessment of products. Guide &management – Life cycle assessment – Requirements andCradle-to-Gate Life Cycle Assessment of Clinker Production."

  6. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01

    for environmental life-cycle assessment. Environ. Sci.Input-Output Life Cycle Assessment (EIO-LCA). http://information for life cycle assessment. J. Chem. Technol.

  7. Consumer-oriented Life Cycle Assessment of Food, Goods and Services

    E-Print Network [OSTI]

    Jones, Christopher M; Kammen, Daniel M; McGrath, Daniel T

    2008-01-01

    Input-Output Life Cycle Assessment (EIO-LCA); CarnegieStructure of Life Cycle Assessment; Kluwer AcademicEnvironmental Life cycle Assessment Using Input-Output

  8. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . .28 Exergetic life-cycle assessment . . . . . . . .

  9. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Methodology iii Life-Cycle Assessment (LCA) . . . . . . .life-cycle assessment . . . . . . . . . . . . . . . . . . . . . . . . . .

  10. FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California emission projections for the years 2012, 2017, 2022, and 2030 KEYWORDS Full Fuel Cycle Analysis, Well

  11. Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.

    SciTech Connect (OSTI)

    Wang, M.; Lee, H.; Molburg, J.

    2004-01-01

    Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

  12. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  13. Life cycle test of the NOXSO process

    SciTech Connect (OSTI)

    Ma, W.T.; Haslbeck, J.L.; Neal, L.G.

    1990-05-01

    This paper summarizes the data generated by the NOXSO Life Cycle Test Unit (LCTU). The NOXSO process is a dry flue gas treatment system that employs a reusable sorbent. The sorbent consists of sodium carbonate impregnated on a high-surface-area gamma alumina. A fluidized bed of sorbent simultaneously removes SO{sub 2} and NO{sub x} from flue gas at a temperature of 250{degrees}F. The spent sorbent is regenerated for reuse by treatment at high temperature with a reducing gas. This regeneration reduces sorbed sulfur compounds to SO{sub 2}, H{sub 2}S, and elemental sulfur. The SO{sub 2} and H{sub 2}S are then converted to elemental sulfur in a Claus-type reactor. The sulfur produced is a marketable by-product of the process. Absorbed nitrogen oxides are decomposed and evolved on heating the sorbent to regeneration temperature.

  14. Design for, and Evaluation of Life Cycle Performance 

    E-Print Network [OSTI]

    Ahner, D. J.; Hall, E. W.

    1986-01-01

    , AND EVALUATION OF LIFE CYCLE PERFORMANCE David J. Ahner Eldon W. Hall GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK ABSTRACT EQUIPMENT DEGRADATION Project evaluation necessarily requires performance estimates over the project life cycle. In contrast... application. A specific cogeneration exam ple will be discussed and the economic effects of life cycle performance with various plant design assumptions will be shown. Design considerations' to minimize long term performance degradation will also...

  15. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  16. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Part 2: LED Manufacturing and Performance Scholand, Michael; Dillon, Heather E. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE;...

  17. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last...

  18. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Estimation and Analysis of Life Cycle Costs of Baseline Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  19. Economic Life Cycle Assessment as element of sustainability certification – a key success factor moving beyond Life Cycle Costing 

    E-Print Network [OSTI]

    Trinius, W.; Hirsch, H.

    2009-01-01

    Lakenbrink, DU Diederichs Project Management, Munich, Germany Title Economic Life Cycle Assessment as element of sustainability certification ? a key success factor moving beyond Life Cycle Costing The move from considering environmental impacts... on sustainability of construction works, and relating to the emerging European standards in this field, the recently established German Sustainable Building Council (GeSBC / DGNB) presented a certification scheme applying a holistic life cycle model. While...

  20. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  1. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  2. Longevity, Life-cycle Behavior and Pension Reform , Victoria Prowse

    E-Print Network [OSTI]

    Alexandrova, Ivana

    Longevity, Life-cycle Behavior and Pension Reform Peter Haan , Victoria Prowse July 4, 2011 Abstract How can public pension systems be reformed to ensure fiscal stability in the face of increasing and retirement behavior. Keywords: Life Expectancy; Public Pension Reform; Retirement; Employment; Life

  3. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1EmergingTherese Cloyd About

  4. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  5. THE ASSESSMENT PHASE OF THE DATA LIFE CYCLE The assessment phase of the Data Life Cycle includes verification and validation of the survey

    E-Print Network [OSTI]

    APPENDIX E THE ASSESSMENT PHASE OF THE DATA LIFE CYCLE The assessment phase of the Data Life Cycle verification, data validation and DQA fit into the Assessment Phase of the Data Life Cycle. There are five/VERIFIED DATA CONCLUSIONS DRAWN FROM DATA Figure E.1 The Assessment Phase of the Data Life Cycle (EPA 1996a

  6. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  7. LIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS

    E-Print Network [OSTI]

    ........................................................................................................ 12 6.3 Calculating Energy Usage.............................................................................................. 13 7 Overall Energy UsageLIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS ON THE BASIS OF ENERGY CONSUMPTION Sin

  8. Building Life Cycle Cost Programs Software Installation Troubleshootin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    trouble downloading the Building Life Cycle Cost (BLCC) Programs software? Macintosh Operating Systems If you are receiving the "Download.app is damaged and can't be opened"...

  9. Incorporating uncertainty in the Life Cycle Cost Analysis of pavements

    E-Print Network [OSTI]

    Swei, Omar Abdullah

    2012-01-01

    Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

  10. Life-cycle assessment of wastewater treatment plants

    E-Print Network [OSTI]

    Dong, Bo, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

  11. Predicting the life cycle of rice varieties in Texas 

    E-Print Network [OSTI]

    Gambrell, Stefphanie Michelle

    2006-04-12

    once it reaches the market. This study develops a regression model, which includes competition and the characteristics of a specific variety, to estimate the life cycle of new varieties and hybrids. In addition, simulation techniques are utilized...

  12. Improving the quality and transparency of building life cycle assessment

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2011-01-01

    Life cycle assessment, or LCA, is a powerful method for measuring and reducing a building's environmental impacts. Its widespread adoption among designers would allow the environmental component of sustainability to gain ...

  13. Life cycle analysis of hybrid poplar trees for cellulosic ethanol

    E-Print Network [OSTI]

    Huang, Jessica J

    2007-01-01

    The main purpose of this paper is to assess the energy and environmental benefits of cultivating hybrid poplars as a biomass crop for cellulosic ethanol. A "Life Cycle Assessment" (LCA) methodology is used to systematically ...

  14. Life Cycle Cost Analysis for Sustainable Federal Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  15. Green Engineering and Life Cycle Assessment at Virginia Tec ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Engineering and Life Cycle Assessment at Virginia Tech Apr 10 2014 03:00 PM - 04:00 PM Sean McGinnis, VT Green Engineering, Oak Ridge Center for Bioenergy and Sustainability...

  16. Integrating Green Manufacturing in Sustainable Life Cycle Design: A Case Study on PEM Fuel Cells

    E-Print Network [OSTI]

    Chien, Joshua

    2013-01-01

    ISO14000 framework for life cycle assessment [158] b) InputsX. Li. “A preliminary life cycle assessment of PEM fuel cellManagement - Life Cycle Assessment - Principles and

  17. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    Recent developments in Life Cycle Assessment, Journal ofThe uncertainty of Life Cycle Assessment is a very importantFuture Events in Life Cycle Assessment Yi-Fen Chen, Rachel

  18. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01

    Status and Needs for Life Cycle Assessment Development inJournal of Life Cycle Assessment 4 (4), pp.191-194. Zhuang,Management—Life Cycle Assessment—Data Documentation Format

  19. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01

    Input-Output Life Cycle Assessment (EIO-LCA) model”, http://SYSTEMS BASED ON LIFE CYCLE ASSESSMENT Garg S. , Dornfeld D.based on a thorough Life Cycle Assessment (LCA) of all the

  20. Dose-Response Modeling for Life Cycle Impact Assessment: Findings of the Portland Review Workshop

    E-Print Network [OSTI]

    McKone, Thomas E.; Kyle, Amy D.; Jolliet, Olivier; Olsen, Stig Irving; Hauschild, Michael

    2006-01-01

    Key References Life cycle assessment (LCA) is a frameworkmeasure of impact in life- cycle assessment? When combiningHealth Response in Life Cycle Assessment Using ED10s and

  1. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01

    and Yang, W. -F. , Life cycle assessment on using recycledEatmon, T.D. , A life-cycle assessment of portland cementCradle-to-Gate Life Cycle Assessment of Clinker Production.

  2. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    Recent developments in Life Cycle Assessment, Journal ofFuture Events in Life Cycle Assessment Yi-Fen Chen, RachelOne limitation of Life Cycle Assessment is that it relies on

  3. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01

    Status and Needs for Life Cycle Assessment Development inJournal of Life Cycle Assessment 4 (4), pp.191-194. Zhuang,Facilities: Life Cycle Assessment, Resources, Conservation

  4. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    in Minnesota, Life Cycle Assessment IX, Boston, MA, 2009;Eatmon, T. D. A Life-Cycle Assessment of Portland CementAssessment, and Life-Cycle Assessment. Proceedings of the

  5. The human toxicity potential and a strategy for evaluating model performance in life-cycle impact assessment

    E-Print Network [OSTI]

    McKone, Thomas E.; Hertwich, Edgar G.

    2001-01-01

    within the framework of life cycle assessment of products.in the Journal of Life Cycle Assessment Research SupportedIntroduction Life cycle assessment (LCA) requires

  6. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ed. ), Handbook on Life Cycle Assessment: Operational GuideManagement – Life Cycle Assessment – Principles andthe gap between life cycle assessments and product design,

  7. Integrated Life-cycle Assessment for Semiconductor Manufacturing Processes using the Environmental Value Systems Analysis and EIOLCA

    E-Print Network [OSTI]

    Ayyagary, Uday; Krishnan, Nikhil; Rosales, Joaquin; Dornfeld, David A

    2003-01-01

    Integrated Life-cycle Assessment for semiconductormanufacturers alike. 2. Life cycle Assessment using EnV-Sa move towards Life Cycle Assessment (LCA), which is the

  8. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ed. ), Handbook on Life Cycle Assessment: Operational Guidethe gap between life cycle assessments and product design,Management – Life Cycle Assessment – Principles and

  9. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  10. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    FTR: Fischer-Tropsch reactor LCA: life cycle analysis LCI:software. Life cycle analyses (LCA) using a modified GREETfor the process. Keywords: LCA, Fischer-Tropsch, avation

  11. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This...

  12. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  13. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  14. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect (OSTI)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

  15. Prospective Life Cycle and Technology Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartmentImre Gyuk, U.S.Energymore<6Prospective Life

  16. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  17. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  18. Consumer-oriented Life Cycle Assessment of Food, Goods and Services

    E-Print Network [OSTI]

    Jones, Christopher M; Kammen, Daniel M; McGrath, Daniel T

    2008-01-01

    Life Cycle Assessment (EIO-LCA); Carnegie Mellon University:level life cycle assessment (LCA) approaches can take up tolife cycle assessment (IO-LCA) tools present a promising

  19. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01

    Cycle Assessment (EIO-LCA) model”, http://www.eiolca.net/,Life Cycle Assessment (LCA) of all the components of aLife Cycle Assessment (LCA), Carbon Footprint, Embodied

  20. THE PLANNING PHASE OF THE DATA LIFE CYCLE The planning phase of the Data Life Cycle is carried out using the Data Quality Objectives

    E-Print Network [OSTI]

    APPENDIX D THE PLANNING PHASE OF THE DATA LIFE CYCLE The planning phase of the Data Life Cycle assurance project plan (QAPP). The QAPP integrates all technical and quality aspects of the Data Life Cycle (implementation) and the decision maker (assessment)

  1. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings?the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  2. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  3. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  4. Life Cycle Assessment of Biogas from Separated slurry

    E-Print Network [OSTI]

    Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

  5. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect (OSTI)

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  6. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  7. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  8. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  9. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Hellweg, Stefanie

    2010-01-01

    to Chemicals with LCA: The Examples of Trichloroethylene andin Life Cycle Assessment (LCA), may result in product orand outdoor exposure in LCA, within the UNEP/SETAC Life

  10. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging TechnologiesBuilding Life Cycle

  11. Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle 

    E-Print Network [OSTI]

    Maisey, G.; Milestone, B.

    2005-01-01

    In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present...

  12. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with...

  13. Life cycle assessment of materials and construction in commercial structures : variability and limitations

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2010-01-01

    Life cycle assessment has become an important tool for determining the environmental impact of materials and products. It is also useful in analyzing the impact a structure has over the course of its life cycle. The ...

  14. Life Cycle Cost (LCC) Handbook Final Version 9-30-14

    Office of Energy Efficiency and Renewable Energy (EERE)

    This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform appropriate life-cycle cost analyses (LCCA) for capital projects. LCC Handbook – Final, September 2014

  15. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Energy Savers [EERE]

    Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of...

  16. Life Cycle Assessment goes to Washington : lessons from a new regulatory design

    E-Print Network [OSTI]

    Edwards, Jennifer Lynn, M. C. P. Massachusetts Institute of Technology

    2009-01-01

    Life Cycle Assessment (LCA) is a quantitative tool that measures the bundled impact of an individual product over its entire life cycle, from "cradle-to-grave." LCA has been developed over many decades to improve industry's ...

  17. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department...

    Energy Savers [EERE]

    Life Cycle Cost (LCC) Handbook Final Version 9-30-14 Life Cycle Cost (LCC) Handbook Final Version 9-30-14 This handbook provides procedures, information, examples, and tools to...

  18. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

  19. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual...

  20. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This...

  1. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Environmental Management (EM)

    2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

  2. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications 

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01

    In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present...

  3. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  4. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover

    E-Print Network [OSTI]

    Air [kg NOx-Equiv.]. Production and processes of corn and petroleum from crude oils are also observed ­ Global Warming Air [kg CO2-Equiv.], 3) TRACI, Acidification Rain [kg mol H + Equiv.], and 4) TRACI, Smog for ethanol production (corn versus corn stover) had little effect on the life cycle emissions of E85, however

  5. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    E-Print Network [OSTI]

    Pedersen, Tom

    and CNG RCVs. c A 24% reduction of GHG emissions (CO2-equivalent) may be realized by switching from diesel to CNG. c CNG RCVs are estimated to be cost effective and may lead to reduced fuel costs. a r t i c l e i 2012 Keywords: Life cycle assessment (LCA) Compressed natural gas (CNG) Refuse collection vehicle (RCV

  6. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes the clarification of how agencies determine the life-cycle cost for investments required by Executive Order 13123.

  7. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    liquid hydrocarbon by-product of natural gas production (NaturalGas.org, 2009). To our knowledge, the life cycle

  8. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  9. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J Friedman Fall 2010 #12;Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications Copyright 2010 by Richard J. Plevin #12;1 Abstract Life Cycle Regulation of Transportation Fuels

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT -CENTER FOR

    E-Print Network [OSTI]

    to support the development of the field of life cycle assessment (LCA). The information and findingsUBC Social Ecological Economic Development Studies (SEEDS) Student Report JIAN SUN LIFE CYCLE which has one of the largest life cycle inventory database in North America. Assumptions and According

  11. Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A

    E-Print Network [OSTI]

    Hopkins, William A.

    Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A POPULATION with complex life cycles, population models may be useful in understanding impacts of stressors that are unique to the habitat type (aquatic, terrestrial) and that operate at different times in the life cycle. We investigated

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment Report

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle AssessmentC: Life Cycle Assessment Report Thunderbird Old Arena Group Members: Dennis Fan, Sean Geyer, Hillary purposes. A life cycle assessment (LCA) was carried out on two of the event arenas built for the 2010

  13. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT OF

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA at rob.sianchuk@gmail.com #12;2013 CIVL498 C Ian Eddy LIFE CYCLE ASSESSMENT OF THE FOREST SCIENCE CENTER This study used Life Cycle Assessment (LCA) to assess the environmental performance of the University

  14. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination

    E-Print Network [OSTI]

    A comparative life cycle assessment of hybrid osmotic dilution desalination and established. A comparative life cycle assessment methodology was used to differ- entiate between a novel hybrid process form 4 December 2011 Accepted 5 December 2011 Available online 13 December 2011 Keywords: Life cycle

  15. 1 Copyright 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE-

    E-Print Network [OSTI]

    1 Copyright © 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE Drawing from the substantial body of literature on life cycle assessment / analysis (LCA), the article models is suggested as a means of improving the impact assessment phase of LCA. Keywords: Life Cycle

  16. Use of Life Cycle Assessment in Evaluating Solvent Recovery Alternatives in Pharmaceutical Manufacture

    E-Print Network [OSTI]

    Savelski, Mariano J.

    Use of Life Cycle Assessment in Evaluating Solvent Recovery Alternatives in Pharmaceutical and purify IPA from the process waste streams. A life cycle assessment was later conducted to measure *Savelski@rowan.edu Keywords: pharmaceutical manufacture, solvent recovery, pervaporation, life cycle

  17. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment: Aspenware Biodegradable Cutlery

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment the current status of the subject matter of a project/report". #12;Life Cycle Assessment: Aspenware sustainable choice (SEEDS). In this report, a life cycle assessment was performed for one specific cutlery

  18. Applying Machine Learners to GUI Specifications in Formulating Early Life Cycle Project Estimations

    E-Print Network [OSTI]

    Boetticher, Gary D.

    to accurately estimate software projects early in the life cycle. Low estimates result in cost overruns. High1 Applying Machine Learners to GUI Specifications in Formulating Early Life Cycle Project and reliable early life cycle project estimates remains an open issue in the software engineering discipline

  19. The dynamics of interfirm networks along the industry life cycle: The case of the global video

    E-Print Network [OSTI]

    Balland, Pierre-Alexandre

    firms along the life cycle of a creative industry. We focus on three mechanisms that drive networkThe dynamics of interfirm networks along the industry life cycle: The case of the global video game, industry life cycle, proximity, creative industry, video game industry, stochastic actor-oriented model JEL

  20. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

  1. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  2. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  3. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation

    E-Print Network [OSTI]

    Horvath, Arpad; Chester, Mikhail

    2008-01-01

    A. , Environmental Life-cycle Assessment of PassengerAnalysis-Based Life-cycle Assessment. Software. Carnegieframework for life cycle assessments, 1991, SETAC. [Fritz

  4. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Rosenbaum, Ralph K.

    2010-01-01

    International Journal of Life Cycle Assessment, 13(7):532-toxic impacts in Life Cycle Assessment. Recommendations andof toxic impacts in Life Cycle Assessment. USEtox therefore

  5. Background and Reflections on the Life Cycle Assessment Harmonization Project

    Broader source: Energy.gov [DOE]

    Despite the ever-growing body of life cycle assessment literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights.

  6. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Luigi Lella; Ignazio Licata

    2007-05-08

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  7. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Lella, Luigi

    2010-01-01

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  8. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: EnergyGHGs NationalLife-Cycle Cost

  9. Life-Cycle Civil Engineering Biondini & Frangopol (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46857-2

    E-Print Network [OSTI]

    Lepech, Michael D.

    , ISBN 978-0-415-46857-2 An integrated life cycle assessment and life cycle analysis model for pavement cycle assessment and life cycle cost analysis model was developed to calculate the environmental impacts adopted as a framework for designing and constructing pave- ment systems. Life cycle assessment (LCA

  10. End-of-life flows of multiple cycle consumer products

    SciTech Connect (OSTI)

    Tsiliyannis, C.A.

    2011-11-15

    Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g. electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g. Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is useful, the latter being the target of enacted legislation aiming at increasing reuse.

  11. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  12. Low emission advanced power cycle. Final CRADA report.

    SciTech Connect (OSTI)

    Tentner, A.; Nuclear Engineering Division

    2010-07-13

    Today's gas turbines are based on the Brayton Cycle in which heat is added to the working fluid at constant pressure. An alternate approach, the Humphrey cycle, provides a higher theoretical thermal efficiency by adding heat at constant, or near constant volume. A few practical examples of such engines appeared in the mid 1900's, but they were largely superseded by the Brayton engine. Although the conventional gas turbine has been developed to a high level of efficiency and reliability, significant improvements in performance are becoming increasingly costly to obtain. Efficiencies of compressors, turbines and combustors are approaching theoretical limits. Cooling and materials technologies continue to improve but higher cycle temperatures may be limited by NOx emissions. While heat exchangers, intercoolers and other features improve cycle efficiency they add significantly to the cost, weight and volume of the basic engine and for flight applications may always be impractical. For these reasons there has been renewed interest in recent years in the constant volume Humphrey cycle focusing mainly on pulsing systems in which heat is added by a rapid series of detonations. Variations on this basic scheme are being evaluated for aircraft propulsions systems. General Electric has established a joint program with several Russian organizations to explore devices based on pressure rise combustion cycle and to make fundamental measurements of detonation properties of mixtures of hydrocarbon fuels and air.

  13. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect (OSTI)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  14. Going with the flow: Life cycle costing for industrial pumpingsystems

    SciTech Connect (OSTI)

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-07-08

    Industries worldwide depend upon pumping systems for theirdaily operation. These systems account for nearly 20 percent of theworld's industrial electrical energy demand and range from 25-50 percentof the energy usage in certain industrial plant operations. Purchasedecisions for a pump and its related system components are typicallybased upon a low bid, rather than the cost to operate the system over itslifetime. Additionally, plant facilities personnel are typically focussedon maintaining existing pumping system reliability rather than optimizingthe systems for best energy efficiency. To ensure the lowest energy andmaintenance costs, equipment life, and other benefits, the systemcomponents must be carefully matched to each other, and remain sothroughout their working lives. Life Cycle Cost (LCC) analysis is a toolthat can help companies minimize costs and maximize energy efficiency formany types of systems, including pumping systems. Increasing industryawareness of the total cost of pumping system ownership through lifecycle cost analysis is a goal of the US Department of Energy (DOE). Thispaper will discuss what DOE and its industry partners are doing to createthis awareness. A guide book, Pump Life Cycle Costs: A Guide to LCCAnalysis for Pumping Systems, developed by the Hydraulic Institute (HI)and Europump (two pump manufacturer trade associations) with DOEinvolvement, will be overviewed. This guide book is the result of thediligent efforts of many members of both associations, and has beenreviewed by a group of industrial end-users. The HI/Europump Guideprovides detailed guidance on the design and maintenance of pumpingsystems to minimize the cost of ownership, as well as LCC analysis. DOE,Hydraulic Institute, and other organizations' efforts to promote LCCanalysis, such as pump manufacturers adopting LCC analysis as a marketingstrategy, will be highlighted and a relevant case studyprovided.

  15. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  16. Life Cycle Assessment of Vanier Residence in University of British Columbia

    E-Print Network [OSTI]

    Life Cycle Assessment of Vanier Residence in University of British Columbia Building Performance cycle assessment (LCA) was conducted on the Vanier Residence. The LCA conducted looks into the lifeOff were used to create an LC model of the Vanier Residence. For this case study, a cradle-to-gate life

  17. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  18. Emission Estimation of Heavy Duty Diesel Vehicles by Developing Texas Specific Drive Cycles with Moves 

    E-Print Network [OSTI]

    Gu, Chaoyi

    2013-07-31

    Driving cycles are acting as the basis of the evaluation of the vehicle performance from air quality point of view, such as fuel consumption or pollutant emission, especially in emission modeling and emission estimation. ...

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Chemistry Building North Block

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA at rob.sianchuk@gmail.com #12;Running head: Life Cycle Assessment of Chemistry Building North Block CIVL 498 ­ Life Cycle Assess Life Cycle Assessment of Chemistry Building North Block Minge Weng November 18

  20. Life-Cycle Impacts From Novel Thorium–Uranium-Fuelled Nuclear Energy Systems

    E-Print Network [OSTI]

    Ashley, S. F.; Fenner, R. A.; Nuttall, W. J.; Parks, Geoffrey T.

    2015-06-02

    is performed that considers the con- struction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models...

  1. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Hellweg, Stefanie

    2010-01-01

    for Life Cycle Inventories. Ecoinvent v 2.0 . 2007 http://inventory databases, e.g. Ecoinvent (55) . Further work is

  2. Approximate life-cycle assessment of product concepts using learning systems

    E-Print Network [OSTI]

    Sousa, Inês (Maria Inês Silva Sousa), 1972-

    2002-01-01

    This thesis develops an approximate, analytically based environmental assessment method that provides fast evaluations of product concepts. Traditional life-cycle assessment (LCA) studies and their streamlined analytical ...

  3. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01

    event scenarios could alter LCA result. REFERENCES SchweimerEconomic- balance hybrid LCA extended with uncertaintyLife Cycle Assessment (LCA) is a leading technique used to

  4. Life-cycle assessment of computational logic produced from 1995 through 2010

    E-Print Network [OSTI]

    Boyd, Sarah; A. Horvath; Dornfeld, David

    2010-01-01

    a life- cycle assessment (LCA) for generic CMOS logic atover time and to allow LCA practitioners to more accuratelyarea of semiconductor LCA has included four environmental

  5. Going with the flow: Life cycle costing for industrial pumping systems

    E-Print Network [OSTI]

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-01-01

    Costs Energy Costs Pump Maintenance Costs Other Maintenanceand Identify pumps with high maintenance costs. Since thePump Downtime Operating Energy Maintenance Figure 1. Example life cycle costs

  6. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  7. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department...

    Office of Environmental Management (EM)

    Final Version 9-30-14 This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform...

  8. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Environmental Management (EM)

    0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

  9. URBAN FORM AND LIFE-CYCLE ENERGY CONSUMPTION:1 CASE STUDIES AT THE CITY SCALE2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 URBAN FORM AND LIFE-CYCLE ENERGY CONSUMPTION:1 CASE STUDIES AT THE CITY SCALE2 3 Brice G. Nichols it should31 be included in planning analyses. Overall, average life-cycle per-capita energy use ranges from residential and commercial sectors are affected by density.37 38 Keywords: urban energy use, city-level scale

  10. Journal of Power Sources 158 (2006) 679688 Cycle life performance of lithium-ion pouch cells

    E-Print Network [OSTI]

    2006-01-01

    capability studies on full cells give a better understanding of the capacity fade mechanisms. 2. ExperimentalJournal of Power Sources 158 (2006) 679­688 Cycle life performance of lithium-ion pouch cells Available online 15 November 2005 Abstract Cycle life studies have been done on lithium-ion pouch cell

  11. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  12. Life cycle air quality impacts of conventional and alternative light-duty transportation in the

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Life cycle air quality impacts of conventional and alternative light-duty transportation biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle

  13. Quality engineering process for the Program Design Phase of a generic software life cycle

    E-Print Network [OSTI]

    Suryn, Witold

    Quality engineering process for the Program Design Phase of a generic software life cycle Witold phase of a generic software life cycle. The presented process model aims to guide the software quality place between the program designer and the software quality engineer. The paper also discusses

  14. An integrated life cycle quality model for general public market software products

    E-Print Network [OSTI]

    Suryn, Witold

    An integrated life cycle quality model for general public market software products Witold Suryn1 of the software product results from its ultimate quality seen by both acquirers and end users. An integrated life cycle quality model, further called complement model for software product quality combines high level

  15. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUMP LIFE CYCLE COSTS: PUMP LIFE CYCLE COSTS: A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS EXECUTIVE SUMMARY T O F E N E R G Y DE P A R T M EN U E N I T E D S T A T S O F A E R IC A...

  16. Ghost turns Zombie: Exploring the Life Cycle of Web-based Malware

    E-Print Network [OSTI]

    Cortes, Corinna

    Ghost turns Zombie: Exploring the Life Cycle of Web-based Malware Michalis Polychronakis Panayiotis- derground. In this work, we explore the life cycle of web- based malware by employing light., email: {panayiotis,niels}@google.com detecting drive-by downloads on billions of web pages. In a drive

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences

    E-Print Network [OSTI]

    Gruhl, Jim

    This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

  20. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  1. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    A Mathematical Analysis of Full Fuel Cycle Energy Use. ”of Policy for Adopting Full-Fuel-Cycle Analyses Into Energyof Policy for Adopting Full-Fuel-Cycle Analyses Into Energy

  2. Building Life Cycle Cost Programs File Saving Troubleshooting...

    Energy Savers [EERE]

    Cycle Cost Programs File Saving Troubleshooting Some users have experienced difficulties saving BLCC projects. The primary issue causing the issue is that the user is not an...

  3. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  4. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  5. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  6. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009Lienert named American♦

  7. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    GHG emissions for conventional gasoline, conventional diesel fuel, and kerosene-based jet fuel. The model served as the primary calculation tool for the results reported in the...

  8. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    case. It was found that the transportation distance has a significant effect on the oil consumption, a few of the systems emissions, and the energy consumption, whereas the...

  9. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of the Aquatic Ecosystems Research Laboratory

    E-Print Network [OSTI]

    of life cycle assessment (LCA). The information and findings contained in this report have not been, 2013 Final Report #12;CIVL 498C: Life Cycle Assessment of the Aquatic Ecosystems Research LaboratoryUBC Social Ecological Economic Development Studies (SEEDS) Student Report Daniel Tse Life Cycle

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Whole Building Life Cycle Assessment: Three Olympic Venues

    E-Print Network [OSTI]

    ,2011 CIVL 498C: WHOLE BUILDING LIFE CYCLE ASSESSMENT #12;· Introduction · What is LCA? · How can? OVERVIEW #12;WHAT IS LCA? Life Cycle Assessment A technique used to analyze and assess environmental Inventory Analysis Impact Assessment Interpretation #12;EVERY PRODUCTS LIFE CYCLE IS CREATED

  11. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment ­ which aims to support the development of the field of life cycle assessment (LCA). The information.sianchuk@gmail.com #12;2 | P a g e Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building CIVL 498E

  12. Challenges in the New Millennium: Product Discovery and Design, Enterprise and Supply Chain Optimization, Global Life Cycle Assessment

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization, Global Life Cycle Assessment Ignacio E. Grossmann Department of Chemical Engineering, Carnegie, and Global Life Cycle Assessment. We provide a brief review of the progress that has been made in these areas, Enterprise and Supply Chain Optimization, and Global Life Cycle Assessment as major themes for future

  13. Managing Process Variants in the Process Life Cycle Alena Hallerbach1, Thomas Bauer1, and Manfred Reichert2

    E-Print Network [OSTI]

    Ulm, Universität

    Managing Process Variants in the Process Life Cycle Alena Hallerbach1, Thomas Bauer1, and Manfred, which provides a more flexible solution for managing process variants in the process life cycle. In par to it. Provop provides full pro- cess life cycle support and allows for flexible process configuration

  14. IDARM PRESS RELEASE: IDARM conducts "Logistics and Life Cycle Management" course during 2629 May 2015 in Bogota,

    E-Print Network [OSTI]

    IDARM PRESS RELEASE: IDARM conducts "Logistics and Life Cycle Management" course during 2629 May) program within the Center for CivilMilitary Relations (CCMR) conducted a "Logistics and Life Cycle and characteristics of effective logistics and life cycle management systems. Emphasis was placed on best

  15. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    SciTech Connect (OSTI)

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  16. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  17. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  18. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan, E-mail: hongjing@sdu.edu.c [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li Xiangzhi [Department of Pathology, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109 (United States); Zhaojie Cui [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  19. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    144 Figure 63: Impact of Hydroelectricity on the Life-Cycle157 Figure 64: Impact of Hydroelectricity on the Water68 Table 14: Hydroelectricity-Related FWSE (Data Source: (

  20. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

  1. DOE Brochure Highlights Ethanol Life-Cycle Results Obtained with GREET

    SciTech Connect (OSTI)

    2009-01-18

    The U.S. Department of Energy (DOE) recently published a brochure highlighting the efficacy of Argonne National Laboratory's GREET model in evaluating the complete energy life cycle for ethanol.

  2. Life-Cycle Cost Reduction for High Speed Turbomachinery Utilizing Aerothermal - Mechanical Conditioning Monitoring Techniques 

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Bowman, J. C.

    1982-01-01

    The Life Cycle Costs (LCC) for high performance, centrifugal and axial flow turbomachinery such as gas turbines, compressors and pumps is very strongly influenced by fuel (energy) consumption and by maintenance costs. Additionally, the penalty costs...

  3. LIFE CYCLE AND COMMUNITY STRUCTURE OF CADDISFLIES (INSECTA: TRICHOPTERA) IN THE NAVASOTA RIVER, TEXAS. 

    E-Print Network [OSTI]

    Pruski, Sarah

    2014-05-16

    of freshwater resources. Aquatic invertebrate communities and their ecological functions to the Navasota River and similar ecosystems are poorly studied. The purpose of this study was to gain a better understanding of the life cycle and community structure...

  4. Energy Valuation Methods for Biofuels in South Florida: Introduction to Life Cycle Assessment and Emergy

    E-Print Network [OSTI]

    Ma, Lena

    SL377 Energy Valuation Methods for Biofuels in South Florida: Introduction to Life Cycle Assessment, research methods must accurately assess the extent to which a given practice is sustainable. A sustainable

  5. Iterative uncertainty reduction via Monte Carlo simulation : a streamlined life cycle assessment case study

    E-Print Network [OSTI]

    Bolin, Christopher E. (Christopher Eric)

    2013-01-01

    Life cycle assessment (LCA) is one methodology for assessing a product's impact on the environment. LCA has grown in popularity recently as consumers and governments request more information concerning the environmental ...

  6. Construction of a classification hierarchy for process underspecification to streamline life-cycle assessment

    E-Print Network [OSTI]

    Cary, Victor E

    2014-01-01

    Concerns over global warming potential and environmental degradation have created a demand for accurate assessment of the impact of various products and processes. Life cycle assessment (LCA), a quantitative assessment ...

  7. Enabling streamlined life cycle assessment : materials-classification derived structured underspecification

    E-Print Network [OSTI]

    Rampuria, Abhishek

    2012-01-01

    As environmental footprint considerations for companies gain greater importance, the need for quantitative impact assessment tools such as life cycle assessment (LCA) has become a higher priority. Currently, the cost and ...

  8. Life cycle assessment of UK pig production systems: the impact of dietary protein source 

    E-Print Network [OSTI]

    Stephen, Katie Louise

    2012-06-22

    A Life Cycle Assessment (LCA) was developed to evaluate the environmental impacts of producing 1 kg pig live weight. A comparison was made between dietary protein sources, i.e. imported soybean meal with the UK protein ...

  9. An exploration of materials taxonomies to support streamlined life cycle assessment

    E-Print Network [OSTI]

    Reis, Lynn (Lynn Diana)

    2013-01-01

    As life cycle assessment (LCA) gains prominence as a reliable method of environmental evaluation, concerns about data availability and quality have become more important. LCA is a resource intensive methodology, and thus ...

  10. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Williams, E. Life Cycle Water Use of Low-Carbon TransportSuh, S. ; Hellweg, S. In Water Use Impacts from Corn- BasedMaupin, M. A. Estimated Use of Water in the United States in

  11. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01

    Life Cycle Assessment (EIO-LCA). http://www.eiolca.net.the estimation of LCIs. Int. J. LCA 2004, 9 (2), 101–113.inventory information. Int. J. LCA 2000, 5 (3), 153–159.

  12. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01

    10. Wang, H. , 2008. “LCI/LCA Management in China: summaryof life-cycle assessment (LCA) to understand the embodiedThis paper reviews recent LCA studies in the cement industry

  13. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01

    M, Deschênes L, Samson R. 2010. Considering time in LCA:Dynamic LCA and its application to global warming impactLife Cycle Assessment (LCA) should be used to assist carbon

  14. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  15. Evaluation of probabilistic underspecification as a method for incorporating uncertainty into comparative life cycle assessments

    E-Print Network [OSTI]

    Wildnauer, Margaret T. (Margaret Thea)

    2012-01-01

    Life cycle assessments are quickly becoming a crucial method through which the environmental impacts of products or processes are evaluated. A concern with current practice, however, is that the use of deterministic values ...

  16. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  17. Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment

    E-Print Network [OSTI]

    Nicholson, Anna L. (Anna Louise)

    2009-01-01

    Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

  18. UNCORRECTED 2 Total Life Cycle-Based Materials Selection for Polymer

    E-Print Network [OSTI]

    Grujicic, Mica

    -metal stamped/formed and thermoplastic 10 injection molding subcomponents are integrated into a singular life cycle (TLC) approach to the selection of 13 metallic and thermoplastic materials (as well

  19. Vortex life cycles in two-and three-layer quasi-geostrophic models 

    E-Print Network [OSTI]

    Fox, Amanda Katherine

    2000-01-01

    regimes with jets has occurred. This research attempted to first determine the typical lifetime of a vortex, with considerations of its birth, evolution, and cessation. A vortex census was also performed in an attempt to describe the life cycle...

  20. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis- 2010

    Broader source: Energy.gov [DOE]

    Report describes the 2010 edition of energy price indices and discount factors for performing life-cycle cost analyses of energy and water conservation and renewable energy projects in federal facilities.

  1. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  2. Quantifying Variability in Life Cycle Greenhouse Gas Inventories of Alternative Middle Distillate Transportation Fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    The presence of variability in life cycle analysis (LCA) is inherent due to both inexact LCA procedures and variation of numerical inputs. Variability in LCA needs to be clearly distinguished from uncertainty. This paper ...

  3. System strategies in the management of transit systems towards the end of their life cycle

    E-Print Network [OSTI]

    Kairon, Ajmer Singh

    2007-01-01

    This thesis explores and evaluates essential strategies needed for the transit authority/operator to deal with end of life cycle challenges of Rapid Transit Systems (RTS) systems. RTS systems are elaborate systems consisting ...

  4. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-30 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Annual Supplement to NIST Handbook 135 Priya D. Lavappa Joshua D. Kneifel This...

  5. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01

    Consulting, Inc. , 9/2002 Life-cycle Assessment of PassengerChronicle, 11/24/2006 Life-cycle Assessment of PassengerLarge Large Large Large Life-cycle Assessment of Passenger

  6. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01

    Consulting, Inc. , 9/2002 Life-cycle Assessment of PassengerLarge Large Large Large Life-cycle Assessment of PassengerChronicle, 11/24/2006 Life-cycle Assessment of Passenger

  7. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    4] S. Boyd et al. : “Life-cycle assessment of computationalS. Boyd et al. : “Life-cycle assessment of semiconductors”,S. Boyd et al. : “Life-cycle assessment of NAND Flash”, in

  8. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    4] S. Boyd et al. : “Life-cycle assessment of computationalS. Boyd et al. : “Life-cycle assessment of semiconductors”,S. Boyd et al. : “Life-cycle assessment of NAND Flash”, in

  9. Life Cycle Analysis for the Walter H. Gage Residence The life cycle analysis (LCA) being carried out for this project is one of thirteen

    E-Print Network [OSTI]

    The life cycle analysis (LCA) being carried out for this project is one of thirteen others that are being to the many uncertainties associated with carrying out LCA. Uncertainties and assumptions inherent this project is that the use of LCA on will most definitely be an important tool to be used for the future

  10. Environmental life-cycle assessment of highway construction projects 

    E-Print Network [OSTI]

    Rajagopalan, Neethi

    2009-05-15

    in the world at a rapid rate due to its accumulation in the atmosphere. CO 2 has a global warming potential (GWP) of 1.0. GWP is the comparison of ability of different greenhouse gases to trap heat in the atmosphere. The GWP helps in converting emissions....4 Improvement Analysis ......................................................................................5 1.2 Atmospheric Emissions............................................................................................5 1.3 Objective of This Research...

  11. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  12. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    , the worldwide clean energy investments, having more than doubled in the past five years, have reached a new portion is due to maintenance and operation of wind energy systems. Cost-efficient maintenance of wind turbines and reducing the life-cycle costs significantly. This paper presents a life

  13. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements

    Broader source: Energy.gov [DOE]

    EAS performance results following 500 DeSOx CyclesMeets Off-Road Final Tier 4 and HD On-road Emission Standards

  14. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    SciTech Connect (OSTI)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States)] [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)] [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near-term programmatic decisions affect life cycle costs and commitments. (authors)

  15. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol

  16. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Gas Combined-Cycle Power Generation System. NREL. http://extensively for electric power generation, and for dieselextensively for electric power generation, and for diesel

  17. Notes of the Life-Cycle of Herpetomonas Drosophilae, sp.

    E-Print Network [OSTI]

    Medes, Grace

    1913-06-05

    for an hour. Smears were also prepared by killing with corrosive sublimate and fixing with Bouin's fluid. Perhaps the most satisfactory stain for nuclear structure was Haidenhainfs haemotoxylin destained with iron alum. Delafieldfs haemoloxylin and Haem... of non-sanguivorous insects, including house flies, Pyconogonum, Bombyx, and some plants, while Herpetomonas may be retained as a provisional name for a large form with a peculiar flagellar apparatus and a 10 complicated life history described...

  18. Accelerated quantification of critical parameters for predicting the service life and life cycle costs of chloride-laden reinforced concrete structures 

    E-Print Network [OSTI]

    Pillai Gopalakrishnan, Radhakrishna

    2003-01-01

    The use of corrosion resistant steels (instead of conventional carbon steels) and/or high performance concrete can increase the overall service life and can reduce the life cycle cost (LCC) of reinforced concrete (RC) structures exposed to chloride...

  19. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  20. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode

    E-Print Network [OSTI]

    Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

  1. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  2. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    promulgated by the U.S. Environmental Protection Agency ensures that heavy-duty engine emissions are controlled over the full range of speed and load combinations commonly...

  3. How Does Wind Affect Coal? Cycling, Emissions, and Costs (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Milligan, M.

    2011-05-01

    This presentation describes in general fashion what the emissions and economic impacts of wind power generation on fossil power plants looks like and also offers some mitigation ideas.

  4. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    emissions intensity of unconventional oil production remainof the forecasts of unconventional oil and gas productionassociated with unconventional production of oil and gas;

  5. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,of Unconventional Shale-Gas Reservoirs. ” In Society oftight gas reservoirs, shale gas, tight oil, oil shale, and

  6. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - s iLessons fromLife

  7. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Oil Production and Oil Sands. ” Environ. Sci. Technol. 44 (and B. L. Fortin. 2009. “Oil Sands Development ContributesGHG) Emissions from Canadian Oil Sands as a Feedstock for

  8. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  9. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  10. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  11. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  12. Active Data: Supporting the Grid Data Life Cycle Tim Ho and David Abramson

    E-Print Network [OSTI]

    Abramson, David

    Active Data: Supporting the Grid Data Life Cycle Tim Ho and David Abramson {tim.ho, david.abramson}@infotech.monash.edu.au Monash e-Science and Grid Engineering Lab Faculty of Information Technology, Monash University 900, called Active Data, which combines existing Grid middleware to support the scientific data lifecycle

  13. COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES Jean by applying the LCA methodology to evaluate the environmental footprint of alkaline cells and Ni-MH batteries phase. Besides, the emphasis on rechargeable batteries is only justified from an environmental point

  14. Life Cycle and Community Structure of Elmid Beetles (Coleoptera: Elmidae) in the Navasota River, Texas. 

    E-Print Network [OSTI]

    Fields, Katherine Leona

    2014-05-15

    and ecological functions these communities contribute to the Navasota River. The purpose of this study is to gain a better understanding of the life cycle and community structure of elmid beetles (Coleptera: Elmidae) in the Navasota River, near where it joins...

  15. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon in energy storage has stimulated significant interest in lithium ion battery research. The lithium ionPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Analysis (LCA) of

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Analysis (LCA or the SEEDS Coordinator about the current status of the subject matter of a project/report". #12;LCA of Doug Mitchell Thunderbird Sports Complex #12;2 LCA of Doug Mitchell Thunderbird Sports Centre Submitted by

  17. WATER USE IN LCA Life cycle consumptive water use for oil shale development

    E-Print Network [OSTI]

    Jaramillo, Paulina

    WATER USE IN LCA Life cycle consumptive water use for oil shale development and implications Heidelberg 2013 Abstract Purpose Oil shale is an unconventional petroleum source that can be produced domestically in the USA. Oil shale resources are primarily located in Utah, Wyoming, and Colorado, within

  18. E D I TO R I A L Life Cycle Engineering and Sustainable

    E-Print Network [OSTI]

    Gutowski, Timothy

    in subjects such as sustainable consumption and urban metabolism. Further, even in "StrategiesE D I TO R I A L Life Cycle Engineering and Sustainable Manufacturing Christoph Herrmann, Michael and sustainable manufacturing concept further evolves, it is im- portant that the manufacturing community expand

  19. Life Cycle Modeling of Concrete Bridge Design: Comparison of Engineered Cementitious Composite Link Slabs

    E-Print Network [OSTI]

    Lepech, Michael D.

    performance: 40% less life cycle energy consumption, 50% less solid waste generation, and 38% less raw of the national highway and road system. While United States consumption is significant, glo- bal construction: Concrete infrastructure represents an enormous investment of materials, energy, and capital, and results

  20. Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    E-Print Network [OSTI]

    Yang, Maria

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup

  1. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis- 2012

    Broader source: Energy.gov [DOE]

    Report provides tables of present-value factors for use in the life-cycle cost analysis of capital investment projects for federal facilities. It also provides energy price indices based on the U.S. Department of Energy (DOE) forecasts from 2012 to 2042.

  2. Whole Life Cycle Costs: a new approach Pierre Mvellec*, Nicolas Perry**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Whole Life Cycle Costs: a new approach Pierre Mévellec*, Nicolas Perry** * IAE, University in the concepts, methods and general approach to calculating costs. ABC, Target Costing, Strategic Cost Management, functional analysis and costing are mobilising attention. Regardless of which of these approaches we consider

  3. Detector LifeCycle Costs and Considerations Mobility Measurement in Urban Transportation Pooled Fund Study

    E-Print Network [OSTI]

    Detector LifeCycle Costs and Considerations Mobility Measurement in Urban Transportation tool of typical data collection devices along with estimated lifecycle costs. The objectives of the costestimating detector tool are: 1. Provide an overview of the key issues and cost elements one needs

  4. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  5. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-Print Network [OSTI]

    Enneking, J. C.

    1992-01-01

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  6. Ambient temperature and driving cycle effects on CNG motor vehicle emission

    SciTech Connect (OSTI)

    Gabele, P.; Krapp, K.T.; Ray, W.D.; Snow, R.; Crews, W.; Perry, N.; Lanning, J.

    1990-01-01

    This paper describes an emissions study of two vans powered by compressed natural gas (CNG). One van was relatively new, while the other had been driven more than 120,000 mi. The purpose of the study was to obtain emissions information which could be used to predict the impact of CNG use on ambient air quality and air toxic concentrations, and to develop a better understanding of the effect of ambient temperature variations on CNG emissions. Using four different driving cycles, emission tests were carried out at 20{degree}F, 75{degree}F, and 105{degree}F. Test results agree with previous findings that document low emissions of nonmethane hydrocarbons from CNG vehicles. Results also confirm the expectation that CNG emissions are not significantly affected by ambient temperature variations, although an increase in formaldehyde emission was noted for the 20{degree}F cold-start tests.

  7. New insight into Wolbachia epidemiology: its varying incidence during the host life2 cycle can alter bacteria spread3

    E-Print Network [OSTI]

    Granero, Rafael

    Wolbachia · Modelling · Life-cycle infection proportion variation ·50 Chorthippus parallelus51 52 #12;4 1 Wolbachia proportions during the host's life cycle have been observed in several37 species, including (Orthoptera), the species studied in this article.39 These changes influence the proportion of incompatible

  8. LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE

    E-Print Network [OSTI]

    -344-3957, vmf5@columbia.edu 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 SunLIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE Vasilis Fthenakis1,2 , Rick Betita2 , Mark Shields3 , Rob

  9. World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS

    E-Print Network [OSTI]

    IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Whole Building Life Cycle Assessment: Neville Scarfe Building

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Whole Building Life Cycle Assessment: Neville Scarfe Building Aaron Mahiban University of British Columbia CIVL 498C March 28, 2010.sianchuk@gmail.com. #12;Whole Building Life Cycle Assessment Neville Scarfe Building Aaron Mahiban March 28,2010 #12

  11. Software Security Checklist for the Software Life Cycle David P. Gilliam, Thomas L. Wolfe, Josef S. Sherif

    E-Print Network [OSTI]

    Bishop, Matt

    Software Security Checklist for the Software Life Cycle David P. Gilliam, Thomas L. Wolfe, Josef S@cs.ucdavis.edu Abstract A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Traditionally

  12. Software Security Checklist for the Software Life Cycle David P. Gilliam, Thomas L. Wolfe, Josef S. Sherif

    E-Print Network [OSTI]

    Bishop, Matt

    Software Security Checklist for the Software Life Cycle David P. Gilliam, Thomas L. Wolfe, Josef S A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Traditionally, software

  13. 2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

    E-Print Network [OSTI]

    Tolbert, Leon M.

    drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV John W. McKeever, Sujit defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables

  14. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  15. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  16. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01

    -1 Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... facilities. The models allow experts to analyze which technology and/or facility design and asset configuration provides the lowest long-term cost of potable water supplies. Using these newly developed models, the team conducted case studies...

  17. Life-Cycle Assessment of Highway Pavement Alternatives in Aspects of Economic, Environmental, and Social Performance 

    E-Print Network [OSTI]

    Mao, Zhuting

    2012-10-19

    Life Cycle Assessment LTPP Long-Term Pavement Performance NEPA National Environmental Policy Act NSF National Science Foundation PCC Portland Cement Concrete POTW Publicly Owned Treatment Works RCRA Resource Conservation and Recovery Act... Damnjanovic, for their guidance and support throughout the course of this research. Thanks also to my friends and colleagues and the department faculty and staff for making my time at Texas A&M University a great experience. Finally, thanks to my mother...

  18. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect (OSTI)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  19. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTIONto Commercialization | DepartmentLife-Cycle

  20. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  1. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  2. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  3. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  4. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2 D. J. Erickson III,1,2 R. T. Mills,1 J. Gregg,3 T. J. Blasing,4 F. M. Hoffman,1 R. J. Andres,4 of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series

  5. IEEE Computer Society Press, p. 213 (1992) A GraphBased Approach to the Construction of Tools for the Life Cycle

    E-Print Network [OSTI]

    Westfechtel, Bernhard

    1992-01-01

    for the Life Cycle Integration between Software Documents Bernhard Westfechtel Lehrstuhl für Informatik III and compre- hensive software development environments [8, 21] cov- ering the whole life cycle. We believe and maintaining inter­document relationships. In particular, integration across the software life cycle has

  6. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  7. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  8. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ga)(S,Se) 2 based thin ?lm photovoltaics: present status andcycle of CIGS thin ?lm photovoltaics Daniel A. Eisenberg a ,selenium–sul?de Thin ?lm photovoltaics Life cycle thinking a

  9. 1. INTRODUCTION. The Integrated Defense Acquisition, Technology and Logistics Life Cycle Management Framework Chart is a training aid for

    E-Print Network [OSTI]

    Rhoads, James

    1. INTRODUCTION. The Integrated Defense Acquisition, Technology and Logistics Life Cycle Management additional information: Acquisition, Technology & Logistics Knowledge Sharing System (AKSS). http on acquisition, technology and logistics processes. ACC has links to acquisition-related Communities of Practice

  10. Redesigning the design process through interactive simulation: A case study of life-cycle engineering in jet engine conceptual design

    E-Print Network [OSTI]

    Kerley, Warren; Wynn, David C.; Eckert, Claudia M.; Clarkson, P. John

    -Royce, Civil Aerospace, this paper demonstrates how an interactive approach to process simulation can be used to support the redesign of existing design processes in order to incorporate life-cycle engineering (LCE) considerations. The case study provides...

  11. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01

    Bodies Sector: Life Cycle Assessment Using Economic Input-H. , Pranzeck, J. , Life Cycle Assessment of a Complete Car:Nordic Guidelines on Life-Cycle Assessment, Nordic Council

  12. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01

    H. , Pranzeck, J. , Life Cycle Assessment of a Complete Car:Nordic Guidelines on Life-Cycle Assessment, Nordic CouncilH. , Lave, L. , Life-Cycle Assessment of Automobile/Fuel

  13. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  14. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  15. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  16. Hardware In The Loop Simulator in UAV Rapid Development Life Cycle

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01

    Field trial is very critical and high risk in autonomous UAV development life cycle. Hardware in the loop (HIL) simulation is a computer simulation that has the ability to simulate UAV flight characteristic, sensor modeling and actuator modeling while communicating in real time with the UAV autopilot hardware. HIL simulation can be used to test the UAV autopilot hardware reliability, test the closed loop performance of the overall system and tuning the control parameter. By rigorous testing in the HIL simulator, the risk in the field trial can be minimized.

  17. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  18. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  19. Suzaku monitoring of hard X-ray emission from ? Carinae over a single binary orbital cycle

    SciTech Connect (OSTI)

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system ? Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ? 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ?3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the ?-ray source detected in this field. The helium-like Fe K? line complex at ?6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with ? ? 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  20. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  1. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  2. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    S. F. Burlatsky; M. Gummalla; J. O'Neill; V. V. Atrazhev; A. N. Varyukhin; D. V. Dmitriev; N. S. Erikhman

    2013-06-19

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  3. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    ethanol; NGCC = natural gas combined-cycle; BIGCC =gasification combined-cycle. P ART III U NCERTAINTY Aaverage, (ii) natural gas combined-cycle (NGCC), (iii) coal

  4. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01

    Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

  5. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    cycle; BIGCC = biomass integrated gasification combined-and (iii) biomass integrated gasification combined-cycle (gasification combined cycle (IGCC) and (iv) biomass IGCC. To

  6. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    depending  on  the  drive  cycle  [CARB  2002].   While the  Orange  County  Drive  Cycle  with  an  average  speed energy  consumption,  drive  cycles  were  created  based 

  7. Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

    E-Print Network [OSTI]

    Cheng, Wai K.

    The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression ...

  8. Land transformation and occupation impacts of farming practices for the production of soybean in Mato Grosso, Brazil, using life cycle impact assessment

    E-Print Network [OSTI]

    in Mato Grosso, Brazil, using life cycle impact assessment Michael J. Lathuillière1 (mlathuilliere services in LCA Int J of Life Cycle Assess 18 1188­1202 Macedo M N et al 2012 Decoupling of deforestation cycle assessment (LCA) according to ISO 14044:2006. Data from the 110 farms in Mato Grosso represent

  9. LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND DAYLIGHTING OPTIONS IN A HIGH-RISE OFFICE BUILDING

    E-Print Network [OSTI]

    Winkelmann, Frederick C.

    2014-01-01

    LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND4 LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL ANDLIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND

  10. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore »(O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  11. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  12. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  13. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  14. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  15. Variations in mid-ocean ridge CO2 emissions driven by glacial cycles

    E-Print Network [OSTI]

    Burley, Jonathan M A

    2015-01-01

    The geological record shows links between glacial cycles and volcanic productivity, both subaerially and at mid-ocean ridges. Sea-level-driven pressure changes could also affect chemical properties of mid-ocean ridge volcanism. We consider how changing sea-level could alter the \\cotwo{} emissions rate from mid-ocean ridges, on both the segment and global scale. We develop a simplified transport model for a highly incompatible element through a homogenous mantle; variations in the melt concentration the emission rate of the element are created by changes in the depth of first silicate melting. The model predicts an average global mid-ocean ridge \\cotwo{} emissions-rate of $53$~Mt/yr, in line with other estimates. We show that falling sea level would cause an increase in ridge \\cotwo{} emissions with a lag of about $100$~kyrs after the causative sea level change. The lag and amplitude of the response are sensitive to mantle permeability and plate spreading rate. For a reconstructed sea-level time series of the ...

  16. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  17. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Values altered in LCA sensitivity1 xi ISO IT KE LCA LCEA MIPS PDU PG&E SCOPE UPS

  18. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01

    of natural gas combined cycle power plant with post-Natural Gas Combined Cycle (NGCC) Power Plant. Report Numberpower plants. International Journal of Greenhouse Gas

  19. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  20. Minimization of Life Cycle Costs Through Optimization of the Validation Program A Test Sample Size and Warranty Cost

    E-Print Network [OSTI]

    Sandborn, Peter

    unit cost to the customer (customer's price) d = design cost of the total program pv = cost of productMinimization of Life Cycle Costs Through Optimization of the Validation Program ­ A Test Sample Size and Warranty Cost Approach Andre Kleyner, Delphi Delco Electronics, Kokomo Peter Sandborn, Ph

  1. The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles

    E-Print Network [OSTI]

    1 The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons National Photovoltaic Environmental Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show

  2. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study

    E-Print Network [OSTI]

    Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational, develop- ment and dissipation of radiation fog events, uncertainties still exist about the role the sensitivity of fog to aerosols through their impacts on the fog droplets. A radiation fog event that formed

  3. Data Management Plan Managing your data throughout the life cycle of your research is essential to ensure usability,

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Data Management Plan Managing your data throughout the life cycle of your research is essential data management plans as part of the grant proposal package. While it is not feasible to develop a comprehensive framework for a data management plan that would apply to all disciplines, the information below

  4. Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Chul Kim and Vasilis Fthenakis

    E-Print Network [OSTI]

    1 Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Center Dearborn, MI. Email: hkim41@ford.com Summary The potential environmental here often rely on inventory data estimated from literature values and parametric analyses based

  5. TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E. Luke

    E-Print Network [OSTI]

    TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E.bnl.gov ABSTRACT The profile of cloud microphysical properties and how the clouds are overlapped within a vertical simulations. We will present how cloud microphysical properties and overlap structure retrieved at the ARM

  6. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01

    Pollutants: Motor Vehicle Emissions in the South Coast Air of Non?Reactive Vehicle  Emissions in U.S.  Urban Areas; are com- puted from vehicle emissions. It is estimated that

  7. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  8. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  9. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore »for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  10. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  11. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    SciTech Connect (OSTI)

    Sprigg, James A.

    2004-11-01

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  12. A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings 

    E-Print Network [OSTI]

    Degelman, L. O.

    2000-01-01

    and life-cycle costs of the building. When comparing to actual use patterns, the Monte Carlo process was shown to represent an adequate way to represent the on-off patterns. Computer simulations further demonstrate the potential life cycle cost savings from...

  13. Exhaust emission and fuel consumption of CNG/diesel fueled city buses calculated using a sample driving cycle

    SciTech Connect (OSTI)

    Ergeneman, M.; Sorusbay, C.; Goektan, A.G. [Technical Univ. of Istanbul (Turkey). Dept. of Mechanical Engineering

    1999-04-01

    In this study the reduction of pollutant emissions from city buses converted to dual fuel operation was investigated. Exhaust emission and fuel consumption maps were obtained under laboratory conditions for an engine converted to CNG/diesel fuel operation. These values are then used in the simulation model to predict the total exhaust emission and fuel consumption on a driving cycle evaluated from actual recordings. Calculations showed a significant decrease in particulate matter (PM) emissions as expected, while the total CO emissions minor changes have been observed. For dual fuel operation NO{sub x} emissions were kept at the same level as in pure diesel operation with retarded pilot injection. Fuel cost calculations showed a decrease up to 30% with current prices of diesel fuel and CNG.

  14. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  15. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  16. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect (OSTI)

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  17. Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling

    SciTech Connect (OSTI)

    McCloy, John S.; Vienna, John D.

    2010-05-03

    The component concentration limits that most influence the predicted Hanford life-cycle HLW glass volume by HTWOS were re-evaluated. It was assumed that additional research and development work in glass formulation and melter testing would be performed to improve the understanding of component effects on the processability and product quality of these HLW glasses. Recommendations were made to better estimate the potential component concentration limits that could be applied today while technology development is underway to best estimate the volume of HLW glass that will eventually be produced at Hanford. The limits for concentrations of P2O5, Bi2O3, and SO3 were evaluated along with the constraint used to avoid nepheline formation in glass. Recommended concentration limits were made based on the current HLW glass property models being used by HTWOS (Vienna et al. 2009). These revised limits are: 1) The current ND should be augmented by the OB limit of OB ? 0.575 so that either the normalized silica (NSi) is less that the 62% limit or the OB is below the 0.575 limit. 2) The mass fraction of P2O5 limit should be revised to allow for up to 4.5 wt%, depending on CaO concentrations. 3) A Bi2O3 concentration limit of 7 wt% should be used. 4) The salt accumulation limit of 0.5 wt% SO3 may be increased to 0.6 wt%. Again, these revised limits do not obviate the need for further testing, but make it possible to more accurately predict the impact of that testing on ultimate HLW glass volumes.

  18. What Can Meta-Analyses Tell Us About the Reliability of Life Cycle Assessment for Decision Support?

    Broader source: Energy.gov [DOE]

    The body of life cycle assessment (LCA) literature is vast and has grown over the last decade at a dauntingly rapid rate. Many LCAs have been published on the same or very similar technologies or products, in some cases leading to hundreds of publications. One result is the impression among decision makers that LCAs are inconclusive, owing to perceived and real variability in published estimates of life cycle impacts. Despite the extensive available literature and policy need for more conclusive assessments, only modest attempts have been made to synthesize previous research. A significant challenge to doing so are differences in characteristics of the considered technologies and inconsistencies in methodological choices (e.g., system boundaries, coproduct allocation, and impact assessment methods) among the studies that hamper easy comparisons and related decision support.

  19. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  20. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    of Freshwater Consumption in LCA. Environmental Science &of Freshwater Consumption in LCA. Environmental Science &Cycle Assessment (EIO-LCA) US 2002 (428) model. Carnegie

  1. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    Life-Cycle Assessment . . . . . . . . . . . . . . . . . .for environmental life cycle assessment,” EnvironmentalStructure of Life Cycle Assessment. The Netherlands: Kluwer

  2. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Recycled asphalt is a better aggregate than virgin aggregaterecycled at the end of a road’s life by undergoing crushing and use as an aggregate.

  3. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01

    Sanjayan (2007). "Green house gas emissions due to concretematter (PM) VOC CO SOx / SO 2 NOx Green house gases,total Green house gases, process /fuel Greenhouse gases,

  4. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01

    of scrap tires, solvents, and waste oils show considerablySolid waste: other Water emissions: oils, phenols, COD, N, Pdiesel) oil preheater kiln Natural gas Petcoke Wastes

  5. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    4.4.7. Agricultural lime . . . . . . . . .for the contribution of lime to CO 2 release from managedand CO 2 emissions from lime and urea application. Technical

  6. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01

    C.A. , Fuel and Energy Production Emission Factors. ETSU.ETSU Report No. R112. 1997. [135] Chen, Q.L. , Yin, Q.H. ,

  7. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Broader source: Energy.gov (indexed) [DOE]

    measures that save large amounts of energy, improve energy-related infrastructure, reduce air pollution, or reduce greenhouse gas emissions may be bundled with other ECMs as long...

  8. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01

    emissions for soybean biodiesel under different allocationswitchgrass, and wood; biodiesel production using soybeanConsider two identical biodiesel facilities that co-produce

  9. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Data Source Underground Uranium Mining Uranium Milling UF6Total Calculated Open Pit Uranium Mining Table 26: Water Uselife-cycle water use. Uranium Mining (MJ/g U-235) Uranium

  10. Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridges 

    E-Print Network [OSTI]

    Kumar, Ramesh

    2009-05-15

    reinforced concrete (RC) bridges in earthquake prone regions. The approach is developed by combining cumulative seismic damage and damage associated to corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low-cycle fatigue...

  11. An assessment of potential for benefit from integrating geographic information systems technology into life-cycle management of infrastructures a focus for infrastructure management practice 

    E-Print Network [OSTI]

    Millegan, Harold Lynn

    1997-01-01

    AN ASSESSMENT OF POTE~ FOR BENEFIT FROM INTEGRATING GEOGRAPHIC INFORMATION SYSTEMS TECHNOLOGY INTO LIFE-CYCLE MANAGEMENT OF INFRASTRUCTURES A FOCUS FOR INFRASTRUCTURE MANAGEMENT PRACTICE A Thesis HAROLD LYNN MILLEGAN Submitted to the OIIIce.... Congress, Office of Technology Assessment 1991), This technology is not presently used to its potential and should be used more extensively by civil engineers. A proper focus is needed to integrate this spatially oriented technology to life-cycle...

  12. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    Protection in Primary Crude Oil Refining Units. ChemistryCO2 Emissions for Selected Crude Oils in the U.S. RefiningProtection in Primary Crude Oil Refining Units. Chemistry

  13. Model based pavement-vehicle interaction simulation for life cycle assessment of pavements

    E-Print Network [OSTI]

    Akbarian, Mehdi

    2012-01-01

    Responsible for about a third of the annual energy consumption and greenhouse gas (GHG) emissions, the U.S. transportation Network needs to attain a higher level of sustainability. This is particularly true for the roadway ...

  14. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Coal and biosolid physical properties……………………………………..22Table 2 Coal and biosolid physical properties Liquid Fuels:coal mining and transportation………………………..23 Table.7: Energy consumption and GHG emission for biosolid transportation……..24 Table.8: F-T jet fuel properties

  15. Biological and environmental efficiency of high producing dairy systems through application of life cycle analysis 

    E-Print Network [OSTI]

    Ross, Stephen Alexander

    2014-11-27

    Dairy production systems are an important global contributor to anthropogenic greenhouse gas (GHG) emissions including methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Due to the role GHG play in climate ...

  16. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    22 Table.5: Energy consumption for coal mining and23 Table.7: Energy consumption and GHG emission for biosolid26 Table.9: Energy consumption for F-T jet fuel

  17. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of0 Inspection BEFORE9 - Energy andLife Events Life Events

  18. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  19. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    E-Print Network [OSTI]

    McGaughey, Alan

    , Pittsburgh, PA 15213; b School of Sustainable Engineering and the Built Environment, School of Sustainability for externality damages would not close the gap in owner- ship cost. In contrast, HEVs and PHEVs with small

  20. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  1. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    E-Print Network [OSTI]

    Wang, Guihua; Ogden, Joan M; Chang, Daniel P.Y.

    2007-01-01

    of natural gas to hydrogen pathways on urban air quality.Natural gas (NG); Hydrogen pathways; Ozone formation; Ozone air quality

  2. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  3. LIFE CYCLE ANALYSIS OF THE H.R. MACMILLAN BUILDING, UNIVERSITY OF BRITISH COLUMBIA

    E-Print Network [OSTI]

    and operational energy usage of the H.R. MacMillan building on a square foot basis. OnCenter's OnScreen Takeoff cycle stages are considered. Highlights of the results include: 437 MJ of embodied energy per square foot, 250 kg of weighted raw resource use per square foot, and less than 0.01 kg CFC-11 equivalent

  4. TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Stanford University

    for power generation in 83 countries, 52 of which having increased their totally installed wind energy for manufacturers, owners, and operators. Unlike conventional power plants, wind turbines represent unmanned remote and maintenance of wind turbines and, eventually, to operate wind turbines beyond their original design life

  5. InertiaGravity Waves Spontaneously Generated by Jets and Fronts. Part I: Different Baroclinic Life Cycles

    E-Print Network [OSTI]

    Plougonven, Riwal

    Inertia­Gravity Waves Spontaneously Generated by Jets and Fronts. Part I: Different Baroclinic Life the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave of waves being generated. These studies agree with evi- dence from observations [e.g., the key role of jet

  6. LIFE-CYCLE ENERGY IMPLICATIONS OF DIFFERENT RESIDENTIAL SETTINGS: RECOGNIZING BUILDINGS, TRAVEL, AND PUBLIC

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines), U.S. energy policy has large implications for global GHG emissions and the energy industry. The U

  7. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01

    waste B,C,H,J H H,U Waste water C,H,J H,U Toxic emissions A,effluents consist of waste water from non-contact cooling ofrunoff also contribute to waste water generation. Based on

  8. Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Lee, H.

    2003-09-11

    About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

  9. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect (OSTI)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  10. Life Cycle Assessment Applied to 95 Representative U.S. Farms 

    E-Print Network [OSTI]

    Rutland, Christopher T.

    2012-10-19

    slightly different approach was proposed by Rossing et al. (1997) to evaluate flower bulb production systems in the Netherlands. They used multi-goal linear programming to optimize ecological objectives subject to a set of environmental, economic... fission, natural gas, coal, woody biomass, herbaceous biomass, hydroelectric, and wind. The CO2 equivalent per million Btu is a weighted average of emission factors, with weights assigned according to the power mix in the area of the farm...

  11. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    SciTech Connect (OSTI)

    A. D. Rao; J. Francuz; A. Verma; G. S. Samuelsen

    2006-10-30

    The ultimate goal of this program is to identify the power block cycle conditions and/or configurations which could increase the overall thermal efficiency of the Baseline IGCC by about 8% on a relative basis (i.e., 8% on a heat rate basis). This document presents the cycle conditions and/or the configurations for evaluation in an initial screening analysis. These cycle conditions and/or configurations for investigation in the screening analysis are identified by literature searches and brain storming sessions. The screening analysis in turn narrows down the number of promising cases for detailed analysis.

  12. Life Cycle Inventory of CO2 in a EOR System Supporting Information

    E-Print Network [OSTI]

    Jaramillo, Paulina

    /MJ) Combustion (g CO2e/MJ) Coal [1] 4.99 88 LPG-NGL [2, 3] 17.5 58.4 Pet-Coke [2, 3] 17.5 95.9 Other Pet Natural Gas (m3/bbl) 7.08 Coal (metric ton/bbl) 6.3-06 Electricity (kWh/bbl) 7.6 LPG (bbl/bbl) 4.8E-04-04 Petroleum Coke (bbl/bbl) 1.6E-02 Results Figure S1 shows the sources of these emissions

  13. Capital requirements and fuel-cycle energy and emissions impacts of potential PNGV fuels.

    SciTech Connect (OSTI)

    Johnson, L.; Mintz, M.; Singh, M.; Stork, K.; Vyas, A.; Wang, M.

    1999-03-11

    Our study reveals that supplying gasoline-equivalent demand for the low-market-share scenario requires a capital investment of less than $40 billion for all fuels except H{sub 2}, which will require a total cumulative investment of $150 billion. By contrast, cumulative capital investments under the high-market-share scenario are $50 billion for LNG, $90 billion for ethanol, $100 billion for methanol, $160 billion for CNG and DME, and $560 billion for H{sub 2}. Although these substantial capital requirements are spread over many years, their magnitude could pose a challenge to the widespread introduction of 3X vehicles. Fossil fuel use by US light-duty vehicles declines significantly with introduction of 3X vehicles because of fuel-efficiency improvements for 3X vehicles and because of fuel substitution (which applies to the nonpetroleum-fueled alternatives). Petroleum use for light-duty vehicles in 2030 is reduced by as much as 45% relative to the reference scenario. GHG emissions follow a similar pattern. Total GHG emissions decline by 25-30% with most of the propulsion system/fuel alternatives. For those using renewable fuels (i.e., ethanol and H{sub 2} from solar energy), GHG emissions drop by 33% (H{sub 2}) and 45% (ethanol). Among urban air pollutants, urban NOX emissions decline slightly for 3X vehicles using CIDI and SIDI engines and drop substantially for fuel-cell vehicles. Urban CO emissions decline for CIDI and FCV alternatives, while VOC emissions drop significantly for all alternatives except RFG-, methanol-, and ethanol-fueled SIDI engines. With the exception of CIDI engines fueled by RFD, FT50, or B20 (which increase urban PM{sub 10} emissions by over 30%), all propulsion system/fuel alternatives reduce urban PM{sub 10} emissions. Reductions are approximately 15-20% for fuel cells and for methanol-, ethanol-, CNG-, or LPG-fueled SIDI engines. Table 3 qualitatively summarizes impacts of the 13 alternatives on capital requirements and on energy use and emissions relative to the reference scenario. The table clearly shows the trade-off between costs and benefits. For example, while H{sub 2} FCVs have the greatest incremental capital needs, they offer the largest energy and emissions benefits. On the basis of the cost and benefit changes shown, methanol and gasoline FCVs appear to have particularly promising benefits-to-costs ratios.

  14. Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using

    E-Print Network [OSTI]

    Frey, H. Christopher

    the type of coal gasifier technology, oxidant (e.g., oxygen or air), and gas cleanup system employed for the conversion of a variety of feedstocks, including coal, heavy residue oil, biomass, solid waste, and others is presented to illustrate the typical performance, emissions, and cost of a coal- based system

  15. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  16. An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios

    E-Print Network [OSTI]

    on the environmental impacts associated with electricity consumption, and that interstate trading tends to makeAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

  17. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation

    E-Print Network [OSTI]

    Horvath, Arpad; Chester, Mikhail

    2008-01-01

    Editor, 1996. The history of LCA, McGraw-Hill, New York,CAHSR CAP CO EIOLCA GGE GHG J LCA LTO NO X Pb PMT PM X SO 2is life-cycle assessment. LCA is a systematic method in

  18. ANDERSON-TEIXEIRA FINAL PROOF.DOCX (DO NOT DELETE) 3/7/2011 9:29 AM DO BIOFUELS LIFE CYCLE

    E-Print Network [OSTI]

    DeLucia, Evan H.

    ANDERSON-TEIXEIRA FINAL PROOF.DOCX (DO NOT DELETE) 3/7/2011 9:29 AM 589 DO BIOFUELS LIFE CYCLE ANALYSES ACCURATELY QUANTIFY THE CLIMATE IMPACTS OF BIOFUELS-RELATED LAND USE CHANGE? Kristina J. Anderson in determining the sustainability of biofuels. To ensure that legal standards are effective in limiting climate

  19. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  20. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  1. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOEUrsulaNaturalRCRA8,DrewDrive Cycle

  2. Full-fuel-cycle approach to vehicle emissions modeling: A case study of gasoline in the southeastern region of the United States

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    The use of full-fuel-cycle analysis as a scientific, economic, and policy tool for the evaluation of alternative sources of transportation energy has become increasingly widespread. However, consistent methods for performance of these types of analyses are only now becoming recognized and utilized. The work presented here provides a case study of full-fuel-cycle analysis methods applied to the evaluation of gasoline in the southeastern region of the United States. Results of the study demonstrate the significance of nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-fuel-cycle analysis method.

  3. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  4. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  5. Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental merits of different product or process alternatives. One of the tasks that involves much time and cost in LCA studies

    E-Print Network [OSTI]

    Life Cycle Assessment (LCA) is used in the chemical process sector to compare the environmental IN STREAMLINED LIFE CYCLE ASSESSMENT Exploring the Case of Petrochemical Refineries and Polymer Manufacturing to generic crude oil refining and polymer manufacturing modules. By assessing the variation in LCA results

  6. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  7. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin

  8. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  9. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    Cancels the following only after meeting implementation conditions: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B, DOE 4320.2A; DOE 4330.4B; DOE 4330.5, DOE 4540.1, DOE 4700.1, DOE 4700.3, DOE 4700.4, DOE 5700.2D, DOE 6430.1A. Canceled by DOE O 430.1A.

  10. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    The order addresses stewardship of physical assets as valuable national resources in a cost-effective manner to meet the DOE mission using industry standards, a graded approach, and performance objective.

  11. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  12. The significance of Li-ion batteries in electric vehicle life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction Title The significance of Li-ion batteries in...

  13. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01

    2008] [6] National Renewable Energy Laboratory. U.S. Life-Energy Efficiency and Renewable Energy, Office of BuildingMEEUP) and the National Renewable Energy Laboratory’s Life

  14. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  15. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    Life-Cycle Assessment . . . . . . . . . . . . . . . . . .variability in life-cycle assessment,” Applied Energy, vol.input-output life-cycle assessment model,” International

  16. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  17. The effects of cycle-to-cycle variations on nitric oxide (NO) emissions for a spark-ignition engine: Numerical results 

    E-Print Network [OSTI]

    Villarroel, Milivoy

    2004-11-15

    . To carry out the proposed study, an engine simulation model was used. The simulation determines engine performance and NO emissions as functions of engine operating conditions, engine design parameters, and combustion parameters. An automotive, spark...

  18. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  19. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  20. EVALUATION OF RISKS IN THE LIFE CYCLE OF PHOTOVOLTAICS IN A COMPARATIVE CONTEXT V.M. Fthenakis1,2 H.C. Kim1, A. Colli3, and C. Kirchsteiger3

    E-Print Network [OSTI]

    EVALUATION OF RISKS IN THE LIFE CYCLE OF PHOTOVOLTAICS IN A COMPARATIVE CONTEXT V.M. Fthenakis1,2 H.C. Kim1, A. Colli3, and C. Kirchsteiger3 1 National Photovoltaic EH&S Research Center, Brookhaven: The greatest potential risks in the photovoltaic (PV) fuel cycle probably are associated with using some

  1. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn?O?). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn?O? as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  2. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  3. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    A survey of unresolved problems in life cycle assessment.International Journal of Life Cycle Assessment, 13(5):374–problems in life cycle assessment. The International Journal

  4. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    variation for monthly crude oil production has only exceededAlthough total crude oil production in the U.S. declined byEXPLORATION & PRODUCTION CRUDE OIL CONDITIONING CRUDE

  5. Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

  6. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    Updating the CE plant cost index. ” Chemical Engineering,cost indices such as the chemical engineering plant cost index (

  7. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    1– OECD/IEA. (2008). World Energy Outlook 2008. ( N. Tanaka,According to the 2008 World Energy Outlook issued by the

  8. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    2000b)). Figure 49. Mileage of US Oil Pipelines, 1960-2008 (decades, while the mileage of product pipelines has remainedprotection (and 99% Mileages of oil pipeline for years 1960-

  9. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    Efficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & Advanced

  10. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Arora, S. (Energy Systems)

    2011-01-01

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  11. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  12. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  13. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01

    20% depending on the drive cycle [CARB 2002]. While enginebased on the Orange County Drive Cycle with an average speedenergy consumption, drive cycles were created based on

  14. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles

    Broader source: Energy.gov [DOE]

    In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many cold/warm starts.

  15. A discussion of greenhouse gas emission tradeoffs and water scarcity within the supply chain

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David

    2009-01-01

    management – life cycle assessment — Principles andEnvironmental life cycle assessment of goods and services,structure of life cycle assessment. The Netherlands: Kluwer

  16. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

    2009-01-01

    2008) Pavement Life?Cycle Assessment Tool for Environmental management––life cycle assessment––principles and City Logistics, Life?Cycle Assessment, Green Logistics, 

  17. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  18. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.Emilio Segrè About the LabEmission

  19. Long-cycle-life solid-state solid-polymer electrolyte cells. Final report. Report on Phase 1

    SciTech Connect (OSTI)

    Sammells, A.F.; Semkow, K.W.; Cook, R.L.

    1986-07-01

    Experimental work was directed toward determining the viability of two complementary solid-state electrochemical cells incorporating Na/sup +/ and Li/sup +/ conducting solid polymer electrolytes (SPE). SPEs used included those based upon poly(ethylene oxide), poly(ethylene oxide)/poly(ethylene glycol) mixtures, and polyphosphazenes. For Li/sup +/ conducting SPEs, LixWO/sub 2/ was used for the negative and TiS/sub 2/ for the positive electrode. In cells utilizing Na+ conducting SPEs, homogeneous matrix electrodes based upon transition-metal-doped B'-alumina were used for the positive and negative electrodes. Here transition metals were incorporated into immobile A1/sup 3 +/ lattice sites within the B'-alumina structure, where changed in electrochemical potential upon cell charge/discharge cycling occurred via redox electrochemistry involving the doped immobile transition-metal species. Secondary cells were found to have respective open-circuit potentials of 2.2 and 1.5V, high electrochemical reversibility, and theoretical energy densities of 175 and 178 Wh/kg.

  20. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.