Sample records for life cycle cost

  1. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  2. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  3. Life cycle cost report of VHLW cask

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste.

  4. Life Cycle Cost Housing Need and Sustainability

    E-Print Network [OSTI]

    Life Cycle Cost Housing Need and Sustainability Abstract: Jordan is actually facing a rapid urban became difficult to sustain especially concerning the slum areas and the environmental pollution due which could contribute to increase the productivity and sustainability taking into consideration

  5. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  6. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

  7. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Estimation and Analysis of Life Cycle Costs of Baseline Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  8. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source...

  9. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Principal Investigator: Y.-X. Tao Florida International...

  10. Comparison of Life Cycle Costs for LLRW Management in Texas

    SciTech Connect (OSTI)

    Baird, R. D.; Rogers, B. C.; Chau, N.; Kerr, Thomas A

    1999-08-01T23:59:59.000Z

    This report documents a comparison of life-cycle costs of an assured isolation facility in Texas versus the life-cycle costs for a traditional belowground low-level radioactive waste disposal facility designed for the proposed site near Sierra Blanca, Texas.

  11. Incorporating uncertainty in the Life Cycle Cost Analysis of pavements

    E-Print Network [OSTI]

    Swei, Omar Abdullah

    2012-01-01T23:59:59.000Z

    Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

  12. Life Cycle Cost Estimate - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chapter discusses life cycle costs and the role they play in planning. g4301-1chp23.pdf -- PDF Document, 52 KB Writer: John Makepeace Subjects: Administration Management...

  13. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08T23:59:59.000Z

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  14. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This...

  15. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Energy Savers [EERE]

    Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -...

  16. Geothermal completion technology life-cycle cost model (GEOCOM)

    SciTech Connect (OSTI)

    Mansure, A.J.; Carson, C.C.

    1982-01-01T23:59:59.000Z

    GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

  17. Minimization of Life Cycle Costs Through Optimization of the Validation Program A Test Sample Size and Warranty Cost

    E-Print Network [OSTI]

    Sandborn, Peter

    Minimization of Life Cycle Costs Through Optimization of the Validation Program ­ A Test Sample Size and Warranty Cost Approach Andre Kleyner, Delphi Delco Electronics, Kokomo Peter Sandborn, Ph cycle cost, validation program, cost optimization, reliability cost curve, warranty, sample size

  18. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and...

  19. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

  20. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Handbook describes the...

  1. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

  2. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01T23:59:59.000Z

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  3. Life-Cycle Cost Reduction for High Speed Turbomachinery Utilizing Aerothermal - Mechanical Conditioning Monitoring Techniques

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Bowman, J. C.

    1982-01-01T23:59:59.000Z

    The Life Cycle Costs (LCC) for high performance, centrifugal and axial flow turbomachinery such as gas turbines, compressors and pumps is very strongly influenced by fuel (energy) consumption and by maintenance costs. Additionally, the penalty costs...

  4. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01T23:59:59.000Z

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  5. Life Cycle Cost Analysis of Public Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    All facilities using public funds for construction or renovation must undergo a life cycle analysis, which will consider energy efficiency and on-site energy equipment using the sun, wind, oil,...

  6. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

  7. 2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

    E-Print Network [OSTI]

    Tolbert, Leon M.

    2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV John W. McKeever, Sujit or voltage level, life cycle costs were calculated based on the components required to execute simulated drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost

  8. ORNL/TM-2006/138 Comparing Life-Cycle Costs of ESPCs

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2006/138 Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects Follow-Up on ESPC and Appropriations Comparing Life-Cycle Costs John Shonder, Patrick Hughes, and Erica PROCESSES.........................................................................................3 The ESPC

  9. Whole Life Cycle Costs: a new approach Pierre Mvellec*, Nicolas Perry**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Whole Life Cycle Costs: a new approach Pierre Mévellec*, Nicolas Perry** * IAE, University in the concepts, methods and general approach to calculating costs. ABC, Target Costing, Strategic Cost Management, functional analysis and costing are mobilising attention. Regardless of which of these approaches we consider

  10. ICPP tank farm closure study. Volume 3: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option.

  11. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeye Power,energyGHGsLife-Cycle

  12. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  13. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-29 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2014 Annual Supplement to NIST Handbook 135 Amy S. Rushing Joshua D. Kneifel Priya...

  14. Alternative water sources: Desalination model provides life-cycle costs of facility

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  15. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  16. Detector LifeCycle Costs and Considerations Mobility Measurement in Urban Transportation Pooled Fund Study

    E-Print Network [OSTI]

    Detector LifeCycle Costs and Considerations Mobility Measurement in Urban Transportation tool of typical data collection devices along with estimated lifecycle costs. The objectives of the costestimating detector tool are: 1. Provide an overview of the key issues and cost elements one needs

  17. Use of life-cycle costing in the development of standards. Master's thesis

    SciTech Connect (OSTI)

    Underwood, J.M.

    1988-12-01T23:59:59.000Z

    This thesis set out to determine how, and to what extent, life-cycle costing is used in the development of voluntary consensus standards. It explains how several organizations in the commercial sector develop voluntary standards. Among these organizations was ASHRAE, who is currently developing a standard based on life-cycle costing. Standard 90.2 Energy Efficient Design of New Low-Rise Residential Buildings prescribes the insulation values for the envelope of a building. The economic methodology was based on marginal analysis by considering an upgraded construction component and then determining the incremental energy-cost savings to the incremental modification costs over a specified life-cycle period. Questions arose concerning the economic assumptions used in developing the standard. It is recommended that an impact study be performed to evaluate the cost-estimating techniques and the basic economic assumptions.

  18. Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis 

    E-Print Network [OSTI]

    Mukherji, Payal Tapandev

    2011-02-22T23:59:59.000Z

    Technology BLCC Building Life Cycle Cost DOE Department of Energy BIPV Building Integrated Photovoltaic Systems BEES Building for Environmental And Economic Sustainability HVAC Heating, Ventilation and Air-Conditioning SMACNA Sheet Metal and Air..., Fee Costs Construction Costs Other Costs Financing Costs Operation Costs (Energy, water, utilities, energy price, energy price projections etc.) Maintenance Costs Initial Costs (Purchase and Acquisition) Owner?s Total Costs Residual...

  19. Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis

    E-Print Network [OSTI]

    Mukherji, Payal Tapandev

    2011-02-22T23:59:59.000Z

    The cost of design, construction and maintenance of facilities is on continual rise. The demand is to construct facilities which have been designed by apply life cycle costing principles. These principles have already given strong decision making...

  20. Life-cycle costs for the Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1996-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the NEPA and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided and tables showing different breakdowns of the cost estimates are provided. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report. Specifically, costs for high-level waste are found in this section, as well as supplemental costs for additional low-level waste and hazardous waste alternatives.

  1. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

  2. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

  3. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    Canada * VEHMA International * Ford Motor CO. Barriers * High cost of lightweight materials solutions supported by Materials Technology Program to meet national objectives for...

  4. Contributing to Lowest Life Cycle Cost of High Speed

    E-Print Network [OSTI]

    Greenaway, Alan

    to enable constant production quality and high work safety Special developed machineries : Rail laying on rubber tyres #12;13 Repetitive construction interval of 2160 m in a 20 day cycle (single access tunnel) Production capacity 220 m linear slab track in15h Exceptional Track Quality Achieved ongoing Performance #12

  5. Life-cycle energy costs of thermal insulation

    SciTech Connect (OSTI)

    Chinneck, J.W.; Chandrashekar, M.; Hahn, C.K.G.

    1980-01-01T23:59:59.000Z

    A set of calculations is presented which compare the magnitude of the energy costs of insulation with the heating energy savings over the expected lifetime of a model dwelling. A representative city is examined in each of four different levels of Canadian climatic severity. The energy cost of insulation was found to be insignificant relative to the heating energy savings caused by its use. The proposed minimum insulation standards for Canada were found to be significantly better than the existing standards although not optimum from an energy viewpoint.

  6. Reducing Life Cycle Cost By Energy Saving in Pump Systems 

    E-Print Network [OSTI]

    Bower, J. R.

    1999-01-01T23:59:59.000Z

    Pumps consume about 15% of all electricity generated world wide. In the USA alone this accounts for over 130TWh per annum. A saving of only 1% would amount to $80 million in electricity cost. The importance of energy saving, in pump systems...

  7. Life-cycle costing manual for the federal energy management programs

    SciTech Connect (OSTI)

    Ruegg, R.T.

    1982-05-01T23:59:59.000Z

    This manual is a guide to understanding the life-cycle costing method and an aid to calculating the measures required for evaluating energy conservation and renewable energy investments in all Federal buildings. It expands upon the life-cycle costing criteria contained in the Program Rules of the Federal Energy Management Program (Subpart A of Part 436, Title 10, U.S. Code of Federal Regulations) and is consistent with those criteria. Its purpose is to facilitate the implementation of the Program Rules by explaining the life-cycle costing method, defining the measures, describing the assumptions and procedures to follow in performing evaluations, and giving examples. It provides worksheets, a computer program, and instructions for calculating the required measurements. The life-cycle costing method and evaluation procedures set forth in the Federal Energy Management Program Rules and described in greater detail in this guide are to be followed by all Federal agenecies for all energy conservation and renewable energy projects undertaken in new and existing buildings and facilities owned or leased by the Federal government, unless specifically exempted. The establishment of the methods and procedures and their use by Federal agencies to evaluate energy conservation and solar energy investments are required by Section 381(a)(2) of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6361(a)(2); by Section 10 of Presidential Executive Order 11912, amended; and by Title V of the National Energy Conservation Policy Act, 92 Stat. 3275.

  8. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect (OSTI)

    B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

    1999-08-01T23:59:59.000Z

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  9. Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives

    SciTech Connect (OSTI)

    Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

    1995-03-01T23:59:59.000Z

    The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

  10. Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridges

    E-Print Network [OSTI]

    Kumar, Ramesh

    2009-05-15T23:59:59.000Z

    Mauricio Sanchez-Silva Colleen Murphy Head of Department, David Rosowsky December 2007 Major Subject: Civil Engineering iii ABSTRACT Effect of Cumulative Seismic Damage and Corrosion on Life-Cycle Cost.... Paolo Gardoni for his technical guidance and for helping with financial support during my study period. I thank Dr. Mauricio Sanchez-Silva for helping me at all stages with his promptness to clear my doubts anytime I approached him. I acknowledge...

  11. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01T23:59:59.000Z

    effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

  12. Material and energy recovery in integrated waste management systems: A life-cycle costing approach

    SciTech Connect (OSTI)

    Massarutto, Antonio [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy); Carli, Alessandro de, E-mail: alessandro.decarli@unibocconi.it [IEFE, Bocconi University, Milan (Italy); Graffi, Matteo [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy)

    2011-09-15T23:59:59.000Z

    Highlights: > The study aims at assessing economic performance of alternative scenarios of MSW. > The approach is the life-cycle costing (LCC). > Waste technologies must be considered as complementary into an integrated strategy. - Abstract: A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.

  13. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30T23:59:59.000Z

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  14. CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions

    E-Print Network [OSTI]

    Webster, Tom; Benedek, Corinne; Bauman, Fred

    2008-01-01T23:59:59.000Z

    Building Construction Cost Data. ” RS Means, Kingston MA.schedules Refurbish cost data Tax rate data Maintenance &Maintenance & Repair section, cost data is a combination of

  15. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program

    SciTech Connect (OSTI)

    NONE

    1989-05-01T23:59:59.000Z

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

  16. An Analysis of the Economic and Financial Life-Cycle Costs of Reverse-Osmosis Desalination in South Texas: A Case Study of the Southmost Facility 

    E-Print Network [OSTI]

    Sturdivant, A.; Rister, M.; Rogers, C.; Lacewell, R.; Norris, J.; Leal, J.; Garza, J.; Adams, J.

    2009-01-01T23:59:59.000Z

    to include sensitivity analyses of useful life, initial construction costs, annual energy costs, and production efficiency rate, amongst others. The current estimated total annual life-cycle costs (in 2006 dollars) to produce and deliver desalinated water...

  17. Applications of life cycle assessment and cost analysis in health care waste management

    SciTech Connect (OSTI)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); EPAGRI, Rod. Admar Gonzaga 1347, Itacorubi, Florianopolis, Santa Catarina 88034-901 (Brazil); Alvarenga, Rodrigo A.F., E-mail: alvarenga.raf@gmail.com [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Ghent University, Department of Sustainable Organic Chemistry and Technology, Coupure Links 653/9000 Gent (Belgium)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg{sup -1} for the waste treated with microwaves, US$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.

  18. LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND DAYLIGHTING OPTIONS IN A HIGH-RISE OFFICE BUILDING

    E-Print Network [OSTI]

    Winkelmann, Frederick C.

    2014-01-01T23:59:59.000Z

    LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND4 LIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL ANDLIFE-CYCLE COST AND ENERGY-USE ANALYSIS OF SUN-CONTROL AND

  19. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET

  20. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL; Atkin, Erica [ORNL

    2006-11-01T23:59:59.000Z

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipment prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.

  1. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    SciTech Connect (OSTI)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31T23:59:59.000Z

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  2. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01T23:59:59.000Z

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  3. Life-Cycle Costs of Alternative Fuels: Is Biodiesel Cost Competitve for Urban Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienert namedLifeProducts

  4. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  5. MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates

    SciTech Connect (OSTI)

    Smith, R.I.; Nesbitt, J.F.

    1982-11-01T23:59:59.000Z

    A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  6. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergyInvestigativeCogginLES'SiteDepartment ofLife Cycle

  7. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  8. An Analysis of the Economic and Financial Life-Cycle Costs of Reverse-Osmosis Desalination in South Texas: A Case Study of the Southmost Facility

    E-Print Network [OSTI]

    Sturdivant, A.; Rister, M.; Rogers, C.; Lacewell, R.; Norris, J.; Leal, J.; Garza, J.; Adams, J.

    for $26.2 million, an implicit commitment for another $39.1 million (basis 2006 dollars) was also made for Continued and Capital Replacement costs. Investigation into life-cycle costs during the design and planning stages of a desalination facility can...

  9. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

  10. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01T23:59:59.000Z

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  11. A discussion on life-cycle costs of residential photovoltaic systems

    SciTech Connect (OSTI)

    THOMAS,MICHAEL G.; CAMERON,CHRISTOPHER P.

    2000-04-11T23:59:59.000Z

    This paper discusses the characteristics and needed improvements/enhancements required for the expansion of the grid-tied residential power systems market. The purpose of the paper is to help establish a common understanding, between the technical community and the customers of the technology, of value and costs and what is required in the longer term for reaching the full potential of this application.

  12. Life Cycle Cost Discount Rates and Energy Price Projections | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy Life

  13. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  14. DOE Guidance on the Statutory Definition of Energy/Water Conservation Measures (ECMs), and Determining Life-Cycle Cost-Effectiveness for ESPCs with Multiple or Single ECMs

    Broader source: Energy.gov [DOE]

    Document provides guidance on the statutory definition of "energy conservation measure" (ECM) for the purpose of an energy savings performance contract (ESPC), including clarification that multiple ECMs under the same ESPC may be "bundled" when evaluating life-cycle cost-effectiveness. It also clarifies that an ESPC may include, or be limited to, a single ECM applied across multiple federal buildings and facilities.

  15. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-31T23:59:59.000Z

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  16. A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

  17. Life cycle assessment

    SciTech Connect (OSTI)

    Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

  18. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  19. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  20. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24T23:59:59.000Z

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  1. Life-cycle costing manual for the Federal energy management program: a guide for evaluating the cost effectiveness of energy conservation and renewable energy projects for new and existing Federally owned and leased buildings and facilities. Final report

    SciTech Connect (OSTI)

    Ruegg, R.T.

    1980-12-01T23:59:59.000Z

    This manual is a guide to understanding the life-cycle costing method and an aid to calculating the measures required for evaluating energy conservation and renewable energy investments in all Federal buildings. It expands upon life-cycle costing criteria contained in the Program Rules of the Federal Energy Management Program (Subpart A of Part 436, Title 10, US Code of Federal Regulations) and is consistent with those criteria. Its purpose is to facilitate the implementation of the Program Rules by explaining the life-cycle costing method, defining the measures, describing the assumptions and procedures to follow in performing evaluations, and giving examples. It provides worksheets, a computer program, and instructions for calculating the required measurements. The life-cycle costing method and evaluation procedures set forth in the Federal Energy Management Program Rules and described in greater detail in this guide are to be followed by all Federal agencies for all energy conservation and renewable energy projects undertaken in new and existing buildings and facilities owned or leased by the Federal government, unless specifically exempted. The establishment of the methods and procedures and their use by Federal agencies to evaluate energy conservation and solar energy investments are required by Section 381(a) (2) of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6361 (a) (2); Section 10 of Presidential Executive Order 11912, amended; and by Title V of the National Energy Conservation Policy Act, 92 Stat. 3275.

  2. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  3. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  4. Recycling and Life Cycle Issues

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2010-01-01T23:59:59.000Z

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  5. Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software

    SciTech Connect (OSTI)

    Al-Karaghouli, Ali; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2010-04-15T23:59:59.000Z

    This paper addresses the need for electricity of rural areas in southern Iraq and proposes a photovoltaic (PV) solar system to power a health clinic in that region. The total daily health clinic load is 31.6 kW h and detailed loads are listed. The National Renewable Energy Laboratory (NREL) optimization computer model for distributed power, ''HOMER,'' is used to estimate the system size and its life-cycle cost. The analysis shows that the optimal system's initial cost, net present cost, and electricity cost is US$ 50,700, US$ 60,375, and US$ 0.238/kW h, respectively. These values for the PV system are compared with those of a generator alone used to supply the load. We found that the initial cost, net present cost of the generator system, and electricity cost are US$ 4500, US$ 352,303, and US$ 1.332/kW h, respectively. We conclude that using the PV system is justified on humanitarian, technical, and economic grounds. (author)

  6. Summary of activities of the life cycle costing workshop conducted by the Environmental Restoration Program of Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    A five-day life cycle workshop was conducted by the Environmental Restoration (FR) Program of Oak Ridge National Laboratory (ORNL) to develop appropriate remediation scenarios for each Waste Area Grouping (WAG) at ORNL and to identify associated data needs (e.g., remedial investigations, special studies, and technology demonstrations) and required interfaces. Workshop participants represented the Department of Energy, Martin Marietta Energy Systems, Inc., Bechtel National, Radian Corporation, EBASCO Corporation, and M-K Ferguson. The workshop was used to establish a technical basis for remediation activities at each WAG. The workshop results are documented in this report and provide the baseline for estimating the technical scope for each WAG. The scope and associated budgets and schedules will be summarized in baseline reports for each WAG, which, in turn, will be compiled into an overall strategy document for ORNL ER.

  7. Process system optimization for life cycle improvement

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.

    1999-12-31T23:59:59.000Z

    Life Cycle Assessment (LCA) is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. The LCA consists of three parts. Life cycle inventory quantifies all material and energy use, and environmental emissions for the entire product life cycle, while impact assessment evaluates actual and potential environmental and human health consequences of the activities identified in the inventory phase. Most importantly, life cycle improvement aims at reducing the risk of these consequences occurring to make the product more benign. when the LCA is performed in conjunction with a technoeconomic analysis, the total economic and environmental benefits and shortcomings of a product or process can be quantified. A methodology has been developed incorporating process performance, economics, and life cycle inventory data to synthesize process systems, which meet life cycle impact-improvement targets at least cost. The method relies on a systematic description of the product life cycle and utilizes successive Linear Programming to formulate and optimize the non-linear, constrained problem which results. The practicality and power of this approach have been demonstrated by examining options for the reduction of emissions of the greenhouse gas CO{sub 2} from petroleum-based fuels.

  8. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14T23:59:59.000Z

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  10. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  11. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  12. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  13. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    Reichl, H. “Life cycle inventory analysis and identificationAllen, D.T. ; “Life cycle inventory development for waferLife Cycle Inventory of a CMOS Chip Sarah Boyd and David

  14. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    yield. A hybrid life cycle assessment (LCA) model is used;more accurate life-cycle assessment (LCA) of electronicthe purposes of life-cycle assessment (LCA). While it may be

  15. Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program

    SciTech Connect (OSTI)

    NONE

    1990-12-01T23:59:59.000Z

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy`s Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program`s life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs.

  16. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26T23:59:59.000Z

    The order addresses stewardship of physical assets as valuable national resources in a cost-effective manner to meet the DOE mission using industry standards, a graded approach, and performance objective.

  17. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01T23:59:59.000Z

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  18. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  19. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    Environmental Impacts . . . . . . . . . . . . . . . . . . . . . .Abatement Environmental impactLife-cycle Environmental Impacts . . . . . . . LCA of

  20. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    SemiconductorThe Semiconductor Industry: Size, Growth andSemiconductor Life-cycle Environmental Impacts . . . . . . .

  1. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17T23:59:59.000Z

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  2. Life Cycle Analysis and Energy Conservation Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In 1995 Ohio passed legislation requiring that all state agencies perform life-cycle cost analyses prior to the construction of new buildings, and energy consumption analyses prior to new leases. ...

  3. Life-Cycle Analysis and Energy Efficiency in State Buildings

    Broader source: Energy.gov [DOE]

    Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings...

  4. Accelerated quantification of critical parameters for predicting the service life and life cycle costs of chloride-laden reinforced concrete structures

    E-Print Network [OSTI]

    Pillai Gopalakrishnan, Radhakrishna

    2003-01-01T23:59:59.000Z

    systems. A parametric study with different steel reinforcement, water-cement ratios, and chloride exposure conditions indicated that the use of corrosion resistant steels will increase the overall service life and can reduce the LCC of RC structures...

  5. Life Cycle Assessment of Reclaimed Asphalt Pavement

    E-Print Network [OSTI]

    Minnesota, University of

    Life Cycle Assessment of Reclaimed Asphalt Pavement to Improve Asphalt Pavement Sustainability By Pavement (RAP) Courtesy of http://myconstructionphotos.smugmug.com/ RAP #12;Transport Back to the Plant-melt old binder on the RAP #12;Life Cycle Assessment (LCA) · #12;Asphalt Pavement Life Cycle Road

  6. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    indicators in life-cycle assessment (LCA). Human Ecologicalindicators in life-cycle assessment (LCA). Human EcologicalI explore how life-cycle assessment (LCA) results can

  7. Importance of life cycle assessment

    SciTech Connect (OSTI)

    Bridges, J.S.

    1994-06-16T23:59:59.000Z

    The paper presents Life Cycle Assessment (LCA) as a tool to assist the waste professional with integrated waste management. LCA can be the connection between the waste professional and designer/producer to permit the waste professional to encourage the design of products so material recovery is most efficient and markets can be better predicted. The waste professional can better monitor the involvement of the consumer in waste management by using LCA and looking upstream at how the consumer actually reacts to products and packaging. LCA can also help the waste professional better understand the waste stream.

  8. Life-Cycle Civil Engineering Biondini & Frangopol (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46857-2

    E-Print Network [OSTI]

    Lepech, Michael D.

    adopted as a framework for designing and constructing pave- ment systems. Life cycle assessment (LCA, ISBN 978-0-415-46857-2 An integrated life cycle assessment and life cycle analysis model for pavement cycle assessment and life cycle cost analysis model was developed to calculate the environmental impacts

  9. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  10. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

  11. The principles of life-cycle analysis

    SciTech Connect (OSTI)

    Hill, L.J.; Hunsaker, D.B.; Curlee, T.R.

    1996-05-01T23:59:59.000Z

    Decisionmakers representing government agencies must balance competing objectives when deciding on the purchase and sale of assets. The goal in all cases should be to make prudent or financially {open_quotes}cost-effective{close_quotes} decisions. That is, the revenues from the purchase or sale of assets should exceed any out-of-pocket costs to obtain the revenues. However, effects external to these financial considerations such as promoting environmental quality, creating or maintaining jobs, and abiding by existing regulations should also be considered in the decisionmaking process. In this paper, we outline the principles of life-cycle analysis (LCA), a framework that allows decisionmakers to make informed, balanced choices over the period of time affected by the decision, taking into account important external effects. Specifically, LCA contains three levels of analysis for any option: (1) direct financial benefits (revenues) and out-of-pocket costs for a course of action; (2) environmental and health consequences of a decision; and (3) other economic and socio-institutional effects. Because some of the components of LCA are difficult to value in monetary terms, the outcome of the LCA process is not generally a yes-no answer. However, the framework allows the decisionmaker to at least qualitatively consider all relevant factors in analyzing options, promoting sound decisionmaking in the process.

  12. Summary of activities of the life cycle costing workshop conducted by the Environmental Restoration Program of Oak Ridge National Laboratory. Enviromental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    A five-day life cycle workshop was conducted by the Environmental Restoration (FR) Program of Oak Ridge National Laboratory (ORNL) to develop appropriate remediation scenarios for each Waste Area Grouping (WAG) at ORNL and to identify associated data needs (e.g., remedial investigations, special studies, and technology demonstrations) and required interfaces. Workshop participants represented the Department of Energy, Martin Marietta Energy Systems, Inc., Bechtel National, Radian Corporation, EBASCO Corporation, and M-K Ferguson. The workshop was used to establish a technical basis for remediation activities at each WAG. The workshop results are documented in this report and provide the baseline for estimating the technical scope for each WAG. The scope and associated budgets and schedules will be summarized in baseline reports for each WAG, which, in turn, will be compiled into an overall strategy document for ORNL ER.

  13. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14T23:59:59.000Z

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  14. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  15. Life cycle evolution and systematics of Campanulariid hydrozoans

    E-Print Network [OSTI]

    Govindarajan, Annette Frese, 1970-

    2004-01-01T23:59:59.000Z

    The purpose of this thesis is to study campanulariid life cycle evolution and systematics. The Campanulariidae is a hydrozoan family with many life cycle variations, and provide an excellent model system to study life cycle ...

  16. Life-cycle assessment of NAND flash memory

    E-Print Network [OSTI]

    Boyd, Sarah; Horvath, A; Dornfeld, David

    2010-01-01T23:59:59.000Z

    this possibility, a life-cycle assessment (LCA) of NAND ?ashstudy presents a life-cycle assessment (LCA) of ?ash memoryInput- Output Life Cycle Assessment (EIO-LCA), US 1997

  17. Evalua&ng Forest Biomaterials with Environmental Life Cycle Assessment

    E-Print Network [OSTI]

    : Environmental Life cycle assessment (LCA) to understand impacts of forest productsEvalua&ng Forest Biomaterials with Environmental Life Cycle Assessment Hosted in the industrial sphere, with addiKonal effects 6 #12;Life Cycle Assessment Method

  18. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    global warming intensity of electricity (at the locations of productionproduction as a result of the high global warming intensity of electricityelectricity mix at the production site on total life-cycle global warming

  19. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01T23:59:59.000Z

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  20. Insurance and Taxation over the Life Cycle

    E-Print Network [OSTI]

    Werning, Ivan

    We consider a dynamic Mirrlees economy in a life-cycle context and study the optimal insurance arrangement. Individual productivity evolves as a Markov process and is private information. We use a first-order approach in ...

  1. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results and Findings Life Cycle Greenhouse Gas Emissions from Electricity Generation (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity...

  2. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Energy Savers [EERE]

    Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used...

  3. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Energy Savers [EERE]

    Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas...

  4. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  5. Life Cycle Assessment of microalgal basedbiofuel

    E-Print Network [OSTI]

    Boyer, Edmond

    Antipolis Cedex, France Abstract Fossil fuel depletion and attempts of global warming mitigation have motivated the development of biofuels. Several feedstock and transformation pathways into biofuel have been, several Life Cycle Assessments have been realised to evaluate the energetic benefit and Global Warming

  6. Farinon microwave end of life cycle

    SciTech Connect (OSTI)

    Poe, R.C.

    1996-06-24T23:59:59.000Z

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  7. An Investigation of Window and Lighting Systems using Life Cycle Cost Analysis for the Purpose of Energy Conservation in Langford Building A at Texas A&M University

    E-Print Network [OSTI]

    Hwang, Hea Yeon

    2012-07-16T23:59:59.000Z

    Langford Building A forms part of the Langford Architectural Complex at Texas A & M University. Inefficient lighting fixtures and single pane windows in Langford Building A contribute to a considerable portion of the total cost of energy...

  8. Life cycle analysis: Getting the total picture on vehicle engineering alternatives

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This article examines how assessing energy impacts over a vehicle`s life cycle presents a different picture than traditional cost analysis. Life cycle assessment (LCA) aims to identify chances to improve the environmental behavior of the products or systems under consideration. To do this, it is necessary to collect and interpret material and energy flows for all affected processes systematically. With LCA, traditional engineering decision-making processes include environmental aspects. Life cycle engineering, on the other hand, adds environmental protection to the design and development process. The closed-loop nature of life cycle engineering is shown.

  9. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Broader source: Energy.gov [DOE]

    Project objectives: Gather and analyze independently the available technical, cost, financial incentive data on installed GSHP/HGSHP applications in residential, commercial and schools in hot and humid climate regions, and develop a calibrated baseline and performance period model of new construction and retrofitted buildings in conjunction with the energy simulation program.

  10. Enabling streamlined life cycle assessment : materials-classification derived structured underspecification

    E-Print Network [OSTI]

    Rampuria, Abhishek

    2012-01-01T23:59:59.000Z

    As environmental footprint considerations for companies gain greater importance, the need for quantitative impact assessment tools such as life cycle assessment (LCA) has become a higher priority. Currently, the cost and ...

  11. -Successful Integration of Life Cycle Assessment in to Civil Engineering Course -CIVL 498C Life Cycle Analysis of UBC Buildings

    E-Print Network [OSTI]

    to teaching the science-based environmental impact assessment method of Life Cycle Analysis (LCA). Through, through being capable of; · Completing a Life Cycle Assessment (LCA) study in accordance with ISO 14040- Successful Integration of Life Cycle Assessment in to Civil Engineering Course - CIVL 498C Life

  12. Application of life cycle assessment methodology at Ontario Hydro

    SciTech Connect (OSTI)

    Reuber, B.; Khan, A. [Ontario Hydro, Ontario (Canada)

    1996-12-31T23:59:59.000Z

    Ontario Hydro is an electrical utility located in Ontario, Canada. In 1995, Ontario Hydro adopted Sustainable Energy Development Policy and Principles that include the governing principle: {open_quotes}Ontario Hydro will integrate environmental and social factors into its planning, decision-making, and business practices.{close_quotes} Life cycle assessment was identified as a useful tool for evaluating environmental impacts of products and processes in support of decision-making. Ontario Hydro has developed a methodology for life cycle assessment (LCA) that is consistent with generally accepted practices, practical, and suitable for application in Ontario Hydro Business Units. The methodology is based on that developed by the Society of Environmental Toxicology and Chemistry (SETAC) but follows a pragmatic and somewhat simplified approach. In scoping an LCA, the breadth and depth of analysis are compatible with and sufficient to address the stated goal of the study. The depth of analysis is tied to (i) the dollar value of the commodity, process or activity being assessed, (ii) the degree of freedom available to the assessor to make meaningful choices among options, and (iii) the importance of the environmental or technological issues leading to the evaluation. A pilot study was completed to apply the methodology to an LCA of the light vehicle fleet (cars, vans and light pick-up trucks) at Ontario Hydro. The objective of the LCA was to compare the life cycle impacts of alternative vehicle fuel cycles: gasoline, diesel, natural gas, propane, and alcohol; with particular focus on life cycle emissions, efficiency and cost. The study concluded that for large vehicles (1/2 ton and 3/4 ton) that travel more than 35000 km/year, natural gas and propane fuelling offer both cost reduction and emissions reduction when compared to gasoline vehicles.

  13. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  14. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01T23:59:59.000Z

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  15. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    Life-cycle assessment of coal fly ash disposal: Influence ofto the case of coal fly ash disposal. The influence ofLife-cycle assessment of coal fly ash disposal: Influence of

  16. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  17. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

  18. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

  19. An ideal sealed source life-cycle

    SciTech Connect (OSTI)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  20. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    SciTech Connect (OSTI)

    Yong X. Tao; Yimin Zhu

    2012-04-26T23:59:59.000Z

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  1. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  2. Emerging approaches, challenges and opportunities in life cycle assessment

    E-Print Network [OSTI]

    Napp, Nils

    of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts of Life Cycle Assessment (LCA), a method to quantitatively assess the environmental impacts of goodsREVIEW Emerging approaches, challenges and opportunities in life cycle assessment Stefanie Hellweg1

  3. Environmental assessment of electricity scenarios with Life Cycle Assessment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    been assessed with Life Cycle Assessment (LCA) studies [1], [2], [3] and [4]. However environmentalEnvironmental assessment of electricity scenarios with Life Cycle Assessment Touria Larbi1 impacts assessment of scenarios is very rarely evaluated through a life cycle perspective partly because

  4. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01T23:59:59.000Z

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  5. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    Dornfeld, Chair Life cycle assessment (LCA) is a powerful1 Introduction Life cycle assessment (LCA) aids consumers inDefinition Life cycle assessment (LCA) is a holistic method

  6. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Hellweg, Stefanie

    2010-01-01T23:59:59.000Z

    currently done in Life Cycle Assessment (LCA), may result inexposure models; Life Cycle Assessment; LCA; intake fractionneglected in Life Cycle Assessment (LCA). Such an omission

  7. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01T23:59:59.000Z

    a thorough Life Cycle Assessment (LCA) of all the componentsWarming Potential (GWP), Life Cycle Assessment (LCA), Carbonbe calculated using a Life Cycle Assessment (LCA) method, or

  8. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01T23:59:59.000Z

    existing process life cycle assessment (LCA) databases andfew years, life cycle assessment (LCA) has been increasinglyInput-Output Life Cycle Assessment (EIO-LCA). http://

  9. Embedded Temporal Difference in Life Cycle Assessment: Case Study on VW Golf A4 Car

    E-Print Network [OSTI]

    Yuan, Chris; Simon, Rachel; Natalie Mady; Dornfeld, David

    2009-01-01T23:59:59.000Z

    may alter Life Cycle Assessment (LCA) results that wereLife Cycle Impact Assessment,” International Journal of LCAsystem for life cycle assessment. The LCA temporal space

  10. Concepts associated with a unified life cycle analysis

    SciTech Connect (OSTI)

    Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.; Brebbia, C. A.; Almorza Gomar, D.; Klapperich, H.

    2002-01-01T23:59:59.000Z

    There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other, the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.

  11. asexual life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  12. arabidopsis life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  13. automotive life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  14. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the Development and Operation of Geothermal Power Plants Water...

  16. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  17. The Role of Modeling in Clinical Information System Development Life-Cycle Mor Peleg, Department of Information Systems, University of Haifa, Haifa, Israel

    E-Print Network [OSTI]

    Peleg, Mor

    The Role of Modeling in Clinical Information System Development Life-Cycle Mor Peleg, Department different stake holders. Conceptual modeling can play important roles in the development life-cycle. If these requirements are identified early in the development life-cycle then it is easier and more cost

  18. ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS Sylvain Guignot1 Concrete, aggregate, electro-fragmentation, recycling, life-cycle analysis Abstract The present study evaluates the environmental impacts of a recycling scheme for gravels from building concretes wastes

  19. Discovering Life Cycle Assessment Trees from Impact Factor Databases

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    environmental impacts of a product, across its entire life cycle ­ from creation to use to discard. The key environmental category is a linear combination of the impacts of the children in that category. LCA has its life cycle as its children. Each node of the tree is associated with various environmental impact

  20. THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor

    E-Print Network [OSTI]

    THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor Computer Security Division the maintenance and disposal of the system, is called the System Development Life Cycle (SDLC). The Information general guide that helps organizations plan for and implement security throughout the SDLC. The revised

  1. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect (OSTI)

    Reardon, P.T.

    1995-03-01T23:59:59.000Z

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  2. The Life-cycle of Operons

    SciTech Connect (OSTI)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18T23:59:59.000Z

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  3. The Life-cycle of Operons

    SciTech Connect (OSTI)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15T23:59:59.000Z

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  4. Life cycle assessment: A stewardship tool

    SciTech Connect (OSTI)

    Not Available

    1992-12-09T23:59:59.000Z

    As the chemical industry searches for tools to practice product stewardship. it is getting more involved in life cycle assessment (LCA) techniques, which examine the full environmental impact of a product or process over its lifetime and identify areas for improvement. The industry views LCA as a component of product stewardship,' says James P. Mieure, Monsanto's product safety director/chemicals group, who is the liaison between the Chemical manufacturers Association's (CMA; Washington) LCA and product stewardship work groups. Product stewardship includes examining energy used and waste produced as key parameters to consider when developing a new product or process or in modifying an existing one, Mieure says, which is part of what an LCA does. The work being done by the LCA group at CMA, cautions Mieure, doesn't lend itself to practical applications. The group hopes to help companies implement LCA when the time is right, he says. The time is not right yet, Mieure adds, mostly because of the slowness with which the impact analysis stage is progressing. Although the LCA concept has been around for more than 20 years, activity in applying it in industry has taken off since 1990.

  5. Evaluating trade-offs between sustainability, performance, and cost of green machining technologies

    E-Print Network [OSTI]

    Helu, Moneer

    2012-01-01T23:59:59.000Z

    impact assessments Life cycle assessment (LCA) has beenLife Cycle Cost Analysis and LCA, in: International Journal of Life Cycle Assessment,

  6. Evaluating Trade-Offs Between Sustainability, Performance, and Cost of Green Machining Technologies

    E-Print Network [OSTI]

    Helu, Moneer; Rühl, Jan; Dornfeld, David; Werner, Patrick; Lanza, Gisela

    2011-01-01T23:59:59.000Z

    impact assessments Life cycle assessment (LCA) has beenLife Cycle Cost Analysis and LCA, in: International Journal of Life Cycle Assessment,

  7. Total cost analysis of process time reduction as a green machining strategy

    E-Print Network [OSTI]

    Helu, Moneer; Behmann, Benjamin; Meier, Harald; Dornfeld, David; Lanza, Gisela; Schulze, Volker

    2012-01-01T23:59:59.000Z

    on the use of life cycle assessment (LCA) to quantifyLife Cycle Cost Analysis and LCA, in: International Journal of Life Cycle Assessment,

  8. Fuel cycle cost study with HEU and LEU fuels

    SciTech Connect (OSTI)

    Matos, J.E.; Freese, K.E.

    1984-01-01T23:59:59.000Z

    Fuel cycle costs are compared for a range of /sup 235/U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors.

  9. Fuel-cycle cost comparisons with oxide and silicide fuels

    SciTech Connect (OSTI)

    Matos, J.E.; Freese, K.E.

    1982-01-01T23:59:59.000Z

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed.

  10. Life-Cycle Assessment of Highway Pavement Alternatives in Aspects of Economic, Environmental, and Social Performance 

    E-Print Network [OSTI]

    Mao, Zhuting

    2012-10-19T23:59:59.000Z

    Assessments EIO-LCA Economic Input-Output Life Cycle Assessment EIS Environmental Impact Statements EO Executive Order EPA Environmental Protection Agency ESAL Equivalent Single Axle Loads FHWA Federal Highway Administration GWP... Transaction Cost ............................................. 48 Figure 11. Environmental Impact: Global Warming Potential ........................................ 50 Figure 12. Environmental Impact: CO2 Emissions...

  11. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    All but two Life-Cycle Assessment (LCA) studies make nofuels. The term “life-cycle assessment” (LCA) is used toInput-Output Life Cycle Assessment (EIO-LCA) US 2002 (428)

  12. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01T23:59:59.000Z

    tools related to life- cycle assessment (LCA) applied toaccomplished using a life-cycle assessment (LCA) approach.EIO-LCA (Economic Input-Output Life-Cycle Assessment) model

  13. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01T23:59:59.000Z

    and use of a new life-cycle assessment (LCA) model forknown as life-cycle assessment (LCA). An LCA employs dataliterature related to life-cycle assessment (LCA) applied to

  14. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    Unfortunately, life cycle assessment (LCA) is as much art asFuel Standard use Life Cycle Assessment (LCA) to estimatethat rely on life cycle assessment (LCA) to quantify the

  15. Consumer-oriented Life Cycle Assessment of Food, Goods and Services

    E-Print Network [OSTI]

    Jones, Christopher M; Kammen, Daniel M; McGrath, Daniel T

    2008-01-01T23:59:59.000Z

    Product-level life cycle assessment (LCA) approaches canInput-Output Life Cycle Assessment (EIO-LCA); Carnegieinput-output life cycle assessment (IO-LCA) tools present a

  16. LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina Pflanz About UsT8LES'About Us

  17. Improving the quality and transparency of building life cycle assessment

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2011-01-01T23:59:59.000Z

    Life cycle assessment, or LCA, is a powerful method for measuring and reducing a building's environmental impacts. Its widespread adoption among designers would allow the environmental component of sustainability to gain ...

  18. RESEARCH AND ANALYSIS Comparison of Life-Cycle

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    -output life-cycle assessment (EIO-LCA) model; and SimaPro software equipped with the Franklin database. EIO-LCA model estimated for emis- sions of particulate matter less than 10 micrograms (PM10) resulting from wind

  19. Life-cycle assessment of wastewater treatment plants

    E-Print Network [OSTI]

    Dong, Bo, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

  20. Predicting the life cycle of rice varieties in Texas

    E-Print Network [OSTI]

    Gambrell, Stefphanie Michelle

    2006-04-12T23:59:59.000Z

    once it reaches the market. This study develops a regression model, which includes competition and the characteristics of a specific variety, to estimate the life cycle of new varieties and hybrids. In addition, simulation techniques are utilized...

  1. Green Engineering and Life Cycle Assessment at Virginia Tec ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Engineering and Life Cycle Assessment at Virginia Tech Apr 10 2014 03:00 PM - 04:00 PM Sean McGinnis, VT Green Engineering, Oak Ridge Center for Bioenergy and Sustainability...

  2. Life cycle analysis of hybrid poplar trees for cellulosic ethanol

    E-Print Network [OSTI]

    Huang, Jessica J

    2007-01-01T23:59:59.000Z

    The main purpose of this paper is to assess the energy and environmental benefits of cultivating hybrid poplars as a biomass crop for cellulosic ethanol. A "Life Cycle Assessment" (LCA) methodology is used to systematically ...

  3. Design for, and Evaluation of Life Cycle Performance

    E-Print Network [OSTI]

    Ahner, D. J.; Hall, E. W.

    ?. DESIGN FOR, AND EVALUATION OF LIFE CYCLE PERFORMANCE David J. Ahner Eldon W. Hall GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK ABSTRACT EQUIPMENT DEGRADATION Project evaluation necessarily requires performance estimates over... the project life cycle. In contrast to new and clean condi tions, extended 1 ife performance inherently introduces additional complexity and vari ability in developing such estimates, due to changing operating environment, mainte nance policies...

  4. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01T23:59:59.000Z

    and Scope De?nition and Inventory Analysis; Internationalin life- cycle inventories using hybrid approaches. Environ.Reichl, H. Life Cycle Inventory Analysis and Identi?cation

  5. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01T23:59:59.000Z

    The use of life-cycle assessment (LCA) to understand theIntroduction Life-cycle assessment (LCA) is an important

  6. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect (OSTI)

    Shaw, H; Blink, J A

    2008-12-12T23:59:59.000Z

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

  7. Cost effectiveness of long life incandescent lamps and energy buttons

    SciTech Connect (OSTI)

    Verderber, R.; Morse, O.

    1980-04-07T23:59:59.000Z

    Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

  8. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-05-01T23:59:59.000Z

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  9. Life-Cycle Analysis of Geothermal Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLife With

  10. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYiminGeospatialLife

  11. Life Cycle Assessment and Sustainability of Chemical Products

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Life Cycle Assessment & Sustainability of Chemical Products Abdelhadi Sahnoune ExxonMobil Chemical Company Industrial Energy Technology Conference (IETC 2014) New Orleans, May 20-23, 2014 ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial... Energy Technology Conference New Orleans, LA. May 20-23, 2014 Products in our daily lives Plastics Packaging - Protects and extends shelf life Building & Construction – Insulation, design, flooring Plastics in Automotive Applications - Light weighting...

  12. Development of the household sample for furnace and boilerlife-cycle cost analysis

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

    2005-05-31T23:59:59.000Z

    Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

  13. Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle

    E-Print Network [OSTI]

    Maisey, G.; Milestone, B.

    2005-01-01T23:59:59.000Z

    popular systems. Although first costs can sometimes be greater, they can be designed to be highly flexible and adaptable, not to mention efficient and long lived. Systems employing earth or geothermal conditions can provide increased efficiency.... FIGURE 12 – GEOTHERMAL SYSTEM WITH ROTARY WHEEL – Although the geothermal portion of this system is highly advisable, the rotary wheel is not. The rotary wheel does not perform well for very long and has an average useful life cycle of six years...

  14. Life Cycle Assessment of Biogas from Separated slurry

    E-Print Network [OSTI]

    Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

  15. Environmental life cycle assessment as a decision making tool

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    2011 Environmental impact categories Global warming (99 %) Acidification Ozone depletion Photo oxidant · Environmental Life Cycle Assessment · Operation of the Argentinean Electricity Network · Conclusions #12;PASI minimization 2 1 2 1 2 1 CC)(1Z ** Global criteria method p *** * p *** * C-C CC - Z

  16. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  17. LIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS

    E-Print Network [OSTI]

    sections--agriculture, manufacture and transport. Energy inputs for each of these sections were determined in the analysis. BFS, however, avoids this energy input by purchasing a starch that is a waste stream from anotherLIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS ON THE BASIS OF ENERGY CONSUMPTION Sin

  18. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  19. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  20. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy callsComparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity

  1. A Comparative Life Cycle Assessment of Petroleum and

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    A Comparative Life Cycle Assessment of Petroleum and Soybean-Based Lubricants S H E L I E A . M I L assessment examining soybean and petroleum-based lubricants is compiled using Monte Carlo analysis to assess in this paper suggests that such potential exists. Over two billion gallons (7.5 billion liters) of petroleum

  2. Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers

    E-Print Network [OSTI]

    Boyer, Edmond

    Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers Jean in the automobile industry where vehicle manufacturers (OEMs) are launching several new or re- vamped models each year. The automobile industry is therefore a very emblematic sector for best practices of LCA

  3. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01T23:59:59.000Z

    INTRODUCTION Life Cycle Assessment (LCA) is a leadingLife Cycle Assessment by including predictable disruptions to the life cycle, thereby increasing the meaningfulness of LCALife Cycle Assessment is a very important factor to consider in order to ensure the accuracy of estimated emissions and meaningfulness of LCA

  4. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01T23:59:59.000Z

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  5. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L. [Colorado School of Mines, Golden, CO (United States)

    2009-05-15T23:59:59.000Z

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  6. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: ana-maria.iosif@arcelormittal.com; Hanrot, Francois [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: francois.hanrot@arcelormittal.com; Ablitzer, Denis [LSG2M, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy cedex (France)], E-mail: denis.ablitzer@mines.inpl-nancy.fr

    2008-10-15T23:59:59.000Z

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  7. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    Area, Chicago, and New York City  are  evaluated  capturing  passenger  transportation  life?cycle  energy Area, Chicago, and New York City are evaluated capturing passenger trans- portation life-cycle energy

  8. Life Cycle Assessment goes to Washington : lessons from a new regulatory design

    E-Print Network [OSTI]

    Edwards, Jennifer Lynn, M. C. P. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Life Cycle Assessment (LCA) is a quantitative tool that measures the bundled impact of an individual product over its entire life cycle, from "cradle-to-grave." LCA has been developed over many decades to improve industry's ...

  9. Life cycle assessment of materials and construction in commercial structures : variability and limitations

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2010-01-01T23:59:59.000Z

    Life cycle assessment has become an important tool for determining the environmental impact of materials and products. It is also useful in analyzing the impact a structure has over the course of its life cycle. The ...

  10. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27T23:59:59.000Z

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  11. Design study of long-life PWR using thorium cycle

    SciTech Connect (OSTI)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul [Physics.Dept., Bandung Institute of Technology.Ganesha 10, Bandung (Indonesia)

    2012-06-06T23:59:59.000Z

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  12. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01T23:59:59.000Z

    system boundary, data sources, data quality assessment, data disaggregation and other elements. The Development of Life Cycle

  13. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03T23:59:59.000Z

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  14. average system cost: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    course that address life cycle costs, particularly the concepts of life cycle assessment (LCA) and design packaging technology, specifically the process of predicting the...

  15. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J Friedman Fall 2010 #12;Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications Copyright 2010 by Richard J. Plevin #12;1 Abstract Life Cycle Regulation of Transportation Fuels

  16. Virtual Community Life Cycle: a Model to Develop Systems with Fluid Requirements Christo El Morr1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Virtual Community Life Cycle: a Model to Develop Systems with Fluid Requirements Christo El Morr1 into the life cycle model needed to develop information systems for group of people with fluid requirements development life cycles can be followed when developing any virtual community. Though, in a fluid environment

  17. U.S. LIFE CYCLE INVENTORY DATABASE Goals of the U.S. LCI Database Project

    E-Print Network [OSTI]

    U.S. LIFE CYCLE INVENTORY DATABASE ROADMAP rsed e #12;Goals of the U.S. LCI Database Project. Vision Statement The U.S. Life Cycle Inventory Database will be the recognized source of U.S.-based, quality, transparent life cycle inventory data and will become an integral part of the rapidly expanding

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT OF

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA This study used Life Cycle Assessment (LCA) to assess the environmental performance of the University at rob.sianchuk@gmail.com #12;2013 CIVL498 C Ian Eddy LIFE CYCLE ASSESSMENT OF THE FOREST SCIENCE CENTER

  19. Towards prospective Life Cycle Assessment: how to identify key parameters inducing most

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Life Cycle Assessments (LCA) have been undertaken, attempting to give a quantitative assessmentTowards prospective Life Cycle Assessment: how to identify key parameters inducing most Blanc1 MINES ParisTech, O.I.E. center, Sophia Antipolis, France Abstract. Prospective Life Cycle

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment Report

    E-Print Network [OSTI]

    purposes. A life cycle assessment (LCA) was carried out on two of the event arenas built for the 2010UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle AssessmentC: Life Cycle Assessment Report Thunderbird Old Arena Group Members: Dennis Fan, Sean Geyer, Hillary

  1. A Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits

    E-Print Network [OSTI]

    Pedram, Massoud

    . Life-Cycle Assessment (LCA) has been increasingly used to assess environmental implicationsA Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits Yanzhi Wang, Ying Zhang as the next-generation semiconductor technology. This paper is the first attempt in reporting the life-cycle

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT -CENTER FOR

    E-Print Network [OSTI]

    to support the development of the field of life cycle assessment (LCA). The information and findingsUBC Social Ecological Economic Development Studies (SEEDS) Student Report JIAN SUN LIFE CYCLE which has one of the largest life cycle inventory database in North America. Assumptions and According

  3. Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case of vertical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case The article presents the application of Life Cycle Assessment (LCA) to a complete sanitation system including of water sanitation systems may be done using the LCA approach (Life Cycle Assessment). Indeed

  4. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  5. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  6. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect (OSTI)

    Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

    2012-11-15T23:59:59.000Z

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

  7. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Luigi Lella; Ignazio Licata

    2007-05-08T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  8. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Lella, Luigi

    2010-01-01T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  9. Background and Reflections on the Life Cycle Assessment Harmonization Project

    SciTech Connect (OSTI)

    Heath, G. A.; Mann, M. K.

    2012-04-01T23:59:59.000Z

    Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and clarifying the central tendency of those estimates in ways useful for decision makers and analysts. Each article took a slightly different approach, demonstrating the flexibility of the harmonization approach. Each article also discusses limitations of the current research, and the state of knowledge and of harmonization, pointing toward a path of extending and improving the meta-analysis of LCAs.

  10. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLife Cycle | National

  11. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669Life Cycle

  12. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15T23:59:59.000Z

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  13. Life Cycle Analysis for the Walter H. Gage Residence The life cycle analysis (LCA) being carried out for this project is one of thirteen

    E-Print Network [OSTI]

    The life cycle analysis (LCA) being carried out for this project is one of thirteen others that are being1 Life Cycle Analysis for the Walter H. Gage Residence Civl 498c Jack Liu #12;Liu 2 Abstract by the UBC Records Department to perform takeoffs for the EIE inputs. The EIE presented the impact assessment

  14. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Wongsuchoto, Porntip [National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Pavasant, Prasert [National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: prasert.p@chula.ac.th

    2009-05-15T23:59:59.000Z

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  15. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01T23:59:59.000Z

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  16. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect (OSTI)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02T23:59:59.000Z

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  17. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect (OSTI)

    Morris, S.C.

    1992-08-01T23:59:59.000Z

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  18. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect (OSTI)

    Morris, S.C.

    1992-01-01T23:59:59.000Z

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  19. Life Cycle Assessment of Vanier Residence in University of British Columbia

    E-Print Network [OSTI]

    cycle assessment (LCA) was conducted on the Vanier Residence. The LCA conducted looks into the lifeLife Cycle Assessment of Vanier Residence in University of British Columbia Building PerformanceOff were used to create an LC model of the Vanier Residence. For this case study, a cradle-to-gate life

  20. Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles

    E-Print Network [OSTI]

    Noel, Michael

    2007-01-01T23:59:59.000Z

    Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

  1. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Chemistry Building North Block

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA at rob.sianchuk@gmail.com #12;Running head: Life Cycle Assessment of Chemistry Building North Block CIVL 498 ­ Life Cycle Assess Life Cycle Assessment of Chemistry Building North Block Minge Weng November 18

  3. A Simulation Model for the Waterfall Software Development Life Cycle

    E-Print Network [OSTI]

    Bassil, Youssef

    2012-01-01T23:59:59.000Z

    Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied clients. The major reason for these deficiencies is that project directors are not wisely assigning the required number of workers and resources on the various activities of the SDLC. Consequently, some SDLC phases with insufficient resources may be delayed; while, others with excess resources may be idled, leading to a bottleneck between the arrival and delivery of projects and to a failure in delivering an operational product on time and within budget. This paper proposes a simulation model for the Waterfall development proce...

  4. Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle 

    E-Print Network [OSTI]

    Maisey, G.; Milestone, B.

    2005-01-01T23:59:59.000Z

    TOTAL QUALITY COMMISSIONING FOR HVAC SYSTEMS TO ASSURE HIGH PERFORMANCE THROUGHOUT THE WHOLE LIFE CYCLE By: Grahame E. Maisey, P.E., and Beverly Milestone, LEED AP Building Services Consultants INTRODUCTION Current HVAC systems... not provide a life cycle, high performance assurance program. Continuous commissioning is being used to continually adjust the HVAC systems to regain good performance from the original systems, but again, is not a life cycle, high performance assurance...

  5. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  6. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    in Life?Cycle  Inventories Using Hybrid Approaches.  EEA 2006] Emission Inventory Guidebook; Activities 080501?I: National Lighting Inventory and  Energy Consumption 

  7. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Water Reuse, Part I. Oil & Gas Journal 1992, 90 (38), 86,Journal of Life Cycle Assessment 1997, 2 (4), 217-222. Profile of the Oil and Gas

  8. Towards Support for Long-Term Digital Preservation in Product Life Cycle Management

    E-Print Network [OSTI]

    Wilkes, Wolfgang; Brunsmann, Jörg; Heutelbeck, Dominic; Hundsdörfer, Andreas; Hemmje, Matthias; Heidbrink, Hans-Ulrich

    2009-01-01T23:59:59.000Z

    a preservation system and a PLM repository both native andproduct life cycle management (PLM). Investigations revealedwhich is created in early PLM phases, but preservation is

  9. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  10. A Life Cycle Assessment of a Magnesium Automotive Front End

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Dubreuil, Alain [Natural Resources Canada; Bushi, Lindita [GreenhouseGasMeasurement.com; Tharumarajah, Ambalavanar [CSIRO/CAST-CRC

    2009-01-01T23:59:59.000Z

    The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

  11. Building Life Cycle Cost Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with an XML file format. The user's guide is part of the BLCC Help system. BLCC version 5.3-13 contains the following modules: FEMP Analysis; Energy Project Federal Analysis;...

  12. Estimation and Analysis of Life Cycle Costs of Baseline EGS

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  13. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  14. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Corrosion of ably moreefficient--up to 98%,if a long charging seals and casings is not a problem,and the lithium

  15. Life cycle cost modeling of automotive paint systems

    E-Print Network [OSTI]

    Leitz, Christopher W. (Christopher William), 1976-

    2007-01-01T23:59:59.000Z

    Vehicle coating is an important component of automotive manufacturing. The paint shop constitutes the plurality of initial investment in an automotive assembly plant, consumes the majority of energy used in the plant's ...

  16. Reducing Life Cycle Cost By Energy Saving in Pump Systems

    E-Print Network [OSTI]

    Bower, J. R.

    efficiency. Pump users and manufacturers can make significant savings by attention to system design, pump specification, drivers, pump control, auxiliary services and refurbishment policy....

  17. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    1600 1800 Baseline 50% Body and Chassis Wt. Redn. Scenario Weight (kg) Other PolymerComposite Magnesium Aluminum Low Carbon Steel HiMed Steel 1180 1525 8 Managed by UT-Battelle...

  18. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    sauga, Canada. metal/air batteries--then EVswould becomemuchand (3) the use metal/air batteries. In all three, batterybatteries If metal/air batteries are developedsuccessfully,

  19. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    185 HP, Port Fuel Injected, V6 Aluminum, 4 Valves per Cylinder, Naturally aspirated (No Turbo)) - Transmission (Front Wheel Drive, Locking Automatic) - Fuel Economy and...

  20. Application of life cycle costing method to a renovation project

    E-Print Network [OSTI]

    Taneda, Makoto

    1996-01-01T23:59:59.000Z

    In this study, we have examined the application of Lee analysis method to the construction and renovation stages of a building project. The application of the Lee analysis is currently limited to the very early stages of ...

  1. Building Life Cycle Cost Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding RetrofitforCamberlyDepartment BEoptThis1

  2. Building Life Cycle Cost Programs File Saving Troubleshooting | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building

  3. Building Life Cycle Cost Programs Software Installation Troubleshooting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy BuildingDepartment of Energy

  4. Life Cycle Cost Analysis for Sustainable Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLieko Earle

  5. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExploration At Geothermal WellsAreas

  6. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing

  7. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment of

  8. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment

  9. A Life Cycle Analysis System to Support D and D, Pollution Prevention, and Asset Recovery

    SciTech Connect (OSTI)

    Bishop, L.; Tonn, B.E.; Yuracko, K.L.

    1999-02-28T23:59:59.000Z

    This paper describes a life cycle analysis system (LCAS) developed to support US Department of Energy (DOE) decision-making regarding deactivation and decommissioning (D and D), pollution prevention (P2), and asset recovery, and its deployment to analyze the disposition of facilities and capital assets. Originally developed for use at the Oak Ridge East Tennessee Technology Park, this approach has been refined through application at Ohio Operations Office sites and is now being deployed at a number of DOE sites. Programs such as National Metals Recycle, the D and D Focus Area, P2, and Asset Utilization are successfully using the system to make better decisions resulting in lower cost to the taxpayer and improved environmental quality. The LCAS consists of a user-friendly, cost-effective, and analytically-sound decision-aiding process and a complementary suite of automated tools to handle data administration and multiple criteria life cycle analysis (LCA). LCA is a systematic and comprehensive process for identifying, assessing, and comparing alternatives for D and D, P2, and asset recovery at government sites, and for selecting and documenting a preferred alternative. An LCA includes all of the impacts (benefits and costs) that result from a course of action over the entire period of time affected by the action. The system also includes visualizations that aid communication and help make decision-making transparent. The LCAS has three major components related to data collection, decision alternative assessment, and making the decisions. Each component is discussed in-depth using the example of deployment of the LCAS to support asset recovery.

  10. Journal of Power Sources 158 (2006) 679688 Cycle life performance of lithium-ion pouch cells

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Journal of Power Sources 158 (2006) 679­688 Cycle life performance of lithium-ion pouch cells Available online 15 November 2005 Abstract Cycle life studies have been done on lithium-ion pouch cell Elsevier B.V. All rights reserved. Keywords: Capacity fade; Temperature dependence; Lithium-ion pouch cell

  11. Incorporating Life Cycle Assessment into the LEED Green Building Rating System

    E-Print Network [OSTI]

    Victoria, University of

    Incorporating Life Cycle Assessment into the LEED Green Building Rating System by Michael Supervisory Committee Incorporating Life Cycle Assessment into the LEED Green Building Rating System and regional product criteria within the LEED Green Building rating system are not based on comprehensive

  12. Interaction between product life cycle management and production management: PLM-MES integration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interaction between product life cycle management and production management: PLM-MES integration engineering and manufacturing steps within the Product Life cycle Management (PLM) context. Initially, PLM integrated into the PLM solutions. Actually, there is much to be gained by extending the coverage of PLM

  13. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment for Green Technology: life-cycle assessment of a brownfield redevelopment project Thomas Brecheisen1 Online at stacks.iop.org/ERL/8/015038 Abstract The sustainable development of brownfields reflects

  14. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  15. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01T23:59:59.000Z

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  16. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-06-10T23:59:59.000Z

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  17. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  18. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  19. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01T23:59:59.000Z

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  20. TRACKING THE LIFE CYCLE OF CONSTRUCTION STEEL: THE DEVELOPMENT OF A RESOURCE LOOP

    E-Print Network [OSTI]

    Liu, Lanfang

    2009-12-17T23:59:59.000Z

    product have in its life span and how each material flows along with a product’s life cycle. At each stage, there are always materials flowing in or flow out of products’ life cycles. Materials could be chemicals, raw materials, fossil fuels... production Loss in fuel conversion at power plants Transmission and distribution losses Fuel extraction, processing and delivery Energy consumption delivering fuel for use in power plants, transport equipment and industrial plants Process heat Fuel...

  1. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05T23:59:59.000Z

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  2. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23T23:59:59.000Z

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  3. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01T23:59:59.000Z

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  4. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Ramesh, Ramamoorthy

    2011-06-08T23:59:59.000Z

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  5. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  6. Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Chul Kim and Vasilis Fthenakis

    E-Print Network [OSTI]

    and health impacts of nano-technologies triggered a recent surge of life cycle assessment (LCA) studies in parallel with the progress of nanotechnologies by employing life-cycle assessment (LCA) that is widely1 Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung

  7. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building

    E-Print Network [OSTI]

    ­ which aims to support the development of the field of life cycle assessment (LCA). The informationUBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment.sianchuk@gmail.com #12;2 | P a g e Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building CIVL 498E

  8. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of the Aquatic Ecosystems Research Laboratory

    E-Print Network [OSTI]

    of life cycle assessment (LCA). The information and findings contained in this report have not been, 2013 Final Report #12;CIVL 498C: Life Cycle Assessment of the Aquatic Ecosystems Research LaboratoryUBC Social Ecological Economic Development Studies (SEEDS) Student Report Daniel Tse Life Cycle

  9. Accepted for publication in the International Journal of Life Cycle Assessment on 13 March 2013 Stochastic and epistemic uncertainty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2013 #12;4 1. Introduction Life cycle assessment (LCA) aims at modelling complex systems that usually1 Accepted for publication in the International Journal of Life Cycle Assessment on 13 March 2013 of Life Cycle Assessment (2013) 1-10" DOI : 10.1007/s11367-013-0572-6 #12;2 Abstract Purpose: When

  10. The 6th International Conference on Life Cycle Management in Gothenburg 2013 TOWARD A STRUCTURED FUNCTIONAL UNIT DEFINITION

    E-Print Network [OSTI]

    Boyer, Edmond

    Chatenay-Malabry, France. *E-mail: francois.cluzel@ecp.fr Keywords: Life Cycle Assessment (LCA), Goal of comparable product quantities to provide reliable Life Cycle Assessment (LCA) results. Although definition framework. INTRODUCTION Life Cycle Assessment (LCA) is performed in product design to measure

  11. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    E-Print Network [OSTI]

    Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  12. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  13. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  14. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Results 6.1 Life-Cycle Assessment (LCA) . . . . . 6.1.1Analysis (LCEA) 4. Life-Cycle Assessment (LCA) 5. Exergetic

  15. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    Life-cycle Assessment (LCA)comprehensive life-cycle assessment (LCA) models to quantifyUCB-ITS-VWP-2007-7 Life-cycle Assessment (LCA) The vehicles,

  16. Costs of Reproduction in an Intertidal Kelp: Patterns of Allocation and Life History Consequences

    E-Print Network [OSTI]

    Costs of Reproduction in an Intertidal Kelp: Patterns of Allocation and Life History Consequences IN AN INTERTIDAL KELP: PATTERNS OF ALLOCATION AND LIFE HISTORY CONSEQUENCES' CATHERINE A. PFISTER Department ofthe intertidal kelp A/aria nana was manipulated experimentally to investigate costs of reproduction

  17. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01T23:59:59.000Z

    Life-cycle Assessment (LCA)..comprehensive life-cycle assessment (LCA) models to quantifyat each stage. Life-cycle Assessment (LCA) The vehicles,

  18. Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment

    E-Print Network [OSTI]

    Nicholson, Anna L. (Anna Louise)

    2009-01-01T23:59:59.000Z

    Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

  19. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

  20. Iterative uncertainty reduction via Monte Carlo simulation : a streamlined life cycle assessment case study

    E-Print Network [OSTI]

    Bolin, Christopher E. (Christopher Eric)

    2013-01-01T23:59:59.000Z

    Life cycle assessment (LCA) is one methodology for assessing a product's impact on the environment. LCA has grown in popularity recently as consumers and governments request more information concerning the environmental ...

  1. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  2. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy,

    E-Print Network [OSTI]

    California at Berkeley, University of

    Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy and Environmental Engineering Civil Systems Program mchester@cal.berkeley.edu Project Director: Arpad Horvath, Associate Professor University of California, Berkeley Department of Civil and Environmental Engineering

  3. An exploration of materials taxonomies to support streamlined life cycle assessment

    E-Print Network [OSTI]

    Reis, Lynn (Lynn Diana)

    2013-01-01T23:59:59.000Z

    As life cycle assessment (LCA) gains prominence as a reliable method of environmental evaluation, concerns about data availability and quality have become more important. LCA is a resource intensive methodology, and thus ...

  4. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    energy  and  GHG performance of Chicago and New York is the Chicago and New York systems where energy and  emissions CO 2 e).  For New York, life?cycle energy and GHG emissions 

  5. A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs

    E-Print Network [OSTI]

    Kemner, Ken

    ................................................................................................. 8 3.1.1 Lead-Acid Batteries .............................................................................................. 16 3.2.1 Lead-Acid BatteriesA Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs ANL/ESD/10-7 Energy

  6. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  7. Quantifying Variability in Life Cycle Greenhouse Gas Inventories of Alternative Middle Distillate Transportation Fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    The presence of variability in life cycle analysis (LCA) is inherent due to both inexact LCA procedures and variation of numerical inputs. Variability in LCA needs to be clearly distinguished from uncertainty. This paper ...

  8. Life cycle assessment of UK pig production systems: the impact of dietary protein source 

    E-Print Network [OSTI]

    Stephen, Katie Louise

    2012-06-22T23:59:59.000Z

    A Life Cycle Assessment (LCA) was developed to evaluate the environmental impacts of producing 1 kg pig live weight. A comparison was made between dietary protein sources, i.e. imported soybean meal with the UK protein ...

  9. Evaluation of probabilistic underspecification as a method for incorporating uncertainty into comparative life cycle assessments

    E-Print Network [OSTI]

    Wildnauer, Margaret T. (Margaret Thea)

    2012-01-01T23:59:59.000Z

    Life cycle assessments are quickly becoming a crucial method through which the environmental impacts of products or processes are evaluated. A concern with current practice, however, is that the use of deterministic values ...

  10. Construction of a classification hierarchy for process underspecification to streamline life-cycle assessment

    E-Print Network [OSTI]

    Cary, Victor E

    2014-01-01T23:59:59.000Z

    Concerns over global warming potential and environmental degradation have created a demand for accurate assessment of the impact of various products and processes. Life cycle assessment (LCA), a quantitative assessment ...

  11. Product Life Cycle, and Market Entry and Exit Decisions Under Uncertainty

    E-Print Network [OSTI]

    Chi, Tailan; Liu, John

    2001-01-01T23:59:59.000Z

    A key characteristic of the product life cycle (PLC) is the depletion of the product’s market potential due to technological obsolescence. Based on this concept, we develop a stochastic model for evaluating market entry and exit decisions during...

  12. System strategies in the management of transit systems towards the end of their life cycle

    E-Print Network [OSTI]

    Kairon, Ajmer Singh

    2007-01-01T23:59:59.000Z

    This thesis explores and evaluates essential strategies needed for the transit authority/operator to deal with end of life cycle challenges of Rapid Transit Systems (RTS) systems. RTS systems are elaborate systems consisting ...

  13. Proceedings: 2003 Workshop on Life Cycle Management Planning for Systems, Structures, and Components

    SciTech Connect (OSTI)

    None

    2003-12-01T23:59:59.000Z

    These proceedings of the 2003 EPRI Life Cycle Management Workshop provide nuclear plant owners with an overview of the state of development of methods and tools for performing long-term planning for maintenance, aging management, and obsolescence management of systems, structures, and components important to a plant's long-term safety, power production, and value in a market-driven industry. The proceedings summarize the results of applying life cycle management at several plants.

  14. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  15. Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    -cycle modeling for light-duty vehicles GREET CCLUB CCLUB: Carbon Calculator for Land Use Change from Biofuels, and black carbon (in a new release) CO2e of the three (with their global warming potentials) Criteria

  16. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600 in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion

  17. Life-Cycle Assessment of Highway Pavement Alternatives in Aspects of Economic, Environmental, and Social Performance

    E-Print Network [OSTI]

    Mao, Zhuting

    2012-10-19T23:59:59.000Z

    -cycle cost and has the least unfavorable impact on environment when compared to the JPCP and JRCP. Potential improvements could be investigated for the processes of cement manufacturing, power generation and supply, ready-mix concrete manufacturing...

  18. Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Hall, Sharon J.

    Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas required for building the structure; and 2) the operational energy required for habitation energy used for space heating and cooling during the life of the building. Similar ratios are found

  19. Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign

    E-Print Network [OSTI]

    van der Aalst, Wil

    Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign Wil M.P. van der.aalst,m.netjes,h.a.reijers@tm.tue.nl Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life

  20. The life cycles of Damalinia limbata (Gervais), order Mallophaga and Linognathus stenopsis (Burmeister), order Anoplura

    E-Print Network [OSTI]

    White, Howard Wayne

    1962-01-01T23:59:59.000Z

    EVIEW OF LITERATURE ~ SYNONYMY' LIFE CYCLE STUDY OFF THE HOST f'f. THC:5 Or LIFE CYCLE STUDY Ori THE HOST ~ ~ ~ ~ ~ TABLES OF LENSTH OF DE'VELOr IEI'!TAL STADE8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )FSCRIPTI ON . '!F LIFE O'TA ES ~ ~ ~ ~ ~ ~ ~ KEY TO FIDURES ~ ~ F I CU...:-IF-S ~ l3I SC USE I 8 I ~ ~ ~ 5UMMARY ~ LI TERA URE CITED ~ ~ IV ACKNOIJLEDGEllENYS THE WRITER WISHES TO EXPRESS HIS SINCERE APPPECIATION TO PROFESSOR (l ~ A PRICE f' OR Hl S DI RECT I ON DF TH I S PROBI, EH AND FDR PROV I SINO A PI. ACE TO KEEP...

  1. Life-cycle assessments: Linking energy, economics, and the environment. Paper No. 571

    SciTech Connect (OSTI)

    Shankle, S.A.

    1994-08-01T23:59:59.000Z

    The Pacific Northwest Laboratory has been involved in a number of life-cycle assessment (LCA) projects that assess the complete lifetime energy, economic, and environmental impacts of alternative technology options. Life-cycle assessments offer one-stop shopping answers to the total energy and environmental implications of alternative technologies, as well as providing employment and income consequences. In one recently completed study, the lifetime impacts of scenarios involving the production and use of biomass ethanol transportation fuels were assessed. In an ongoing study, the lifetime impacts of electric-powered vehicles versus conventional fuels are being assessed. In a proposed study, the impacts of recycled office paper versus office paper from virgin sources would be assessed. A LCA proceeds by developing mass and energy inventories during all phases of the life-cycle. Special attention is given to energy consumption and environmental releases. Economics are incorporated by evaluating the macroeconomic impacts of the alternative policies, such as employment, wages, and output. Economics can also be incorporated by attempting to place values on the damages imposed by the environmental releases associated with alternative scenarios. This paper discusses life-cycle assessment techniques and their application to building energy issues. Life-cycle assessments show great promise for analysis of buildings energy policy questions.

  2. Life-cycle framework for assessment of site remediation options: Method and generic survey

    SciTech Connect (OSTI)

    Diamond, M.L.; Page, C.A. [Univ. of Toronto, Ontario (Canada). Dept. of Geography; Campbell, M. [Toronto Public Health, North York, Ontario (Canada); McKenna, S. [City of Toronto, Ontario (Canada). Community and Neighbourhood Services; Lall, R. [R. Addison Lall and Associates, Toronto, Ontario (Canada)

    1999-04-01T23:59:59.000Z

    To address burdens associated with contaminated sites and issuing from remediation activities, a life-cycle framework (LCF) was developed, including an approach based on life-cycle management (LCM) and an adaptation of life-cycle assessment (LCA). Intended for application to a wide range of remediation options, the objective of the LCF is to broaden consideration of potential impacts beyond the contaminated site and over a prolonged time frame. The LCM approach is a qualitative method for investigating remediation activities from a life-cycle perspective. This adaptation of the more rigorous, quantitative LCA method has involved specifying appropriate life-cycle stages, a long-term time horizon, a spatial boundary encompassing the contaminated site and other affected locations, a process boundary containing the contaminated soil, and an impact assessment method that considers site- and process-related metrics. To assess the suitability of LCM as a decision-making tool, six generic site remediation options were investigated: no action, encapsulation, excavation and disposal, vapor extraction, in situ bioremediation, and soil washing. The analysis exemplified tradeoffs between the streamlined LCM, and comprehensive, quantitative LCA approaches, and highlighted potential environmental and human health impacts arising from the six technologies investigated.

  3. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  4. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01T23:59:59.000Z

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  5. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  6. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    SciTech Connect (OSTI)

    Josa, Alejandro [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain)]. E-mail: alejandro.josa@upc.edu; Aguado, Antonio [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain); Cardim, Arnaldo [Civil Engineering Department, Polytechnic School of Penambuco University, Rua Benfica, 455-Madalena, CEP 50.750-410 (Brazil); Byars, Ewan [Centre for Cement and Concrete, Department of Civil and Structural Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2007-05-15T23:59:59.000Z

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.

  7. Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions

    E-Print Network [OSTI]

    -year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 Cycle, Spectrum Loads, Wind Turbine Blades INTRODUCTION Most turbine blades are constructed from low blades [1]. As wind turbines expand in both size and importance, improvements in materials and lifetime

  8. Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using

    E-Print Network [OSTI]

    Frey, H. Christopher

    1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle Carolina State University ABSTRACT Gasification is a globally emerging technology in commercial markets for the conversion of a variety of feedstocks, including coal, heavy residue oil, biomass, solid waste, and others

  9. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Dolan, S. L.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

  10. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01T23:59:59.000Z

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  11. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    SciTech Connect (OSTI)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01T23:59:59.000Z

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  12. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01T23:59:59.000Z

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  13. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    SciTech Connect (OSTI)

    Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

    2011-04-15T23:59:59.000Z

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  14. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  15. Many systems designed today have very long life cycles, especially in

    E-Print Network [OSTI]

    Chamillard, Tim

    changes. Large-scale soft- ware systems are prone to quality prob- lems [1] during development. ConstantMany systems designed today have very long life cycles, especially in the military. Often changes to existing systems only lead to additional quality problems. One way to help control defects

  16. Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters

    SciTech Connect (OSTI)

    Freeman, S.L.

    1997-01-01T23:59:59.000Z

    In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

  17. U.S. Life Cycle Inventory Database Dataset Additions -Type / Category Dataset Name

    E-Print Network [OSTI]

    U.S. Life Cycle Inventory Database Dataset Additions - Type / Category Dataset Name Chemical Manufacturing Polylactide Biopolymer Resin, at plant Chemical Manufacturing Recycled Postconsumer HDPE Pellet) Chemical Manufacturing Soy biodiesel, production, at plant Soy oil, refined, at plant Soy-based polyol

  18. COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES Jean by applying the LCA methodology to evaluate the environmental footprint of alkaline cells and Ni-MH batteries phase. Besides, the emphasis on rechargeable batteries is only justified from an environmental point

  19. Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design

    E-Print Network [OSTI]

    Yang, Maria

    Propagating Uncertainty in Solar Panel Performance for Life Cycle Modeling in Early Stage Design. This work is conducted in the context of an amorphous photovoltaic (PV) panel, using data gathered from the National Solar Radiation Database, as well as realistic data collected from an experimental hardware setup

  20. OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizableOPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

  1. PAPER PREPARATION GUIDELINES FOR THE 2014 INTERNATIONAL SYPOSIUM ON PAVEMENT LIFE-CYCLE ASSESSMENT

    E-Print Network [OSTI]

    California at Davis, University of

    PAPER PREPARATION GUIDELINES FOR THE 2014 INTERNATIONAL SYPOSIUM ON PAVEMENT LIFE-CYCLE ASSESSMENT (PAVEMENT LCA - 2014) PAPER SUBMISSION Completed papers must be submitted electronically in a single PDF, as follows, to meet the requirements for Pavement LCA - 2014. All papers must be submitted in English

  2. A Life Cycle for the Development of Autonomic Systems: The e-Mobility Showcase

    E-Print Network [OSTI]

    concepts and their semantics, ASCENS wraps this into a holistic ensemble development life cycle (EDLC a practitioner's approach and demon- strate the application of the EDLC on the development of one of the key is structured as follows: Section II describes the e-Mobility case study and Section III outlines the EDLC

  3. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  4. CEC-500-2010-FS-XXX Life-Cycle Energy

    E-Print Network [OSTI]

    CEC-500-2010-FS-XXX Life-Cycle Energy Assessment of Smart Growth Strategies TRANSPORTATION ENERGY growth strategies at reducing energy use, greenhouse gas emissions, and criteria pollutants remains. · An analysis of local planning and policy options for reducing embedded energy in the transport system

  5. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal

    E-Print Network [OSTI]

    Jaramillo, Paulina

    and transport, to compare its environmental impact with other fuels. Until recent years, LCA studies environmental impacts between two competing fuels/products are small. This study builds upon an existingUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

  6. Active Data: Supporting the Grid Data Life Cycle Tim Ho and David Abramson

    E-Print Network [OSTI]

    Abramson, David

    Active Data: Supporting the Grid Data Life Cycle Tim Ho and David Abramson {tim.ho, david.abramson}@infotech.monash.edu.au Monash e-Science and Grid Engineering Lab Faculty of Information Technology, Monash University 900, called Active Data, which combines existing Grid middleware to support the scientific data lifecycle

  7. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  8. A Semantic Annotation Framework to Assist the Knowledge Interoperability along a Product Life Cycle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in a product lifecycle management environment. Through the investigation of related works, the need and considered the Product Lifecycle Management (PLM) approach as one of essential solutions to createA Semantic Annotation Framework to Assist the Knowledge Interoperability along a Product Life Cycle

  9. SPECIFICATION AND IMPLEMENTATION OF IFC BASED PERFORMANCE METRICS TO SUPPORT BUILDING LIFE CYCLE ASSESSMENT OF HYBRID

    E-Print Network [OSTI]

    (LBNL), Berkeley, CA, USA ABSTRACT Minimising building life cycle energy consumption is becoming ASSESSMENT OF HYBRID ENERGY SYSTEMS Elmer Morrissey1 & 2 , James O'Donnell1 & 2 , Marcus Keane1 and Vladimir with the introduction of tighter building codes have done little to stem the poor energy performance in commercial

  10. WATER USE IN LCA Life cycle consumptive water use for oil shale development

    E-Print Network [OSTI]

    Jaramillo, Paulina

    WATER USE IN LCA Life cycle consumptive water use for oil shale development and implications Heidelberg 2013 Abstract Purpose Oil shale is an unconventional petroleum source that can be produced domestically in the USA. Oil shale resources are primarily located in Utah, Wyoming, and Colorado, within

  11. Brice Nichols and Kara Kockelman URBAN FORM AND LIFE-CYCLE ENERGY CONSUMPTION

    E-Print Network [OSTI]

    Kockelman, Kara M.

    and employment density profiles. Five residential and three commercial neighborhood types are distributed across) and provide a rare view of total annual energy demands from the urban residential and commercial sectors. ABSTRACT This work estimates life-cycle energy demands for residents and workers in different built

  12. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    SciTech Connect (OSTI)

    Spath, P. L.; Mann, M. K.

    2000-09-28T23:59:59.000Z

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

  13. LA SOSTENIBILIT DEI PRODOTTI ATTRAVERSO IL LIFE CYCLE ASSESSMENT (LCA) E

    E-Print Network [OSTI]

    Malerba, Donato

    LA SOSTENIBILITÀ DEI PRODOTTI ATTRAVERSO IL LIFE CYCLE ASSESSMENT (LCA) E LA RIDUZIONE DELL Università degli studi di Bari "LCA e Carbon Foot Print ­ metodologie ed opportunità per l'efficientamento e aziende comunicano il percorso di analisi LCA e calcolo della CFP, le opportunità ed i vantaggi CISA S

  14. Comparative evaluation of life cycle assessment models for solid waste management

    SciTech Connect (OSTI)

    Winkler, Joerg [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany); Bilitewski, Bernd [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany)], E-mail: abfall@rcs.urz.tu-dresden.de

    2007-07-01T23:59:59.000Z

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different.

  15. TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Stanford University

    TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

  16. Managing the Life Cycle of Access Rules in CEOSIS Stefanie Rinderle-Ma, Manfred Reichert

    E-Print Network [OSTI]

    Ulm, Universität

    and business func- tions) is an important task within any enterprise informa- tion systems (EIS). Many EIS framework for the con- trolled evolution of access rules in EIS. Specifically, we de- fine change operations contributes to comprehensive life cycle support for access rules in (adaptive) EIS. 1 Introduction

  17. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    E-Print Network [OSTI]

    Jaramillo, Paulina

    on dispatchable generating capacity, such as coal and natural gas power plants, which can be cycled in responseProduction cost and air emissions impacts of coal cycling in power systems with large-scale wind emissions impacts of coal cycling in power systems with large-scale wind penetration David Luke Oates

  18. Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants

    SciTech Connect (OSTI)

    Tolman, R.; Parkinson, W.J.

    1999-07-01T23:59:59.000Z

    A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

  19. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect (OSTI)

    Subkhi, M. Nurul [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) and Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung (Indonesia); Su'ud, Zaki; Waris, Abdul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung) (Indonesia)

    2014-09-30T23:59:59.000Z

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  20. World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS

    E-Print Network [OSTI]

    IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

  1. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    E-Print Network [OSTI]

    Pedersen, Tom

    A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection by the City of Surrey in British Columbia are utilized. c The life cycle energy use is similar for diesel and CNG RCVs. c A 24% reduction of GHG emissions (CO2-equivalent) may be realized by switching from diesel

  2. LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE

    E-Print Network [OSTI]

    -344-3957, vmf5@columbia.edu 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 SunLIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE Vasilis Fthenakis1,2 , Rick Betita2 , Mark Shields3 , Rob

  3. International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3) 07 -09 July, 2013, NISYROS -GREECE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    from CAPSIS are included in a "soil to power" model under Aspen Plus®, a process-oriented software3rd International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3 hal-00858490,version1-6Sep2013 Author manuscript, published in "3rd International Exergy, Life Cycle

  4. Economic Life Cycle Assessment as element of sustainability certification – a key success factor moving beyond Life Cycle Costing

    E-Print Network [OSTI]

    Trinius, W.; Hirsch, H.

    Target topic: achieving sustainability, saving energy, and improving occupant comfort? Lead Author Wolfram Trinius, PhD, Ingenieurb?ro Trinius, Hamburg, Germany and University of Gavle, Sweden Co Authors Harry Hirsch, HH Consulting, Baden...

  5. Economic Life Cycle Assessment as element of sustainability certification – a key success factor moving beyond Life Cycle Costing 

    E-Print Network [OSTI]

    Trinius, W.; Hirsch, H.

    2009-01-01T23:59:59.000Z

    considering environmental impacts in building design, commissioning and operation to the consideration of sustainability aspects has significantly enlarged the scope of aspects to be addressed, especially in assessment schemes. While assessments now turn...

  6. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  7. Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades

    SciTech Connect (OSTI)

    Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

    2012-02-15T23:59:59.000Z

    The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results attained. Black-Right-Pointing-Pointer We study three typologies of facades. Black-Right-Pointing-Pointer Facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle.

  8. Cost estimating projects for large cutter and hopper dredges

    E-Print Network [OSTI]

    Belesimo, Francesco John

    2000-01-01T23:59:59.000Z

    Estimating the cost of a dredging project is the most important part of a project's life cycle. A precise account of the costs associated with performing dredging work begins with the production estimate and ends with the cost estimate...

  9. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30T23:59:59.000Z

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  10. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01T23:59:59.000Z

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  11. Dose-Response Modeling for Life Cycle Impact Assessment: Findingsof the Portland Review Workshop

    SciTech Connect (OSTI)

    McKone, Thomas E.; Kyle, Amy D.; Jolliet, Olivier; Olsen, StigIrving; Hauschild, Michael

    2006-06-01T23:59:59.000Z

    The United Nations Environment Program (UNEP)/SETAC Life Cycle Initiative aims at putting life cycle thinking into practice and at improving the supporting tools for this process through better data and indicators. The initiative has thus launched three programs with associated working groups (see http://www.uneptie.org/pc/sustain/lcinitiative/). The Task Force on Toxic Impacts was established under the Life Cycle Impact Assessment (LCIA) program to establish recommended practice and guidance for use in human toxicity, ecosystem toxicity, and related categories with direct effects on human health and ecosystem health. The workshop consisted of three elements. (A) presentations summarizing (1) the goals of the LCIA Task Force (2) historical approaches to exposure and toxic impacts in LCIA (3) current alternative proposals for addressing human health impacts. Viewgraphs from two of these presentations are provided in Appendix B to this report. (B) Discussion among a panel of experts about the scientific defensibility of these historical and proposed approaches in the context of the goals of the LCIA Task Force 3 on toxicity impacts. (C) Development of the recommendations to the LCIA program and working group for optimum short- and long-term strategies for addressing human health impacts in LCA.

  12. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22T23:59:59.000Z

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  13. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01T23:59:59.000Z

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  14. Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles

    E-Print Network [OSTI]

    Dostal, Vaclav

    Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

  15. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  16. 8th International Conference on LCA in the Agri-Food Sector, Rennes, France, 2-4 October 2012 Life Cycle Assessment at the regional scale: innovative insights

    E-Print Network [OSTI]

    Boyer, Edmond

    in groundwater irrigated areas worldwide are manifold and the Life Cycle Assessment (LCA) is very relevant and decision making is carried out, Life Cycle Assessment (LCA) should be applied at regional scale, which Life Cycle Assessment at the regional scale: innovative insights based on the Systems Approach used

  17. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  18. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11T23:59:59.000Z

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  19. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01T23:59:59.000Z

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  20. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  1. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  2. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01T23:59:59.000Z

    Ga)(S,Se) 2 based thin ?lm photovoltaics: present status andcycle of CIGS thin ?lm photovoltaics Daniel A. Eisenberg a ,selenium–sul?de Thin ?lm photovoltaics Life cycle thinking a

  3. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  4. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect (OSTI)

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20T23:59:59.000Z

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  5. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode

    E-Print Network [OSTI]

    Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang and a graphite negative electrode were cycled nonintrusively at high power 5C rate and elevated temperature 40°C of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been

  6. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31T23:59:59.000Z

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  7. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    SciTech Connect (OSTI)

    Sullivan, John

    2013-06-04T23:59:59.000Z

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass

    SciTech Connect (OSTI)

    Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

    1999-05-20T23:59:59.000Z

    Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

  10. Hardware In The Loop Simulator in UAV Rapid Development Life Cycle

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01T23:59:59.000Z

    Field trial is very critical and high risk in autonomous UAV development life cycle. Hardware in the loop (HIL) simulation is a computer simulation that has the ability to simulate UAV flight characteristic, sensor modeling and actuator modeling while communicating in real time with the UAV autopilot hardware. HIL simulation can be used to test the UAV autopilot hardware reliability, test the closed loop performance of the overall system and tuning the control parameter. By rigorous testing in the HIL simulator, the risk in the field trial can be minimized.

  11. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  12. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan, E-mail: h_alradhi@yahoo.com [Global Engineering Bureau, P.O Box 33130, Manama, Kingdom of Bahrain (Bahrain); Sharples, Stephen, E-mail: steve.sharples@liverpool.ac.uk [School of Architecture, University of Liverpool (United Kingdom)

    2013-01-15T23:59:59.000Z

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  13. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01T23:59:59.000Z

    A Life-Cycle Model of an Automobile, Environmental Science &Cycle Assessment of Automobile/Fuel Options, EnvironmentalCycle Energy Analysis for Automobiles, Society of Automotive

  14. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    SciTech Connect (OSTI)

    Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

    2007-07-01T23:59:59.000Z

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  15. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    SciTech Connect (OSTI)

    Banar, Mufide [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)], E-mail: mbanar@anadolu.edu.tr; Cokaygil, Zerrin; Ozkan, Aysun [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)

    2009-01-15T23:59:59.000Z

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

  16. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect (OSTI)

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21T23:59:59.000Z

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  17. Life cycle assessment of a national policy proposal - The case of a Swedish waste incineration tax

    SciTech Connect (OSTI)

    Bjoerklund, Anna E. [Division of Environmental Strategies Research - fms, Royal Institute of Technology, Drottning Kristinas vaeg 30 III, SE-100 44, Stockholm (Sweden)], E-mail: annab@infra.kth.se; Finnveden, Goeran [Division of Environmental Strategies Research - fms, Royal Institute of Technology, Drottning Kristinas vaeg 30 III, SE-100 44, Stockholm (Sweden)

    2007-07-01T23:59:59.000Z

    At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste.

  18. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  19. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    S. F. Burlatsky; M. Gummalla; J. O'Neill; V. V. Atrazhev; A. N. Varyukhin; D. V. Dmitriev; N. S. Erikhman

    2013-06-19T23:59:59.000Z

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  20. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  1. Proceedings of the Hawaii International Conference on System Sciences (HICSS-37), January 2004. A Cost-Effective Usability Evaluation Progression for Novel Interactive Systems

    E-Print Network [OSTI]

    Hollerer, Tobias

    as a goal the development of methodological techniques that reduce the total life cycle cost to a product's development life cycle. In fact, usability engineering can reduce development costs over to be applied at any stage of the development life cycle, and its various activities are generalizable

  2. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03T23:59:59.000Z

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  3. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect (OSTI)

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31T23:59:59.000Z

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  4. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect (OSTI)

    Kadam, K. L.

    2001-06-22T23:59:59.000Z

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  5. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01T23:59:59.000Z

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  6. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

    2012-02-08T23:59:59.000Z

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  7. Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation

    E-Print Network [OSTI]

    Horvath, Arpad; Chester, Mikhail

    2008-01-01T23:59:59.000Z

    Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

  8. PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY

    E-Print Network [OSTI]

    Baram, J.

    2013-01-01T23:59:59.000Z

    low-cycle fatigue life of Aluminum sheet alloys by acoustictoughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.

  9. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    A Life-Cycle Model of an Automobile, Environmental Science &Pollutant Inventories of Automobiles, Buses, Light Rail,Pollutant Inventories of Automobiles, Buses, Light Rail,

  10. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2009-01-01T23:59:59.000Z

    Motorcycles, Diesel Automobiles, School  Buses, Electric for Motorcycles, Diesel Automobiles, School Buses, Electric Life?cycle Model of an Automobile.  Environmental Science & 

  11. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    SciTech Connect (OSTI)

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20T23:59:59.000Z

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  12. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

    2013-07-01T23:59:59.000Z

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

  13. Life and stability testing of packaged low-cost energy storage materials

    SciTech Connect (OSTI)

    Frysinger, G.R.

    1980-07-01T23:59:59.000Z

    A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage-like containers called Chubs is discussed. The results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications have been drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a ..delta..T of 30/sup 0/F can be used for the packaged material.

  14. Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA resultsSimplified life cycle approach: GHG variability assessment for onshore wind electricity based performed by the IPCC [1]. Such result might lead policy makers to consider LCA as an inconclusive method [2

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover

    E-Print Network [OSTI]

    of Bioethanol Derived from Corn and Corn Stover Dora Ip Farbod Ahmadi Diba Derek Pope University of British Farbod Ahmadi Diba Derek Pope 4/16/2010 Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover #12;2 Abstract This paper follows the growing research of bioethanol fuels produced from farmed

  16. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  17. The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles

    E-Print Network [OSTI]

    , 08003 Barcelona, Spain 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 of that energy (or its equivalent from some other source) is required to extract, grow, etc., a new unit1 The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons

  18. Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions for electricity generation, by comparing systems that consist of individual natural gas and coal power plants when coal power plants are retired. These models estimate the order in which existing power plants

  19. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  20. Use of Statistical Entropy and Life Cycle Analysis to Evaluate Global Warming Potential of Waste Management Systems

    E-Print Network [OSTI]

    Columbia University

    The statistical entropy (SE) function has been applied to waste treatment systems to account for dilution solid waste (MSW). A greenhouse gas- forcing factor is also introduced to account for the entropyUse of Statistical Entropy and Life Cycle Analysis to Evaluate Global Warming Potential of Waste

  1. Combined Cycle Cogeneration at NALCO Chemical 

    E-Print Network [OSTI]

    Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

    1985-01-01T23:59:59.000Z

    included in the evaluation. In addition, absorption chilling and electrical centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is outlined. Bid evaluation procedure involved a life cycle cost...

  2. Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments

    SciTech Connect (OSTI)

    Villanueva, A. [European Topic Centre on Resource and Waste Management, Hojbro Plads 4, DK-1200 Copenhagen K (Denmark)], E-mail: alejandro@villanueva.dk; Wenzel, H. [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Kgs. Lyngby (Denmark)

    2007-07-01T23:59:59.000Z

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.

  3. Life Cost Based FMEA Manual: A Step by Step Guide to Carrying Out a Cost-based Failure Modes and Effects Analysis

    SciTech Connect (OSTI)

    Rhee, Seung; Spencer, Cherrill; /Stanford U. /SLAC

    2009-01-23T23:59:59.000Z

    Failure occurs when one or more of the intended functions of a product are no longer fulfilled to the customer's satisfaction. The most critical product failures are those that escape design reviews and in-house quality inspection and are found by the customer. The product may work for a while until its performance degrades to an unacceptable level or it may have not worked even before customer took possession of the product. The end results of failures which may lead to unsafe conditions or major losses of the main function are rated high in severity. Failure Modes and Effects Analysis (FMEA) is a tool widely used in the automotive, aerospace, and electronics industries to identify, prioritize, and eliminate known potential failures, problems, and errors from systems under design, before the product is released (Stamatis, 1997). Several industrial FMEA standards such as those published by the Society of Automotive Engineers, US Department of Defense, and the Automotive Industry Action Group employ the Risk Priority Number (RPN) to measure risk and severity of failures. The Risk Priority Number (RPN) is a product of 3 indices: Occurrence (O), Severity (S), and Detection (D). In a traditional FMEA process design engineers typically analyze the 'root cause' and 'end-effects' of potential failures in a sub-system or component and assign penalty points through the O, S, D values to each failure. The analysis is organized around categories called failure modes, which link the causes and effects of failures. A few actions are taken upon completing the FMEA worksheet. The RPN column generally will identify the high-risk areas. The idea of performing FMEA is to eliminate or reduce known and potential failures before they reach the customers. Thus, a plan of action must be in place for the next task. Not all failures can be resolved during the product development cycle, thus prioritization of actions must be made within the design group. One definition of detection difficulty (D) is how well the organization controls the development process. Another definition relates to the detectability of a particular failure in the product when it is in the hands of the customer. The former asks 'What is the chance of catching the problem before we give it to the customer'? The latter asks 'What is the chance of the customer catching the problem before the problem results in a catastrophic failure?' (Palady, 1995) These differing definitions confuse the FMEA users when one tries to determine detection difficulty. Are we trying to measure how easy it is to detect where a failure has occurred or when it has occurred? Or are we trying to measure how easy or difficult it is to prevent failures? Ordinal scale variables are used to rank-order industries such as, hotels, restaurants, and movies (Note that a 4 star hotel is not necessarily twice as good as a 2 star hotel). Ordinal values preserve rank in a group of items, but the distance between the values cannot be measured since a distance function does not exist. Thus, the product or sum of ordinal variables loses its rank since each parameter has different scales. The RPN is a product of 3 independent ordinal variables, it can indicate that some failure types are 'worse' than others, but give no quantitative indication of their relative effects. To resolve the ambiguity of measuring detection difficulty and the irrational logic of multiplying 3 ordinal indices, a new methodology was created to overcome these shortcomings, Life Cost-Based FMEA. Life Cost-Based FMEA measures failure/risk in terms of monetary cost. Cost is a universal parameter that can be easily related to severity by engineers and others. Thus, failure cost can be estimated using the following simplest form: Expected Failure Cost = {sup n}{Sigma}{sub i=1}p{sub i}c{sub i}, p: Probability of a particular failure occurring; c: Monetary cost associated with that particular failure; and n: Total number of failure scenarios. FMEA is most effective when there are inputs into it from all concerned disciplines of the product development t

  4. 1 Copyright 2003 by ASME IMPROVING LIFE CYCLE ASSESSMENT BY INCLUDING SPATIAL, DYNAMIC AND PLACE-

    E-Print Network [OSTI]

    cycle - from "cradle to grave." The environmental impacts of products ranging from milk to petrol have

  5. Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system

    E-Print Network [OSTI]

    Fleming, Jason Graham

    1997-01-01T23:59:59.000Z

    Goff, et al. , 1990). In this way, equations are written to balance the energy, exergy, and value into and out of a "technical structure. " This approach was not used because it does not distinguish between unit costs (the dollars spent to obtain a kWh... and 415 ($/kWh) cost of electricity from generator s)ifl ($/kWh) cost of high pressure steam ($/lbm) cost of rejecting heat in the condenser ($/Btu) cost of steam distributed to buildings ($/MMBtu) cost of medium pressure steam ($/Ibm) deaeration...

  6. Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

  7. Supporting the BPM life-cycle with FileNet Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst

    E-Print Network [OSTI]

    van der Aalst, Wil

    Supporting the BPM life-cycle with FileNet Mariska Netjes, Hajo A. Reijers, Wil M.P. van der Aalst, The Netherlands m.netjes@tm.tue.nl Abstract. Business Process Management (BPM) systems provide a broad range for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes

  8. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    SciTech Connect (OSTI)

    Lu, Hongyou; Masanet, Eric; Price, Lynn

    2009-05-29T23:59:59.000Z

    The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

  9. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    SciTech Connect (OSTI)

    Sprigg, James A.

    2004-11-01T23:59:59.000Z

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  10. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01T23:59:59.000Z

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  11. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  12. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect (OSTI)

    Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

    2012-11-15T23:59:59.000Z

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  13. Life cycle assessment of the environmental emissions of waste-to-energy facilities

    SciTech Connect (OSTI)

    Besnainou, J.; Landfield, A. [Ecobalance, Inc., Rockville, MD (United States)

    1997-12-01T23:59:59.000Z

    Over the past ten years, environmental issues have become an increasing priority for both government and industry alike. In the U.S. as well as in Europe, the emphasis has gradually shifted from a site specific focus to a product specific focus. For this reason, tools are needed to scientifically assess the overall environmental performance of products and/or industrial systems. Life Cycle Assessment (LCA) belongs to that category of tools, and is used to perform this study. In numerous industrial countries, LCA is now recognized, and is rapidly becoming the tool of preference, to successfully provide quantitative and scientific analyses of the environmental impacts of industrial systems. By providing an unbiased analysis of entire systems, LCA has shown that the reality behind widely held beliefs regarding {open_quotes}green{close_quotes} issues, such as reusable vs. one way products, and {open_quotes}natural{close_quotes} vs. synthetic products, were far more complex than expected, and sometimes not as {open_quotes}green{close_quotes} as assumed. This paper describes the modeling and assumptions of an LCA, commissioned by the Integrated Waste Services Association (IWSA), that summarizes the environmental emissions of waste-to-energy facilities, and compares them to the environmental emissions generated by major combustible energy sources of the northeast part of the United States (NE). The geographical boundary for this study is, therefore, the NE US.

  14. Model for cradle-to-gate life cycle assessment of clinker production

    SciTech Connect (OSTI)

    Michael Elias Boesch; Annette Koehler; Stefanie Hellweg [ETH Zurich, Zurich (Switzerland). Institute of Environmental Engineering

    2009-10-01T23:59:59.000Z

    A model for input- and technology-dependent cradle-to-gate life cycle assessments (LCA) was constructed to quantify emissions and resource consumption of various clinker production options. The model was compiled using data of more than 100 clinker production lines and complemented with literature data and best judgment from experts. It can be applied by the cement industry for the selection of alternative fuels and raw materials (AFR) and by authorities for decision-support regarding the permission of waste co-processing in cement kilns. In the field of sustainable construction, the model can be used to compare clinker production options. Two case studies are presented. First, co-processing of four different types of waste is analyzed at a modern precalciner kiln system. Second, clinker production is compared between five kiln systems. Results show that the use of waste (tires, prepared industrial waste, dried sewage sludge, blast furnace slag) led to reduced greenhouse gas emissions, decreased resource consumption, and mostly to reduced aggregated environmental impacts. Regarding the different kiln systems, the environmental impact generally increased with decreasing energy efficiency. 35 refs., 2 figs., 2 tabs.

  15. What life-cycle assessment does and does not do in assessments of waste management

    SciTech Connect (OSTI)

    Ekvall, Tomas [IVL Swedish Environmental Research Institute, P.O. Box 5302, SE-400 14 Goeteborg (Sweden)], E-mail: tomas.ekvall@ivl.se; Assefa, Getachew [Industrial Ecology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Bjoerklund, Anna [Environmental Strategies Research - FMS, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Eriksson, Ola [Technology and Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden); Finnveden, Goeran [Environmental Strategies Research - FMS, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

    2007-07-01T23:59:59.000Z

    In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.

  16. Closing the data life cycle: using information management in macrosystems ecology research

    SciTech Connect (OSTI)

    Ruegg, Janine; Gries, Corinna; Bond-Lamberty, Benjamin; Bowen, Gabriel; Felzer, Benjamin; McIntyre, Nancy; Soranno, Patricia; Vanderbilt, Kristen; Weathers, Kathleen

    2014-02-01T23:59:59.000Z

    An important goal of macrosystems ecology research is to advance understanding of ecological systems at both fine and broad temporal and spatial scales. Our premise in this paper is that such projects require information management that is integrated into projects from their inception. Such efforts will lead to improved communication and sharing of knowledge among diverse project participants, better science outcomes, and more open science. We promote "closing the data life cycle" by publishing well-documented data sets, which allows for re-use of data to answer new and different questions from the ones conceived by the original projects. The practice of documenting and submitting data sets to publicly accessible data repositories ensures that research results and data are accessible to and useable by other researchers, thus fostering open science. Ecologists are often not familiar with the information management tools and requirements to effectively preserve data, however, and receive little institutional or professional incentive to do so. This paper describes recommended steps to these ends, and gives examples from current macrosystem ecology projects of why information management is so critical to ensuring that scientific results can be both reproduced and data shared for future use.

  17. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan, E-mail: hongjing@sdu.edu.c [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li Xiangzhi [Department of Pathology, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109 (United States); Zhaojie Cui [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2010-11-15T23:59:59.000Z

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  18. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01T23:59:59.000Z

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  19. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    Discounting and the social cost of carbon: a closer look atmost notably the social cost of carbon) and model choiceemissions and the social cost of carbon are uncertain (and

  20. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    74,000 per mile.   Total  substations  cost  for  the  Muni structure  and  substations  construction  costs  have Structures ($M 1997 )  Cost of Substations ($M 1997 )  BART 

  1. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01T23:59:59.000Z

    9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

  2. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  3. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Corrosion of ably moreefficient--up to 98%,if a long charging seals and casings is not a problem,and the lithium

  4. Optimal Life Cycle Cost Design for an Energy Efficient Manufacturing Facility

    E-Print Network [OSTI]

    Thompson, C. T.; Beach, W. P.

    1985-01-01T23:59:59.000Z

    Over the past twelve years, Texas Instruments has developed extensive energy management programs that have enabled them to reduce energy usage by 42%. Typically, these reductions have been a result of the application of microprocessor based energy...

  5. 2014-05-05 Ceiling Fan Engineering Data and Life-cycle Cost Analysis

    Broader source: Energy.gov [DOE]

    As part of its rulemaking analysis, DOE develops and makes public certain engineering and economic data. The attached data are a portion of that analysis. DOE will make the entire analysis available to the public as the data are ready.

  6. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    sauga, Canada. metal/air batteries--then EVswould becomemuchis shown Table 1. in metal-air batteries have the potentialexcluding the metal/air batteries: zinc/bro- development.

  7. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    E-Print Network [OSTI]

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-01-01T23:59:59.000Z

    Baseline Efficient Air Conditioners . . . . . . 28 AverageEfficient Air Conditioners . . . . . . . . . . . . . . . . .Btu/h Commercial Air Conditioners . . . . . . . . . . . . .

  8. Energy Price Indices and Discount Factors for Life Cycle Cost Analysis,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergy | DepartmentVerDatePolicy2013 |

  9. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergy | DepartmentVerDatePolicy2013

  10. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergy |

  11. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudget DOE:5 FY 2006

  12. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofof EnergyEnvironmental Review Process

  13. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral GuidanceEnergyServices »Department of

  14. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont: EnergySystems Geothermal

  15. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17,DepartmentLibrary Library

  16. FEMP Offers New eTraining Core Course on Fundamentals of Life Cycle Costing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager FAQS Reference Guide| Department ofPractices |for

  17. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident at RatonU.S. -DepartmentInspectorof theEstimate

  18. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev nextEnergy ConsumerPublic LawDepartment of

  19. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.Department of Energy U.S. Department

  20. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August Contract No.|and In-Stream

  1. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack(CHP) White Paper, April2012

  2. FEMP Offers New eTraining Core Course on Fundamentals of Life Cycle Costing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative Geologic MediaTreatmentPROJECT-SPECIFICPractices | Department

  3. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProviding GridCommercialPublications02 DOEPumpPUMP

  4. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProviding GridCommercialPublications02

  5. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Cycle Water Consumption for WECC NERC Region ElectricityCycle Water Withdrawals for WECC NERC Region ElectricityTRE TS&D USDA USGS VC W WECC WSI International Organization

  6. WarWar && PeacePeace && WarWar: The Life: The Life Cycles of Imperial NationsCycles of Imperial Nations

    E-Print Network [OSTI]

    White, Douglas R.

    of the theory ­ DW: Peoples originating on fault-line frontiers become characterized by cooperation and a high and fall? #12;Chapter 2: Life on the Edge: The Transformation of Russia ­ and America · Structured) and forest, served as a fault line between the two civilizations. ­ The eastern frontier had no natural

  7. What does a negawatt really cost?

    E-Print Network [OSTI]

    Joskow, Paul L.

    1991-01-01T23:59:59.000Z

    We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

  8. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect (OSTI)

    Abeliotis, Konstadinos, E-mail: kabeli@hua.gr [Department of Home Economics and Ecology, Harokopio University, Athens (Greece); Kalogeropoulos, Alexandros [Department of Home Economics and Ecology, Harokopio University, Athens (Greece); Lasaridi, Katia [Department of Geography, Harokopio University, Athens (Greece)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  9. Comparative life cycle assessments: The case of paper and digital media

    SciTech Connect (OSTI)

    Bull, Justin G., E-mail: jgbull@gmail.com; Kozak, Robert A., E-mail: rob.kozak@ubc.ca

    2014-02-15T23:59:59.000Z

    The consumption of the written word is changing, as media transitions from paper products to digital alternatives. We reviewed the life cycle assessment (LCA) research literature that compared the environmental footprint of digital and paper media. To validate the role of context in influencing LCA results, we assessed LCAs that did not compare paper and print, but focused on a product or component that is part of the Information and Communication Technology (ICT) sector. Using a framework that identifies problems in LCA conduct, we assessed whether the comparative LCAs were accurate expressions of the environmental footprints of paper and print. We hypothesized that the differences between the product systems that produce paper and digital media weaken LCA's ability to compare environmental footprints. We also hypothesized that the characteristics of ICT as an industrial sector weaken LCA as an environmental assessment methodology. We found that existing comparative LCAs offered problematic comparisons of paper and digital media for two reasons — the stark material differences between ICT products and paper products, and the unique characteristics of the ICT sector. We suggested that the context of the ICT sector, best captured by the concept of “Moore's Law”, will continuously impede the ability of the LCA methodology to measure ICT products. -- Highlights: • We review the LCA research that compares paper and digital media. • We contrast the comparative LCAs with LCAs that examine only digital products. • Stark differences between paper and digital media weakens LCA findings. • Digital products in general challenge the LCA method's reliability. • Continuous innovation and global nature of digital products impedes LCA methodology.

  10. Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling

    SciTech Connect (OSTI)

    McCloy, John S.; Vienna, John D.

    2010-05-03T23:59:59.000Z

    The component concentration limits that most influence the predicted Hanford life-cycle HLW glass volume by HTWOS were re-evaluated. It was assumed that additional research and development work in glass formulation and melter testing would be performed to improve the understanding of component effects on the processability and product quality of these HLW glasses. Recommendations were made to better estimate the potential component concentration limits that could be applied today while technology development is underway to best estimate the volume of HLW glass that will eventually be produced at Hanford. The limits for concentrations of P2O5, Bi2O3, and SO3 were evaluated along with the constraint used to avoid nepheline formation in glass. Recommended concentration limits were made based on the current HLW glass property models being used by HTWOS (Vienna et al. 2009). These revised limits are: 1) The current ND should be augmented by the OB limit of OB ? 0.575 so that either the normalized silica (NSi) is less that the 62% limit or the OB is below the 0.575 limit. 2) The mass fraction of P2O5 limit should be revised to allow for up to 4.5 wt%, depending on CaO concentrations. 3) A Bi2O3 concentration limit of 7 wt% should be used. 4) The salt accumulation limit of 0.5 wt% SO3 may be increased to 0.6 wt%. Again, these revised limits do not obviate the need for further testing, but make it possible to more accurately predict the impact of that testing on ultimate HLW glass volumes.

  11. A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and aluminum, and not minor wastes such as glazing (Gerrard and Kandlikar 2007). The new recycling target (95 and polluted with organic material. The treatment and recycling of glass does however become difficult1 A cost and benefit analysis of future end-of- life vehicle glazing recycling in France

  12. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01T23:59:59.000Z

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  13. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  14. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01T23:59:59.000Z

    phase Tire wear End-of-life phase Landfilling, recycling,tire wear Improved data regarding pavement end-of-life fate (i.e. , rates of landfilling, recycling,

  15. Overcoming the Hurdle of First Cost: Action Research in Target Costing

    E-Print Network [OSTI]

    Ballard, Glenn; Rybkowski, Zofia K.

    2009-04-05T23:59:59.000Z

    Advocates of sustainable and evidence-based design initiatives argue that building owners can secure favorable internal rates of return when full life cycle building costs are considered. While the argument has merit, these decision-makers express...

  16. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    SciTech Connect (OSTI)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    2013-11-15T23:59:59.000Z

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  17. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13T23:59:59.000Z

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  18. Performance and fuel-cycle cost analysis of one JANUS 30 conceptual design for several fuel-element-design options

    SciTech Connect (OSTI)

    Nurdin, M.; Matos, J.E.; Freese, K.E.

    1982-01-01T23:59:59.000Z

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption.

  19. Life-cycle assessment of computational logic produced from 1995 through 2010

    E-Print Network [OSTI]

    Boyd, Sarah; A. Horvath; Dornfeld, David

    2010-01-01T23:59:59.000Z

    cycle global warming potential (GWP) of electricity fromGlobal warming emissions per die have risen at each successive technology node (?gure 1). Use-phase electricity

  20. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    SciTech Connect (OSTI)

    Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

    2011-09-15T23:59:59.000Z

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

  1. Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar

    ScienceCinema (OSTI)

    Ramamoorthy Ramesh:

    2010-09-01T23:59:59.000Z

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  2. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    SciTech Connect (OSTI)

    Song Qingbin [Faculty of Science and Technology, University of Macau (Macao); Wang Zhishi, E-mail: zswang@umac.mo [Faculty of Science and Technology, University of Macau (Macao); Li Jinhui; Zeng Xianlai [School of Environment, Tsinghua University, Beijing 100084 (China)

    2012-10-15T23:59:59.000Z

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  3. LIFE CYCLE MANAGEMENT OF ABRASIVE TOOLS AND EFFECTS ON SUSTAINABLE GRINDING

    E-Print Network [OSTI]

    Linke, Barbara

    2011-01-01T23:59:59.000Z

    life. energy, energy resource efficiency and sustainabilityd i use Energy E Waste Toxicity Sustainability S t i bilit dsustainability, - Coolant reduction reduction, - Less energy

  4. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    Pomper, S.D. , Life Cycle Inventory of a Generic U.S. Family2007. [EEA 2006] Emission Inventory Guidebook, ActivitiesVolume I: National Lighting Inventory and Energy Consumption

  5. Progress on Internet-Based Educational Material Development for Electronic Products and Systems Cost Analysis

    E-Print Network [OSTI]

    Sandborn, Peter

    on this project are the Computer Aided Life Cycle Engineering (CALCE) Electronic Products and Systems Center Laboratory (ESCML) develops modeling methodologies and tools that address all aspects of the life cycle cost of electronic system from hardware fabrication and software development through sustainment and end of life

  6. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    iii 3.4. Co-products of biofuels . . . . . .CYCLE GHG EMISSION ESTIMATES FOR BIOFUELS 3.1. Purpose and10.3.1. Low-GWI biofuels required to meet a 12-state

  7. Monitoring and Evaluation: Statistical Support for Life-cycle Studies, Annual Report 2003.

    SciTech Connect (OSTI)

    Skalski, John

    2003-11-01T23:59:59.000Z

    The ongoing mission of this project is the development of statistical tools for analyzing fisheries tagging data in the most precise and appropriate manner possible. This mission also includes providing statistical guidance on the best ways to design large-scale tagging studies. This mission continues because the technologies for conducting fish tagging studies continuously evolve. In just the last decade, fisheries biologists have seen the evolution from freeze-brands and coded wire tags (CWT) to passive integrated transponder (PIT) tags, balloon-tags, radiotelemetry, and now, acoustic-tags. With each advance, the technology holds the promise of more detailed and precise information. However, the technology for analyzing and interpreting the data also becomes more complex as the tagging techniques become more sophisticated. The goal of the project is to develop the analytical tools in parallel with the technical advances in tagging studies, so that maximum information can be extracted on a timely basis. Associated with this mission is the transfer of these analytical capabilities to the field investigators to assure consistency and the highest levels of design and analysis throughout the fisheries community. Consequently, this project provides detailed technical assistance on the design and analysis of tagging studies to groups requesting assistance throughout the fisheries community. Ideally, each project and each investigator would invest in the statistical support needed for the successful completion of their study. However, this is an ideal that is rarely if every attained. Furthermore, there is only a small pool of highly trained scientists in this specialized area of tag analysis here in the Northwest. Project 198910700 provides the financial support to sustain this local expertise on the statistical theory of tag analysis at the University of Washington and make it available to the fisheries community. Piecemeal and fragmented support from various agencies and organizations would be incapable of maintaining a center of expertise. The mission of the project is to help assure tagging studies are designed and analyzed from the onset to extract the best available information using state-of-the-art statistical methods. The overarching goals of the project is to assure statistically sound survival studies so that fish managers can focus on the management implications of their findings and not be distracted by concerns whether the studies are statistically reliable or not. Specific goals and objectives of the study include the following: (1) Provide consistent application of statistical methodologies for survival estimation across all salmon life cycle stages to assure comparable performance measures and assessment of results through time, to maximize learning and adaptive management opportunities, and to improve and maintain the ability to responsibly evaluate the success of implemented Columbia River FWP salmonid mitigation programs and identify future mitigation options. (2) Improve analytical capabilities to conduct research on survival processes of wild and hatchery chinook and steelhead during smolt outmigration, to improve monitoring and evaluation capabilities and assist in-season river management to optimize operational and fish passage strategies to maximize survival. (3) Extend statistical support to estimate ocean survival and in-river survival of returning adults. Provide statistical guidance in implementing a river-wide adult PIT-tag detection capability. (4) Develop statistical methods for survival estimation for all potential users and make this information available through peer-reviewed publications, statistical software, and technology transfers to organizations such as NOAA Fisheries, the Fish Passage Center, US Fish and Wildlife Service, US Geological Survey (USGS), US Army Corps of Engineers (USACE), Public Utility Districts (PUDs), the Independent Scientific Advisory Board (ISAB), and other members of the Northwest fisheries community. (5) Provide and maintain statistical software for tag analysis

  8. Toward a more rigorous application of margins and uncertainties within the nuclear weapons life cycle : a Sandia perspective.

    SciTech Connect (OSTI)

    Klenke, Scott Edward; Novotny, George Charles; Paulsen Robert A., Jr.; Diegert, Kathleen V.; Trucano, Timothy Guy; Pilch, Martin M.

    2007-12-01T23:59:59.000Z

    This paper presents the conceptual framework that is being used to define quantification of margins and uncertainties (QMU) for application in the nuclear weapons (NW) work conducted at Sandia National Laboratories. The conceptual framework addresses the margins and uncertainties throughout the NW life cycle and includes the definition of terms related to QMU and to figures of merit. Potential applications of QMU consist of analyses based on physical data and on modeling and simulation. Appendix A provides general guidelines for addressing cases in which significant and relevant physical data are available for QMU analysis. Appendix B gives the specific guidance that was used to conduct QMU analyses in cycle 12 of the annual assessment process. Appendix C offers general guidelines for addressing cases in which appropriate models are available for use in QMU analysis. Appendix D contains an example that highlights the consequences of different treatments of uncertainty in model-based QMU analyses.

  9. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  10. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

    1993-06-14T23:59:59.000Z

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  11. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01T23:59:59.000Z

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  12. absorption cycle cooling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications Texas A&M University - TxSpace...

  13. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    methane reformer FTR: Fischer-Tropsch reactor LCA: life3–8, 17 Mark E. Dry, The Fischer–Tropsch process: 1950–2000,From the internet, Fischer–Tropsch process Wikipedia site:

  14. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Electricity Hydrogen Vehicle/Infrastructure Compatibility -hydrogen require completely different vehicles and infrastructurehydrogen are both excluded based on their inability to gain any medium-term market share due to cost and infrastructure

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergyInvestigativeCogginLES'SiteDepartment ofLifeLifePower

  16. Improving environmental performances of organic spreading technologies through the use of life cycle

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving environmental performances of organic spreading technologies through the use of life) is generally used to assess environmental performances of a product or a system. Some agricultural LCA were carried out to assess environmental performances of fertilisation processes, but they barely take

  17. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01T23:59:59.000Z

    Ltd. 2000. Nisbet, M.A. , Marceau, M.L. , VanGeem, M.G. ,2001. Nisbet, M.A. and Marceau, M.L. , Environmental LifeNo. 1, pp. 34-44. 2004. Marceau, M.L. , Nisbet, M.A. , and

  18. Design of Electric Drive Vehicle Batteries for Long Life and Low Cost: Robustness to Geographic and Consumer-Usage Variation (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Kim, G. H.; Pesaran, A.

    2010-10-01T23:59:59.000Z

    This presentation describes a battery optimization and trade-off analysis for Li-ion batteries used in EVs and PHEVs to extend their life and/or reduce cost.

  19. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must gaso- line consumption, helping to diminish dependency on imported oil. Recognizing these benefits, US

  20. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    than the conventional lithium ion batteries based on metal oxide cathodes and graphite anodes Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent