Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Mentoring Program  

Broader source: Energy.gov [DOE]

The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

2

The effects of mentoring on mentors  

E-Print Network [OSTI]

for the Impact of Mentoring. Correlates of Mentor Change. . Potential Domains of Change . Summary of Hypotheses . . I I 2 4 7 MF. THDD Participants Measures 8 8 PROCFDURE. . RESULTS . . . . . . . . 12 Overview of Analyses Differences Across Time.... Iphy Care About Change in Mentors? First, given that the labor pool of most mentonng programs for at-nsk children is composed of volunteers (Rhodes, 1994), there exists an ethical obligation to identify potential risks. Conversely, elucidation...

Fiala, Samuel Edward

2012-06-07T23:59:59.000Z

3

Lidar Report  

SciTech Connect (OSTI)

This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

Wollpert.

2009-04-01T23:59:59.000Z

4

Predicting positive mentoring relationships: training, supervision, and mentor characterization  

E-Print Network [OSTI]

mentoring relationships with aggressive children. The participants were mentor-mentee dyads. Mentors were college students from Texas A&M University. Mentees were second and third grade children who were nominated by their teachers as aggressive. Despite...

Delagarza, Samantha Martha

1996-01-01T23:59:59.000Z

5

Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product  

SciTech Connect (OSTI)

The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

Newsom, RK; Sivaraman, C; McFarlane, SA

2012-10-31T23:59:59.000Z

6

Radioluminescent (RL) airfield lighting system program  

SciTech Connect (OSTI)

In 1980, the US Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100% of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. 12 figs., 8 tabs.

Tompkins, J.A. (Westinghouse Electric Corp., Las Vegas, NV (USA)); Haff, K.W.; Schultz, F.J. (Oak Ridge National Lab., TN (USA))

1990-09-01T23:59:59.000Z

7

Honors Faculty Mentor Network  

E-Print Network [OSTI]

@uga.edu ELIZABETH MANLEY, Administrative Assistant eym@uga.edu KAREN NEWCOMB, Network Administrator knewcombHonors Faculty Mentor Network Providing Students with Friends on the Faculty Mentor Handbook 2006@uga.edu REBECCA CHENEY, Program Assistant rcheney@uga.edu PAULA LANGSTON, Administrative Associate fellows

Arnold, Jonathan

8

Coaching Vs. Mentoring  

Broader source: Energy.gov [DOE]

Often times the line that separates coaching and mentoring becomes ambiguous, but there are clear distinctions between the two. Although they are loosely based on the same principles of teaching and development, much can be said about the level of personalization and effect that distinguishes coaching and mentoring.

9

Business Manangement System(BMS), RL-2008/Project Hanford Management...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Manangement System(BMS), RL-2008Project Hanford Management Contract PHMC (Flour), Office of the Chief Information Officer Business Manangement System(BMS), RL-2008...

10

Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars  

SciTech Connect (OSTI)

Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

2013-08-27T23:59:59.000Z

11

Mentoring Human Performance - 12480  

SciTech Connect (OSTI)

Although the positive effects of implementing a human performance approach to operations can be hard to quantify, many organizations and industry areas are finding tangible benefits to such a program. Recently, a unique mentoring program was established and implemented focusing on improving the performance of managers, supervisors, and work crews, using the principles of Human Performance Improvement (HPI). The goal of this mentoring was to affect behaviors and habits that reliably implement the principles of HPI to ensure continuous improvement in implementation of an Integrated Safety Management System (ISMS) within a Conduct of Operations framework. Mentors engaged with personnel in a one-on-one, or one-on-many dialogue, which focused on what behaviors were observed, what factors underlie the behaviors, and what changes in behavior could prevent errors or events, and improve performance. A senior management sponsor was essential to gain broad management support. A clear charter and management plan describing the goals, objectives, methodology, and expected outcomes was established. Mentors were carefully selected with senior management endorsement. Mentors were assigned to projects and work teams based on the following three criteria: 1) knowledge of the work scope; 2) experience in similar project areas; and 3) perceived level of trust they would have with project management, supervision, and work teams. This program was restructured significantly when the American Reinvestment and Recovery Act (ARRA) and the associated funding came to an end. The program was restructured based on an understanding of the observations, attributed successes and identified shortfalls, and the consolidation of those lessons. Mentoring the application of proven methods for improving human performance was shown effective at increasing success in day-to-day activities and increasing confidence and level of skill of supervisors. While mentoring program effectiveness is difficult to measure, and return on investment is difficult to quantify, especially in complex and large organizations where the ability to directly correlate causal factors can be challenging, the evidence presented by Sydney Dekker, James Reason, and others who study the field of human factors does assert managing and reducing error is possible. Employment of key behaviors-HPI techniques and skills-can be shown to have a significant impact on error rates. Our mentoring program demonstrated reduced error rates and corresponding improvements in safety and production. Improved behaviors are the result, of providing a culture with consistent, clear expectations from leadership, and processes and methods applied consistently to error prevention. Mentoring, as envisioned and executed in this program, was effective in helping shift organizational culture and effectively improving safety and production. (authors)

Geis, John A.; Haugen, Christian N. [CALIBRE Systems, Inc., Alexandria, Virginia (United States)

2012-07-01T23:59:59.000Z

12

POSITION DESCRIPTION 2012 TRANSFER MENTOR  

E-Print Network [OSTI]

interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff to CSU including (but not limited to) helping transfer students explore study skills, time management

13

ORISE: Mentor Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistory The OakMentor Training Mentor Training

14

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentor andMentoring

15

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentor and

16

RL's Fiscal Year 2013 Fee Evaluation Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake anRL's

17

Research Mentors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelatedEnergyResearch Mentors Research Mentors

18

Sustainable Energy Scheme Mentor Job description  

E-Print Network [OSTI]

1 Sustainable Energy Scheme Mentor Job description Department: Student Administration and Registry and agreement between the Sustainable Energy Scheme Mentor and the UK Student Recruitment and Outreach Team Sustainable Energy Scheme · To participate in both on and off campus mentoring activities throughout

Anderson, Jim

19

ARM Lead Mentor Selection Process  

SciTech Connect (OSTI)

The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as Instrument Mentors. Instrument Mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets.

Sisterson, DL

2013-03-13T23:59:59.000Z

20

Mentoring Program | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentor and ProtegeMentoring

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Contract Number: DE-AC05-76RL01830 Modification M705  

E-Print Network [OSTI]

#12;#12;Contract Number: DE-AC05-76RL01830 Modification M705 #12;Contract Number: DE-AC05-76RL01830 Modification M705 #12;Contract Number: DE-AC05-76RL01830 Modification M705 #12;Contract Number: DE-AC05-76RL01830 Modification M705 #12;Contract Number: DE-AC05-76RL01830 Modification M705 #12;Contract Number: DE

22

Characteristics of Effective Mentoring in a Formal Mentoring Setting  

E-Print Network [OSTI]

are Sage, Visionary, Magician, Globalist, Mentor, Ally, Sovereign, Guide, and Artisan. 9 The nine stages of the Wells?s core values progress from apprentice to advanced employee. At the Sage or Apprentice stage, new employees have many questions... Age, archaeologists and anthropologists posit the medicinal men, cave artists, and shaman taught younger individuals their skills to carry on traditions (Shea, 1994). During the Middle Ages, blacksmiths would take on a young apprentice to learn...

Luckey, Rebecca Ann

2011-02-22T23:59:59.000Z

23

Mentoring and Educating to Increase Diversity in Science, Tech...  

Broader source: Energy.gov (indexed) [DOE]

Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math Mentoring and Educating to Increase Diversity in Science, Tech, Engineering and Math October...

24

Former NERSC Consultant Mentors Math, Computer Science Students  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Former NERSC Consultant Mentors Math, Computer Science Students Former NERSC Consultant Mentors Math, Computer Science Students March 10, 2015 Frank Hale, a former consultant in...

25

Mentoring Among Scientists: Implications of Interpersonal Relationships within a Formal Mentoring Program  

SciTech Connect (OSTI)

Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protégé relationship significantly influences a protégé’s learning experience which carries repercussions into their career intentions. The mentor-protégé relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry.

Bryan D. Maughan

2006-11-01T23:59:59.000Z

26

Micropulse Lidar (MPL) Handbook  

SciTech Connect (OSTI)

The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

Mendoza, A; Flynn, C

2006-05-01T23:59:59.000Z

27

GLOBAL OUTLOOK FOR Armstrong, R.L. and Brodzik, M.J. (2005). Northern Hemisphere  

E-Print Network [OSTI]

ICE&SNOW GLOBAL OUTLOOK FOR #12;Sources: Armstrong, R.L. and Brodzik, M.J. (2005). Northern Data Center, Boulder Armstrong, R.L., Brodzik, M.J., Knowles, K. and Savoie, M. (2005). Global monthly

Kurapov, Alexander

28

FloridaMaster Money Mentors What is the Florida  

E-Print Network [OSTI]

FloridaMaster Money Mentors What is the Florida Master Money Mentor Program? The Florida Master Money Mentor (FMMM) program is a coordinated referral network of volunteer mentors who provide basic.25% ­1,712 58,897 125.39 2845.41 +89.65 ­50.00 x15.23% Program Contact Information: Florida Master Money

Jawitz, James W.

29

Contract No. DE-AC05-76RL01830 Modification M943  

E-Print Network [OSTI]

Contract No. DE-AC05-76RL01830 Modification M943 SECTION J APPENDIX A ADVANCE UNDERSTANDINGS ON HUMAN RESOURCES COST Applicable to the Operation of PACIFIC NORTHWEST NATIONAL LABORATORY Contract No. DE-AC05-76RL01830 #12;Contract No. DE-AC05-76RL01830 Modification M943 J-A-1 Table of Contents

30

Contract Number: DE-AC05-76RL01830 Modification M957  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M957 APPENDIX E STANDARDS OF PERFORMANCE-BASED FEE OF THE PACIFIC NORTHWEST NATIONAL LABORATORY #12;Contract Number: DE-AC05-76RL01830 Modification M957 APPENDIX E FOR MANAGEMENT AND OPERATIONS OF THE PACIFIC NORTHWEST NATIONAL LABORATORY #12;Contract Number: DE-AC05-76RL01830

31

(Mentor Signature) Louisiana Tech College of  

E-Print Network [OSTI]

& Science Grand Challenge Scholars Program Grand Challenge Scholar Apprentice Annual Report for Academic: ___________________________________________________________ Expected Graduation: ___________________________________________________ GCSP Apprentice: Complete the next. ================================================================== GCSP Mentor: Complete this section and submit your Apprentice's Annual Report by May 1 to Dr. Katie

Selmic, Sandra

32

Veterans and STEM Mentoring Programs- Info Session and Brown Bag Networking  

Broader source: Energy.gov [DOE]

January is National Mentoring Month. Join the Veterans Mentoring Program and the STEM Mentoring Program at DOE for information distribution and networking to meet current and potential mentors and...

33

Mentoring Ini+a+ve Provides Collegial Support The ADVANCE Faculty Mentoring Program provides professional  

E-Print Network [OSTI]

Mentoring Ini+a+ve Provides Collegial Support The ADVANCE Faculty Mentoring towards promo+on and tenure. The ini+a+ve offers one-to-one and group support for new faculty. ADVANCE has also ini+ated a pilot effort that matches mid

Xie,Jiang (Linda)

34

Contract DE-AC05-76RL01830 Modification M947  

E-Print Network [OSTI]

Contract DE-AC05-76RL01830 Modification M947 J-F-i Part III ­ List of Documents, Exhibits;Contract DE-AC05-76RL01830 Modification M947 J-F-1 OPERATIONAL AGREEMENT BETWEEN THE OFFICE OF SCIENCE;Contract DE-AC05-76RL01830 Modification M947 J-F-2 OPERATIONAL AGREEMENT BETWEEN THE OFFICE OF SCIENCE

35

Contract Number: DE-AC05-76RL01830 Modification M971  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M971 PART III ­ List of Documents, Exhibits-Owned Facilities and Real Property J-J-i #12;Contract Number: DE-AC05-76RL01830 Modification M971 ADVANCE AGREEMENT that in consideration of the extension of Contract No. DE- AC05-76RL01830 (hereinafter referred to as "the PNNL Prime

36

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report6-04RL14383

37

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report6-04RL14383Not

38

Doppler Lidar (DL) Handbook  

SciTech Connect (OSTI)

The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

Newsom, RK

2012-02-13T23:59:59.000Z

39

Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a “first principles” calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar’s laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

Turner, D.D.

2007-10-31T23:59:59.000Z

40

Contract Number: DE-AC05-76RL01830 Modification M920  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M920 Part III ­ List of Documents, Exhibits, And Other Attachments Section J List of Attachments J ­ i #12;Contract Number: DE-AC05-76RL01830

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Congratulations to all of the award recipients and thank you to all of the presenters! Graduate Dean's Excellence in Doctoral Student Mentoring Award  

E-Print Network [OSTI]

Systems Performance Theory Faculty Mentor(s): George Kondraske Honorable Mention ($50) - Sairam Geethanath

Chiao, Jung-Chih

42

Mentor-Protege Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject ManhattanMentor and Protege

43

Environmental Management Performance Report to DOE-RL September 2001  

SciTech Connect (OSTI)

The purpose of this report is to provide the Department of Energy Richland Operations Office (RL) a monthly summary of the Central Plateau Contractor's Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the contractor baseline. The remaining sections provide detailed performance data relative to each individual Project (e.g., Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of July 31, 2001. All other information is updated as of August 22, 2001 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular area. Green boxes denote on schedule. Yellows denote behind schedule but recoverable. Red is either missed or unrecoverable, without agreement by the regulating party.

EDER, D.M.

2001-09-01T23:59:59.000Z

44

Environmental Management Performance Report to DOE-RL July 2001  

SciTech Connect (OSTI)

The purpose of this report is to provide the Department of Energy Richland Operations Office (DOE-RL) a monthly summary of the Project Hanford Management Contractor's (PHMC) Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. In addition to project-specific information, it includes some PHMC-level data not detailed elsewhere in the report. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the PHMC baseline. The remaining sections provide detailed performance data relative to each individual Project (e.g., Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of May 31,2001. All other information is updated as of June 27,2001 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular area. Green boxes denote on schedule. Yellows denote behind schedule but recoverable. Red is either missed or unrecoverable.

EDER, D.M.

2001-07-01T23:59:59.000Z

45

Environmental Management Performance Report to DOE-RL May 2001  

SciTech Connect (OSTI)

The purpose of this report is to provide the Department of Energy Richland Operations Office (DOE-RL) a monthly summary of the Project Hanford Management Contractor's (PHMC) Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. In addition to project-specific information, it includes some PHMC-level data not detailed elsewhere in the report. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the PHMC baseline. The remaining sections provide detailed performance data relative to each individual Project (e g , Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of March 31, 2001. All other information is updated as of April 26, 2001 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular area. Green boxes denote on schedule. Yellows denote behind schedule but recoverable. Red is either missed or unrecoverable.

EDER, D.M.

2001-05-01T23:59:59.000Z

46

Environmental Management Performance Report to DOE-RL April 2001  

SciTech Connect (OSTI)

The purpose of this report is to provide the Department of Energy Richland Operations Office (DOE-RL) a monthly summary of the Project Hanford Management Contractor's (PHMC) Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. In addition to project-specific information, it includes some PHMC-level data not detailed elsewhere in the report. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the PHMC baseline. The remaining sections provide detailed performance data relative to each individual Project (e.g., Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of February 28, 2001. All other information is updated as of March 26, 2001 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular area. Green boxes denote on schedule. Yellows denote behind schedule but recoverable. Red is either missed or unrecoverable.

EDER, D.M.

2001-04-01T23:59:59.000Z

47

Environmental Management Performance Report to DOE-RL March 2001  

SciTech Connect (OSTI)

The purpose of this report is to provide the Department of Energy Richland Operations Office (DOE-RL) a monthly summary of the Project Hanford Management Contractor's (PHMC) Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. In addition to project-specific information, it includes some PHMC-level data not detailed elsewhere in the report. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the PHMC baseline. The remaining sections provide detailed performance data relative to each individual Project (e.g., Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of January 31, 2001. All other information is updated as of February 20, 2001 unless otherwise noted. ''Stoplight'' boxes are used to indicate at a glance the condition of a particular area. Green boxes denote on schedule. Yellows denote behind schedule but recoverable. Red is either missed or unrecoverable.

EDER, D.M.

2001-03-01T23:59:59.000Z

48

Microsoft Word - RL14788-Section_J-5 Perf Guarantee.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attachment J.5, Revision 0 J.5-1 ATTACHMENT J.5 PERFORMANCE GUARANTEE AGREEMENT Plateau Remediation Contract Section J Contract No. DE-AC06-07RL14788 Attachment J.5, Revision 0...

49

Contract Number: DE-AC05-76RL01830 Modification M881  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M881 Part I ­ The Schedule Section F Deliveries) Alternate I (Apr 1984) 1 F ­ 3 Deliverables 2 F ­ i #12;Contract Number: DE-AC05-76RL01830 Modification M881 F ­ 1 Period of Performance This Contract shall be effective as specified in Block No. 3 ­ Effective

50

Contract Number: DE-AC05-76RL01830 Modification M881  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M881 B-i Part I ­ The Schedule Section B Supplies.......................................................1 #12;Contract Number: DE-AC05-76RL01830 Modification M881 B-1 B­1 Designation of Work in this Contract and as designated in writing from time to time by DOE, including the utilization of information

51

Contract Number: DE-AC05-76RL01830 Modification A508  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification A508 E-1 Part I ­ The Schedule Section E Inspection) .........................................................................1 E ­ i #12;Contract Number: DE-AC05-76RL01830 Modification A508 E-1 E ­ 1 52.246-9 Inspection the work performed or being performed under the Contract, and the premises where the work is being

52

WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW  

E-Print Network [OSTI]

WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW 1 Graduate Mentor Academy Overview High quality graduate programs are those with notable faculty and systems for advising Academy 3. Representation on Graduate Exams and Examination Failure 4. Graduate and Professional Student

Collins, Gary S.

53

airborne oceanographic lidar: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...

54

Mentoring Program | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge MelroseMentor and Protege

55

Apprentice First-Year Name (26) @uchicago.edu Mentors  

E-Print Network [OSTI]

Apprentice First-Year Name (26) @uchicago.edu Mentors Stephanie Avalos-Bock stephab Hyomin Choi Marcus, Emily Riehl Michael Wong mwong5 Asaf Hadari, Rita Jimenez Rolland #12;Apprentice Intermediate

May, J. Peter

56

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

PNNL-19945 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Soil Water Saunders D Felmy October 2010 #12;#12;PNNL-19945 Soil Water Balance and Recharge Monitoring at the Hanford.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland

57

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

PNNL-20162 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Cultural February 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest is required. · Please be sure that any PDF submitted to DAHP has its cover sheet, figures, graphics

58

Contract Number: DE-AC05-76RL01830 Modification M962  

E-Print Network [OSTI]

MANAGEMENT MANUAL CRD O 440.2C, Chg. 1 AVIATION MANAGEMENT AND SAFETY CRD M 441.1-1 NUCLEAR MATERIAL and Other Attachments Section J Appendix D List of Applicable DOE Directives & External Requirements J-D-i #12;Contract Number: DE-AC05-76RL01830 Modification M962 SECTION J APPENDIX D LIST OF APPLICABLE DOE

59

Contract Number: DE-AC05-76RL01830 Modification M962  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M962 PART III ­ List of Documents, Exhibits and Other Attachments Section J Appendix C Subcontracting Plan for Socioeconomic Programs J-C-i #12;Contract, 2002, for the entire Contract period associated with this Contract. However, annual goals shall

60

Contract Number: DE-AC05-76RL01830 Modification M705  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M705 Part III - List of Documents, Exhibits be designated: a. Battelle Memorial Institute, PNW Division -Contract b. Battelle Memorial Institute, PNW Division- Salary c. Battelle Memorial Institute, PNW Division -Controlled Disbursement Contract d. Battelle

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Contract Number: DE-AC05-76RL01830 Modification M963  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M963 Part II ­ Contract Clauses Section I Contract) .............................................................19 I­13 FAR 52.215-8 Order of Precedence -- Uniform Contract Format (Oct 1997) .................20 I)...........................................................................36 I­21 FAR 52.222-4 Contract Work Hours and Safety Standards Act -- Overtime Compensation (July 2005

62

Contract Number: DE-AC05-76RL01830 Modification M873  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M873 G-i Part I ­ The Schedule Section G Contract Administration Data Table of Contents G-1 Head of Contracting Activity (HCA), Contracting Officer (CO), and Contracting Officer's Representative (COR) ...................................................... 1 G­2 952

63

Contract Number: DE-AC05-76RL01830 Modification M412  

E-Print Network [OSTI]

Contract Number: DE-AC05-76RL01830 Modification M412 PNNL Contract Table of Contents SECTION A: Contract Form SECTION B: Supplies or Services and Prices/Costs B-1: Designation of Work and Facilities B-2: Contract Administration Data G-1: Head of Contracting Activity (HCA), Contracting Officer (CO

64

Mixed RL-Huffman Encoding for Power Reduction and Data Compression in Scan Test  

E-Print Network [OSTI]

Mixed RL-Huffman Encoding for Power Reduction and Data Compression in Scan Test M. H. Tehranipour1 techniques to reduce test data volume, test pattern delivery time and power dissipation in scan test. This combination is especially effective when the ratio of don't cares in a test set is high which is a common case

Tehranipoor, Mohammad

65

Order Code RL34294 Energy Independence and Security Act of 2007  

E-Print Network [OSTI]

for energy efficiency and renewable energy. #12;CRS Key Policy Staff Area of Expertise Name TelephoneOrder Code RL34294 Energy Independence and Security Act of 2007: A Summary of Major Provisions December 21, 2007 Fred Sissine, Coordinator Specialist in Energy Policy Resources, Science, and Industry

Laughlin, Robert B.

66

Electronic Resources Use Survey UMass Amherst Libraries RL:May 2010 1 year report  

E-Print Network [OSTI]

Electronic Resources Use Survey UMass Amherst Libraries RL:May 2010 1 year report Electronic Resources Use Survey ­ 1 Year Results September 2008 ­ August 2009 conducted a brief mandatory web survey to assess how its electronic resources are used to support teaching

Schweik, Charles M.

67

RL-based Optimisation of Robotic Fish Behaviours Jindong Liu, Huosheng Hu, Dongbing Gu  

E-Print Network [OSTI]

RL-based Optimisation of Robotic Fish Behaviours Jindong Liu, Huosheng Hu, Dongbing Gu Department for the optimisation of robotic fish behaviours. Six independent parameters are abstracted from the motor controller of a robotic fish and used to parameterize the policy of the reinforcement learning. During the implementation

Hu, Huosheng

68

DENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson  

E-Print Network [OSTI]

irradiation to heat and compress a target containing thermonuclear fuel to fusion conditions. This is stillDENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson Laboratory. The high power lasers in quaestion were constructed with laser fusion studies as the goal, i

Boyer, Edmond

69

STEM Mentoring Café- Engaging Young Women in an Authentic Mentoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGEComplainant, V.STC Summit AwardMentoring

70

The Effects of a Mentoring Program on Teacher Retention Rates at Tashkent International School  

E-Print Network [OSTI]

(Parise & Spillane, 2009). Active participation in school reform and instructional improvement has fostered change in how teachers view the profession. Mentoring programs provide a venue for both new and mentor teachers to actively reflect upon...

Dimatteo, Kristen

2014-04-25T23:59:59.000Z

71

Oak Ridge National Laboratory Wins DOE Mentor of the Year Award...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Wins DOE Mentor of the Year Award at Small Business Forum & Expo Oak Ridge National Laboratory Wins DOE Mentor of the Year Award at Small Business...

72

Lidar characterization of crystalline silica generation and gravel plant  

E-Print Network [OSTI]

The lidar vertical pro?les and wind speed data were used toof wind speed and concentration (based on lidar verticalvertical plane at a given height, z, was calculated as the product of the wind speed

Trzepla-Nabaglo, K.; Shiraki, R.; Holm'en, B. A.

2006-01-01T23:59:59.000Z

73

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

Northwest National Laboratory QC quality control RCRA Resource Conservation and Recovery Act RL report limit RPD relative percent difference SDG sample delivery group SOP Standard Operating Procedure TOC total

74

Raman lidar/AERI PBL Height Product  

SciTech Connect (OSTI)

Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

Ferrare, Richard

2012-12-14T23:59:59.000Z

75

Raman lidar/AERI PBL Height Product  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

Ferrare, Richard

76

National Institutes of Health (NIH) Career Development and Mentoring  

E-Print Network [OSTI]

National Institutes of Health (NIH) Career Development and Mentoring Programs Collected by the Office of Research of Women's Health for the NIH Working Group on Women in Biomedical Careers Reported by members of the NIH Coordinating Committee on Research on Women's Health Working Document July 22, 2008

Bandettini, Peter A.

77

Systematic Sampling of Scanning Lidar Swaths  

E-Print Network [OSTI]

Popescu Proof of concept lidar research has, to date, examined wall-to-wall models of forest ecosystems. While these studies have been important for verifying lidars efficacy for forest surveys, complete coverage is likely not the most cost effective... year of my graduate studies. Also, to Jin Zhu and the other members of the Aerial Photography project at the Texas Forest Service for opening my eyes to the practical uses of GIS and remote sensing, their encouragement for me to obtain a graduate...

Marcell, Wesley Tyler

2011-02-22T23:59:59.000Z

78

Micropulse Lidar Cloud Mask Value-Added Product Technical Report  

SciTech Connect (OSTI)

Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

Sivaraman, C; Comstock, J

2011-07-25T23:59:59.000Z

79

RL-721  

Broader source: Energy.gov (indexed) [DOE]

the Hanford Site during calendar year 2010. Prescribed burning will be conducted by the Hanford Fire Department and only in previously disturbed areas. The objectives of limited...

80

RL-721  

Broader source: Energy.gov (indexed) [DOE]

REV 4 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number: DOECX-00083 CH2MHill Plateau Remediation Company - Outdoor tests and Experiments on Materials and Equipment...

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake anRL's2

82

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake anRL's21

83

E-Print Network 3.0 - airborne lidar measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

airborne INSAR is 2-5 m over... . However, LIDAR has potential as a complementary measurement to INSAR. The LIDAR data used in this study... estimate and the adjacent LIDAR ......

84

Lidar techniques for search and rescue  

SciTech Connect (OSTI)

Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

Cabral, W.L.

1985-01-01T23:59:59.000Z

85

Mentorship Groups Groups are sorted by approximate area. Mentors are in bold, and apprentice students are  

E-Print Network [OSTI]

Mentorship Groups Groups are sorted by approximate area. Mentors are in bold, and apprentice-ok Choi (CSP, Undergraduate Mentor) · Mitch Hill (Apprentice, 5 weeks, Undergraduate Mentee) · Bradly Stadie (YSP) · Peter Hansen (Intermediate) · Ben Riffer-Reinert (Apprentice, 8 weeks) Analysis: Shawn

May, J. Peter

86

Ris-PhD-Report Complex Terrain and Wind Lidars  

E-Print Network [OSTI]

calculations over the same terrains. The lidar performance was also simulated with the commercial software WAs;#12;Author: Ferhat Bingöl Title: Complex terrain and wind lidars Division: Wind Energy Division Risø-PhD-52 and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated

87

EN-025 Tools & Applications December 2008 Lidar Remote Sensing  

E-Print Network [OSTI]

IS LIDAR? Lidar (light detection and ranging system) is a relatively new type of active remote sensing are small-footprint, discrete return systems that record two to five returns for each emitted laser pulse fashion as an aerial photography camera. · An inertial measurement unit that records the pitch, yaw

88

Ris {R{1127(EN) Lidar data used in the COFIN  

E-Print Network [OSTI]

3.1 Generation of arti cial smoke 7 4 Data processing 8 4.1 The lidar equation 8 4.2 Backscatter, see below. In FLADIS the smoke were added to an initial heavy gas plume. 2 Experimental design Figures response. However, the Lidar does have a averaging volume due to the leng

89

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

PNNL-18845 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 200-BP-1 Ward KE Draper SO Link RE Clayton September 2009 Prepared for the U.S. Department of Energy under, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing

90

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

PNNL-21950 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Recommended/Properties........................................................................ 2.1 2.1.1 CLKD Dry Soil-Water Partition Coefficient.1.17 CLBVx Bioconcentration to Edible Crop Portion from Soil .................................. 2.29 2

91

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

in the Bonneville Power Administration's footprint as an energy arbitrage instrument. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the UPNNL-19300 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy

92

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

panels, battery banks, and sampling units. During an approximate four month performance evaluation periodPNNL-22900 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Solar-22900 Solar Powered Radioactive Air Monitoring Stations JM Barnett TL Gervais LE Bisping October 2013

93

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

PNNL-18896 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Hanford Hanford and the Tri-Cities Economy: Historical Trends 1970­2008 RA Fowler MJ Scott October 2009 Prepared Richland, Washington 99352 #12;ii Contents Hanford's Historical Effect on the Economy

94

ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

95

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

96

ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

97

ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

98

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

99

ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

100

Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

Jaffe, Todd

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mentor and Protege of the Year | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject ManhattanMentor and Protege of

102

STEM Mentoring Café | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGEComplainant, V.STC Summit AwardMentoring Café

103

Raman lidar and MPL Measurements during ALIVE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program2Raftopoulos takesBridges.Raman lidar

104

Micropulse Lidar The ARM Program studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar The ARM Program

105

Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

106

airborne lidar mapping: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A minimum height of 1 m was applied to define woody understorey. Critical to this process were a Digital Terrain Model (extracted from the leaf-off last return LiDAR data)...

107

URBAN MODELING FROM LIDAR DATA IN AN INTEGRATED GIS ENVIRONMENT  

E-Print Network [OSTI]

are analyzed and possible solutions are proposed by fusing lidar data with other image data. Study shows: it allows rapid generation large-scale DTM (digital terrain model); is daylight independent; is relatively

Shan, Jie

108

absorption lidar dial: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topic Index 1 Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP-dial) for atmospheric water-vapor and aerosol studies. Open Access Theses...

109

A motor drive control system for the Lidar Polarimeter  

E-Print Network [OSTI]

A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

Leung, Waiming

1977-01-01T23:59:59.000Z

110

324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3  

SciTech Connect (OSTI)

A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

HUMPHREYS, D C

2002-08-01T23:59:59.000Z

111

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

112

Mapping surface fuels using LIDAR and multispectral data fusion for fire behavior modeling  

E-Print Network [OSTI]

, LIDAR derived data provides accurate estimates of surface fuel parameters efficiently and accurately over extensive areas of forests. This study demonstrates the importance of using accurate maps of fuel models derived using new LIDAR remote sensing...

Mutlu, Muge

2009-05-15T23:59:59.000Z

113

Support and Retention : : Exploring the Role of Mentoring Relationships and Social Capital between College Students and Student Affairs Professionals  

E-Print Network [OSTI]

by enhancing conditions for student success, such as settingessential conditions to the success of the relationships andfocusing on conditions that promote student success. Mentors

Pearl, Domenica Cimarusti

114

Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data  

E-Print Network [OSTI]

Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data, Geospatial analysis of vulnerable beach- foredune systems from decadal time series of lidar data, Journal densities; therefore, geospatial analysis, when applied to decadal lidar time series, needs to address

Mitasova, Helena

115

Alternate spatial sampling approaches for ecosystem structure inventory using spaceborne lidar  

E-Print Network [OSTI]

used in aircraft lidar remote sensing where power, heat, and reliability are less of a concern since January 2011 Accepted 29 January 2011 Available online 23 March 2011 Keywords: Lidar Remote sensing Laser collected in transects and should be considered for future lidar remote sensing missions. © 2011 Elsevier

Lefsky, Michael

116

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

117

ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

118

ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

119

ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

120

Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint  

SciTech Connect (OSTI)

Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ris-R-Report LIDAR Wind Speed Measurements from a  

E-Print Network [OSTI]

, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction: Data Files 54 Appendix B: Wind Speed Vertical Profile 55 Appendix C: Sonic Cup Comparison 59Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: "SpinnerEx 2009" Nikolas

122

FIRST PRINCIPLES MODELING FOR LIDAR SENSING OF COMPLEX ICE SURFACES  

E-Print Network [OSTI]

FIRST PRINCIPLES MODELING FOR LIDAR SENSING OF COMPLEX ICE SURFACES J. Kerekes, A. Goodenough, S of monitoring the dynamics and mass balance of glaciers, ice caps, and ice sheets. However, it is also known that ice surfaces can have complex 3-dimensional structure, which can challenge their accurate retrieval

Kerekes, John

123

Lidar on the Phoenix mission to Mars James Whiteway,1  

E-Print Network [OSTI]

Cameron Dickinson,1 Leonce Komguem,1 and Clive Cook1 Received 30 August 2007; revised 9 March 2008 of backscattered laser light from airborne dust and clouds. These observations will be coordinated with solar, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10

Duck, Thomas J.

124

absorption lidar performance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

absorption lidar performance First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a...

125

absorption lidar sensitivity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

absorption lidar sensitivity First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a...

126

absorption lidar system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

absorption lidar system First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a differential...

127

INTEGRATED LIDAR & PHOTOGRAMMETRIC DOCUMENTATION OF THE RED GULCH DINOSAUR  

E-Print Network [OSTI]

101 INTEGRATED LIDAR & PHOTOGRAMMETRIC DOCUMENTATION OF THE RED GULCH DINOSAUR TRACKSITE (WYOMING Resource Technology Section, National Operations Center, Bu- reau of Land Management, Bldg. 50 Denver, CO of successful schemes is testament to the advances made in attitudes and approaches to fossil site management

Falkingham, Peter

128

FUNDING THE FUTURE CPMS PLANS TO RAISE $20 MILLION FOR STUDENT MENTORING  

E-Print Network [OSTI]

FUNDING THE FUTURE CPMS PLANS TO RAISE $20 MILLION FOR STUDENT MENTORING JESSICA PURCELL SPIRITED Education Ross L. Spencer, Physics & Astronomy Del T. Scott, Statistics Contact Information D. Lynn Patten to the many global problems, we need strong scientists. Issues of climate change, disease, and energy have

Hart, Gus

129

Category: Outreach-Mentoring Name of Organization: Genetics Interest Group Outreach  

E-Print Network [OSTI]

) teenagers with various genetic afflictions, especially Down Syndrome. This event is held once to twice in the evening. -"Christmas Party"- The Down Syndrome Guild holds an annual Christmas party for its members/patients. Interacting with/ mentoring children and teenagers with various genetic anomalies, mainly Down Syndrome. #12;

Finley Jr., Russell L.

130

PNNL Mentor-Protg Program Making strategic connections to help small technology  

E-Print Network [OSTI]

projections, » evaluating the competition, » negotiating business agreements, » building a management team a "request for mentoring" application. The application will be evaluated and you will receive a response UNIBEST to meet customer demands and respond to new markets. A review of the company's business plan

131

PNNL-22072 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network [OSTI]

.1% of the total commercial floor space. Energy savings are determined from estimates of annual energy consumption defined. Energy savings are determined by taking the difference in energy consumption between any twoPNNL- 22072 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy

132

13.21 Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits RL Linnen, University of Western Ontario, London, ON, Canada  

E-Print Network [OSTI]

13.21 Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits RL Linnen, University to Y, the rare- earth elements (REE, La to Lu), Zr, Hf, Nb, and Ta. The rare elements, Canada ã 2014 Elsevier Ltd. All rights reserved. 13.21.1 Introduction 543 13.21.1.1 Uses of Rare Elements

Chakhmouradian, Anton

133

A new ice thickness and bedrock data set for the Greenland ice sheet. R.L. Layberry, J.L. Bamber,  

E-Print Network [OSTI]

combined with data collected by the Technical University of Denmark in the 1970's to produce a new iceA new ice thickness and bedrock data set for the Greenland ice sheet. R.L. Layberry, J.L. Bamber of Kansas, Lawrence, KS 66045, 785/864-2700, U.S. Abstract - Ice thickness data collected between 1993

Kansas, University of

134

Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)  

SciTech Connect (OSTI)

Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

2014-02-01T23:59:59.000Z

135

SciTech Connect: Field Test Results from Lidar Measured Yaw Control...  

Office of Scientific and Technical Information (OSTI)

Conference: Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint Citation Details In-Document...

136

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

137

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect (OSTI)

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

138

DHS National Technical Nuclear Forensics Program FY 10 Summary Report: Graduate Mentoring Assistance Program (GMAP)  

SciTech Connect (OSTI)

This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training to these students, it brings attention to a very attractive field of work where young professionals are urgently required in order for the future. The effectiveness of retaining such talent remains to be seen and may be primarily controlled by the availability of DOE laboratory research funding in this field in the years to come.

Martha R. Finck Ph.D.

2011-10-01T23:59:59.000Z

139

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect (OSTI)

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

140

Insights into a researcher's attempt to study the mentoring needs of first-year, white, female teachers in diverse schools  

E-Print Network [OSTI]

INSIGHTS INTO A RESEARCHER’S ATTEMPT TO STUDY THE MENTORING NEEDS OF FIRST-YEAR, WHITE, FEMALE TEACHERS IN DIVERSE SCHOOLS A Dissertation by KATHY ANN ATTAWAY Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2007 Major Subject: Educational Administration INSIGHTS INTO A RESEARCHER’S ATTEMPT TO STUDY THE MENTORING NEEDS OF FIRST-YEAR, WHITE, FEMALE...

Attaway, Kathy Ann

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

Newsom, Rob; Goldsmith, John

142

ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

143

LiDAR observations of offshore winds at future wind turbine operating heights  

E-Print Network [OSTI]

LiDAR observations of offshore winds at future wind turbine operating heights Alfredo Peña1 , Sven at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear: Charnock, LiDAR, Marine boundary layer, Offshore, Surface layer, Wind profile. 1 Introduction There is

144

Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report  

SciTech Connect (OSTI)

The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

2013-02-01T23:59:59.000Z

145

Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology  

E-Print Network [OSTI]

#12;Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology Arlen F. Chasea,1. The impor- tance of this geospatial innovation is demonstrated with newly acquired LiDAR data from in the remote geospatial imaging of cultural landscapes, including ancient communities and their anthropogenic

Weishampel, John F.

146

A new cloud and aerosol layer detection method based on micropulse lidar measurements  

E-Print Network [OSTI]

A new cloud and aerosol layer detection method based on micropulse lidar measurements Chuanfeng algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds

Li, Zhanqing

147

Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds  

E-Print Network [OSTI]

Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou and Ulrich models for residential areas from aerial LiDAR scans. The key differ- ence between downtown area modeling and residential area modeling is that the latter usually contains rich vegetation. Thus, we propose a robust

Shahabi, Cyrus

148

Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds  

E-Print Network [OSTI]

Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou area modeling and residential area modeling is that the latter usually con- tains rich vegetation. Thus representing the 3D urban reality of residential areas. Keywords: urban modeling, LiDAR, residential area

Shahabi, Cyrus

149

Lidar Inter-Comparison Exercise Final Campaign Report A Protat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser TheLessons LearnedLibraryTeamingLidar

150

Richland Operations (DOE-RL) Environmental Safety Health (ES and H) FY 2000 and FY 2001 Execution Commitment Summary  

SciTech Connect (OSTI)

All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the Safety and Health (S&H) resources that support these activities. The fiscal year (FY) 2000 and 2001 information and data contained in the Richland Operations Environment, Safefy and Health Fiscal Year 2002 Budget-Risk Management Summary (RL 2000a) were the basis for preparing this report. Fiscal year 2001 activities are based on the President's Amended Congressional Budget Request of $689.6 million for funding Ofice of Environmental Management (EM) $44.0 million for Fast Flux Test Facility standby less $7.0 million in anticipated DOE, Headquarters holdbacks for Office of Nuclear Energy, Science and Technology (NE); and $55.3 million for Safeguards and Security (SAS). Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2003 ES&H Budget-Risk Management Summary to be issued in May 2001. This report provides the end-of-year status of FY 2000 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2001 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H guidance contained in the FY 2002 Field Budget Call (DOE 2000).

REEP, I.E.

2000-12-01T23:59:59.000Z

151

Complex-optical-field lidar system for range and vector velocity measurement  

E-Print Network [OSTI]

Complex-optical-field lidar system for range and vector velocity measurement Shuang Gao,1,2 Maurice O’Sullivan,3 and Rongqing Hui2,* 1Department of Electronic Engineering and Information Science, University of Science and Technology of China... lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...

Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

2012-11-01T23:59:59.000Z

152

RL-719 (REV 6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001

153

ARM - Instrument - rl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS)govInstrumentsgramsgovInstrumentsngmgovInstrumentsprpgovInstrumentsrap Documentation

154

ARM - Campaign Instrument - rl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to hear from you! Send usgovInstrumentsrl Comments? We would

155

Coulter-RL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3. |ID#: 19834Costs Associated WithCosts4-Year

156

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships  

E-Print Network [OSTI]

comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used...

Cho, Hyoun-Myoung

2012-02-14T23:59:59.000Z

157

Accessing the Energy Department’s Lidar Buoy Data off Virginia Beach  

Broader source: Energy.gov [DOE]

In December 2014, Pacific Northwest National Laboratory (PNNL) deployed the Energy Department’s floating lidar buoy off of Virginia Beach, Virginia, in less than 30 meters (m) of water,...

158

SciTech Connect: Field Test Results from Lidar Measured Yaw Control...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a...

159

NESTED HIGH RESOLUTION SIMULATION AND LIDAR VALIDATION OF A LAND BREEZE CIRCULATION  

E-Print Network [OSTI]

NESTED HIGH RESOLUTION SIMULATION AND LIDAR VALIDATION OF A LAND BREEZE CIRCULATION by GIJS DE BOER local forcing. A wide range of scales is simulated using the nesting capability of the University

Eloranta, Edwin W.

160

Development of a lidar polarimeter technique of measuring suspended solids in water  

E-Print Network [OSTI]

DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W. PRESLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1980 Major Subject; Electrical Engineering DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W, PRESLEY Approved as to sty1e and content by: Chairman of Committee H d of Department...

Presley, David W

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar  

SciTech Connect (OSTI)

The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

Lo, C; Comstock, JM; Flynn, C

2006-10-01T23:59:59.000Z

162

Physics PhD Mentors at CCNY, 2014 (Please also see faculty and staff profiles on the Physics website)  

E-Print Network [OSTI]

Physics PhD Mentors at CCNY, 2014 (Please also see faculty and staff profiles on the Physics molecular biological physics; electron and proton transfer reactions; solar energy Koder, Ronald koder@sci.ccny.c uny.edu http://web.sci.ccny.cuny.edu/~koder/koder.ht ml experimental biological physics; de novo #12

Lombardi, John R.

163

Insights into a researcher's attempt to study the mentoring needs of first-year, white, female teachers in diverse schools  

E-Print Network [OSTI]

While schools in America are becoming more culturally diverse, the majority of first-year teachers continue to be white females. Although mentoring has proven to be an effective means of supporting first-year teachers, little research has been done...

Attaway, Kathy Ann

2009-05-15T23:59:59.000Z

164

2012 Mentorship Groups Groups are sorted by approximate area. Mentors are in bold, and apprentice students are  

E-Print Network [OSTI]

2012 Mentorship Groups Groups are sorted by approximate area. Mentors are in bold, and apprentice (Full) · Chaofan Chen (Full) · Andrew Ding (Full) · Jiaqi Jiang (Apprentice, 5 weeks) · Haoru Liu (Full) · Miranda Seitz-McLeese (Full) · Abhinav Shrestha (Full) · George Woodbury (Apprentice, 8 weeks) Vaidehee

May, J. Peter

165

Abigail Golden, Dept. of Ecology, Evolution and Environmental Biology Mentor: Dr. Joshua Drew, Dept. of Ecology, Evolution and Environmental Biology  

E-Print Network [OSTI]

Abigail Golden, Dept. of Ecology, Evolution and Environmental Biology Mentor: Dr. Joshua Drew, Dept. of Ecology, Evolution and Environmental Biology Advisor: Dr. Elisa Bone, Dept. of Ecology, Evolution their fishing practices, which species they targeted most heavily, and aspects of their traditional ecological

166

https://spectrum.stanford.edu/education-mentoring Contact us at Stanford-edplan-initiative@lists.stanford.edu  

E-Print Network [OSTI]

https://spectrum.stanford.edu/education-mentoring Contact us at Stanford-edplan-initiative@lists.stanford.edu IRB Update Wednesday, June 26, 2013 12:00PM ­ 1:00PM Li Ka Shing Center, Rm. 130 291 Campus Drive updates and FYIs to the research community on IRB-related topics. The workshop will provide guidance

Sonnenburg, Justin L.

167

Mentor Profile  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartment ofEM Budget Requests

168

Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use in the TAMBEETLE Southern Pine Beetle Infestation Growth Model  

E-Print Network [OSTI]

. TAMBEETLE was used to compare spot growth between a lidar-derived forest map and a forest map generated by TAMBEETLE, based on sample plot characteristics. The lidar-derived forest performed comparably to the TAMBEETLE generated forest. Using lidar to map...

Stukey, Jared D.

2011-02-22T23:59:59.000Z

169

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var and an ensemble Kalman filter in a global primitive equations model  

E-Print Network [OSTI]

the next few years, the first Doppler Wind Lidar (DWL) will be deployed in space by the European Space1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Simple Doppler Wind Lidar adaptive Experiments, we compare several adaptive observation strategies designed to subsample Doppler Wind Lidar (DWL

Maryland at College Park, University of

170

An Examination of Cultural Values and Employees' Perceptions of Support on Affective Reaction and the Desire to Participate in a Formal Mentoring Program in an Oilfield Services Corporation  

E-Print Network [OSTI]

support), affective reaction (job satisfaction and organizational commitment), and the intent to participate in a formal mentoring program in an oilfield services organization. A 44-item electronic survey was utilized to collect data. The questionnaire...

Hayes, Hanna Bea

2012-07-16T23:59:59.000Z

171

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

172

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

173

"When you want to give up, you want to give in": Mentoring perceptions of African American women doctoral students at a predominately White institution  

E-Print Network [OSTI]

students. According to Patton and Harper (2003) ?Mentoring has been considered one of the salient factors in academic and career success. African American women in graduate schools often find it difficult to locate suitable mentors with whom to build... scholars and practitioners who intend to excel in their respective professions have the opportunity to make connections and learn how to successfully maneuver within their areas of specialization? (Patton & Harper, 2003, p. 67). While the situation...

Fowler, Rhonda Michelle

2013-08-08T23:59:59.000Z

174

Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina  

E-Print Network [OSTI]

At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.

Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

2013-01-01T23:59:59.000Z

175

Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations  

SciTech Connect (OSTI)

The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

2014-10-15T23:59:59.000Z

176

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

177

Using LIDAR in Highway Rock Cuts Norbert H. Maerz, Ph. D., P. Eng,  

E-Print Network [OSTI]

the data needed to begin the process of modeling the rock raveling process. INTRODUCTION LIDAR damage, injury, and even death. Highways impeded by even small spills of rock material by blasting techniques to facilitate the highway construction. A constant danger to the motoring public

Maerz, Norbert H.

178

Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar  

E-Print Network [OSTI]

Measuring forest structure and biomass in New England forest stands using Echidna ground Accepted 12 March 2010 Available online 14 May 2011 Keywords: Ground-based lidar Forest structure Biomass biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest

Ni-Meister, Wenge

179

Master Thesis: Dual-Doppler technique applied to scanning lidars for the characterization of  

E-Print Network [OSTI]

of single wind turbines for the validation or tuning of wake models [1]. Recent full-field campaigns showed the opportunity to apply ground based scanning lidar or radar measurements to evaluate the wind field in the wake the correlated wind field. The scope of this master thesis is to study the interaction of wakes on the basis

Peinke, Joachim

180

LIDAR measurements of wind turbine wake dyn_amics and comparison with an engineering model  

E-Print Network [OSTI]

LIDAR measurements of wind turbine wake dyn_amics and comparison with an engineering model 1 dynamics, lIre performed at four diameters behind a 95 kW wind turbine. The wake 111eaeasurement technique allows esti111ation of qUClsiinstantancou~ two dimensional wind fields in an area

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths  

E-Print Network [OSTI]

A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics and geodesic paths, J. Geophys. Res., 115, F01002, doi:10.1029/2009JF001254. 1. Introduction [2] The detection

Foufoula-Georgiou, Efi

182

LIDAR OBSERVATIONS AND COMPARISON WITH NUMERICAL SIMULATION OF A LAKE MICHIGAN LAND BREEZE FRONT  

E-Print Network [OSTI]

of the Lake-Induced Convection Experiments (Lake-ICE), on December 21, 1997 the University of Wisconsin VolumeLIDAR OBSERVATIONS AND COMPARISON WITH NUMERICAL SIMULATION OF A LAKE MICHIGAN LAND BREEZE FRONT G circulation over Lake Michigan. Backscatter returns revealed a steady offshore flow extending 1.5 to 4 km

Eloranta, Edwin W.

183

Improved forecasts of extreme weather events by future space borne Doppler wind lidar  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a prioriImproved forecasts of extreme weather events by future space borne Doppler wind lidar Gert

Marseille, Gert-Jan

184

Topographic accuracy assessment of bare earth lidar-derived unstructured meshes Matthew V. Bilskie  

E-Print Network [OSTI]

: Shallow water equations Unstructured mesh Lidar DEM Storm surge Accuracy a b s t r a c t This study water equations model. A methodology is developed to compute root mean square error (RMSE) and the 95th, urban regions, etc.) and have coarse mesh resolution in areas outside the focus region (e.g. deep water

Central Florida, University of

185

Metal uorescence lidar (light detection and ranging) and the middle atmosphere  

E-Print Network [OSTI]

lidar takes advantage of the naturally occurring sodium atoms between 80 and 110 km above sea level (the though it is exposed to constant solar radiation. The hope of explaining a region strongly coupled as the `-pause' of the layer below them (see ®gure 1). Radiative absorption and emission are dominating eects

186

Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike  

E-Print Network [OSTI]

Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

187

Remote sensing the wind using Lidars and Sodars Ioannis Antoniou (1)  

E-Print Network [OSTI]

of the met masts increases rapidly with height. The evolution of new multi-MW wind turbines has resulted), as met towers increase in height, increases rapidly. The second reason is the measurement of the windRemote sensing the wind using Lidars and Sodars Ioannis Antoniou (1) , Mike Courtney(1) , Hans E

188

Impact Assessment of Simulated Doppler Wind Lidars with a Multivariate Variational Assimilation in the Tropics  

E-Print Network [OSTI]

forecast errors of the European Centre for Medium-Range Weather Forecasts (ECMWF) model. Tropical mass­windImpact Assessment of Simulated Doppler Wind Lidars with a Multivariate Variational Assimilation, De Bilt, Netherlands CHRISTOPHE ACCADIA AND PETER SCHL�SSEL European Organisation

Stoffelen, Ad

189

Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration  

SciTech Connect (OSTI)

New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

Rodney Frehlich

2012-10-30T23:59:59.000Z

190

Master thesis: "Validation of wake-simulation models based on long-range lidar measurements."  

E-Print Network [OSTI]

REpower 6M wind turbines with rotor blades of different designs installed in the Ellhöft/Westre wind farm developed by the wind turbine manufacturer. Work plan 2011 2012 Task 11 12 01 02 03 04 05 06 07 08 09 10 Figure 1: Simulation of lidar measurements in the wake of a wind turbine using a LES generated wind field

Peinke, Joachim

191

Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data  

SciTech Connect (OSTI)

Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

Danny L. Anderson

2012-05-01T23:59:59.000Z

192

Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systems  

E-Print Network [OSTI]

LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatiallyexplicit mapping of forest characteristics, such as canopy height and Leaf Area Index...

Zhao, Kaiguang

2009-05-15T23:59:59.000Z

193

Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system  

DOE Patents [OSTI]

A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

Schmitt, Randal L. (Tijeras, NM); Henson, Tammy D. (Albuquerque, NM); Krumel, Leslie J. (Cedar Crest, NM); Hargis, Jr., Philip J. (Albuquerque, NM)

2006-06-20T23:59:59.000Z

194

Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)  

SciTech Connect (OSTI)

Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

Fleming, P.; Scholbrock, A.; Wright, A.

2014-11-01T23:59:59.000Z

195

HiRes camera and LIDAR ranging system for the Clementine mission  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory developed a space-qualified High Resolution (HiRes) imaging LIDAR (Light Detection And Ranging) system for use on the DoD Clementine mission. The Clementine mission provided more than 1.7 million images of the moon, earth, and stars, including the first ever complete systematic surface mapping of the moon from the ultra-violet to near-infrared spectral regions. This article describes the Clementine HiRes/LIDAR system, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. The LIDAR receiver system consists of a High Resolution (HiRes) imaging channel which incorporates an intensified multi-spectral visible camera combined with a Laser ranging channel which uses an avalanche photo-diode for laser pulse detection and timing. The receiver was bore sighted to a light-weight McDonnell-Douglas diode-pumped ND:YAG laser transmitter that emmitted 1.06 {micro}m wavelength pulses of 200 mJ/pulse and 10 ns pulse-width, The LIDAR receiver uses a common F/9.5 Cassegrain telescope assembly. The optical path of the telescope is split using a color-separating beamsplitter. The imaging channel incorporates a filter wheel assembly which spectrally selects the light which is imaged onto a custom 12 mm gated image intensifier fiber-optically-coupled into a 384 x 276 pixel frame transfer CCD FPA. The image intensifier was spectrally sensitive over the 0.4 to 0.8 {micro}m wavelength region. The six-position filter wheel contained 4 narrow spectral filters, one broadband and one blocking filter. At periselene (400 km) the HiRes/LIDAR imaged a 2.8 km swath width at 20-meter resolution. The LIDAR function detected differential signal return with a 40-meter range accuracy, with a maximum range capability of 640 km, limited by the bit counter in the range return counting clock.

Ledebuhr, A.G.; Kordas, J.F.; Lewis, I.T. [and others

1995-04-01T23:59:59.000Z

196

OAK 270 - The use of Lidar/radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds  

SciTech Connect (OSTI)

OAK 270 - The use of Lidar/Radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds

C.M.R. Platt; R.T. Austin; S.A. Young; and G.L. Stephens

2002-12-13T23:59:59.000Z

197

Raman Lidar Profiles Best Estimate Value-Added Product Technical Report  

SciTech Connect (OSTI)

The ARM Raman lidars are semi-autonomous ground-based systems that transmit at a wavelength of 355 nm with 300 mJ, {approx}5 ns pulses, and a pulse repetition frequency of 30Hz. Signals from the various detection channels are processed to produce time- and height-resolved estimates of several geophysical quantities, such as water vapor mixing ratio, relative humidity, aerosol scattering ratio, backscatter, optical depth, extinction, and depolarization ratio. Data processing is currently handled by a suite of six value-added product (VAP) processes. Collectively, these processes are known as the Raman Lidar Profiles VAP (RLPROF). The top-level best-estimate (BE) VAP process was introduced in order to bring together the most relevant information from the intermediate-level VAPs. As such, the BE process represents the final stage in data processing for the Raman lidar. Its principal function is to extract the primary variables from each of the intermediate-level VAPs, perform additional quality control, and combine all of this information into a single output file for the end-user. The focus of this document is to describe the processing performed by the BE VAP process.

Newson, R

2012-01-18T23:59:59.000Z

198

IDENTIFYING SUGARS P.Du, A.Glazyrina, O.Gutirrez-Navarro, A.Howse, A.Moorthy, I.Vukievi, Mentor  

E-Print Network [OSTI]

IDENTIFYING SUGARS By P.Du, A.Glazyrina, O.Gutiérrez-Navarro, A.Howse, A.Moorthy, I.Vukievi, Mentor-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;Team 4: Identifying Sugars P.Du , A.Glazyrina , O.Gutiérrez-Navarro

199

Meas. Sci. Technol. 10 (1999) 11781184. Printed in the UK PII: S0957-0233(99)06575-3 Submarine lidar for seafloor  

E-Print Network [OSTI]

for the detection of dissolved and sunken pollutants. One of these instruments is the submarine lidar, combining: fluorescence lidar, range-gating video, seafloor monitoring 1. Submarine sensor network for pollution of Oldenburg, Laser Remote Sensing Group), · an acoustic sensor for measuring the acoustic impedance

Oldenburg, Carl von Ossietzky Universität

200

RL·721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously...

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RL-721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

Washington River Protection Solutions LLC (WRPS) will relocate buildings on & near the Hanford Site during Calendar Year 2012. WRPS will perform all activities in accordance...

202

Document ID Number: RL-721  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDo New55 FederalChapter

203

I04RL003.pdf  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel CellandVehicles & Fuelscents per kWh - Without2/065

204

RL-721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

SCREENING FORM DOECX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time...

205

Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar  

SciTech Connect (OSTI)

The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

Hostetler, Chris; Ferrare, Richard

2013-02-14T23:59:59.000Z

206

ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/InfraredProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD)

207

Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy  

SciTech Connect (OSTI)

This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

Sheen, David M.; Aker, Pam M.

2007-09-19T23:59:59.000Z

208

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect (OSTI)

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01T23:59:59.000Z

209

Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint  

SciTech Connect (OSTI)

This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

2014-12-01T23:59:59.000Z

210

SIMULTANEOUS AND COMMON-VOLUME LIDAR OBSERVATIONS OF THE MESOSPHERIC FE AND NA LAYERS AT BOULDER (40N, 105W)  

E-Print Network [OSTI]

inputs can reproduce some large-scale characteristics but are challenged in simulating small- scale the general structures more precisely as well as simulating the challenging small scale features. In Aug. The Fe Boltzmann temperature lidar was under upgrading and validating at Boulder before its deployment

Chu, Xinzhao

211

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

212

Sedimentological Reinterpretation of Surficial Unconsolidated Debris Flows and Stream Deposits of the Southern Flanks of Grand Mesa, CO: An Integrated LiDAR Approach  

E-Print Network [OSTI]

. This study developed a sedimentological description and interpretation of these deposits and tested the capabilities of terrestrial LiDAR (Light Detection and Ranging) for use in sedimentological studies. This research addressed the origin of the deposits...

Blakeley, Mitchell W.

2014-08-08T23:59:59.000Z

213

O'Donnell S and Jeanne R.L. 2002. The nest as fortress: defensive behavior of Polybia emaciata, a mud-nesting eusocial wasp. 5 pp. Journal of Insect Science, 2:3. Available online: insectscience.org/2.3  

E-Print Network [OSTI]

O'Donnell S and Jeanne R.L. 2002. The nest as fortress: defensive behavior of Polybia emaciata, a mud-nesting eusocial wasp. 5 pp. Journal of Insect Science, 2:3. Available online: insectscience.org/2.3 Journal of Insect Science insectscience.org The nest as fortress: defensive behavior of Polybia emaciata

O'Donnell, Sean

214

Comparing Pulsed Doppler LIDAR with SODAR and Direct Measurements for Wind Assessment  

SciTech Connect (OSTI)

There is a pressing need for good wind-speed measurements at greater and greater heights to assess the availability of the resource in terms of power production and to identify any frequently occurring atmospheric structural characteristics that may create turbulence that impacts the operational reliability and lifetime of wind turbines and their components. In this paper, we summarize the results of a short study that compares the relative accuracies of wind speeds derived from a high-resolution pulsed Doppler LIDAR operated by the National Oceanic and Atmospheric Administration (NOAA) and a midrange Doppler SODAR with wind speeds measured by four levels of tower-based sonic anemometry up to a height of 116 m.

Kelley, N. D.; Jonkman, B. J.; Scott, G. N.; Pichugina, Y. L.

2007-07-01T23:59:59.000Z

215

Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8° S; 55.5° E): climatology and comparison study  

E-Print Network [OSTI]

climatology of the mid- dle atmosphere from long-termLIDAR measurements at mid- dle and low latitudes, J.Over the southern tropics, mid- dle atmosphere temperature

Sivakumar, V.; Vishnu Prasanth, P.; Kishore, P.; Bencherif, H.; Keckhut, P.

2011-01-01T23:59:59.000Z

216

Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387  

SciTech Connect (OSTI)

The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)

Lagos, L. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami FL 33174 (United States)

2013-07-01T23:59:59.000Z

217

University of Wisconsin High Spectral Lidar operations during MPACE: Examples of AHSRL-MMCR particle size retrievals E.W.Eloranta, I.A.Razenkov, J.P.Garcia, and J.P.Hedrick  

E-Print Network [OSTI]

where valid lidar and radar measurements were obtained. 6) Lidar and radar data were averaged and altitude bins.Measurements within 6 dBZ of the radar's minimum detectable reflectivity are removed along signal-to-noise level can also be specified to exclude noisy data points AHSRL data was used extensively

Eloranta, Edwin W.

218

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect (OSTI)

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

219

A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska  

SciTech Connect (OSTI)

This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

Gangodagamage, Chandana; Wullschleger, Stan

2014-07-03T23:59:59.000Z

220

A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

Gangodagamage, Chandana; Wullschleger, Stan

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Veterans Mentoring Program  

Broader source: Energy.gov [DOE]

The Office of Learning and Workforce Development coordinates applications for all DOE Federal Employees.

222

2013 -2014 FOR MENTORS  

E-Print Network [OSTI]

Write a Resume Chronological Resume Sample Functional Resume Sample Dress for an Interview Interview

Rose, Michael R.

223

Mentoring | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy Storage Energy StoragePolicy,Services » Learning

224

A joint study of the lower ionosphere by radar, lidar, and spectrometer  

SciTech Connect (OSTI)

The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers.

Zhou, Qihou.

1991-01-01T23:59:59.000Z

225

Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures  

SciTech Connect (OSTI)

Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA’s High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

2008-08-01T23:59:59.000Z

226

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and  

E-Print Network [OSTI]

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

Hogan, Robin

227

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data  

E-Print Network [OSTI]

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

Stoffelen, Ad

228

A comparison of automated land cover/use classification methods for a Texas bottomland hardwood system using lidar, spot-5, and ancillary data  

E-Print Network [OSTI]

decisions affecting these disappearing systems. SPOT-5 imagery from 2005 was combined with Light Detection and Ranging (LiDAR) data from 2006 and several ancillary datasets to map a portion of the bottomland hardwood system found in the Sulphur River Basin...

Vernon, Zachary Isaac

2009-05-15T23:59:59.000Z

229

SilviLaser 2011, Oct. 16-19, 2011 Hobart, Australia Towards automated and operational forest inventories with T-Lidar  

E-Print Network [OSTI]

inventories with T-Lidar A. Othmani1 , A. Piboule2 , M. Krebs3 , C. Stolz1 and L.F.C. Lew Yan Voon1 1 Cluny, France, michael.krebs@ensam.eu Keywords: terrestrial laser scanning, forest inventory, tree detection, DBH. Abstract Forest inventory automation has become a major issue in forestry. The complexity

Paris-Sud XI, Université de

230

LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011  

SciTech Connect (OSTI)

This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

Dunne, F.; Simley, E.; Pao, L.Y.

2011-10-01T23:59:59.000Z

231

Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX  

E-Print Network [OSTI]

The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the Houston area...

Smith, Christina Lynn

2005-08-29T23:59:59.000Z

232

Section Rl.3 (page R27)  

E-Print Network [OSTI]

Toys/Video Games: $2249.60 million _. Consumer electronics: $2024.64 million. Computer hardware/peripherals: $l687.20 million. Video/DVD: $l574.72 million.

233

DOE/RL-2011-93  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the end of 2015. * Utilize shielded canisters to accelerate transportation and disposal of remote-handled TRU wastes. * Process and dispose of Large Box TRU, utilizing the...

234

DOE/RL-2013-02  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

backfill, grading, and revegetation. Waste Operations Includes the transportation, disposal, and treatment (if required) of waste from the River Corridor Cleanup activities, as...

235

DOE/RL-2012-13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the end of 2015. * Utilize shielded canisters to accelerate transportation and disposal of remote-handled TRU wastes. * Process and dispose of Large Box TRU, utilizing the...

236

DOE/RL-94-150  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

delisting, new management guidelines for bald eagles were published by the U.S. Fish and Wildlife Service (USFWS) to advise landowners on how to comply with the regulations...

237

Cameron.Hardy@rl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N- Energy February 8, 2010 Cameron3,

238

Cameron.Hardy@rl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N- Energy February 8, 2010

239

Microsoft Word - RL-09-0015.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O N N14,

240

DOE/RL-2010-35  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot Docs0-35

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE/RL-2010-89  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot

242

DOE/RL-2011-116  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot116 Revision 1

243

DOE/RL-2011-27  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot116 Revision 127

244

DOE/RL-2013-53  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot116 Revision

245

DOE/RL-94-150  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382

246

DOE/RL-96-32  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1 Hanford Site

247

DOE/RL-96-68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1 Hanford Site1

248

DOE/RL-96-68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1 Hanford Site12

249

DOE/RL-96-68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1 Hanford

250

DOE/RL-96-68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1 Hanford4

251

DOE - RL Contracts/Procurements - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNA GridironDNA-DirectedMedia Contact:

252

DOE/RL-98-72  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of EnergyMay 17, 2012Energy14313

253

ARM - Campaign Instrument - rl-gsfc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to hear from you! Send usgovInstrumentsrl Comments? We

254

IY:ILrnr IR-rl?l'  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH: l ._I * .z-y:c*f1

255

RL's Fiscal Year 2013 Fee Evaluation Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake an

256

DOE RL Contracting Officer Representatives - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContactWebsiteDOE Progress Review

257

DOE RL Contracting Officers - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContactWebsiteDOE Progress

258

Michael_J_Turner@rl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichael M. May, 1970 TheStewart! NERSCMichael

259

Title: DOE-RL Groundwater Sampling SIA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O NAmes Blue Alert-PMTO

260

Aufgabe 3-17: Ein 2 m-Tank enthlt zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist ber ein Ventil mit einer Leitung verbunden.  

E-Print Network [OSTI]

�bung 6: Aufgabe 3-17: Ein 2 m³-Tank enthält zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22°C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist über ein Ventil mit einer Leitung verbunden. In dieser. Die Luft strömt solange in den Tank, bis im Tank derselbe Druck herrscht wie in der Leitung. Dann wird

Peters, Norbert

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures  

SciTech Connect (OSTI)

Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results for the 10- and 15-min averaging periods. For these cases, correlation coefficients exceeded 0.9. As a part of the analysis, Eulerian integral time scales ({tau}) were estimated for the four high-wind nights. Time series of {tau} through each night indicated erratic behavior consistent with the nonstationarity. Histograms of {tau} showed a mode at 4-5 s, but frequent occurrences of larger {tau} values, mostly between 10 and 100 s.

Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

2008-08-01T23:59:59.000Z

262

All Sky Camera, LIDAR and Electric Field Meter: auxiliary instruments for the ASTRI SST-2M prototype  

E-Print Network [OSTI]

ASTRI SST-2M is the end-to-end prototype telescope of the Italian National Institute of Astro- physics, INAF, designed to investigate the 10-100 TeV band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M telescope has been installed in Italy in September 2014, at the INAF ob- serving station located at Serra La Nave on Mount Etna. The telescope is foreseen to be completed and fully operative in spring 2015 including auxiliary instrumentation needed to support both operations and data anal- ysis. In this contribution we present the current status of a sub-set of the auxiliary instruments that are being used at the Serra La Nave site, namely an All Sky Camera, an Electric Field Meter and a Raman Lidar devoted, together with further instrumentation, to the monitoring of the atmospheric and environmental conditions. The data analysis techniques under development for these instruments could be applied at the CTA sites, where similar auxiliary instrumentation will be installed.

Leto, Giuseppe; Bellassai, Giancarlo; Bruno, Pietro; Maccarone, Maria Concetta; Martinetti, Eugenio

2015-01-01T23:59:59.000Z

263

Microsoft PowerPoint - DOE presentation RL Site_DOE-RL.pptx [Read-Only]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland Operations Office Site Report Survey Purpose * DOE

264

Airborne Multiwavelength High-Spectral-Resolution Lidar (HSRL-2) Observations During TCAP 2012: Vertical Proles of Optical and Microphysical Properties of a Smoke/Urban Haze Plume Over the Northeastern Coast of the US  

SciTech Connect (OSTI)

We present rst measurements with the rst airborne multiwavelength High-Spectral Resolution Lidar (HSRL-2), developed by NASA Langley Research Center. The instrument was operated during the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed out ow of urban haze and fresh biomass burning smoke from the East Coast of the US out over the West Atlantic Ocean. Lidar ratios at 355 and 532 nm were ... sr indicating moderately absorbing aerosols. Extinctionrelated Angstrom exponents were 1.5{2 pointing at comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieves particle e*ective radii of approximately 0.2 *m, which is in agreement with the large Angstrom exponents. We nd reasonable agreement to particle size parameters obtained from situ measurements carried out with the DOE G-1 aircraft that ew during the lidar observations.

Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; Burton, S. P.; Chemyakin, Eduard; Kolgotin, A.; Hair, John; Cook, A. L.; Harper, David; Rogers, R. R.; Hare, Rich; Cleckner, Craig; Obland, Michael; Tomlinson, Jason M.; Berg, Larry K.; Schmid, Beat

2014-10-10T23:59:59.000Z

265

STEM Mentoring Café- Engaging Young Women in an Authentic Mentoring...  

Office of Environmental Management (EM)

the critical shortage of STEM workers (especially females) on the far end of the pipeline to educators of all levels on the near end of the pipeline, there needs to be a...

266

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory  

SciTech Connect (OSTI)

Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

2005-03-18T23:59:59.000Z

267

ENLACE Mentor Project **.......................................................... Student Affairs  

E-Print Network [OSTI]

) .................... Minority Access to Research Careers (MARC) .................................. Minority Health International Research Training (MHIRT). Research Experience for Undergraduates (REU) .............................. CSUF

de Lijser, Peter

268

DOE MENTOR-PROTÉGÉ  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOE Lessons Learned InformationCooperativegoal ,

269

DOE MENTOR-PROTÉGÉ  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve |Department of

270

Mentoring Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -ofMarc MorialMegan Slack - DeputyAsBefore

271

Mentoring Resources | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy Storage Energy StoragePolicy,Services » Learning

272

MENTOR-BASED EFFORT TO ADVANCE IMPLEMENTATION OF PREFERRED MANAGEMENT PRACTICES (PMPS) FOR OIL PRODUCERS IN SOUTH MIDCONTINENT (OKLAHOMA/ARKANSAS) AND WEST COAST (CALIFORNIA) REGIONS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) and cooperating Regional Lead Organizations (RLOs) in its South Midcontinent (Oklahoma Geological Survey, Norman, Oklahoma) and West Coast (University of Southern California, Los Angeles, California) regions conducted a ''Mentor-Based Effort to Advance Implementation of Preferred Management Practices (PMPs) For Oil Producers'' (DE-FC26-01BC15272) under an award in Phase I of Department of Energy's (DOE's) PUMP (Preferred Upstream Management Practices) program. The project's objective was to enable producers in California, Oklahoma and Arkansas to increase oil production, moderating or potentially reversing production declines and extending the life of marginal wells in the near term. PTTC identified the primary constraints inhibiting oil production through surveys and PUMPer direct contacts in both regions. The leading common constraint was excess produced water and associated factors. Approaches for addressing this common constraint were tailored for each region. For Oklahoma and Arkansas, the South Midcontinent Region developed a concise manual titled ''Produced Water And Associated Issues'' that led to multiple workshops across the region, plus workshops in several other regions. In California, the West Coast Region leveraged PUMP funding to receive an award from the California Energy Commission for $300,000 to systematically evaluate water control solutions for the California geological environment. Products include still-developing remedial action templates to help producers identify underlying causes of excess water production and screen appropriate solutions. Limited field demonstrations are being implemented to build producer confidence in water control technologies. Minor leverage was also gained by providing technology transfer support to a Global Energy Partners project that demonstrated affordable approaches for reducing power consumption. PTTC leveraged PUMP project results nationally through expanding workshops to other regions, providing coverage in its newsletter, through columns and case studies in trade journals, and through coordinating presentations at association and professional society meetings. Combined, there were more than 800 participants. Applying ''application percentages'' from PTTC's total technology transfer program, more than 250 participants are likely to be applying technologies (39% of industry participants). Polymer gel water-shutoff (WSO) treatments and wellbore management were a focus in the Midcontinent area. A major provider of polymer gel WSO treatments has experienced a significant increase in treatment activity in Oklahoma, some of which can be logically attributed to this project. A provider of polylined tubing, a product related to wellbore management, has noted a 280% increase in their independent customer base and opening of a new market due to their involvement in PUMP-spinoff technology transfer. Detailed case studies on polymer gel WSO treatments and wellbore management, along with more global analyses, demonstrate the economic value of these technologies to producers. Among the many information sources that producers consider when applying technology, PTTC knows it is an important source in these technology areas.

Donald F. Duttlinger; E. Lance Cole

2004-12-01T23:59:59.000Z

273

Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties  

SciTech Connect (OSTI)

The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

Wang, Zhien

2010-06-29T23:59:59.000Z

274

High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications  

SciTech Connect (OSTI)

This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004. More specifically, our major achievements for ARM include 1. Development of the Atmospheric Emitted Radiance Interferometer (AERI) to function like a satellite on the ground for ARM, providing a steady stream of accurately calibrated spectral radiances for Science Team clear sky and cloud applications (Knuteson et al. 2004a), 2. Detailed radiometric calibration and characterization of AERI radiances, with uncertainty estimates established from complete error analyses and proven by inter-comparison tests (Knuteson et al. 2004b), 3. AERI data quality assessment and maintenance over the extended time frames needed to support ARM (Dedecker et al., 2005) 4. Key role in the radiative transfer model improvements from the AERI/LBLRTM QME (Turner et al. 2004) and AERI-ER especially from the SHEBA experiment (Tobin et al. 1999), 5. Contributed scientific and programmatic leadership leading to significant water vapor accuracy improvements and uncertainty assessments for the low to mid troposphere (Turner et al. 2003a, Revercomb et al. 2003), 6. Leadership of the ARM assessment of the accuracy of water vapor observations from radiosondes, Raman Lidar and in situ aircraft observations in the upper troposphere and lower stratosphere (Tobin et al. 2002, Ferrare et al. 2004), 7. New techniques for characterizing clouds from AERI (DeSlover et al. 1999, Turner 2003b, Turner et al. 2003b), 8. Initial design and development of the Scanning-HIS aircraft instrument and application to ARM UAV Program missions (Revercomb et al. 2005), and 9. Coordinated efforts leading to the use of ARM observations as a key validation tool for the high resolution Atmospheric IR Sounder on the NASA Aqua platform (Tobin et al. 2005a) 10. Performed ARM site and global clear sky radiative closure studies that shows closure of top-of-atmosphere flux at the level of ~1 W/m2 (Moy et al 2008 and Section 3 of this appendix) 11. Performed studies to characterize SGP site cirrus cloud property retrievals and assess impacts on computed fluxes and heating rate profiles (Borg et al. 2008 and Section 2 of this appendix).

Henry Revercomb, David Tobin, Robert Knuteson, Lori Borg, Leslie Moy

2009-06-17T23:59:59.000Z

275

ARM - Measurement - Lidar polarization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAciddropletgovMeasurementsIsotope

276

Raman Lidar Receives Improvements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program2Raftopoulos takes

277

12/29/13, 6:55 PMHow Do I Find Money for Graduate School? | e-Mentoring Network Page 1 of 3http://blogs.ams.org/mathmentoringnetwork/2013/09/15/how-do-i-find-money-for-graduate-school/  

E-Print Network [OSTI]

12/29/13, 6:55 PMHow Do I Find Money for Graduate School? | e-Mentoring Network Page 1 of 3http://blogs.ams.org/mathmentoringnetwork/2013/09/15/how-do-i-find-money-for-graduate-school/ How Do I Find Money for Graduate School? Posted you'll need more money, I suggest applying for external fellowships. There are several sources

Tomforde, Mark

278

QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon  

SciTech Connect (OSTI)

Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

2012-04-01T23:59:59.000Z

279

Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission  

E-Print Network [OSTI]

The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the ret...

Sáez-Cano, G; del Peral, L; Neronov, A; Wada, S; Frías, M D Rodríguez

2015-01-01T23:59:59.000Z

280

RL-721 Document ID Number: REV4 NEPA REVIEW...  

Broader source: Energy.gov (indexed) [DOE]

Agreement (DOERL-96-77), Historic Buildings Treatment Plan (DOERL-97-56), Cultural Resources Management Plan (DOERL-98-10), and other applicable requirements. illorkers...

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rl*-M-2413 LIST OF SELECTED PUBLICATIONS 1982  

E-Print Network [OSTI]

Cour, A Model of the Ringhals 3 PWR Power Plant. In: 10th IMACS World Congress on System Simulation. Lagerstrom, B. Lehnert, B. P. Peregud, A. Sillesen, and A. A. Semenov, Use of Thermal Imaging in Experiments

282

Environmental Management Performance Report to DOE-RL December 2000  

SciTech Connect (OSTI)

This section provides an executive level summary of the performance information covered in this report and is intended to bring to Management's attention that information considered to be most noteworthy. All cost, schedule, milestone commitments, performance measures, and safety data is current as of October 31. Accomplishments, Issues and Integration items are current as of November 17 unless otherwise noted. The section begins with a description of notable accomplishments that have occurred since the last report and are considered to have made the greatest contribution toward safe, timely, and cost-effective clean up. Following the accomplishment section is an overall fiscal year-to-date summary analysis addressing cost, schedule, and milestone performance. Overviews of safety ensue. The next segment of the Executive Summary, entitled Critical Issues, is designed to identify the high-level challenges to achieving cleanup progress. The next section includes FY 2001 EM Management Commitment High Visibility Project Milestones and Critical Few Performance Measures. The Key Integration Activities section follows next, highlighting PHMC activities that cross contractor boundaries and demonstrate the shared value of partnering with other Site entities to accomplish the work. Concluding the Executive Summary, a forward-looking synopsis of Upcoming Planned Key Events is provided.

EDER, D.M.

2000-12-01T23:59:59.000Z

283

Programming S.L. Graham, R.L. Rivest*  

E-Print Network [OSTI]

an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences, or the entire work requires specific permission as does republication, or systematic or multiple reproduction

Rivest, Ronald L.

284

Business Manangement System(BMS), RL-2008/Project Hanford Management  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout »

285

Investigation Report: I04RL003 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment ofEnergyDepartmentJune 1, 2004

286

2010 Annual Planning Summary for Richland Operations Office (RL) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule 4Department ofDepartment of Energy

287

2011 Annual Planning Summary for Richland Operations Office (RL) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | Department ofofofJunction (See

288

SH & RL Handyperson advert September 2014 RESIDENCE HANDYPERSON (2 POSTS)  

E-Print Network [OSTI]

with maintenance standard operating procedures · Reporting and recording of residence maintenance issues maintenance within the building. Requirements include: Grade 10/relevant equivalent qualification and planned maintenance at residence level · Accountability for handling and securing tools in compliance

Jarrett, Thomas H.

289

Microsoft Word - RL14788-Section_C_337.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O N N14,HBC

290

Microsoft Word - RL14788-Section_D.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O N

291

Microsoft Word - RL14788-Section_F_197.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NF

292

Microsoft Word - RL14788-Section_I_302.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NFI

293

Microsoft PowerPoint - News Flash_Hanford-RL_091809  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.Online CA: EnablingJuly 30, 2009

294

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See Block 16C 101 6

295

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See Block 16C 101

296

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See Block 16C

297

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See Block

298

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See Block10EM000030

299

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See

300

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See Block 16C

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See Block 16C

302

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See Block

303

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See Block8

304

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See Block8Not

305

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 See

306

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534 Seeattached

307

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534

308

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See Block

309

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See

310

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See2

311

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See21081

312

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See210813

313

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169 See2108134

314

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169

315

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169Not

316

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585 See534169NotReport

317

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585

318

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #11 ROCKVILLE

319

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #11

320

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #1103 See

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #1103 See12

322

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #1103 See12181

323

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #1103

324

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report #1103Not

325

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan 31,3585Report

326

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 Jan

327

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE MD

328

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE MD5

329

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE MD5Not

330

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE

331

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE6

332

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE68

333

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE68 17

334

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE68 1719

335

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14 ROCKVILLE68

336

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14

337

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14ROCKVILLE MD

338

DE-AC06-04RL14383  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14ROCKVILLE MDSee

339

DE-AC06-97RL13184  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/13 JanReport #14ROCKVILLE

340

Microsoft Word - 091231HanfordRL2009Highlights.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor77 PAGE OF838:UFC 2300.00Report

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Contract DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"Program andAC02-07CH11358December

342

Contract DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"Program

343

Contract DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"ProgramDecember 2011 CHPRC-2011-12,

344

Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic  

SciTech Connect (OSTI)

Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

Janet Intrieri; Mathhew Shupe

2005-01-01T23:59:59.000Z

345

Professor Pedro Castillo: Historian, Chicano Leader, Mentor  

E-Print Network [OSTI]

action. This is when Julia Armstrong was hired. 9 It was intalk about it. ” Julia Armstrong begins to push more andAn oral history with Julia Armstrong-Zwart is currently in

Castillo, Pedro; Reti, Irene

2013-01-01T23:59:59.000Z

346

STEM Internships, Fellowships, and Mentoring | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or engineers on projects related to the Fermilab research program for six weeks. The Industrial Assessment Center Program enables promising engineering students to conduct...

347

Larry Leipuner Tribute to a Mentor,  

E-Print Network [OSTI]

#12;#12;Polarimeter and Lead Glass (E735) #12;Leipuner the innovator Brookhaven water cooled version-Odd CP-Even Kaon Expert Guide: s=Strange, not Short L=Light, not Long H=Heavy due to kinematics #12;Why,P,D wave) => Need 3 amplitudes (partial wave, helicity, or transversity) · S,D wave = Parity Even, (CP Even

348

Professor Pedro Castillo: Historian, Chicano Leader, Mentor  

E-Print Network [OSTI]

Latin American affairs. This was in the Jimmy Carter years.Jimmy Carter was elected from ’76 to ’80, and then he wasis James, Jim—they call him Jimmy, anyway. He’s making the

Castillo, Pedro; Reti, Irene

2013-01-01T23:59:59.000Z

349

Professor Pedro Castillo: Historian, Chicano Leader, Mentor  

E-Print Network [OSTI]

does film, but he went to film and digital media. And thenChicano in film and digital media, Vasquez, who does more ofpart of film and digital media. He’s in San Francisco and he

Castillo, Pedro; Reti, Irene

2013-01-01T23:59:59.000Z

350

Mentor-Protege Application | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -ofMarc MorialMegan Slack - DeputyAsBefore you

351

Divisional Mentoring Program Contacts | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tpeterka@mcs.anl.gov MSD Peter Zapol zapol@anl.gov NE Florent Heidet fheidet@anl.gov PHY** Robert Janssens janssens@sun0.phy.anl.gov PHY** Barbara Fletcher fletcher@anl.gov XSD...

352

Internship Program Mentors | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Application deadline: November 30, 2014

353

Training, Certification, and Mentoring | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sun risesThe U.S. Department ofProject

354

Mentor, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMellette County,225Wisconsin. ItsMentarix

355

Mentor, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMellette County,225Wisconsin.

356

Instrument Mentor Monthly Summary Reporting System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface EmissivityInstrillment Development★toTethered

357

Mentor Profile Form | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20 ESTAPServicesU.SMentor Profile Form

358

Mentor, Protégé Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy Storage Energy StoragePolicy, Guidance

359

Mentoring Policies and Procedures | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy Storage Energy StoragePolicy,

360

Tools for the Mentor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and ItsXVII IncentivesTomTonyaMentee Tools

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Junior Solar Sprint - Teacher and Mentor Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershing AboutJuly13,8 Revised 8/23/01 An30

362

Monitoring and Mentoring | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docofPotomacJulyModernizing theandMonitoring

363

Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

Gangodagamage, Chandana; Wullschleger, Stan

364

Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data  

SciTech Connect (OSTI)

The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

Gangodagamage, Chandana; Wullschleger, Stan

2014-07-03T23:59:59.000Z

365

Guidelines for the Mentor Welcome to the Penn State Engineering Alumni Society Mentor Program!  

E-Print Network [OSTI]

't expect or ask students to `return the favor', by lining up football tickets or a place to stay in Happy Valley. · Understands that he/she isn't obligated to make commitments, but keeps all commitments made

Yener, Aylin

366

Conflict and quality in the mentoring relationship: the role of mentor attachment  

E-Print Network [OSTI]

of aggressive behavior. The aggressive child is on a potentially dangerous trajectory heading towards social incompetence, academic failure, substance abuse, mental health problems, and criminality (Coie, Lochman, Terry, & Hyman, 1992; Loeber, 1990; Stattin...) proposed that conditions of theat to the relationship activate the attachment system and elicit attachment behavior. Pistole (1989) suggests that conflict is a potential threat to a relationship and may be one of the vehicles through which the quality...

Alfonso, Laura Magdalena

2012-06-07T23:59:59.000Z

367

MENTOR: An Emotional Tutoring Model for Distance MENTOR's Application in the Field of Didactics of Informatics  

E-Print Network [OSTI]

of Didactics of Informatics Makis Leontidis Department of Informatics and Telecommunications, University

Kouroupetroglou, Georgios

368

An Assessment of MultiAngle Imaging SpectroRadiometer (MISR) Stereo-Derived Cloud Top Heights and cloud top winds using ground-based radar, lidar, and microwave radiometers  

SciTech Connect (OSTI)

Clouds are of tremendous importance to climate because of their direct radiative effects and because of their role in atmospheric dynamics and the hydrological cycle. The value of satellite imagery in monitoring cloud properties on a global basis can hardly be understated. One cloud property that satellites are in an advantageous position to monitor is cloud top height. Cloud top height retrievals are especially important for MISR because the derived height field is used to co-register the measured radiances. In this presentation we show the results of an ongoing comparison between ground-based millimeter-wave cloud radar and lidar measurements of cloud top and MISR stereo-derived cloud top height. This comparison is based on data from three radar systems located in the U.S Southern Great Plains (Lamont, Oklahoma), the Tropical Western Pacific (Nauru Island) and the North Slope of Alaska (Barrow, Alaska). These radars are operated as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. The MISR stereo height algorithm is performing largely as expected for most optically thick clouds. As with many satellite retrievals, the stereo-height retrieval has difficulty with optically thin clouds or ice clouds with little optical contrast near cloud top.

Marchand, Roger T.; Ackerman, Thomas P.; Moroney, C.

2007-03-17T23:59:59.000Z

369

Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites  

SciTech Connect (OSTI)

A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

Repasky, Kevin

2014-03-31T23:59:59.000Z

370

The director's mentoring project: an analysis of the experiences of mentors and proteges and the impact of mentoring on selected child care centers in San Antonio, Texas  

E-Print Network [OSTI]

The researcher examined the experiences of three directors of child care centers that had been accredited by the National Association for the Education of Young Children (NAEYC) and six directors of child care centers that had not yet reached...

Castillo, Cathleen F.

2004-09-30T23:59:59.000Z

371

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

Activities (both small and large scale) such as installing groundwater and vadose zone wells, monitoring the groundwater and vadose zones, performing groundwater tracer tests,...

372

RL-721 Document ID Number: REV3 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

If "NO," proceed to Section V. If "YES," List EA, EIS, or CERCLA Document(s) Title and Number: And then complete Section VII and provide electronic copy of InitiatorECO signed...

373

RL-721 REV4 Document ID Number: NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

of polychlorinated biphenyl (PCB)-containing items (including, but not limited to, transformers and capacitors), PCB-containing oils flushed from transformers, PCB- flushing...

374

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

valves, in-core monitoring devices, facility air filtration systems, or substation transformers or capacitors; addition of structural bracing to meet earthquake standards andor...

375

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

valves, in-core monitoring devices, facility air filtration systems, or substation transformers or capacitors; addition of structural bracing to meet earthquake standards andor...

376

RL-721 Document ID Number: REV3 NEPA REVIEW SCREENING FORM OOE...  

Broader source: Energy.gov (indexed) [DOE]

of polychlorinated biphenyl (PCB)-containing items (including, but not limited to, transformers and capacitors) , PCB-containing oils flushed from transformers, PCB- flushing...

377

Document ID Number: RL-721 REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

of polychlorinated biphenyl (PCB)-containing items (including, but not limited to, transformers and capacitors), PCB-containing oils flushed from transformers, PCB-flushing...

378

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

threatened or endangered consistent with DOERL-96-32, "Hanford Site Biological Resources Management Plan" or other applicable guidance documents and agreements. Caution shall be...

379

Document ID Number: RL-721 REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

Agreement (DOERL-96-77), Historic Buildings Treatment Plan (DOERL-97-56), Cultural Resources Management Plan (DOERL-98-10), and other applicable requirements. Workers will...

380

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

threatened or endangered consistent with DOERL-96-32, "Hanford Site Biological Resources Management Plan" or other applicable guidance documents and agreements. Caution shall be...

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RL-721 REV4 Document ID Number: NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

Agreement (DOERL-96-77), Historic Buildings Treatment Plan (DOERL-97-56), Cultural Resources Management Plan (DOERL-98-10), and other applicable requirements. Workers will...

382

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

as threatened or endangered consistent with DOERL-96-32, "Hanford Site Biological Resources Management Plan" or other applicable guidance documents and agreements. Caution...

383

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

and removal of electricity transmission control and monitoring devices for grid demand and response, communication systems, data processing equipment, and similar...

384

Mission Support Contract Section J Contract No. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-1 ATTACHMENT J-1 ABBREVIATIONS AND ACRONYM LIST % percent ACO Administrative Contracting Officer ACREM Accountable classified removable electronic media AEA Atomic Energy Act of...

385

Microsoft Word - RL14788-Section_J-1 Acronym.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIST % percent 3013 DOE-STD-3013-2004 AA Authorization Agreements ACO Administrative Contracting Officer ADR Alternative Dispute Resolution AEA Atomic Energy Act of 1954 ANSI...

386

Microsoft Word - RL14788-Section_B_388 Conformed.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for accomplishing the identified work. This Contract applies performance-based contracting approaches and expects the Contractor to implement techniques that emphasize safe,...

387

Microsoft Word - RL14788-Section_J-02_373.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification 373 J.2-7 Document Number Title Rev 0) CRD O 422.1 (Supp Rev 0) Conduct of Operations CRD O 425.1D (Supp Rev 0) Verification of Readiness to Start Up or Restart...

388

Contract Number: DE-AC05-76RL01830 Modification M688  

E-Print Network [OSTI]

FACILITIES CRD O 422.1 CONDUCT OF OPERATIONS CRD O 425.1D VERIFICATION OF READINESS TO STARTUP OR RESTART

389

Microsoft Word - RL14788-Section_J-03 Service Providers Mod 337...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training 1. Hazardous Waste Operations and Emergency Response (HAZWOPER) Training 2. Lockouttagout of hazardous energy 3. Permit required confined space entry 4. Chronic...

390

Document ID Number: RL-721 REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

use of the office or trailer. Existing utilities (water lines, communications, power, fire suppression, and sewage systems) will be connected to the offices and trailers;...

391

RL-721 Document ID Number: REV2 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

prescribed burning, dis king, andor blading. Prescribed burning will be conducted by the Hanford Fire Department and only in previously disturbed areas. Similarly, dis king and...

392

Document ID Number: RL-721 REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

Management and Emergency Response Training Complex (HAMMER), Patrol Training Academy, and Hanford Fire Departments. Training services include those in MSA contract...

393

RL-721 REV3 I. Project Title: NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

will place facilities in a cold, dark, and environmentally safe condition on & near the Hanford Site during Calendar Year 2012. WRPS will perform all activities in accordance...

394

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

construction, and operation of support buildings and support structures on and near the Hanford Site in accordance with the categorical exclusion (CX) referenced in 10 CFR 1021,...

395

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

Management and Emergency Response Training Complex (HAMMER), Patrol Training Academy, Hanford Fire Departments, and other approved locations on the Hanford Site. Training...

396

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

such as lathes, mills, pumps, and presses. Servicing plumbing, electrical, communication, fire protection, and other systems in and adjacent to facilities. Replacing...

397

RL·721 Do~)nt ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

Company (PRC) will conduct routine maintenance and custodial services on and near the Hanford Site in accordance with the categorical exclusion (CX) referenced in 10 CF'R 1021,...

398

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

services and routine maintenance activities; security (such as security posts); fire protection; small-scale fabrication (such as machine shop activities), assembly, and...

399

RL-721 Document ID Number: REV3 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

services on buildings, structures, infrastructure and equipment on and near the Hanford Site during Calendar Year 2012. WRPS will perform all routine maintenance...

400

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

alarm and surveillance systems, control systems to provide automatic shutdown, fire detection and protection systems, water consumption monitors and flow control...

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

Support Contract where MSA is the assigned contractor or provides services to other Hanford contractors. Routine maintenance and custodial services discussed in...

402

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

use of the office or trailer. Existing utilities (water lines, communications, power, fire suppression, and sewage systems) will be connected to the offices and trailers;...

403

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

services and routine maintenance activities; security (such as security posts); fire protection; small-scale fabrication (such as machine shop activities), assembly, and...

404

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

alarm and surveillance systems, control systems to provide automatic shutdown, fire detection and protection systems, water consumption monitors and flow control...

405

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

installed utility poles; (h) Repair of road embankments; (i) Repair or replacement of fire protection sprinkler systems; (j) Road and parking area resurfacing, including...

406

DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1Rl...  

Broader source: Energy.gov (indexed) [DOE]

ratings. development of energy-efficient manufactunng or indusmal practices. and small-scale conservation and renewable energy research and development and pilot projects....

407

Functional requirements for the Automated Transportation Management System: TTP number: RL 439002  

SciTech Connect (OSTI)

This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

Portsmouth, J.H. [Westinghouse Hanford Co., Richland, WA (United States)

1992-12-31T23:59:59.000Z

408

Contract Number: DE-AC05-76RL01830 Modification M963  

E-Print Network [OSTI]

SERIAL NO TOTAL COST NBV 27-May-03 2400STV 1837 N827488 SPECTROPHOTOMETE UV/VIS/NIR LAMBDA900 PERKIN 57226 0.00 01-Aug-80 318 122 N822904 MONITOR AIR PARTICULATE ALPHAIII EBERLINE 547 1988 0.00 25-Sep-08130 M BRAUN LM04118 81659 7,448.46 13-Oct-11 BIL 105 N828466 PURIFIER PURELAB PRIMA SIEMANS WATER TE

409

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

2, Rev 1 MSA Annual Categorical Exclusion for Air Conditioning Systems for Existing Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.4 for Calendar Year 2014 II. Project...

410

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

7, Rev 1 MSA Annual Categorical Exclusion for Disconnection of Utilities under 10 CFR 1021, Subpart D, Appendix B, B1.27 for Calendar Year 2014 II. Project Description and Location...

411

RL-721 Document ID Number: REV3 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

Actions For CY 2012 Scheduled To Take Place Under CX B1.27, "Disconnection of Utilities" II. Project Description and Location (including Time Period over which proposed...

412

RL-721 Document 10 Number: REV3 NEPA REVIEW SCREENING FORM DOE...  

Broader source: Energy.gov (indexed) [DOE]

facilities include, but are not limited to, Environmental Restoration Disposal Facility, solid waste burial grounds, satellite accumulation areas, and 90-day storage pads;...

413

RL-721 Document 10 Number: REV3 NEPA REVIEW SCREENING FORM OOE...  

Broader source: Energy.gov (indexed) [DOE]

For CY 2012 Scheduled To Take Place Under CX 83.11, "Outdoor Tests and Experiments on Materials & Equipment Components" II. Project Description and Location (including Time...

414

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

20, Rev 0 I. Project Title: MSA Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B,...

415

Plateau Remediation Contract Contract No. DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Closure 040.02.14 Semi-Works Zone 4 C.2.5.4 Remediation - Closure 040.02.14 Semi-Works Zone 6 C.2.5.3 Remediation Optimization 040.02.15 Solid Waste Zone 4 C.2.5.4...

416

EERE PROJECT MANAGEMENT CENTER NEPA DI!Tl!RlInNATION RECIPIENT...  

Broader source: Energy.gov (indexed) [DOE]

and stores biosolids onsite seasonally. Filtrate from dewatering goes back to WoNTP head works. Siogas stays on property to run the 710 kW generator to make renewable green...

417

MSA-1200088 CONTRACT NO. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of business arrangements leading to major investment. Pre-existing arrangements to meet green energy development water needs would be a significant asset for the community in a...

418

DOE/RL-2010-89 Review Copy October 1, 2010  

E-Print Network [OSTI]

such as chromium, nitrate, carbon tetrachloride, tritium, iodine-129, and technetium-99 at concentrations above

Hubbard, Susan

419

Contract Number: DE-AC05-76RL01830 Modification M971  

E-Print Network [OSTI]

Usage Code) Coastal Security Institute 1 CSI1 Office Environmental Molecular Science Laboratory (EMSL Storage Building 350C General Storage Oil Storage Facility 350D Hazardous/Flammable Storage Radiological Usage Code) Albuquerque NM Office Albuquerque Security Hq / Badge Issuance / Gate Houses (Polygraph

420

Contract Number: DE-AC05-76RL01830 Modification M412  

E-Print Network [OSTI]

by then Secretaries of Energy. 62 409 10/16/199 10/16/200 Primary DOE None Arms Control and Nonproliferation Nuclear in the area ofPeaceful Uses ofNuclear Energy Comment: Expanded sister lab arrangement supporting Article IV, decontamination and decommissioning, and LEU advanced fuels. 475 431 4/13/1998 10/16/200 Secondary DOE 62

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cameron.Hardy@rl.doe.gov Hanford Tour Registration Begins March 9  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4

422

U.S. Department of Energy Contract, DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 PageRoutine replacement of High015

423

Cameron Hardy, DOE 509-376-5365 For Immediate Release Cameron.Hardy@rl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N- Energy

424

Cameron.Hardy@rl.doe.gov F Reactor Area Cleanup Complete  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N- Energy February 8, 20109, 2012

425

Plateau Remediation Contract Contract No. DE-AC06-08RL14788  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocity Profile

426

RL-721 Document ID Number: REV3 NEPA REVIEW SCREENING FORM OOE...  

Broader source: Energy.gov (indexed) [DOE]

Solutions LLC - Proposed tI.ctions For CY 2012 Scheduled To Take Place Under CX Bl.6, "Tanks and Equipment to Control Runoff and Spills" II. Project Description and Location...

427

DE-AC05-76RL01830 Modification M947  

E-Print Network [OSTI]

..............................................................................11 4.2.5 Technology Transfer Programs ...........................................................................................12 4.2.7 International Research Collaboration

428

Contract Number: DE-AC05-76RL01830 Modification M433  

E-Print Network [OSTI]

-BASED FEE FY 2006 BATTELLE PERFORMANCE EVALUATION AND MEASUREMENT PLAN for Management and Operations

429

Contract Number: DE-AC05-76RL01830 Modification M963  

E-Print Network [OSTI]

_CLNT_NAME WALS COST_AMT WALS PROP_END_ DATE 63499 56067 - Predicting Kinetic Rate Constants for Condensed Phas) Tool Philips Lighting Philips Lighting 40,064 12/20/2012 63451 48887 - Improving Efficiency,000 9/30/2013 63594 61846 - Silicon Detectors for High Resolution Radioxenon Mea XIA, LLC DOE - SC

430

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document...  

Broader source: Energy.gov (indexed) [DOE]

wall board on all walls in the bathrooms and kitchen * Install new HLAN cable and ports * Replace all six (6) HVAC units * Replace six (6) HVAC disconnects * Install...

431

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Broader source: Energy.gov (indexed) [DOE]

installation or modification of air conditioning systems required for temperature control for operations of existing buildings, structures, infrastructures, and equipment in...

432

Microsoft Word - RL14788-Section H (Mod 389) - Update 2-2-15.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O N N14,H

433

Microsoft Word - RL14788-Section_B_388 Conformed (with track changes).docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O N N14,HB

434

Microsoft Word - RL14788-Section_J-02_373.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NFI2,

435

Microsoft Word - RL14788-Section_J-03 Service Providers Mod 337.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NFI2,7

436

Microsoft Word - RL14788-Section_J-08 Advance Understanding Rev 3.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NFI2,78,

437

Microsoft Word - RL14788-Section_J-1 Acronym.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O NFI2,78,,

438

Microsoft Word - RL14788-Section_J-11 Sup work desc tables.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O

439

Microsoft Word - RL14788-Section_J-12 GFSI.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O2,

440

Microsoft Word - RL14788-Section_J-15_319 Rev 1.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB O2,5,

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft Word - RL14788-Section_J-5 Perf Guarantee.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O N NB

442

Microsoft Word - rl_handbook_v3_ARM-TR-038.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA TrimodalRECENT PROGRESS2 Twenty6 The Elusive8

443

Mission Support Contract Section J-16 Contract No. DE-AC-09RL14728 Modification 080  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National Nuclear

444

Mission Support Contract Section J Contract No. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National NuclearAttachment1-1

445

Mission Support Contract Section J Contract No. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National NuclearAttachment1-15-1

446

Mission Support Contract Section J Contract No. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National NuclearAttachment1-15-1

447

Mission Support Contract Section J Contract No. DE-AC06-09RL14728  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National

448

Mission Support Contract Contract No. DE-AC06-09RL14728 Section J  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0Statements | National4 Task Order2632 PART32

449

DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading Room DocumentsView of Oak Ridge.0

450

DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading Room DocumentsView of Oak

451

DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading Room DocumentsView of Oak20.0 - H

452

DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading Room DocumentsView of Oak20.0 -

453

DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading Room DocumentsView of Oak20.0 -.0

454

DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual APPENDIX B, Users Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot116

455

DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual ATTACHMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot116ATTACHMENTS

456

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake

457

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4, Rev 1

458

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4, Rev

459

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4, Rev19,

460

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3, Rev

462

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3, Rev1

463

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3,

464

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3,3 MSA

465

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3,3

466

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3,32

467

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a FebruaryTake4,3,325,

468

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a

469

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual

470

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4, Rev 2

471

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4, Rev 25,

472

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4, Rev

473

RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4, Rev42

474

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4, Rev428,

475

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,

476

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,1 MSA

477

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,1 MSA5,

478

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,1 MSA5,1

479

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,1

480

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,11 MSA

Note: This page contains sample records for the topic "lidar rl mentor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,11 MSA1

482

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,11

483

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,115, Rev

484

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,115,

485

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,115,3

486

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,115,32

487

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA Annual4,115,323,

488

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA

489

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA Annual

490

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA Annual9,

491

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA Annual9,2

492

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA Annual9,22

493

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA

494

RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2 MSA2 MSA2 MSA Annual

495

FOI Requests Received by RL and ORP in 2013 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE JimFAQsFESTopgArgonne3

496

FOI Requests Received by RL and ORP in 2014 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE JimFAQsFESTopgArgonne34

497

FOI Requests Received by RL and ORP in 2015 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE JimFAQsFESTopgArgonne342015

498

FOI Requests Received by RL and ORP in FY 2009 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE JimFAQsFESTopgArgonne34201509

499

FOI Requests Received by RL and ORP in FY 2010 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE

500

FOI Requests Received by RL and ORP in FY 2011 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE RELEASE1 Freedom of Information and