Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An Atmospheric Soliton Observed with Doppler Radar, Differential Absorption Lidar, and a Molecular Doppler Lidar  

Science Conference Proceedings (OSTI)

Airborne Leandre II differential absorption lidar (DIAL), S-band dual-polarization Doppler radar (S-Pol), and Goddard Lidar Observatory for Winds (GLOW) Doppler lidar data are used, in conjunction with surface mesonet and special sounding data, ...

Steven E. Koch; Cyrille Flamant; James W. Wilson; Bruce M. Gentry; Brian D. Jamison

2008-08-01T23:59:59.000Z

2

Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars  

Science Conference Proceedings (OSTI)

The authors examine measurements of boundary layer height zi and entrainment zone thickness observed with two lidars and with a radar wind profiler during the Flatland96 Lidars in Flat Terrain experiment. Lidar backscatter is proportional to ...

Stephen A. Cohn; Wayne M. Angevine

2000-08-01T23:59:59.000Z

3

Comparison of Airborne In Situ, Airborne Radar–Lidar, and Spaceborne Radar–Lidar Retrievals of Polar Ice Cloud Properties Sampled during the POLARCAT Campaign  

Science Conference Proceedings (OSTI)

This study illustrates the high potential of RALI, the French airborne radar–lidar instrument, for studying cloud processes and evaluating satellite products when satellite overpasses are available. For an Arctic nimbostratus ice cloud collected ...

Julien Delanoë; Alain Protat; Olivier Jourdan; Jacques Pelon; Mathieu Papazzoni; Régis Dupuy; Jean-Francois Gayet; Caroline Jouan

2013-01-01T23:59:59.000Z

4

Performance of Mean-Frequency Estimators for Doppler Radar and Lidar  

Science Conference Proceedings (OSTI)

The performance of mean-frequency estimators for Doppler radar and lidar measurements of winds is presented in terms of two basic parameters: ?, the ratio of the average signal energy per estimate to the spectral noise level; and ?, which is ...

R. G. Frehlich; M. J. Yadlowsky

1994-10-01T23:59:59.000Z

5

Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data  

Science Conference Proceedings (OSTI)

A retrieval algorithm is described to estimate vertical profiles of cirrus-cloud ice water content (IWC) and general effective size Dge from combined lidar and radar measurements. In the algorithm, the lidar extinction coefficient ? is ...

Zhien Wang; Kenneth Sassen

2002-03-01T23:59:59.000Z

6

Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties  

Science Conference Proceedings (OSTI)

The lidar–radar algorithm described in Part I of this set of papers is applied to 1000 h of Raman lidar and millimeter wave cloud radar (MMCR) data collected at the Atmospheric Radiation Measurement program Southern Great Plains Clouds and ...

Zhien Wang; Kenneth Sassen

2002-07-01T23:59:59.000Z

7

InSAR | Open Energy Information  

Open Energy Info (EERE)

InSAR InSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: InSAR Details Activities (11) Areas (10) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png InSAR: Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that can be used to accurately measure ground displacement. Other definitions:Wikipedia Reegle Introduction InSAR is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to

8

Smoke-Column Observations from Two Forest Fires Using Doppler Lidar and Doppler Radar  

Science Conference Proceedings (OSTI)

To demonstrate the usefulness of active remote-sensing systems in observing forest fire plume behavior, we studied two fires, one using a 3.2-cm-wavelength Doppler radar, and one more extensively, using Doppler lidar. Both instruments observed ...

R. M. Banta; L. D. Olivier; E. T. Holloway; R. A. Kropfli; B. W. Bartram; R. E. Cupp; M. J. Post

1992-11-01T23:59:59.000Z

9

The melting layer: The radar bright band is dark for lidar  

E-Print Network (OSTI)

Measurements of the melting layer were made with radar and lidar, during light rain. At the height at which a weather radar sees a bright band, the backscatter from the lidar has a minimum. Sometimes this minimum is more than 20 dB deep relative to the rain underneath. In this paper the measurements will be analysed in detail. Five mechanisms that can contribute to this effect are discussed: 1. Refractive index change during melting; 2. Aggregation and breakup; 3. Structural collapse of the melting snowflake; 4. Enhanced vertical backscatter of water droplets; 5. The orientation and shape of the melting crystals. Keywords: radar, cloud radar, lidar, melting layer, orientation of crystals. 1. Introduction In the Netherlands stratiform rain is mainly produced by the melting of ice particles into rain droplets. Normally this happens in a well-defined layer, just below the zero degree level. This melting layer is characterised by high radar reflections, the so-called bright band. This b...

V. K. C. Venema; H. W. J. Russchenberg; A van Lammeren; A. Apituley; L.P. Ligthart; Royal Netherl; S Meteorological Organisation

1998-01-01T23:59:59.000Z

10

Measurement of Water Vapor Flux Profiles in the Convective Boundary Layer with Lidar and Radar-RASS  

Science Conference Proceedings (OSTI)

A remote-sensing method to retrieve vertical profiles of water vapor flux in the convective boundary layer by using a differential absorption lidar and a radar-radio acoustic sounding system is described. The system's height range presently ...

Christoph Senff; Jens Bösenberg; Gerhard Peters

1994-02-01T23:59:59.000Z

11

Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar  

Science Conference Proceedings (OSTI)

The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler ...

Stephen A. Cohn; R. Kent Goodrich

2002-12-01T23:59:59.000Z

12

Definition: InSAR | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: InSAR Jump to: navigation, search Dictionary.png InSAR Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that can be used to accurately measure ground displacement.[1] View on Wikipedia Wikipedia Definition Interferometric synthetic aperture radar, abbreviated InSAR or IfSAR, is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using differences in the phase of the waves returning to the satellite or aircraft. The technique can potentially measure centimetre-scale changes in deformation over spans of days to years. It has applications for

13

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the SIRTA Atmospheric Observatory  

Science Conference Proceedings (OSTI)

The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological measurements by active (radar and lidar) and ...

M. Chiriaco; R. Vautard; H. Chepfer; M. Haeffelin; J. Dudhia; Y. Wanherdrick; Y. Morille; A. Protat

2006-03-01T23:59:59.000Z

14

Rapid Determination of Near-Fault Earthquake Deformation Using Differential LiDAR  

E-Print Network (OSTI)

GeoEarthScope Airborne LiDAR and Satellite InSAR Imagery,2003). Northern California LIDAR Data: A Tool for MappingSurvey-scale airborne lidar error analysis from parallel

Borsa, Adrian Antal; Minster, Jean Bernard

2012-01-01T23:59:59.000Z

15

HIGH SPECTRAL RESOLUTION LIDAR EMULATION VIA DOPPLER CLOUD RADAR SPECTRUM PROCESSING AND ITS IMPLICATIONS FOR  

E-Print Network (OSTI)

targeting the liquid, and radar, the ice. Depolarization measurements can assist in resolving phase to identify liquid, ice, and mixed-phase clouds. __________ NOTICE: This manuscript has been authored IMPLICATIONS FOR CLOUD PHASE IDENTIFICATION E. Luke, P. Kollias, and M. Shupe Presented at the American

16

Detecting and monitoring UCG subsidence with InSAR  

Science Conference Proceedings (OSTI)

The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

Mellors, R J; Foxall, W; Yang, X

2012-03-23T23:59:59.000Z

17

Definition: Interferometric Synthetic Aperture Radar | Open Energy  

Open Energy Info (EERE)

Interferometric Synthetic Aperture Radar Interferometric Synthetic Aperture Radar Jump to: navigation, search Dictionary.png Interferometric Synthetic Aperture Radar Interferometric Synthetic Aperture Radar (InSAR) utilizes SAR images from two different time periods to generate maps of surface deformation. The technique can potentially measure millimeter-scale changes in the Earth's surface.[1][2] View on Wikipedia Wikipedia Definition Also Known As InSAR, IfSAR Related Terms Synthetic Aperture Radar, radar, sustainability References ↑ Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation (Burgmann et al. 2000) ↑ Improved Visulaization of Satellite Radar InSAR Observed Structural Controls at Producing Geothermal Field Using Modeled Horizontal Surface Displacements(Opplinger et al. 2006)

18

InSAR At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » InSAR At Coso Geothermal Area (2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique InSAR Activity Date 2000 Usefulness useful DOE-funding Unknown Exploration Basis To determine ground subsidence using satellite radar interferometry Notes Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California, during 1993-1999 indicate ground subsidence over a approximately 50 km 2 region that approximately coincides

19

InSAR At Desert Peak Area (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

InSAR At Desert Peak Area (Laney, 2005) InSAR At Desert Peak Area (Laney, 2005) Exploration Activity Details Location Desert Peak Area Exploration Technique InSAR Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

20

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory  

SciTech Connect

Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

2005-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Waterspout Velocity Measurements by Airborne Doppler Lidar  

Science Conference Proceedings (OSTI)

A Doppler lidar measures the line-of-sight velocity of cloud droplets in a waterspout much as a meteorological Doppler radar measures the velocity of larger hydrometeors. We discuss details of the application of an airborne Doppler lidar to ...

R. L. Schwiesow; R. E. Cupp; P. C. Sinclair; R. F. Abbey Jr.

1981-04-01T23:59:59.000Z

22

Lidar and Triple-Wavelength Doppler Radar Measurements of the Melting Layer: A Revised Model for Dark- and Brightband Phenomena  

Science Conference Proceedings (OSTI)

During the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) field campaign in southern Florida, rain showers were probed by a 0.523-?m lidar and three (0.32-, 0.86-, and 10.6-cm ...

Kenneth Sassen; James R. Campbell; Jiang Zhu; Pavlos Kollias; Matthew Shupe; Christopher Williams

2005-03-01T23:59:59.000Z

23

INVESTIGATION OF CRUSTAL MOTION IN THE TIEN SHAN USING INSAR  

SciTech Connect

The northern Tien Shan of Central Asia is an area of active mid-continent deformation. Although far from a plate boundary, this region has experienced 5 earthquakes larger than magnitude 7 in the past century and includes one event that may as be as large as Mw 8.0. Previous studies based on GPS measurements indicate on the order of 23 mm/yr of shortening across the entire Tien Shan and up to 15 mm/year in the northern Tien Shan (Figure 1). The seismic moment release rate appears comparable with the geodetic measured slip, at least to first order, suggesting that geodetic rates can be considered a proxy for accumulation rates of stress for seismic hazard estimation. Interferometric synthetic aperture radar may provide a means to make detailed spatial measurements and hence in identifying block boundaries and assisting in seismic hazard. Therefore, we hoped to define block boundaries by direct measurement and by identifying and resolving earthquake slip. Due to political instability in Kyrgzystan, the existing seismic network has not performed as well as required to precisely determine earthquake hypocenters in remote areas and hence InSAR is highly useful. In this paper we present the result of three earthquake studies and show that InSAR is useful for refining locations of teleseismically located earthquakes. ALOS PALSAR data is used to investigate crustal motion in the Tien Shan mountains of Central Asia. As part of the work, considerable software development was undertaken to process PALSAR data. This software has been made freely available. Two damaging earthquakes have been imaged in the Tien Shan and the locations provided by ALOS InSAR have helped to refine seismological velocity models. A third earthquake south of Kyrgyzstan was also imaged. The use of InSAR data and especially L band is therefore very useful in providing groundtruth for earthquake locations.

Mellors, R J

2011-02-25T23:59:59.000Z

24

InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts  

E-Print Network (OSTI)

's Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (In of the swarm. By modeling the InSAR deformation data we constructed a model that consists of a shallow thrust detected nearly 40 years ago in and around the Hanford Nuclear Site located in the eastern YFB [Pitt, 1971

25

ABLE: Development of an Airborne Lidar  

Science Conference Proceedings (OSTI)

The acronym ABLE (Airborne Lidar Experiment) identifies a project to develop and fly an optical radar on a stratospheric platform for studies related to atmospheric radiation and composition. The prototype, ABLE 1, has been successfully flown on ...

Giorgio Fiocco; Paolo G. Calisse; Marco Cacciani; Stefano Casadio; Giandomenico Pace; Daniele Fua

1999-10-01T23:59:59.000Z

26

Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method  

Science Conference Proceedings (OSTI)

A fast, approximate method is described for the calculation of the intensity of multiply scattered lidar returns from clouds. At each range gate it characterizes the outgoing photon distribution by its spatial variance, the variance of photon ...

Robin J. Hogan

2008-12-01T23:59:59.000Z

27

Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation  

Science Conference Proceedings (OSTI)

Spaceborne lidar returns from liquid water clouds contain significant contributions from photons that have experienced many wide-angle multiple-scattering events, resulting in returns appearing to originate from far beyond the end of the cloud. A ...

Robin J. Hogan; Alessandro Battaglia

2008-12-01T23:59:59.000Z

28

Lidar Report  

Science Conference Proceedings (OSTI)

This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

Wollpert.

2009-04-01T23:59:59.000Z

29

InSAR At Salton Sea Area (Eneva And Adams, 2010) | Open Energy Information  

Open Energy Info (EERE)

Eneva And Adams, 2010) Eneva And Adams, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Salton Sea Area (Eneva And Adams, 2010) Exploration Activity Details Location Salton Sea Area Exploration Technique InSAR Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mariana Eneva, David Adams (2010) Modeling Of Surface Deformation From Satellite Radar Interferometry In The Salton Sea Geothermal Field, California Retrieved from "http://en.openei.org/w/index.php?title=InSAR_At_Salton_Sea_Area_(Eneva_And_Adams,_2010)&oldid=400447" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

30

Mapping Surface Currents and Waves with Interferometric Synthetic Aperture Radar in Coastal Waters: Observations of Wave Breaking in Swell-Dominant Conditions  

Science Conference Proceedings (OSTI)

Airborne and spaceborne interferometric synthetic aperture radars (InSARs) produce surface velocity measurements at very high spatial resolutions over a large area. The data allow construction of the velocity strain field for highlighting ocean ...

Paul A. Hwang; Jakov V. Toporkov; Mark A. Sletten; Steven P. Menk

2013-03-01T23:59:59.000Z

31

Automatic registration of LIDAR and optical images of urban scenes  

E-Print Network (OSTI)

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

Mastin, Dana Andrew

32

Applications of Radar Interferometry to Detect Surface Deformation in  

Open Energy Info (EERE)

Applications of Radar Interferometry to Detect Surface Deformation in Applications of Radar Interferometry to Detect Surface Deformation in Geothermal Areas of Imperial Valley in Southern California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Applications of Radar Interferometry to Detect Surface Deformation in Geothermal Areas of Imperial Valley in Southern California Abstract InSAR (interferometric synthetic aperture radar) is applied in Imperial Valley of southern California to detect and characterize surface deformation in existing geothermal fields, possible future geothermal developments, and around faults. The data used are from the Envisat satellite, collected over the period 2003-2010. The specific InSAR technique applied, SqueeSARTM, identifies permanent and distributed scatterers (PS and DS), which play the role of numerous benchmarks

33

Doppler Lidar (DL) Handbook  

SciTech Connect

The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

Newsom, RK

2012-02-13T23:59:59.000Z

34

Use of INSAR in surveillance and control of a large field project  

Science Conference Proceedings (OSTI)

In this paper, we introduce a new element of our [1] multilevel, integrated surveillance and control system: satellite Synthetic Aperture Radar interferometry (InSAR) images of oil field surface. In particular, we analyze five differential InSAR images of the Belridge Diatomite field, CA, between 11/98 and 12/99. The images have been reprocessed and normalized to obtain the ground surface displacement rate. In return, we have been able to calculate pixel-by-pixel the net subsidence of ground surface over the entire field area. The calculated annual subsidence volume of 19 million barrels is thought to be close to the subsidence at the top of the diatomite. We have also compared the 1999 rate of surface displacement from the satellite images with the surface monument triangulations between 1942 and 1997. We have found that the maximum rate of surface subsidence has been steadily increasing from -0.8 ft/year in 1988-97 to -1 ft/year in 1998-99. The respective rates of uplift of the field fringes also increased from 0.1 ft/year to 0.24 ft/year. In 1999, the observed subsidence rate exceeded by 4.5 million barrels the volumetric deficit of fluid injection.

Patzek, T.W.; Silin, D.B.

2000-06-01T23:59:59.000Z

35

Statistical methods for 2D-3D registration of optical and LIDAR images  

E-Print Network (OSTI)

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

Mastin, Dana Andrew

2009-01-01T23:59:59.000Z

36

Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0 C to ?86 C: Implications for Spaceborne Lidar Retrievals  

Science Conference Proceedings (OSTI)

An examination of two years of CALIPSO lidar observations and CloudSat cloud radar observations shows that ice clouds at temperatures below about ?45 C frequently fall below the CloudSat radar’s detection threshold, yet are readily detectable by ...

Andrew Heymsfield; Dave Winker; Melody Avery; Mark Vaughan; Glenn Diskin; Min Deng; Valentin Mitev

37

Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data  

Science Conference Proceedings (OSTI)

Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may ...

Andrew J. Heymsfield; Alain Protat; Dominique Bouniol; Richard T. Austin; Robin J. Hogan; Julien Delanoë; Hajime Okamoto; Kaori Sato; Gerd-Jan van Zadelhoff; David P. Donovan; Zhien Wang

2008-01-01T23:59:59.000Z

38

Determination of the Radiative Properties of Stratiform Clouds from a Nadir-Looking 95-GHz Radar  

Science Conference Proceedings (OSTI)

Several space agencies are presently considering missions with active instruments (radar, lidar), which are able to document cloud stratification and cloud microphysical properties on the global scale. The objective of this paper is to develop an ...

A. Guyot; J. Testud; T. P. Ackerman

2000-01-01T23:59:59.000Z

39

Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars  

Science Conference Proceedings (OSTI)

Observations of the wake generated by a single utility-scale turbine and collected by the Texas Tech University Ka-band mobile research radars on 27 October 2011 are introduced. Remotely sensed turbine wake observations using lidar technology have ...

Brian D. Hirth; John L. Schroeder; W. Scott Gunter; Jerry G. Guynes

2012-06-01T23:59:59.000Z

40

ARM - Measurement - Radar Doppler  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band (95 GHz) ARM Cloud Radar MMCR : Millimeter Wavelength Cloud Radar RWP : Radar Wind Profiler 50RWP : Radar Wind Profiler (50 MHz) WACR : W-Band (95 GHz) ARM Cloud Radar...

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy...  

Open Energy Info (EERE)

Medicine Lake Area (Poland, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Medicine Lake Area (Poland, Et Al., 2006)...

42

An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar  

Science Conference Proceedings (OSTI)

The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

Lo, C; Comstock, JM; Flynn, C

2006-10-01T23:59:59.000Z

43

Analysis of PS InSAR Monitoring Result of Beijing Subsidence  

Science Conference Proceedings (OSTI)

Urban subsidence causes more concerns in China recently. PS InSAR technique is a very useful method for surface deformation detection. We selected Beijing as study area. Being the capital of China, Beijing suffered from ground subsidence for a long time. ... Keywords: urban subsidence, PS InSAR, COSMO-SkyMed, high resolution

Dong Jiang; Mario Costantini; Tingwu Chen; Zikuan Zhou; Chunqing Ge; Jiangbing Cao

2012-10-01T23:59:59.000Z

44

Surface deformation analysis over a hydrocarbon reservoir using InSAR with ALOS-PALSAR data  

E-Print Network (OSTI)

InSAR has been developed to estimate the temporal change on the surface of Earth by combining multiple SAR images acquired over the same area at different times. In the last two decades, in addition to conventional InSAR, ...

?ahin, Sedar Cihan

2013-01-01T23:59:59.000Z

45

Virtual Doppler Lidar Instrument  

Science Conference Proceedings (OSTI)

Doppler lidars measure the range-resolved line-of-sight wind component by extracting the Doppler shift of radiation backscattered from atmospheric aerosols and molecules. A virtual instrument was developed to simulate wind measurements by flying ...

Ines Leike; Jürgen Streicher; Christian Werner; Viktor Banakh; Igor Smalikho; Werner Wergen; Alexander Cress

2001-09-01T23:59:59.000Z

46

InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is

47

Title: Radar-observed convective characteristics during TWP-ICE  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: Radar-observed convective characteristics during TWP-ICE Title: Radar-observed convective characteristics during TWP-ICE Schumacher, Courtney Texas A&M University Houze, Robert University of Washington May, Peter Bureau or Meteorology Research Centre Frederick, Kaycee Cetrone, Jasmine Vallgren, Andreas Category: Field Campaigns This poster will describe the radar dataset obtained in the Tropical Warm Pool International Cloud Experiment (TWP-ICE), which is to take place 20 January - 14 February 2006 in the vicinity of Darwin, Australia. We will describe the convective systems observed during the project by two scanning C-band Doppler radars, one of which will provide dual-polarization measurements, and ARM's vertically pointing cloud radar and lidar installations. In addition, we will discuss the potential for combining

48

InSAR At Brady Hot Springs Area (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » InSAR At Brady Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique InSAR Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak

49

Advanced InSAR Techniques for Geothermal Exploration and Production | Open  

Open Energy Info (EERE)

Advanced InSAR Techniques for Geothermal Exploration and Production Advanced InSAR Techniques for Geothermal Exploration and Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Advanced InSAR Techniques for Geothermal Exploration and Production Abstract InSAR is a remote sensing tool that has applications in both geothermal exploration and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow, among other things, the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in the US and abroad.

50

InSAR At Redfield Campus Area (Oppliger, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Campus Area (Oppliger, Et Al., 2008) Campus Area (Oppliger, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Redfield Campus Area (Oppliger, Et Al., 2008) Exploration Activity Details Location Redfield Campus Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Along with the GIS, an InSAR deformation study was conducted from a suite of previously created interferograms from 1993-2005. Jet Propulsion Laboratory's Repeat Orbit Interferometry processing software Package (ROI_PAC) was used in the formation of approximately 35 interferograms considered for use in this study. All InSAR pairs were systematically screened to determine those suitable for further processing based on signal-to-noise and data integrity around the Redfield campus and Steamboat

51

ARM - Campaign Instrument - co2lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

lidar Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Carbon Dioxide Doppler Lidar (CO2LIDAR) Instrument...

52

Can Wind Lidars Measure Turbulence?  

Science Conference Proceedings (OSTI)

Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model ...

A. Sathe; J. Mann; J. Gottschall; M. S. Courtney

2011-07-01T23:59:59.000Z

53

Shallow Angle Wave Profiling Lidar  

Science Conference Proceedings (OSTI)

A lidar scanning system is described that is primarily designed to measure sea wave shape. The device is capable of measuring real-time spatial profiles over distances of hundreds of meters, and as the lidar must inevitably operate from modest ...

M. R. Belmont; J. M. K. Horwood; R. W. F. Thurley; J. Baker

2007-06-01T23:59:59.000Z

54

The EDOP Radar System on the High-Altitude NASA ER-2 Aircraft  

Science Conference Proceedings (OSTI)

The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-...

Gerald M. Heymsfield; Steven W. Bidwell; I. Jeff Caylor; Syed Ameen; Shaun Nicholson; Wayne Boncyk; Lee Miller; Doug Vandemark; Paul E. Racette; Louis R. Dod

1996-08-01T23:59:59.000Z

55

Raman Lidar (RL) Handbook  

SciTech Connect

The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

Newsom, RK

2009-03-01T23:59:59.000Z

56

Science Goals for the ARM Recovery Act Radars  

SciTech Connect

Science Goals for the ARM Recovery Act Radars. In October 2008, an ARM workshop brought together approximately 30 climate research scientists to discuss the Atmospheric Radiation Measurement (ARM) Climate Research Facility's role in solving outstanding climate science issues. Through this discussion it was noted that one of ARM's primary contributions is to provide detailed information about cloud profiles and their impact on radiative fluxes. This work supports cloud parameterization development and improved understanding of cloud processes necessary for that development. A critical part of this work is measuring microphysical properties (cloud ice and liquid water content, cloud particle sizes, shapes, and distribution). ARM measurements and research have long included an emphasis on obtaining the best possible microphysical parameters with the available instrumentation. At the time of the workshop, this research was reaching the point where additional reduction in uncertainties in these critical parameters required new instrumentation for applications such as specifying radiative heating profiles, measuring vertical velocities, and studying the convective triggering and evolution of three-dimensional (3D) cloud fields. ARM was already operating a subset of the necessary instrumentation to make some progress on these problems; each of the ARM sites included (and still includes) a cloud radar (operating at 35 or 94 GHz), a cloud lidar, and balloon-borne temperature and humidity sensors. However, these measurements were inadequate for determining detailed microphysical properties in most cases. Additional instrumentation needed to improve retrievals of microphysical processes includes radars at two additional frequencies for a total of three at a single site (35 GHz, 94 GHz, and a precipitation radar) and a Doppler lidar. Evolving to a multi-frequency scanning radar is a medium-term goal to bridge our understanding of two-dimensional (2D) retrievals to the 3D cloud field. These additional microphysical measurements would allow detailed cloud properties to be derived even in the presence of light precipitation. It is important to couple these detailed measurements of cloud microphysics to vertical motion on the cloud scale to couple microphysics with meteorological processes. Vertically pointing Doppler radars provide the vertical motion of cloud particles but, to separate particle motion from air motion, a wind profiler is required. The American Recovery and Reinvestment Act provided the means to address these needs and implement a multi-frequency suite of radars, including scanning radars, at each of the ARM sites. In addition, Doppler lidars have been deployed at several sites. With these new measurement capabilities, ARM has the measurement capabilities to tackle the problems of improving microphysical profile descriptions and evaluating the relationship between our current narrow-field-of view, zenith perspective on clouds to a description of the full 3D cloud field and its temporal evolution.

JH Mather

2012-05-29T23:59:59.000Z

57

Monitoring and characterizing natural hazards with satellite InSAR imagery *, Jixian Zhangb  

E-Print Network (OSTI)

-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands at Southeastern Louisiana. Photogrammetric. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions-level changes in wetlands Both L-band and C-band InSAR imagery can be used to measure water-level changes

58

Doppler Lidar Observations of a Downslope Windstorm  

Science Conference Proceedings (OSTI)

During January and February 1987, the NOAA/WPL pulsed Doppler lidar was deployed in the foothills west of Boulder, Colorado, to study orographically induced flows over the Continental Divide. On 29 January 1987, the lidar, with its unique spatial ...

Paul J. Neiman; R. M. Hardesty; M. A. Shapiro; R. E. Cupp

1988-11-01T23:59:59.000Z

59

The Lidars in Flat Terrain (LIFT) Experiment  

Science Conference Proceedings (OSTI)

The authors describe and present early results from the July_August 1996 Lidars in Flat Terrain (LIFT) experiment. LIFT was a boundary layer experiment that made use of recently developed Doppler, aerosol backscatter, and ozone lidars, along with ...

Stephen A. Cohn; Shane D. Mayor; Christian J. Grund; Tammy M. Weckwerth; Christoph Senff

1998-07-01T23:59:59.000Z

60

ARM - Campaign Instrument - lidar-dial  

NLE Websites -- All DOE Office Websites (Extended Search)

you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Dial Lidar (LIDAR-DIAL) Instrument Categories Aerosols, Atmospheric Profiling Campaigns ARM-FIRE...

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Technique for Autocalibration of Cloud Lidar  

Science Conference Proceedings (OSTI)

In this paper a technique for autocalibration of a cloud lidar is demonstrated. It is shown that the lidar extinction-to-backscatter ratio derived from integrated backscatter for stratocumulus is, in the absence of drizzle, constrained to a ...

Ewan J. O'Connor; Anthony J. Illingworth; Robin J. Hogan

2004-05-01T23:59:59.000Z

62

Targeted Observations with an Airborne Wind Lidar  

Science Conference Proceedings (OSTI)

This study investigates the possibilities and limitations of airborne Doppler lidar for adaptive observations over the Atlantic Ocean. For the first time, a scanning 2-?m Doppler lidar was applied for targeted measurements during the Atlantic “...

M. Weissmann; R. Busen; A. Dörnbrack; S. Rahm; O. Reitebuch

2005-11-01T23:59:59.000Z

63

Calibration Technique for Polarization-Sensitive Lidars  

Science Conference Proceedings (OSTI)

Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and nonspherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately ...

J. M. Alvarez; M. A. Vaughan; C. A. Hostetler; W. H. Hunt; D. M. Winker

2006-05-01T23:59:59.000Z

64

Validation of NCAR 10.6-?m CO2 Doppler Lidar Radial Velocity Measurements and Comparison with a 915-MHz Profiler  

Science Conference Proceedings (OSTI)

The capability of the NCAR 10.6-?m-wavelength CO2 Doppler lidar to measure radial air motion is validated by examining hard-target test data, comparing measurements with those from a two-axis propeller anemometer and a 915-MHz profiling radar, ...

Shane D. Mayor; Donald H. Lenschow; Ronald L. Schwiesow; Jakob Mann; Charles L. Frush; Melinda K. Simon

1997-10-01T23:59:59.000Z

65

Efficient method for lossless LIDAR data compression  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) has become one of the prime technologies for rapid collection of vast spatial data, usually stored in a LAS file format (LIDAR data exchange format standard). In this article, a new method for lossless LIDAR LAS file ...

Domen Mongus; Borut Zalik

2011-05-01T23:59:59.000Z

66

Radar | Open Energy Information  

Open Energy Info (EERE)

Radar Radar Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Radar Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Radar: Radar is an active-sensor remote sensing tool used to detect small changes in ground movement at geothermal locations. Other definitions:Wikipedia Reegle Introduction RAdio Detection And Ranging (RADAR) is used in a wide variety of applications. In remote sensing applications, the source of the radio waves

67

Building Extraction Using Lidar Data  

E-Print Network (OSTI)

Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high point accuracy. In this paper a new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wire-frames. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in extracting urban area buildings. 1.

Ahmed F. Elaksher; James S. Bethel

2002-01-01T23:59:59.000Z

68

Demonstration of a High Pulse Rate Lidar for Studying Airflow  

Science Conference Proceedings (OSTI)

In response to a recognized need for an inexpensive, low power, portable lidar for meteorological applications in remote areas, a system has been designed and constructed. The lidar, termed MELS (Mini-Environmental Lidar System), operates on 20 ...

Thomas G. Kyle; William Clements; Sumner Barr

1985-03-01T23:59:59.000Z

69

Lidar characterization of crystalline silica generation and gravel plant  

E-Print Network (OSTI)

W.E. Eichinger, Elastic Lidar: Theory, Practice and AnalysisApplication of elastic e lidar to PM 10 emissions fromg m ?3 ) QTZ (?g m ?3 ) The lidar horizontal scans collected

Trzepla-Nabaglo, K.; Shiraki, R.; Holm'en, B. A.

2006-01-01T23:59:59.000Z

70

Cloud properties derived from two lidars over the ARM SGP site  

Science Conference Proceedings (OSTI)

[1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is biased low, especially for daylight periods, compared with those derived from the RL data, which detects 5 cloud base ranging from 7.5 km in winter to 9.5 km in summer (and tops ranging from 8.6 to 10.5 km). The optically thickest cirrus clouds (COT>0.3) reach 50% of the total population for the Raman lidar and only 20% for the Micropulse lidar due to the difference of pulse energy and the effect of solar irradiance contamination. A complementary study using the cloud fraction 10 derived from the Micropulse lidar for clouds below 5 km and from the Raman lidar for cloud above 5 km allows for better estimation of the total cloud fraction between the ground and the top of the atmosphere. This study presents the diurnal cycle of cloud fraction for each season in comparisons with the Long et al. (2006) cloud fraction calculation derived from radiative flux analysis.

Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

2011-02-16T23:59:59.000Z

71

Raman lidar and MPL Measurements during ALIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman lidar and MPL Measurements during ALIVE Raman lidar and MPL Measurements during ALIVE Ferrare, Richard NASA Langley Research Center Turner, David University of Wisconsin-Madison Flynn, Connor Pacific Northwest National Laboratory Petty, Diana Pacific Northwest National Laboratory Mendoza, Albert Pacific Northwest National Laboratory Clayton, Marian NASA Langley Research Center Schmid, Beat Bay Area Environmental Research Institute Category: Field Campaigns Analysis of the aerosol and water vapor data collected by the Raman lidar during the May 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. This decrease in sensitivity contributed to a significant high bias of the Raman lidar aerosol extinction measurements in relation to airborne Sun

72

Synthetic Aperture Radar Interferometry  

E-Print Network (OSTI)

Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. By exploiting the phase of the coherent radar signal, interferometry has transformed radar remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover characterization, and natural hazards. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

Paul A. Rosen; Scott Hensley; Ian R. Joughin; Fuk K. Li; Sřren N. Madsen; Senior Member; Ernesto Rodríguez; Richard M. Goldstein

2000-01-01T23:59:59.000Z

73

LiDAR (Lewicki & Oldenburg) | Open Energy Information  

Open Energy Info (EERE)

LiDAR (Lewicki & Oldenburg) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR (Lewicki & Oldenburg) Exploration Activity Details Location...

74

LiDAR (Lewicki & Oldenburg, 2005) | Open Energy Information  

Open Energy Info (EERE)

LiDAR (Lewicki & Oldenburg, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR (Lewicki & Oldenburg, 2005) Exploration Activity Details...

75

LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

LiDAR (Lewicki & Oldenburg, 2004) Exploration Activity Details Location Unspecified Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References...

76

New constraints on the processes that control cliff erosion and sediment dispersal using ground-based LIDAR  

E-Print Network (OSTI)

LIDAR using mobile terrestrial LIDAR. Shore and Beach, 75, p. 38-georeference terrestrial LIDAR data to map regional seacliff

Raymond, Jessica Hall

2011-01-01T23:59:59.000Z

77

Lidar remote sensing of pesticide spray drift.  

E-Print Network (OSTI)

??En aquesta tesi doctoral es proposa utilitzar la tčcnica LIDAR (Light Detection And Ranging) per estudiar la deriva de pesticides. A diferčncia dels col·lectors in… (more)

Gregorio López, Eduard

2012-01-01T23:59:59.000Z

78

Synthetic Aperture Radar -- Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Contacts Synthetic Aperture Radar Sandia synthetic aperture radar image of Washington, DC Sandia synthetic aperture radar image of Washington, DC Sandia synthetic...

79

Downhole pulse radar  

DOE Patents (OSTI)

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

Chang, Hsi-Tien

1987-09-28T23:59:59.000Z

80

Downhole pulse radar  

DOE Patents (OSTI)

A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

Chang, Hsi-Tien (Albuquerque, NM)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Airborne Doppler Lidar Wind Field Measurements  

Science Conference Proceedings (OSTI)

A coherent Doppler lidar has been used in an aircraft to measure the 2-dimensional wind field in a number of different atmospheric situations. The lidar, a pulsed CO2 system, was installed in the NASA Convair 990. Galileo II, and flown in a ...

J. Bilbro; G. Fichtl; D. Fitzjarrald; M. Krause; R. Lee

1984-04-01T23:59:59.000Z

82

Lidar Observations of Aircraft Exhaust Plumes  

Science Conference Proceedings (OSTI)

A series of field campaigns has been made at British airports using a rapid-scanning lidar and other instrumentation in order to measure the dispersion of exhaust plumes from commercial aircraft. The lidar operated at a wavelength of 355 nm and ...

Michael Bennett; Simon Christie; Angus Graham; David Raper

2010-10-01T23:59:59.000Z

83

Radar remote sensing of the lower atmosphere  

E-Print Network (OSTI)

on the observed radar clutter power. Marine ducts and theiron observed radar clutter power. Marine ducts and their

Karimian, Ali

2012-01-01T23:59:59.000Z

84

THE AUTOMATIC EXTRACTION OF ROADS FROM LIDAR DATA Simon CLODEa  

E-Print Network (OSTI)

. and Kubic, K., 2003. Building dectection using LIDAR data and multi- spectral images. In: Proceedings

Salvaggio, Carl

85

Two New ARM Sites: Oliktok, Alaska, and the Azores  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud radar, scanning precipitation radar, and radar wind profler * Lidars: micropulse lidar, Doppler lidar, and high spectral resolution lidar * Atmospheric and boundary state:...

86

2D LIDAR Aided INS for Vehicle Positioning in Urban Environments  

E-Print Network (OSTI)

residual formation and EKF LIDAR aiding methods. Section VIintensity. Utilization of 2D LIDAR in localization has a2D LIDAR Aided INS for Vehicle Positioning in Urban

Zhao, Sheng; Farrell, Jay A.

2013-01-01T23:59:59.000Z

87

Doppler Radar Observations of Mammatus  

Science Conference Proceedings (OSTI)

Observations of mammatus-like cloud features associated with a convective rain shower were obtained using a vertically pointing 8-mm-wavelength Doppler radar. The radar's excellent sensitivity and resolution allowed even very weak, finescale ...

Brooks E. Martner

1995-10-01T23:59:59.000Z

88

A Physically Based Radar Simulator  

Science Conference Proceedings (OSTI)

There is a growing use of multiparameter radars for observation of the atmosphere and, in particular, for remote sensing of rain. Radar systems have the undeniable advantage of being able to monitor very large areas with a single installation in ...

Carlo Capsoni; Michele D’Amico

1998-04-01T23:59:59.000Z

89

ARM - Measurement - Radar polarization  

NLE Websites -- All DOE Office Websites (Extended Search)

polarization polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a radar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSAPR : C-Band ARM Precipitation Radar

90

2001: Surface estimation based on LIDAR  

E-Print Network (OSTI)

In the past several years, the use of airborne laser systems or LIDAR for the rapid collection of digital terrain models (DTMs) has proliferated. Flood plain studies, contouring, road engineering projects, volumetric computations, ortho-photo production, and mapping for beach erosion are just some of the applications driving the demand for this technology. The ability of LIDAR systems to capture accurate spot heights at an extremely rapid rate is the principle reason behind LIDAR's success. Many applications, for example, contouring, require a bald-earth DTM. Unfortunately, the raw data points captured by LIDAR do not constitute a bald-earth DTM. Even though most LIDAR systems can measure "lastreturn" data points, these "last-return " points often measure ground clutter like shrubbery, cars, buildings, and even the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping applications. We present our approach to estimating bald-earth surfaces from LIDAR data. Our approach is different from typical approaches in that we estimate a surface based on the original LIDAR points while at the same time considering important supplementary information. This other information includes independently measured breaklines and surface categories. We use a least-squares adjustment with robust estimation similar to that proposed by (Kraus, Pfeifer, 1998). The surface model is represented using a triangular irregular network or TIN. We present examples from a real mapping project that demonstrate the success of this approach.

Wolfgang Schickler; Anthony Thorpe

2001-01-01T23:59:59.000Z

91

Analysis and Processing of Airborne LIDAR Data  

E-Print Network (OSTI)

Airborne LIDAR systems have been in use for many years to measure points on the earth's surface. They can rapidly produce accurate digital surface models and offer significantly lower costs in field operations and post-processing compared to traditional survey methods. This makes the LIDAR technology an attractive alternative for a variety of mapping applications. From scattered 3-D point clouds to useful representations for end-users requires further research and development of post-processing algorithms. Up to now, the post-processing of LIDAR data is still in an early phase of development because no single technique currently is considered optimum or satisfactory for all conditions and requirements.

Yong Hu

2001-01-01T23:59:59.000Z

92

Definition: Radar | Open Energy Information  

Open Energy Info (EERE)

Radar Radar Jump to: navigation, search Dictionary.png Radar Radar is an active-sensor remote sensing tool used to detect small changes in ground movement at geothermal locations. View on Wikipedia Wikipedia Definition Radar is an object detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio waves or microwaves which bounce off any object in their path. The object returns a tiny part of the wave's energy to a dish or antenna which is usually located at the same site as the transmitter. Radar was secretly developed by several nations before and

93

Definition: LiDAR | Open Energy Information  

Open Energy Info (EERE)

LiDAR LiDAR Jump to: navigation, search Dictionary.png LiDAR Light Detection and Ranging (LiDAR) is an active remote sensing technology that uses optical measurements of scattered light to find range (Young, 2006). Measurements can be made from aircraft- or land-based sensors. Distance to an object is determined by the time delay between transmission and detection of a laser pulse. It is accurate to within 0.1 m (at 1-m resolution, 0.3 m at 3-m resolution) and has the ability to measure the land surface elevation beneath the vegetation canopy. View on Wikipedia Wikipedia Definition Also Known As Light Detection And Ranging Related Terms DEM, Digital Elevation Model tran LikeLike UnlikeLike You like this.Sign Up to see what your friends like. smission lines,transmission line,transmission

94

CALIPSO Lidar Description and Performance Assessment  

Science Conference Proceedings (OSTI)

This paper provides background material for a collection of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) algorithm papers that are to be published in the Journal of Atmospheric and Oceanic Technology. It provides a brief description ...

William H. Hunt; David M. Winker; Mark A. Vaughan; Kathleen A. Powell; Patricia L. Lucker; Carl Weimer

2009-07-01T23:59:59.000Z

95

Systematic Sampling of Scanning Lidar Swaths  

E-Print Network (OSTI)

Proof of concept lidar research has, to date, examined wall-to-wall models of forest ecosystems. While these studies have been important for verifying lidars efficacy for forest surveys, complete coverage is likely not the most cost effective means of using lidar as auxiliary data for operational surveys; sampling of some sort being the better alternative. This study examines the effectiveness of sampling with high point-density scanning lidar data and shows that systematic sampling is a better alternative to simple random sampling. It examines the bias and mean squared error of various estimators, and concludes that a linear-trend-based and especially an autocorrelation-assisted variance estimator perform better than the commonly used simple random sampling based-estimator when sampling is systematic.

Marcell, Wesley Tyler

2009-12-01T23:59:59.000Z

96

Notes on Temperature-Dependent Lidar Equations  

Science Conference Proceedings (OSTI)

The temperature dependence of molecular backscatter coefficients must be taken into account when narrowband interference filters are used in lidar measurements. Thus, the spectral backscatter differential cross section of the molecules involved ...

Mariana Adam

2009-06-01T23:59:59.000Z

97

3D building reconstruction from LIDAR data  

Science Conference Proceedings (OSTI)

As a fast data acquisition technique, Light Detection and Ranging (LIDAR) can be widely used in many applications, such as visualization, GIS and mobile communication. Since manual surface reconstruction is very costly and time consuming, the development ...

Yuan Luo; Marina L. Gavrilova

2006-05-01T23:59:59.000Z

98

A tomographic framework for LIDAR imaging  

Science Conference Proceedings (OSTI)

Detection and localization of underwater mines remains a challenging and important problem for safe operation of naval platforms. A number of new technologies exploit airborne LIDARs, which can penetrate the air-water interface and optically detect and ...

P. J. Shargo; N. Cadalli; A. C. Singer

2001-05-01T23:59:59.000Z

99

ARM - Field Campaign - Aerosol Lidar Validation Experiment -...  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

100

A Comparison of Radar Reflectivity Estimates of Rainfall from Collocated Radars  

Science Conference Proceedings (OSTI)

Radar reflectivity–based rainfall estimates from collocated radars are examined. The usual large storm-to-storm variations in radar bias and high correlation between radar estimates and rain gauge observations are found. For three storms in ...

Edward A. Brandes; J. Vivekanandan; James W. Wilson

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PHOTOGRAMMETRIC MODEL ORIENTATION USING LIDAR DATASET  

E-Print Network (OSTI)

Today the LIDAR dataset is a powerful alternative to be applied in the optimization of photogrammetric mapping techniques. The complementary nature of LIDAR and photogrammetry allows for the optimal performance of many applications to extract 3D spatial information. For example, photogrammetry image permits accurate borders building extraction. In addition, LIDAR provides a number of accurate 3D points that describe some information about physical building surfaces. These properties show the possibility of combining data from both sensors to arrive at a more robust and complete reconstruction of 3D objects in many applications such as monoplotting, orthophoto generation, surface reconstruction, etc. Photogrammetric procedures need the exterior parameters of images (EOP) for extracting mapping information. Despite of the availability of GPS/INS systems, which greatly assist in direct geo-referencing of the acquired imagery, the majority of commercial available photogrammetric system needs control information to perform photogrammetric mapping techniques. Regarding the accuracy improvement of LIDAR systems in the recent years, LIDAR data is considered a viable supply of photogrammetric control. This paper presents a methodology for using the centroids of building roof as control points in photogrammetric model orientation. The centroid is equivalent to a single control point with 3D coordinates allowing its use in traditional photogrammetric systems. In the experiments performed, the obtained results confirmed the feasibility of the proposed methodology to be applied in geo-referencing of photogrammetric images using LIDAR dataset.

E. Mitishita; A. Habib; A. Machado

2008-01-01T23:59:59.000Z

102

Ranging Through Shallow Semitransparent Media with Polarization Lidar  

Science Conference Proceedings (OSTI)

A new approach to shallow depth measurement (< 2 m) using polarization lidar is presented. The transmitter consists of a 532 nm linearly polarized laser coupled with conditioning and polarization optics. The prototype lidar evaluates the differing ...

Steven E. Mitchell; Jeffrey P. Thayer

103

The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm  

Science Conference Proceedings (OSTI)

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One ...

Ali H. Omar; David M. Winker; Mark A. Vaughan; Yongxiang Hu; Charles R. Trepte; Richard A. Ferrare; Kam-Pui Lee; Chris A. Hostetler; Chieko Kittaka; Raymond R. Rogers; Ralph E. Kuehn; Zhaoyan Liu

2009-10-01T23:59:59.000Z

104

DTM Generation from LIDAR Data using Skewness Balancing  

Science Conference Proceedings (OSTI)

LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, ...

Marc Bartels; Hong Wei; David C. Mason

2006-08-01T23:59:59.000Z

105

The utility of LiDAR for landscape biodiversity assessment.  

E-Print Network (OSTI)

??The potential of LiDAR to inform landscape biodiversity assessments is investigated. The objectives of this research are to examine how LiDAR discrete return and full… (more)

Miura, N

2010-01-01T23:59:59.000Z

106

Algorithm Development of the Aglite-Lidar Instrument.  

E-Print Network (OSTI)

??The Aglite system is a three-wavelength lidar plus a suite of instruments for measuring particulate emission levels near agricultural facilities. The lidar performs 3D scans… (more)

Marchant, Christian

2008-01-01T23:59:59.000Z

107

ARM - PI Product - Raman lidar/AERI PBL Height Product  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsRaman lidarAERI PBL Height Product Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Raman lidarAERI PBL...

108

Nonintrusive Measurement of Ocean Waves: Lidar Wave Gauge  

Science Conference Proceedings (OSTI)

In December 1999, a nonintrusive directional lidar wave gauge (LWG) was field tested at the Field Research Facility (FRF) in North Carolina. The LWG uses proven lidar technology to directly measure water surface elevation from above the water’s ...

Jennifer L. Irish; Jennifer M. Wozencraft; A. Grant Cunningham; Claudine Giroud

2006-11-01T23:59:59.000Z

109

Two wavelength Lidar instrument for atmospheric aerosol study.  

E-Print Network (OSTI)

??A two-color lidar instrument and inversion algorithms have been developed for the study of atmospheric aerosols. The two-color lidar laser transmitter is based on the… (more)

Hoffman, David Swick.

2008-01-01T23:59:59.000Z

110

The Operational Weather Radar Network in Europe  

Science Conference Proceedings (OSTI)

The operational weather radar network in Europe covers more than 30 countries and contains more than 200 weather radars. The radar network is heterogeneous in hardware, signal processing, transmit/receive frequency, and scanning strategy, thus making it ...

Asko Huuskonen; Elena Saltikoff; Iwan Holleman

111

Tornado Damage Estimation Using Polarimetric Radar  

Science Conference Proceedings (OSTI)

This study investigates the use of tornadic debris signature (TDS) parameters to estimate tornado damage severity using Norman, Oklahoma (KOUN), polarimetric radar data (polarimetric version of the Weather Surveillance Radar-1988 Doppler radar). ...

David J. Bodine; Matthew R. Kumjian; Robert D. Palmer; Pamela L. Heinselman; Alexander V. Ryzhkov

2013-02-01T23:59:59.000Z

112

Low Wind Speed Technology Phase II: LIDAR for Turbine Control  

SciTech Connect

This fact sheet describes NREL's subcontract with QinetiQ to conduct a study on LIDAR systems for wind turbines.

Not Available

2006-06-01T23:59:59.000Z

113

Millimeter Wave Cloud Radar (MMCR) Handbook  

SciTech Connect

The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

KB Widener; K Johnson

2005-01-30T23:59:59.000Z

114

EN-025 Tools & Applications December 2008 Lidar Remote Sensing  

E-Print Network (OSTI)

EN-025 Tools & Applications December 2008 Lidar Remote Sensing: Mapping British Columbia's Forests with Lasers By Christopher W. Bater, Denis Collins, and Nicholas C. Coops KEYWORDS: remote sensing, lidar. Collins, and N.C. Coops. 2008. Lidar remote sensing: mapping British Columbia's forests with lasers

115

A Method for Noise Removal of LIDAR Point Clouds  

Science Conference Proceedings (OSTI)

LiDAR can quickly and accurately obtain precision and high-density surface elevation data. In cooperation with high-precision GPS positioning technology and IMU attitude sensor, a typical noise removal algorithm of LIDAR point clouds based on FEA is ... Keywords: LIDAR, point clouds, noise removal, FEA

Huang Zuowei, Huang Yuanjiang, Huang Jie

2013-01-01T23:59:59.000Z

116

How Radar Works | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for How Radar Works Citation Institute For Geophysics. How Radar Works...

117

Modeling Collapse Chimney and Spall Zone Settlement as a Source of Post-Shot Subsidence Detected by Synthetic Aperture Radar Interferometry  

Science Conference Proceedings (OSTI)

Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events, The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.

Foxwall, W.

2000-07-24T23:59:59.000Z

118

Ultrasonic radar and its applications  

Science Conference Proceedings (OSTI)

A rangefinder is a device that measures distance from the observer to a target, for the purposes of surveying, determining focus in photography, or accurately aiming a weapon. Some devices use active methods to measure (such as sonar, laser, or radar); ... Keywords: PIC, radar, rangefinder, surveying, target, ultrasonic, weapon

Mansoor-Ul-Hassan Siddique

2009-08-01T23:59:59.000Z

119

A Marine Radar Wind Sensor  

Science Conference Proceedings (OSTI)

A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind ...

Heiko Dankert; Jochen Horstmann

2007-09-01T23:59:59.000Z

120

LiDAR | Open Energy Information  

Open Energy Info (EERE)

LiDAR LiDAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: LiDAR Details Activities (10) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps Hydrological: Thermal: Cost Information Low-End Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / sq. mile Median Estimate (USD): 850.0085,000 centUSD 0.85 kUSD 8.5e-4 MUSD 8.5e-7 TUSD / sq. mile High-End Estimate (USD): 1,300.00130,000 centUSD 1.3 kUSD 0.0013 MUSD 1.3e-6 TUSD / sq. mile

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LIDAR, Point Clouds, and their Archaeological Applications  

SciTech Connect

It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

White, Devin A [ORNL

2013-01-01T23:59:59.000Z

122

Micropulse Lidar Cloud Mask Value-Added Product Technical Report  

Science Conference Proceedings (OSTI)

Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

Sivaraman, C; Comstock, J

2011-07-25T23:59:59.000Z

123

Model of the Correlation between Lidar Systems and Wind Turbines for Lidar Assisted Control  

Science Conference Proceedings (OSTI)

Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control it is crucial to know the correlation between the rotor effective ...

David Schlipf; Po Wen Cheng; Jakob Mann

124

ARM Climate Research Facility Radar Operations Plan  

SciTech Connect

Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

Voyles, JW

2012-05-18T23:59:59.000Z

125

Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China  

SciTech Connect

Aerosol Raman lidar observations of profiles of the particle extinction and backscatter coefficients and the respective extinction-to-backscatter ratio (lidar ratio) were performed under highly polluted conditions in the Pearl River Delta (PRD) in southern China in October 2004 and at Beijing during a clear period with moderately polluted to background aerosol conditions in January 2005. The anthropogenic haze in the PRD is characterized by volume light-extinction coefficients of particles ranging from approximately 200 to800 Mm-1 and lidar ratios mostly between 40 and 55 sr (average of47{+-}6 sr). Almost clean air masses were observed throughout the measurements of the Beijing campaign. These air masses originated from arid desert-steppe-like regions (greater Gobi area).Extinction values usually varied between 100 and300 Mm-1, and the lidar ratios were considerably lower (compared with PRD values) with values mostly from 30 to 45 sr (average of38{+-}7 sr). Gobi dust partly influenced the observations. Unexpectedly low lidar ratios of approximately 25 sr were found for a case of background aerosol with a low optical depth of 0.05. The low lidar ratios are consistent with Mie-scattering calculations applied to ground-based observations of particle size distributions.

Tesche, Matthias; Ansmann, Albert; Mueller, Detlef; Althausen, Dietrich; Engelmann, Ronny; Hu Min; Zhang Yuanghang

2007-09-01T23:59:59.000Z

126

International School on LiDAR Technology Laboratory Manual for LiDAR Data Processing  

E-Print Network (OSTI)

impart hands-on-training on working with LiDAR data. A duration of 12 hours has been assigned for data processing, which is spread over four days during the school. The laboratoryisplannedtobeconductedattheComputerCentreofIITKanpurwhereeach participant would be able to learn on his/her own. The LiDAR data processing exercises have been designed around the TerraSolid software (Terrascan, Terramatch, Terramodeller and Terraphoto). This manual consists of detailed instructions for LiDAR data processing. The instructions have been divided into four parts. The first part deals with importing raw LiDAR data and trajectory within Terrascan, creation of projects and different kinds of visualizations. In the second part, LiDAR data are corrected for the inherent errors using the overlap analysis. The corrected data are passed into the classification process which is covered in the third part of the manual. The use of routines and macros is shown to classify LiDAR data into ground points, low points, below surface points, building points etc. At this stage anorthophotograph is also employed to help in the classification process. Finally, the fourth part of laboratory manual shows how to generate vector models for

Bapna Ravish; Ghosh Suddhasheel; Biswas Susham; Y Surya Aditya

2008-01-01T23:59:59.000Z

127

Lidar Observations of Ship Spray Plumes  

Science Conference Proceedings (OSTI)

As part of the Monterey Area Ship Track experiment, which was designed to study ship-generated cloud tracks, ship-based measurements were made by a gyroscopically stabilized scanning lidar system. This paper focuses on the spray plume observed by ...

William P. Hooper; Jeffrey E. James

2000-08-01T23:59:59.000Z

128

Scanning 6-Wavelength 11-Channel Aerosol Lidar  

Science Conference Proceedings (OSTI)

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532,...

Dietrich Althausen; Detlef Müller; Albert Ansmann; Ulla Wandinger; Helgard Hube; Ernst Clauder; Steffen Zörner

2000-11-01T23:59:59.000Z

129

Reconstructing 3D buildings from Lidar data  

E-Print Network (OSTI)

Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high point accuracy. In this paper a new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wireframes. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in extracting urban area buildings. 1.

Ahmed F. Elaksher; James S. Bethel

2002-01-01T23:59:59.000Z

130

The Atmospheric Imaging Radar: Simultaneous Volumetric Observations Using a Phased Array Weather Radar  

Science Conference Proceedings (OSTI)

Mobile weather radars often utilize rapid-scan strategies when collecting observations of severe weather. Various techniques have been used to improve volume update times, including the use of agile and multibeam radars. Imaging radars, similar in ...

Bradley Isom; Robert Palmer; Redmond Kelley; John Meier; David Bodine; Mark Yeary; Boon-Leng Cheong; Yan Zhang; Tian-You Yu; Michael I. Biggerstaff

2013-04-01T23:59:59.000Z

131

Effects of Radar Beam Shielding on Rainfall Estimation for the Polarimetric C-Band Radar  

Science Conference Proceedings (OSTI)

Radar reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) measured from the operational, polarimetric weather radar located in Trappes, France, were used to examine the effects of radar beam shielding on ...

Katja Friedrich; Urs Germann; Jonathan J. Gourley; Pierre Tabary

2007-11-01T23:59:59.000Z

132

Polarimetry for Weather Surveillance Radars  

Science Conference Proceedings (OSTI)

This paper is an overview of weather radar polarimetry emphasizing surveillance applications. The following potential benefits to operations are identified: improvement of quantitative precipitation measurements, discrimination of hail from rain ...

Dusan S. Zrnic; Alexander V. Ryzhkov

1999-03-01T23:59:59.000Z

133

Radar Reflectivity of Cumulus Clouds  

Science Conference Proceedings (OSTI)

The relationships between the radar reflectivity factor Z and significant physical cloud parameters are studied from a dataset collected with an instrumented aircraft in non- or very weakly precipitating warm clouds. The cloud droplet populations ...

Henri Sauvageot; Jilani Omar

1987-06-01T23:59:59.000Z

134

Radar Calibration: Some Simple Approaches  

Science Conference Proceedings (OSTI)

The proper calibration of weather radars has been at the heart of the problem of accurate reflectivity measurements for more than five decades. This paper summarizes a number of methods that have been used previously and others that areworthy of ...

David Atlas

2002-09-01T23:59:59.000Z

135

Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation  

Science Conference Proceedings (OSTI)

Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. The data were recorded by scanning the lidar beam (Nd:YAG) at a constant angular ...

Luc R. Bissonnette; Gilles Roy; Frédéric Fabry

2001-09-01T23:59:59.000Z

136

Scopes and Challenges of Dual-Doppler Lidar Wind Measurements—An Error Analysis  

Science Conference Proceedings (OSTI)

Pulsed Doppler lidars are powerful tools for long-range high-resolution measurements of radial wind velocities. With the development of commercial Doppler lidars and the reduction of acquisition costs, dual-Doppler lidar systems will be become ...

Christina Stawiarski; Katja Träumner; Christoph Knigge; Ronald Calhoun

137

Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign  

Science Conference Proceedings (OSTI)

Water vapor mixing ratio retrieval using the Howard University Raman lidar is presented with emphasis on three aspects: (i) comparison of the lidar with collocated radiosondes and Raman lidar, (ii) investigation of the relationship between ...

M. Adam; B. B. Demoz; D. D. Venable; E. Joseph; R. Connell; D. N. Whiteman; A. Gambacorta; J. Wei; M. W. Shephard; L. M. Miloshevich; C. D. Barnet; R. L. Herman; J. Fitzgibbon

2010-01-01T23:59:59.000Z

138

LIDAR, Camera and Inertial Sensors Based Navigation Techniques for Advanced Intelligent Transportation System Applications  

E-Print Network (OSTI)

in the vision sensor and LIDAR system development makes thisvehicle carries one camera and two IBEO ALASCA XT LIDARLIDARs. (a) SICK LMS200 LIDAR, (b) HOKUYO UXM-30LN LIDAR, (

Huang, Lili

2010-01-01T23:59:59.000Z

139

Scopes and Challenges of Dual-Doppler Lidar Wind Measurements—An Error Analysis  

Science Conference Proceedings (OSTI)

Pulsed Doppler lidars are powerful tools for long-range, high-resolution measurements of radial wind velocities. With the development of commercial Doppler lidars and the reduction of acquisition costs, dual-Doppler lidar systems will be become ...

Christina Stawiarski; Katja Träumner; Christoph Knigge; Ronald Calhoun

2013-09-01T23:59:59.000Z

140

IR differential-absorption lidars for ecological monitoring of the environment  

Science Conference Proceedings (OSTI)

A review of studies on lidar sensing of the environment by the method of IR differential absorption is presented. The differential-absorption method is described and its various applications are considered. A comparison of this method with other methods of lidar sensing showed that a differential-absorption lidar successfully supplements a Raman lidar. The basic parameters are presented for IR lidars fabricated recently by various research groups. The outlook for the IR lidar sensing of the atmosphere is discussed. (review)

Vasil'ev, B I [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mannoun, Oussama [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation)

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Polarized Micro Pulse Lidars R. L. Coulter and T. J. Martin  

NLE Websites -- All DOE Office Websites (Extended Search)

and Performance of the New Polarized Micro Pulse Lidars R. L. Coulter and T. J. Martin Argonne National Laboratory Argonne, IL 60439 Introduction Micro pulse lidars (MPLs) have...

142

A light detection and ranging (lidar) study of the Sierra Nevada.  

E-Print Network (OSTI)

??Light Detection and Ranging (lidar) has been used widely for the remote sensing of multiple parameters from earth’s surface. Lidar systems are used to measure… (more)

Phelps, Gary M. II

2011-01-01T23:59:59.000Z

143

Studies of urban aerosols in the Pearl River Delta Region using lidar.  

E-Print Network (OSTI)

??In the Pearl River Delta (PRD) Region of China, three Lidar systems have been employed for monitoring aerosol distribution: a mobile micro-pulse Lidar of City… (more)

Chan, Lai Man Raymond (???)

2007-01-01T23:59:59.000Z

144

A light detection and ranging (lidar) study of the Sierra Nevada  

E-Print Network (OSTI)

2005). "An evaluation of LiDAR-derived elevation and terrainheight using a combination of lidar and aerial photography."error associated with lidar-derived DEM interpolation."

Phelps, Gary M. II

2011-01-01T23:59:59.000Z

145

NEHRP - Northern California LiDAR Hillshades in Google ...  

Science Conference Proceedings (OSTI)

Library. Northern California LiDAR Hillshades in Google Earth. ... Increasing the disk cache size in Google Earth to 2000MB is advised. ...

146

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

147

Building model reconstruction from lidar data and aerial photographs.  

E-Print Network (OSTI)

??The objective of this research is to reconstruct 3D building models from imagery and LIDAR data. The images used are stereo aerial photographs with known… (more)

Ma, Ruijin

2005-01-01T23:59:59.000Z

148

Upgrade To The Pierre Auger Cosmic Ray Observatory's Lidar System.  

E-Print Network (OSTI)

??The Pierre Auger Cosmic Ray Observatory currently operates four elastic lidar systems in order to characterize the atmospheric aerosol content above the observatory. The atmospheric… (more)

Petermann, Emily B

2010-01-01T23:59:59.000Z

149

LiDAR (Monaster And Coolbaugh, 2007) | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon LiDAR (Monaster And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

150

Cloud properties derived from the High Spectral Resolution Lidar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud properties derived from the High Spectral Resolution Lidar during MPACE Eloranta, Edwin University of Wisconsin Category: Field Campaigns Cloud properties were derived from...

151

LOSA-M2 aerosol Raman lidar  

SciTech Connect

The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-10-31T23:59:59.000Z

152

Pierre Auger Atmosphere-Monitoring Lidar System  

E-Print Network (OSTI)

The fluorescence-detection techniques of cosmic-ray air-shower experiments require precise knowledge of atmospheric properties to reconstruct air-shower energies. Up to now, the atmosphere in desert-like areas was assumed to be stable enough so that occasional calibration of atmospheric attenuation would suffice to reconstruct shower profiles. However, serious difficulties have been reported in recent fluorescence-detector experiments causing systematic errors in cosmic ray spectra at extreme energies. Therefore, a scanning backscatter lidar system has been constructed for the Pierre Auger Observatory in Malargue, Argentina, where on-line atmospheric monitoring will be performed. One lidar system is already deployed at the Los Leones fluorescence detector site and the second one is currently (April 2003) under construction at the Coihueco site. Next to the established ones, a novel analysis method with assumption on horizontal invariance, using multi-angle measurements is shown to unambiguously measure optical depth, as well as absorption and backscatter coefficient.

A. Filipcic; M. Horvat; D. Veberic; D. Zavrtanik; M. Zavrtanik; M. Chiosso; R. Mussa; G. Sequeiros; M. A. Mostafa; M. D. Roberts

2003-05-21T23:59:59.000Z

153

Lidar techniques for search and rescue  

SciTech Connect

Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

Cabral, W.L.

1985-01-01T23:59:59.000Z

154

MU Radar and Lidar Observations of Clear-Air Turbulence underneath Cirrus  

Science Conference Proceedings (OSTI)

Turbulence generation mechanisms prevalent in the atmosphere are mainly shear instabilities, breaking of internal buoyancy waves, and convective instabilities such as thermal convection due to heating of the ground. In the present work, clear-air ...

Hubert Luce; Takuji Nakamura; Masayuki K. Yamamoto; Mamoru Yamamoto; Shoichiro Fukao

2010-02-01T23:59:59.000Z

155

The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy  

Science Conference Proceedings (OSTI)

Clouds are an important component of the earth’s climate system. A better description of their microphysical properties is needed to improve radiative transfer calculations. In the framework of the Earth, Clouds, Aerosols, and Radiation Explorer (...

Claire Tinel; Jacques Testud; Jacques Pelon; Robin J. Hogan; Alain Protat; Julien Delanoë; Dominique Bouniol

2005-06-01T23:59:59.000Z

156

Definition: Synthetic Aperture Radar | Open Energy Information  

Open Energy Info (EERE)

Aperture Radar Aperture Radar Jump to: navigation, search Dictionary.png Synthetic Aperture Radar Synthetic-aperture radar (SAR) is an active microwave remote sensing technology that measures the phase difference between a radar wave emitted from an antennae attached to a satellite or aircraft to generate high-resolution images of a surface.[1] View on Wikipedia Wikipedia Definition Also Known As SAR Related Terms radar References ↑ Synthetic Aperature Radar: Systems and Signal Processing (Curlander and McDonough - 1991 - book) fue LikeLike UnlikeLike You like this.Sign Up to see what your friends like. l cell, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Synthetic_Aperture_Radar&oldid=493069" Category: Definitions What links here Related changes

157

A Bistatic Multiple-Doppler Radar Network  

Science Conference Proceedings (OSTI)

A multiple-Doppler radar network can be constructed using only one, traditional, transmitting pencil-beam radar and one or more passive, low-gain, nontransmitting receivers at remote sites. Radiation scattered from the pencil beam of the ...

Joshua Wurman; Stanley Heckman; Dennis Boccippio

1993-12-01T23:59:59.000Z

158

Radar Detection of Turbulence in Precipitation Environments  

Science Conference Proceedings (OSTI)

Imperfect particle tracer response is incorporated into the relations describing the turbulent air motion contribution to Doppler radar spectrum mean and variance. Tracer effects on radar estimates of the eddy dissipation rate (?) increase with ...

Alan R. Bohne

1982-08-01T23:59:59.000Z

159

Understanding Radar Refractivity: Sources of Uncertainty  

Science Conference Proceedings (OSTI)

This study presents a 2-yr-long comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) refractivity retrievals with Oklahoma Mesonetwork (“Mesonet”) and sounding measurements and discusses some challenges to implementing radar ...

David Bodine; Dan Michaud; Robert D. Palmer; Pamela L. Heinselman; Jerry Brotzge; Nick Gasperoni; Boon Leng Cheong; Ming Xue; Jidong Gao

2011-12-01T23:59:59.000Z

160

Airborne Doppler Radar Data Analysis Workshop  

Science Conference Proceedings (OSTI)

The Airborne Doppler Radar Data Analysis Workshop, sponsored by the Atmospheric Technology Division (ATD) of the National Center for Atmospheric Research (NCAR), was the first to focus on analyzing airborne Doppler radar data. The workshop (held ...

Wen-Chau Lee; Frank D. Marks; Craig Walther

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Doppler Radar Sampling Limitations in Convective Storms  

Science Conference Proceedings (OSTI)

Vertical air motion data from a T-28 aircraft were filtered and sampled to simulate Doppler radar measurements. The results suggest that multiple Doppler radar analyses are subject to potentially large spatial aliasing errors in deep convection ...

R. E. Carbone; M. J. Carpenter; C. D. Burghart

1985-09-01T23:59:59.000Z

162

Obstacle penetrating dynamic radar imaging system  

DOE Patents (OSTI)

An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

2006-12-12T23:59:59.000Z

163

Optimal Planning of a Weather Radar Network  

Science Conference Proceedings (OSTI)

An approach to the optimal planning of a weather radar network is presented. In the approach, several aspects affecting the planning decision, including terrain blockage, the need to measure with two Doppler weather radars in some regions, and ...

R. Minciardi; R. Sacile; F. Siccardi

2003-09-01T23:59:59.000Z

164

Synthetic Aperture Radar Imagery -- Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthetic Aperture Radar Imagery Sandia has collected and real-time processed over 400,000 synthetic aperture radar images. The following is a selection of imagery available for...

165

Operational Application of Meteorological Doppler Radar  

Science Conference Proceedings (OSTI)

Single Doppler weather radar velocity and reflectivity fields have been obtained with the National Center for Atmospheric Research (NCAR) 5 cm radars for a wide variety of weather situations. Among those weather features that can be identified by ...

James Wilson; Richard Carbone; Harold Baynton; Robert Serafin

1980-10-01T23:59:59.000Z

166

Scanning ARM Cloud Radar Handbook  

SciTech Connect

The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

Widener, K; Bharadwaj, N; Johnson, K

2012-06-18T23:59:59.000Z

167

ARMAR: An Airborne Rain-Mapping Radar  

Science Conference Proceedings (OSTI)

A new airborne rain-mapping radar (ARMAR) has been developed by NASA and the Jet Propulsion Laboratory for operation on the NASA Ames DC-8 aircraft. The radar operates at 13.8 GHz, the frequency to be used by the radar on the Tropical Rainfall ...

S. L. Durden; E. Im; F. K. Li; W. Ricketts; A. Tanner; W. Wilson

1994-06-01T23:59:59.000Z

168

Microwave emissions from police radar  

E-Print Network (OSTI)

The purpose of this study was to evaluate police officers exposures to microwaves emitted by traffic radar units at the ocular and testicular level. Additionally, comparisons were made of the radar manufacturers published maximum power density specifications and actual measured power densities taken at the antenna face of those units. Four different speed enforcement agencies and one transportation research institute provided fifty four different radar units for evaluation. Of those units, nine dash mounted. five rear mounted, and three hand held models were included. During this study, only four of the 986 measurements taken exceeded the American National Standards Institute(ANSI) limit of 5 MW/CM2 , and none exceeded the American Conference of Governmental Industrial Hygienists(ACGIH), Institute of Electrical and Electronic Engineers(IEEE), or Occupational Safety and Health Administration(OSHA) standard of 10 MW/CM2 . None of the 812 measurements taken at the officers seated ocular and testicular positions exceeded .04 MW/CM2. In fact, the highest reading observed in the drivers' position was .034 MW/CM2 taken at the 5th percentile testicular level, less than 1% of the lowest current safety standard. Because of the confusion that exists in the medical and scientific communities concerning non-ionizing radiation, the extent of health risks associated with long term exposure to police radar is not yet known. Until science has indisputably proven that long term, low power exposure is not harmful, it is recommended that police departments take steps to limit officer exposure. There are several ways that police departments can limit exposure cheaply and with minimal effort. The purchasing department should first consider radar units with the lowest published maximum power densities. New hand held radar units should not be purchased because they leave open the opportunity for operators to place their bodies in the radar beam path. Purchasing units whose antennae mount outside the patrol vehicle will also lower exposure to microwaves. Finally, training that stresses the importance of using the radar units' stand-by mode when not actually monitoring traffic will further limit exposure.

Fink, John Michael

1994-01-01T23:59:59.000Z

169

Field Measurements of Wind Turbine Wakes with Lidars  

Science Conference Proceedings (OSTI)

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, ...

Giacomo Valerio Iungo; Yu-Ting Wu; Fernando Porté-Agel

2013-02-01T23:59:59.000Z

170

Observation of Atmospheric Fronts Using Raman Lidar Moisture Measurements  

Science Conference Proceedings (OSTI)

This paper presents the results of a field program using a ground-based Raman lidar system to observe changes in moisture profiles as a cold and a warm front passed over the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The lidar ...

S. H. Melfi; D. Whiteman; R. Ferrare

1989-09-01T23:59:59.000Z

171

Details of Colliding Thunderstorm Outflows as Observed by Doppler Lidar  

Science Conference Proceedings (OSTI)

Three cases of colliding outflow boundaries are examined using data collected from the NOAA Doppler lidar and a meteorological tower during the summer of 1986 near Boulder, Colorado. The data are unique because the lidar and the 300 m tower were ...

J. M. Intrieri; A. J. Bedard Jr.; R. M. Hardesty

1990-05-01T23:59:59.000Z

172

Aerosol size distribution using Lidar data and a typical Lidar assembly  

Science Conference Proceedings (OSTI)

An algorithm is developed and detailed in this paper which determines atmospheric aerosol parameters such as backscatter and extinction coefficients, aerosol optical thickness, and the aerosol size distribution. The algorithm uses the power profile data ... Keywords: LIDAR system, aerosol optical depth, aerosol size distribution, remote sensing

Hamed Parsiani; Javier Mčndez

2008-11-01T23:59:59.000Z

173

ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

174

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Rob Newsom; John Goldsmith

175

ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Rob Newsom; John Goldsmith

176

ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

177

ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

178

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

179

ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

Science Conference Proceedings (OSTI)

10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

180

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

Science Conference Proceedings (OSTI)

1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

182

The Doppler Aerosol Wind Lidar (DAWN) Airborne, Wind-Profiling, Coherent-Detection Lidar System: Overview and Preliminary Flight Results  

Science Conference Proceedings (OSTI)

The first airborne wind measurements of a pulsed, 2-micron solid-state, high-energy, wind-profiling lidar system for airborne measurements are presented. The laser pulse energy is the highest to date in an eyesafe airborne wind lidar system. This ...

Michael J. Kavaya; Jeffrey Y. Beyon; Grady J. Koch; Mulugeta Petros; Paul J. Petzar; Upendra N. Singh; Bo C. Trieu; Jirong Yu

183

Mitigation of Coastal Bluff Instability in San Diego County, California/Evaluating Seacliff Morphology and Erosion Control in San Diego County Using LIDAR and GIS  

E-Print Network (OSTI)

of merging the aerial and ground- based LIDAR surfaces. Inmerging bathymetric LIDAR and high resolution photographyFigure 11. Merging aerial and ground-based LIDAR surfaces.

Ashford, Scott

2005-01-01T23:59:59.000Z

184

Sidelobe Contamination in Bistatic Radars  

Science Conference Proceedings (OSTI)

The problem of sidelobe contamination in a bistatic network is explored. The McGill bistatic network consists of one S-band Doppler radar and two low-gain passive receivers at remote sites. Operational experience with the bistatic network ...

Ramón de Elía; Isztar Zawadzki

2000-10-01T23:59:59.000Z

185

Field Training in Radar Meteorology  

Science Conference Proceedings (OSTI)

The NSF Division of Mesoscale Meteorology and the University of Nevada—Reno (UNR) provided support for a two-week field course at the CSU—CHILL radar during 12—24 May 1991. Ten atmospheric science graduate students and two faculty from the Desert ...

John Hallett; Melanie Wetzel; Steven Rutledge

1993-01-01T23:59:59.000Z

186

Deformation Trend Extraction Based on Multi-Temporal InSAR in Shanghai  

E-Print Network (OSTI)

Abstract: Shanghai is a modern metropolis characterized by high urban density and anthropogenic ground motions. Although traditional deformation monitoring methods, such as GPS and spirit leveling, are reliable to millimeter accuracy, the sparse point subsidence information makes understanding large areas difficult. Multiple temporal space-borne synthetic aperture radar interferometry is a powerful high-accuracy (sub-millimeter) remote sensing tool for monitoring slow ground deformation for a large area with a high point density. In this paper, the Interferometric Point Target Time Series Analysis method is used to extract ground subsidence rates in Shanghai based on 31 C-Band and 35 X-Band synthetic aperture radar (SAR) images obtained by Envisat and COSMO SkyMed (CSK) satellites from 2007 to 2010. A significant subsidence funnel that was detected is located in the junction place between the Yangpu and the Hongkou Districts. A t-test is formulated to judge the agreements between the subsidence results obtained by SAR and by spirit leveling. In addition, four profile lines crossing the subsidence funnel area are chosen for a comparison of ground subsidence rates, which were obtained by the two different band

Jie Chen; Jicang Wu; Lina Zhang; Junping Zou; Guoxiang Liu; Rui Zhang; Bing Yu

2013-01-01T23:59:59.000Z

187

Two terminal micropower radar sensor  

DOE Patents (OSTI)

A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

McEwan, T.E.

1995-11-07T23:59:59.000Z

188

Two terminal micropower radar sensor  

SciTech Connect

A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

189

High-Temporal-Resolution Capabilities of the National Weather Radar Testbed Phased-Array Radar  

Science Conference Proceedings (OSTI)

Since 2007 the advancement of the National Weather Radar Testbed Phased-Array Radar (NWRT PAR) hardware and software capabilities has been supporting the implementation of high-temporal-resolution (1 min) sampling. To achieve the increase in ...

Pamela L. Heinselman; Sebastián M. Torres

2011-03-01T23:59:59.000Z

190

Measurement of Atmospheric Aspect Sensitivity Using Coherent Radar Imaging after Mitigation of Radar Beam Weighting Effect  

Science Conference Proceedings (OSTI)

The aspect angle, a measurement of the aspect sensitivity of atmospheric refractivity irregularities, was estimated with multiple-receiver coherent radar imaging (CRI) of very high frequency (VHF) atmospheric radar. Two CRI parameters retrieved by ...

Jenn-Shyong Chen; Jun-ichi Furumoto

2013-02-01T23:59:59.000Z

191

The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases  

Science Conference Proceedings (OSTI)

Since the successful launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, measurements of a wide variety of precipitating systems have been obtained with unprecedented detail from the first space-based radar [precipitation radar (...

Emmanouil N. Anagnostou; Carlos A. Morales; Tufa Dinku

2001-04-01T23:59:59.000Z

192

Monitoring the Reflectivity Calibration of a Scanning Radar Using a Profiling Radar and a Disdrometer  

Science Conference Proceedings (OSTI)

This paper describes a method of absolutely calibrating and routinely monitoring the reflectivity calibration from a scanning weather radar using a vertically profiling radar that has been absolutely calibrated using a collocated surface ...

Christopher R. Williams; Kenneth S. Gage; Wallace Clark; Paul Kucera

2005-07-01T23:59:59.000Z

193

Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group  

DOE Data Explorer (OSTI)

The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

194

Mitigation of Coastal Bluff Instability in San Diego County, California/Evaluating Seacliff Morphology and Erosion Control in San Diego County Using LIDAR and GIS  

E-Print Network (OSTI)

County Using LIDAR and GIS In order to evaluate seacliffgeographic information systems (GIS) analysis. LIDAR is the

Ashford, Scott

2005-01-01T23:59:59.000Z

195

LiDAR (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

LiDAR (Laney, 2005) LiDAR (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique LiDAR Activity Date Usefulness not indicated DOE-funding Unknown Notes Design of Sampling Strategies to Detect CO2 Emissions From Hidden Geothermal Systems, Lewicki, Oldenburg and Kennedy. The objective of this project is to investigate geothermal CO2 monitoring in the near surface as a tool to discover hidden geothermal reservoirs. A primary goal of this project is to develop an approach that places emphasis on cost and time-efficient near-surface exploration methods and yields results to guide and focus more cost-intensive geophysical measurements, installation of

196

ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBoundary Layer CO2 Using CW Lidar govCampaignsBoundary Layer CO2 Using CW Lidar Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer CO2 Using CW Lidar 2005.05.21 - 2005.05.24 Lead Scientist : Michael Dobbs Description Overflights Underway at ACRF Southern Great Plains Site (M.Dobbs/J.Liljegren) Science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) conducted flights over the Central Facility at ACRF's Southern Great Plains (SGP) site as part of the Climate Sources and Sink (CO2) Intensive Operational Period (IOP), using a CW lidar. The objective of the flights was to validate, by demonstration and comparison with SGP ground observations, the performance of the ITT system when used in conjunction with retrieval

197

Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers  

Science Conference Proceedings (OSTI)

Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range ...

Refaat Tamer F.; Halama Gary E.; DeYoung Russell J.

2000-07-01T23:59:59.000Z

198

Lidar Observation of Elevated Pollution Layers over Los Angeles  

Science Conference Proceedings (OSTI)

Elevated pollution layers are observed over Los Angeles with an aircraft equipped with a downward-looking lidar. For the first time, detailed ancillary upper-air kinematic and thermodynamic data were collected simultaneously to aid in the ...

Roger M. Wakimoto; James L. McElroy

1986-11-01T23:59:59.000Z

199

Effects of Wind Turbulence on Coherent Doppler Lidar Performance  

Science Conference Proceedings (OSTI)

The effects of wind turbulence on pulsed coherent Doppler lidar performance are investigated theoretically and with computer simulations. The performance of velocity estimators is determined for the case of a single realization of a wind field ...

Rod Frehlich

1997-02-01T23:59:59.000Z

200

Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric Plumes  

Science Conference Proceedings (OSTI)

A series of nearly instantaneous vertical cross sections of power-plant plume concentrations obtained by both airborne and ground-based lidar systems for the Electric Power Research Institute (EPRI) Plume Model Validation and Development Project ...

W. S. Lewellen; R. I. Sykes

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THOR—Cloud Thickness from Offbeam Lidar Returns  

Science Conference Proceedings (OSTI)

Conventional wisdom is that lidar pulses do not significantly penetrate clouds having an optical thickness exceeding about ? = 2, and that no returns are detectible from more than a shallow skin depth. Yet optically thicker clouds of ? ? 2 ...

Robert F. Cahalan; Matthew McGill; John Kolasinski; Tamás Várnai; Ken Yetzer

2005-06-01T23:59:59.000Z

202

Estimating Spatial Velocity Statistics with Coherent Doppler Lidar  

Science Conference Proceedings (OSTI)

The spatial statistics of a simulated turbulent velocity field are estimated using radial velocity estimates from simulated coherent Doppler lidar data. The structure functions from the radial velocity estimates are processed to estimate the ...

Rod Frehlich; Larry Cornman

2002-03-01T23:59:59.000Z

203

Lidar-Transmissometer Visibility Comparisons Over Slant and Horizontal Paths  

Science Conference Proceedings (OSTI)

Atmospheric visibility has been measured with the lidar technique using the “slope method.” The system is briefly described and some aspects of slant path visibility measurements for aeronautical applications are discussed. Measurements in dense ...

J. L. Gaumet; A. Petitpa

1982-05-01T23:59:59.000Z

204

Comparison of 2- and 10-µm Coherent Doppler Lidar Performance  

Science Conference Proceedings (OSTI)

The performance of 2- and 10-µm coherent Doppler lidar is presented in terms of the statistical distribution of the maximum-likelihood velocity estimator from simulations for fixed range resolution and fixed velocity search space as a function of ...

Rod Frehlich

1995-04-01T23:59:59.000Z

205

ARM - Field Campaign - M-PACE - Polarization Diversity Lidar...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign :...

206

Lidar Observations of Banded Convection during BLX83  

Science Conference Proceedings (OSTI)

Lidar observations of clear-air convection during the 1983 Boundary Layer Experiment (BLX83) reveal the presence of elongated, parallel regions of updrafts marked by enhanced aerosol backscattering. These linear (banded) aerosol structures were ...

R. A. Ferrare; J. L. Schols; E. W. Eloranta; R. Coulter

1991-03-01T23:59:59.000Z

207

Evaluating Large-Eddy Simulations Using Volume Imaging Lidar Data  

Science Conference Proceedings (OSTI)

The authors apply data analysis techniques that demonstrate the power of using volume imaging lidar observations to evaluate several aspects of large-eddy simulations (LESs). They present observations and simulations of an intense and spatially ...

Shane D. Mayor; Gregory J. Tripoli; Edwin W. Eloranta

2003-07-01T23:59:59.000Z

208

Cirrus Classification at Midlatitude from Systematic Lidar Observations  

Science Conference Proceedings (OSTI)

Systematic cirrus lidar measurements performed in the south of France during 2000 are analyzed statistically to search for cloud classes. The classes are based on cloud characteristics (cloud thickness, light backscattering efficiency, and its ...

P. Keckhut; F. Borchi; S. Bekki; A. Hauchecorne; M. SiLaouina

2006-02-01T23:59:59.000Z

209

Lidar Observation of the Atmospheric Boundary Layer in Jerusalem  

Science Conference Proceedings (OSTI)

The temporal variation of the atmospheric boundary layer (ABL) over Jerusalem is accurately measured by means of a lidar system. The findings are explained and discussed based on the specific synoptic situation of typical summer days in the ...

Ram Hashmonay; Ariel Cohen; Uri Dayan

1991-08-01T23:59:59.000Z

210

ARM - Field Campaign - M-PACE HSR Lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

HSR Lidar Campaign Links Full Proposal Abstract M-PACE Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : M-PACE...

211

Tropospheric Water Vapor Transport as Determined from Airborne Lidar Measurements  

Science Conference Proceedings (OSTI)

The first collocated measurements during THORPEX (The Observing System Research and Predictability Experiment) regional campaign in Europe in 2007 were performed by a novel four-wavelength differential absorption lidar and a scanning 2-?m Doppler ...

Andreas Schäfler; Andreas Dörnbrack; Christoph Kiemle; Stephan Rahm; Martin Wirth

2010-12-01T23:59:59.000Z

212

Vorticity from Line-of-Sight Lidar Velocity Scans  

Science Conference Proceedings (OSTI)

A method is presented to compute the spanwise vorticity in polar coordinates from 2D vertical cross sections of high-resolution line-of-sight Doppler wind lidar observations. The method uses the continuity equation to derive the velocity ...

Martin Weissmann; Andreas Dörnbrack; James D. Doyle

2009-12-01T23:59:59.000Z

213

Statistics of Cloud Optical Properties from Airborne Lidar Measurements  

Science Conference Proceedings (OSTI)

Accurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these ...

John E. Yorks; Dennis L. Hlavka; William D. Hart; Matthew J. McGill

2011-07-01T23:59:59.000Z

214

Raman Lidar Profiling of Tropospheric Water Vapor over Kangerlussuaq, Greenland  

Science Conference Proceedings (OSTI)

A new measurement capability has been implemented in the Arctic Lidar Technology (ARCLITE) system at the Sondrestrom upper-atmosphere research facility near Kangerlussuaq, Greenland (67.0°N, 50.9°W), enabling estimates of atmospheric water vapor ...

Ryan Reynolds Neely III; Jeffrey P. Thayer

2011-09-01T23:59:59.000Z

215

Platform-Motion Correction of Velocity Measured by Doppler Lidar  

Science Conference Proceedings (OSTI)

The NOAA/Earth System Research Laboratory (ESRL) has two coherent Doppler lidar systems that have been deployed on board research vessels to obtain data during several experiments. The instruments measure the wind velocity relative to the motion ...

Reginald J. Hill; W. Alan Brewer; Sara C. Tucker

2008-08-01T23:59:59.000Z

216

Lidar Monitoring of the Water Vapor Cycle in the Troposphere  

Science Conference Proceedings (OSTI)

The water vapor mixing ratio distribution in the lower and middle troposphere has been continuously monitored, using an active lidar system. The methodology of the differential absorption laser method used for these measurements is summarized and ...

C. Cahen; G. Megie; P. Flamant

1982-10-01T23:59:59.000Z

217

Airborne Doppler Lidar Observations of Convective Phenomena in Oklahoma  

Science Conference Proceedings (OSTI)

On 30 June 1981, the wind fields around a variety of convective clouds, ranging from large thunderstorm complexes to isolated cumulus congestus, were observed in Oklahoma using an airborne Doppler lidar operated by the National Aeronautics and ...

Eugene W. McCaul Jr.; Howard B. Bluestein; Richard J. Doviak

1987-09-01T23:59:59.000Z

218

Cloud Top Liquid Water from Lidar Observations of Marine Stratocumulus  

Science Conference Proceedings (OSTI)

Maine stratus clouds were simultaneously observed by nadir Nd:YAG lidar measurements and in situ cloud physics measurements. A procedure was applied to derive the two-dimensional vertical cross section of the liquid water from within the cloud ...

J. D. Spinhirne; R. Boers; W. D. Hart

1989-02-01T23:59:59.000Z

219

The NCAR Airborne Infrared Lidar System: Status and Applications  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research Airborne Infrared Lidar System is being developed for Doppler wind measurements using heterodyne detection. Its design is based on a pulsed CO2 laser transmitter and a single continuous-wave CO2 laser ...

R. L. Schwiesow; M. P. Spowart

1996-02-01T23:59:59.000Z

220

Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar  

Science Conference Proceedings (OSTI)

A key advantage of the National Weather Radar Testbed Phased Array Radar (PAR) is the capability to adaptively scan storms at higher temporal resolution than is possible with the Weather Surveillance Radar-1988 Doppler (WSR-88D): 1 min or less ...

Pamela L. Heinselman; David L. Priegnitz; Kevin L. Manross; Travis M. Smith; Richard W. Adams

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The 30th International Conference on Radar Meteorology  

Science Conference Proceedings (OSTI)

The 30th International Conference on Radar Meteorology, held in Munich, Germany, 19–24 July 2001, highlighted recent progress in the field of radar meteorology and demonstrated how radar is used in many integrated ways to better understand and ...

Matthias Steiner; Peter F. Meischner

2002-11-01T23:59:59.000Z

222

Ultra-wideband radar motion sensor  

DOE Patents (OSTI)

A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

McEwan, T.E.

1994-11-01T23:59:59.000Z

223

LIDAR Applications to Wind-Energy Technology Assessment  

Science Conference Proceedings (OSTI)

LIDAR (Light Detection And Ranging) is an emerging technology in the wind industry that has the potential to improve preconstruction wind project development as well as increase reliability and performance of operating projects. Realizing this potential will reduce the cost of wind-power generation. Several LIDAR models have been developed for the wind-energy industry in the past decade as ground-based and nacelle-mounted wind measurement systems. Cost-benefit analyses were conducted for the application ...

2011-11-21T23:59:59.000Z

224

LIDAR wind speed measurements of evolving wind fields  

E-Print Network (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor’s frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor’s hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios. Nomenclature a decay parameter for exponential coherence al decrement parameter for transverse coherence (l ? {u, v, w}) bl offset parameter for transverse coherence (l ? {u, v, w}) D longitudinal distance between two points or measurement preview distance F focal distance f frequency (Hz) ? LIDAR measurement angle off of longitudinal direction k wind velocity wavenumber (m?1) ? wavelength (m) R range along LIDAR beam r scan radius for spinning LIDAR scenario ri,j distance between two points in the yz plane U mean wind speed (m/s) ?i,j average mean wind speed between two points in the yz plane ? azimuth angle in the rotor plane ?2 xy(f) Coherence between signals x and y

Eric Simley; Lucy Y. Pao; Neil Kelley; Bonnie Jonkman; Rod Frehlich

2012-01-01T23:59:59.000Z

225

Munitions related feature extraction from LIDAR data.  

Science Conference Proceedings (OSTI)

The characterization of former military munitions ranges is critical in the identification of areas likely to contain residual unexploded ordnance (UXO). Although these ranges are large, often covering tens-of-thousands of acres, the actual target areas represent only a small fraction of the sites. The challenge is that many of these sites do not have records indicating locations of former target areas. The identification of target areas is critical in the characterization and remediation of these sites. The Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) of the DoD have been developing and implementing techniques for the efficient characterization of large munitions ranges. As part of this process, high-resolution LIDAR terrain data sets have been collected over several former ranges. These data sets have been shown to contain information relating to former munitions usage at these ranges, specifically terrain cratering due to high-explosives detonations. The location and relative intensity of crater features can provide information critical in reconstructing the usage history of a range, and indicate areas most likely to contain UXO. We have developed an automated procedure using an adaptation of the Circular Hough Transform for the identification of crater features in LIDAR terrain data. The Circular Hough Transform is highly adept at finding circular features (craters) in noisy terrain data sets. This technique has the ability to find features of a specific radius providing a means of filtering features based on expected scale and providing additional spatial characterization of the identified feature. This method of automated crater identification has been applied to several former munitions ranges with positive results.

Roberts, Barry L.

2010-06-01T23:59:59.000Z

226

LIDAR Wind Speed Measurements of Evolving Wind Fields  

DOE Green Energy (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

227

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

228

Using Horizontal and Slant Lidar Measurements to Obtain Calibrated Aerosol Scattering Coefficients from a Coastal Lidar in Hawaii  

Science Conference Proceedings (OSTI)

Sea salt aerosol concentrations in the clean marine boundary layer can be considered spatially homogeneous when averaged over space and time. Using this assumption, horizontal and slant lidar measurements are carried out at a Hawaii coastal site ...

J. N. Porter; B. Lienert; Shiv K. Sharma

2000-11-01T23:59:59.000Z

229

Use of a Lidar Forward Model for Global Comparisons of Cloud Fraction between the ICESat Lidar and the ECMWF Model  

Science Conference Proceedings (OSTI)

The performance of the European Centre for Medium-Range Weather Forecasts (ECMWF) model in simulating clouds is evaluated using observations by the Geoscience Laser Altimeter System lidar on the Ice, Cloud, and Land Elevation Satellite (ICESat). ...

Jonathan M. Wilkinson; Robin J. Hogan; Anthony J. Illingworth; Angela Benedetti

2008-10-01T23:59:59.000Z

230

Retrieval of Precipitation Profiles from Airborne Radar and Passive Radiometer Measurements: Comparison with Dual-Frequency Radar Measurements  

Science Conference Proceedings (OSTI)

This study compares precipitation rate profiles derived from a single frequency radar and radiometer with such profiles derived from a dual-frequency radar.

J. A. Weinman; R. Meneghini; K. Nakamura

1990-10-01T23:59:59.000Z

231

Quantifying and relating land-surface and subsurface variability in permafrost environments using lidar and surface geophsical datasets  

Science Conference Proceedings (OSTI)

The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a systematic way, suggesting the presence of three laterally distinct subsurface zones. Analysis of zone-based subsurface point measurements suggests that the geophysically-defined zones have unique distributions of hydrological, thermal, and geochemical properties and that the subsurface (geophysically-based) and land-surface (lidar-based) zonation is consistent. Although the close linkage between land surface (polygonal geomorphology) and subsurface (active layer) variability revealed through our study is not surprising, to our knowledge this is the first study to document such relationships using high resolution and non-invasive approaches. This study suggests the potential of using coincident lidar and surface geophysical measurements to quantify land surface and subsurface properties (respectively) and their linkages, which are likely to play a role in terrestrial ecosystem evolution and feedbacks to climate. These findings open the way for future research focused on using combined geophysical and remote sensing datasets to estimate subsurface and land-surface properties in high resolution and over large regions as is needed for process understanding and numerical model initialization in high latitude terrestrial ecosystems.

Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Gangodagmage, C [Los Alamos National Laboratory (LANL); Dafflon, B [Lawrence Berkeley National Laboratory (LBNL); Wainwright, H [Lawrence Berkeley National Laboratory (LBNL); Peterson, J [Lawrence Berkeley National Laboratory (LBNL); Gusmeroli, A [University of Alaska, Fairbanks; Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Wilson, Cathy [Los Alamos National Laboratory (LANL); Rowland, J [Los Alamos National Laboratory (LANL); Tweedie, Craig [University of Texas, El Paso; Wullschleger, Stan D [ORNL

2013-01-01T23:59:59.000Z

232

Radar Determination of Snowfall Rate and Accumulation  

Science Conference Proceedings (OSTI)

A unique method that provides for relating radar-measured reflectivity factors to snowfall rates at the ground is presented. Data were provided by a CPS-9, 3.2 cm radar from six 1978 Massachusetts snowstorms A best-fit power-law relationship ...

Roland J. Boucher; James G. Wieler

1985-01-01T23:59:59.000Z

233

Helicopter discrimination apparatus for the murine radar  

DOE Patents (OSTI)

A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.

Webb, Jr., John G. (Sandia Park, NM); Gray, Roger M. (Dallas, TX)

1977-01-01T23:59:59.000Z

234

Ultra-wideband radar sensors and networks  

DOE Patents (OSTI)

Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

2013-08-06T23:59:59.000Z

235

Utilizing Spaceborne Radars to Retrieve Dry Snowfall  

Science Conference Proceedings (OSTI)

A dataset consisting of one year of CloudSat Cloud Profiling Radar (CPR) near-surface radar reflectivity Z associated with dry snowfall is examined in this study. The CPR observations are converted to snowfall rates S using derived Ze–S ...

Mark S. Kulie; Ralf Bennartz

2009-12-01T23:59:59.000Z

236

The Structure of the Unstable Marine Boundary Layer Viewed by Lidar and Aircraft Observations  

Science Conference Proceedings (OSTI)

The combination of vertical lidar and in situ meteorological observations from two aircraft provide an unprecedented view of the marine atmospheric boundary layer (MABL) during a cold air outbreak. To a first approximation, the lidar reflectivity ...

David Atlas; Bernard Walter; Shu-Hsien Chou; P. J. Sheu

1986-07-01T23:59:59.000Z

237

Lidar Sensing of Plume Dispersion: Analysis Methods and Product Quality for Light-Scattering Tracer Particles  

Science Conference Proceedings (OSTI)

Analysis procedures are described for retrieving accurate plume information from lidar data on light-scattering particles during atmospheric dispersion experiments. Interactive computer graphics aided in the solution of the lidar equation for ...

W. L. Eberhard; G. T. McNice; S. W. Troxel

1987-12-01T23:59:59.000Z

238

Simulation of Coherent Doppler Lidar Performance in the Weak-Signal Regime  

Science Conference Proceedings (OSTI)

The performance of coherent Doppler lidar in the weak-signal regime is investigated by computer simulations of velocity estimators that accumulate the signal from N pulses of zero-mean complex Gaussian stationary lidar data described by a ...

Rod Frehlich

1996-06-01T23:59:59.000Z

239

Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar  

Science Conference Proceedings (OSTI)

A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, ...

David N. Whiteman; Kurt Rush; Scott Rabenhorst; Wayne Welch; Martin Cadirola; Gerry McIntire; Felicita Russo; Mariana Adam; Demetrius Venable; Rasheen Connell; Igor Veselovskii; Ricardo Forno; Bernd Mielke; Bernhard Stein; Thierry Leblanc; Stuart McDermid; Holger Vömel

2010-11-01T23:59:59.000Z

240

A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes  

Science Conference Proceedings (OSTI)

This paper examines the calibration characteristics of the NASA/GSFC Raman water vapor lidar during three field experiments that occurred between 1991 and 1993. The lidar water vapor profiles are calibrated using relative humidity profiles ...

R. A. Ferrare; S. H. Melfi; D. N. Whiteman; K. D. Evans; F. J. Schmidlin; D. O'C. Starr

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Performance of an Adaptive Notch Filter for Spectral Analysis of Coherent Lidar Signals  

Science Conference Proceedings (OSTI)

An adaptive notch filter (ANF) is proposed for range-resolved frequency estimates of Doppler lidar atmospheric returns. The ANF is based on the spectral filtering of lidar return to remove the atmospheric contribution from noise. An adaptive ...

Jean-Luc Zarader; Gérard Ancellet; Alain Dabas; Nacer K. M'Sirdi; Pierre H. Flamant

1996-02-01T23:59:59.000Z

242

The Pulsed Coherent Doppler Lidar: Observations of Frontal Structure and the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The NOAA/WPL pulsed coherent Doppler lidar was used during the Texas Frontal Experiment in 1985 to study mesoscale preconvective atmospheric conditions. On 22 April 1985, the Doppler lidar, in conjunction with serial rawinsonde ascents and ...

Paul J. Neiman; M. A. Shapiro; R. Michael Hardesty; B. Boba Stankov; Rhidian T. Lawrence; Robert J. Zamora; Tamara Hampel

1988-08-01T23:59:59.000Z

243

Lidar Investigation of the Temporal and Spatial Distribution of Atmospheric Aerosols in Mountain Valleys  

Science Conference Proceedings (OSTI)

Lidar experiments were conducted in the mountainous region of Bulgaria to determine the spatial and temporal distribution of major aerosol sources and the zones of aerosol accumulation. When these lidar data are combined with conventional ...

Plamen B. Savov; Toni S. Skakalova; Ivan N. Kolev; Francis L. Ludwig

2002-05-01T23:59:59.000Z

244

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar  

Science Conference Proceedings (OSTI)

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for ...

Rob K. Newsom; David D. Turner; John E. M. Goldsmith

2013-08-01T23:59:59.000Z

245

Lidar Scanning of Momentum Flux in and above the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Methods to measure the vertical flux of horizontal momentum using both continuous wave and pulsed Doppler lidar profilers are evaluated. The lidar measurements are compared to momentum flux observations performed with sonic anemometers over flat ...

J. Mann; A. Peńa; F. Bingöl; R. Wagner; M. S. Courtney

2010-06-01T23:59:59.000Z

246

Maximum Likelihood Estimates of Vortex Parameters from Simulated Coherent Doppler Lidar Data  

Science Conference Proceedings (OSTI)

The performance of pulsed coherent Doppler lidar in estimating aircraft trailing wake vortices by scanning across the aircraft flight track is evaluated using Monte Carlo lidar simulations of a simple vortex pair in both a nonturbulent and ...

Rod Frehlich; Robert Sharman

2005-02-01T23:59:59.000Z

247

Structure of an Internal Bore and Dissipating Gravity Current as Revealed by Raman Lidar  

Science Conference Proceedings (OSTI)

Detailed moisture observations from a ground-based Raman lidar and special radiosonde data of two disturbances associated with a dissipating gust front are presented. A synthesis of the lidar data with conventional meteorological data, in ...

Steven E. Koch; Paul B. Dorian; R. Ferrare; S. H. Melfi; William C. Skillman; D. Whiteman

1991-04-01T23:59:59.000Z

248

Demonstration of Aerosol Property Profiling by Multiwavelength Lidar under Varying Relative Humidity Conditions  

Science Conference Proceedings (OSTI)

The feasibility of using a multiwavelength Mie–Raman lidar based on a tripled Nd:YAG laser for profiling aerosol physical parameters in the planetary boundary layer (PBL) under varying conditions of relative humidity (RH) is studied. The lidar ...

I. Veselovskii; D. N. Whiteman; A. Kolgotin; E. Andrews; M. Korenskii

2009-08-01T23:59:59.000Z

249

Analysis of lidar depolarization calibration procedure and application to the atmospheric aerosol characterization  

Science Conference Proceedings (OSTI)

A Raman lidar system is used to monitor the aerosol depolarization features of the urban atmosphere at the Andalusian Centre for Environmental Research CEAMA, in Granada, southeastern Spain. The lidar system was upgraded in 2010 to enable the application ...

Juan Antonio Bravo-Aranda; Francisco Navas-Guzmán; Juan Luis Guerrero-Rascado; Daniel Pérez-Ramírez; María José Granados-Muńoz; Lucas Alados-Arboledas

2013-05-01T23:59:59.000Z

250

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar  

Science Conference Proceedings (OSTI)

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a two-year period from 1 January 2009 through 31 December 2010. The lidar, which uses the rotational Raman ...

Rob K. Newsom; David D. Turner; John E. M. Goldsmith

251

LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique LiDAR Activity Date Usefulness not indicated DOE-funding Unknown...

252

TESTING THE ACCURACY OF LIDAR FOREST MEASUREMENT REPLICATIONS IN OPERATIONAL SETTINGS.  

E-Print Network (OSTI)

??The repeatability of stand measurements derived from LiDAR data was tested in east-central Mississippi. Data collected from LiDAR missions and from ground plots were analyzed… (more)

Arnold, Theresa Faye

2009-01-01T23:59:59.000Z

253

Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles  

Science Conference Proceedings (OSTI)

The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar ...

Sara C. Tucker; Christoph J. Senff; Ann M. Weickmann; W. Alan Brewer; Robert M. Banta; Scott P. Sandberg; Daniel C. Law; R. Michael Hardesty

2009-04-01T23:59:59.000Z

254

Airborne Doppler Lidar Measurements of Valley Flows in Complex Coastal Terrain  

Science Conference Proceedings (OSTI)

Three-dimensional winds obtained with an airborne Doppler lidar are used to investigate the spatial structure of topographically driven flows in complex coastal terrain in Southern California. The airborne Doppler lidar collected four hours of ...

S. F. J. De Wekker; K. S. Godwin; G. D. Emmitt; S. Greco

2012-08-01T23:59:59.000Z

255

Lidar Observations of the Vertical Aerosol Flux in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The vertical aerosol transport in the planetary boundary layer (PBL) is investigated with lidars. Profiles of the vertical wind velocity are measured with a 2-?m Doppler wind lidar. Aerosol parameters are derived from observations with an aerosol ...

Ronny Engelmann; Ulla Wandinger; Albert Ansmann; Detlef Müller; Egidijus Žeromskis; Dietrich Althausen; Birgit Wehner

2008-08-01T23:59:59.000Z

256

Comparison of Raman Lidar Observations of Water Vapor with COSMO-DE Forecasts during COPS 2007  

Science Conference Proceedings (OSTI)

Water vapor measurements with the multiwavelength Raman lidar Backscatter Extinction Lidar-Ratio Temperature Humidity Profiling Apparatus (BERTHA) were performed during the Convective and Orographically-induced Precipitation Study (COPS) in the ...

Christian Herold; Dietrich Althausen; Detlef Müller; Matthias Tesche; Patric Seifert; Ronny Engelmann; Cyrille Flamant; Rohini Bhawar; Paolo Di Girolamo

2011-12-01T23:59:59.000Z

257

Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment  

Science Conference Proceedings (OSTI)

Two coherent Doppler lidars from the U.S. Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City, Oklahoma. The dual-lidar ...

Quanxin Xia; Ching-Long Lin; Ronald Calhoun; Rob K. Newsom

2008-01-01T23:59:59.000Z

258

On the Quantitative Low-Level Aerosol Measurements Using Ceilometer-Type Lidar  

Science Conference Proceedings (OSTI)

The objective of this work is to investigate whether a commercial ceilometer-type lidar can be used as a quantitative aerosol measurement instrument. To this end, lidar backscattering measurements are compared with exact theoretical calculations ...

Anu-Maija Sundström; Timo Nousiainen; Tuukka Petäjä

2009-11-01T23:59:59.000Z

259

Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar  

Science Conference Proceedings (OSTI)

An assessment of different methods for circulation evaluation from lidar measurement data of aircraft wake vortices is performed. The surface integral of vorticity serves as baseline case that is compared to a method that evaluates the lidar line-...

Frank Holzäpfel; Thomas Gerz; Friedrich Köpp; Eike Stumpf; Michael Harris; Robert I. Young; Agnčs Dolfi-Bouteyre

2003-08-01T23:59:59.000Z

260

Classification of Multispectral High-Resolution Satellite Imagery Using LIDAR Elevation Data  

Science Conference Proceedings (OSTI)

This paper studies the influence of airborne LIDAR elevation data on the classification of multispectral SPOT5 imagery over a semi-urban area; to do this, multispectral and LIDAR elevation data are integrated in a single imagery file composed of independent ... Keywords: Classification, LIDAR, Satellite Imagery, Support Vector Machine

María C. Alonso; José A. Malpica

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GPU-based roofs' solar potential estimation using LiDAR data  

Science Conference Proceedings (OSTI)

Solar potential estimation using LiDAR data is an efficient approach for finding suitable roofs for photovoltaic systems' installations. As the amount of LiDAR data increases, the non-parallel methods take considerable time to accurately estimate the ... Keywords: CUDA, GPU, LiDAR, Solar potential

Niko Luka?, Borut Alik

2013-03-01T23:59:59.000Z

262

Comparison of Two Independent LIDAR-Based Pitch Control Designs  

DOE Green Energy (OSTI)

Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

Dunne, F.; Schlipf, D.; Pao, L. Y.

2012-08-01T23:59:59.000Z

263

Comparison of Two Independent Lidar-Based Pitch Control Designs  

Science Conference Proceedings (OSTI)

Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

2012-01-01T23:59:59.000Z

264

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

265

ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

266

ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

SciTech Connect

10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

267

ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer (OSTI)

ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Richard Coulter; Kevin Widener; Nitin Bharadwaj; Karen Johnson; Timothy Martin

268

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

269

ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer (OSTI)

ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Richard Coulter; Kevin Widener; Nitin Bharadwaj; Karen Johnson; Timothy Martin

270

Advanced Lidars for ARM: What Would We Get?  

NLE Websites -- All DOE Office Websites (Extended Search)

CMWG Breakout Session CMWG Breakout Session 2009 ARM Science Team Meeting Advanced Lidars for ARM: What Would We Get? Dave Turner, Ed Eloranta University of Wisconsin - Madison CMWG Breakout Session 2009 ARM Science Team Meeting What is an "Advanced Lidar?" (1) * Ceilometer - Max range ~7km, unpolarized, uncalibrated * Micropulse lidar (MPL) - Sensitive to clouds & aerosols throughout troposphere - Small telescope, rep rate is 1.5 kHz, microjoules of power - Loses sensitivity to cirrus in upper trop during the day - Polarization sensitive - Uncalibrated * Backscatter signals measured by both the MPL and the Ceilometer are convolutions of molecular and particle scattering events - Unable to determine particle extinction without significant assumptions - Main use by ARM has been to determine layer boundaries

271

ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsLidar support for ICECAPS at Summit, Greenland govCampaignsLidar support for ICECAPS at Summit, Greenland Campaign Links ICECAPS Campaign Summary (PDF) Summit Station Research Highlight New Data from Greenland for Arctic Climate Research Cloud Cocktail Melts Greenland Ice Sheet Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Lidar support for ICECAPS at Summit, Greenland 2010.04.15 - 2014.10.31 Lead Scientist : David Turner Description Beginning in May 2010, the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation over Summit (ICECAPS) project, funded through the National Science Foundation's Arctic Observing Network, is deploying a suite of remote sensors at Summit, Greenland, for four years. With dining facilities and communications gear, the "Big House" at Summit Station serves as the central gathering area for site researchers. (Photo courtesy Summit Station.)

272

Small-Footprint Lidar Estimations of Sagebrush Canopy Characteristics  

SciTech Connect

Separating lidar returns for use in determining canopy height and shape in low-height vegetation is difficult because the vegetation canopy return is often close to the ground return in time and space. In addition, height underestimation is likely exacerbated in sparsely vegetated shrub ecosystems. This study compares lidar point-cloud data to sagebrush canopy characteristics measured in the field. It was determined that cumulative prediction error could account for as much as 35.6% of the average height and 37.4% of the average canopy area of shrubs sampled. When scaling from the individual shrub scale to coarser scales, prediction error averaged over a number of shrubs decreases as observation numbers increase. High density (in this case an average of 9.46 returns per m2), small footprint lidar (in this case a footprint diameter of 18 cm at nadir) may provide sufficient accuracy for characterizing sagebrush structure and cover and estimating biomass across landscapes.

Matthew Anderson; Ryan Hruska; Jessica Mitchell; Nancy Glenn

2011-05-01T23:59:59.000Z

273

Using doppler radar images to estimate aircraft navigational heading error  

SciTech Connect

A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

274

DOE/SC-ARM-12-009 ARM Radar Organization JW Voyles  

NLE Websites -- All DOE Office Websites (Extended Search)

Bharadwaj Radar Calibration Plan, controlled document Nitin Bharadwaj Instrument Handbooks, controlled documents Kevin Widener Radar status and information: www.radar.arm.gov...

275

Simultaneous analog and photon counting detection for Raman lidar  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement program Raman Lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. This paper describes recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The impact of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with sonde measurements. The modifications that were implemented resulted in a reduction of the mean bias in the daytime mixing ratio from a 4% dry bias to well within 1%.

Newsom, Rob K.; Turner, David D.; Mielke, Bernd; Clayton, Marian F.; Ferrare, Richard; Sivaraman, Chitra

2009-07-10T23:59:59.000Z

276

Virtual CSU-CHILL Radar: The VCHILL  

Science Conference Proceedings (OSTI)

The Virtual CHILL (VCHILL) system makes it possible to transfer the educational and research experience of the Colorado State University dual polarization radar to remote locations over the Internet. The VCHILL operation includes remote control ...

V. Chandrasekar; Yoong-Goog Cho; D. Brunkow; A. Jayasumana

2005-07-01T23:59:59.000Z

277

Mean Radar Echo Characteristics during Project GALE  

Science Conference Proceedings (OSTI)

The mean radar echo characteristics during the Genesis of Atlantic Lows Experiment (GALE) are presented for the southeastern United States during the 15 January–15 March 1986 field phase of the program. The echo characteristics were derived from ...

Thomas J. Trunk; Lance F. Bosart

1990-02-01T23:59:59.000Z

278

Multiple-Doppler Radar Network Design  

Science Conference Proceedings (OSTI)

Observing programs utilizing Doppler radar must have them deployed in optimum locations to best satisfy experimental objectives and maximize economies. One wishes to determine the coordinate triples (xi, yi, zi), where i equals the number of ...

Peter S. Ray; Karen L. Sangren

1983-08-01T23:59:59.000Z

279

On the Sensitivity of Weather Radars  

Science Conference Proceedings (OSTI)

This paper discusses the subject of weather radar system sensitivity from a general point of view, with emphasis an the influence of wavelength. Expressions for the echo signal-to-noise ratio are examined using a detection theory approach to ...

Paul L. Smith

1986-12-01T23:59:59.000Z

280

Radar Backscattering by Inhomogeneous Precipitation Particles  

Science Conference Proceedings (OSTI)

Calculations of radar backscattering by inhomogeneous precipitation particles require values of the dielectric function of two-component mixtures. Four such dielectric functions are critically examined and their relative merits are weighed. ...

Craig F. Bohren; Louis J. Battan

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radar and Radiation Properties of Ice Clouds  

Science Conference Proceedings (OSTI)

The authors derive relations of the equivalent radar reflectivity Ze and extinction coefficient ? of ice clouds and confirm the theory by in situ aircraft observations during the First International Satellite Cloud Climatology Project Regional ...

David Atlas; Sergey Y. Matrosov; Andrew J. Heymsfield; Ming-Dah Chou; David B. Wolff

1995-11-01T23:59:59.000Z

282

Radar Observations of a Major Industrial Fire  

Science Conference Proceedings (OSTI)

On 23 May 1996, a Montreal suburban paint factory containing several hundred thousand gallons of paints, solvents, and other chemicals burned to the ground in a spectacular fire. The smoke plume from the fire was readily detected by three radars ...

R. R. Rogers; W. O. J. Brown

1997-05-01T23:59:59.000Z

283

Geostationary Doppler Radar and Tropical Cyclone Surveillance  

Science Conference Proceedings (OSTI)

The potential usefulness of spaceborne Doppler radar as a tropical cyclone observing tool is assessed by conducting a high-resolution simulation of an intense hurricane and generating synthetic observations of reflectivity and radial velocity. The ...

William E. Lewis; Eastwood Im; Simone Tanelli; Ziad Haddad; Gregory J. Tripoli; Eric A. Smith

2011-10-01T23:59:59.000Z

284

Optimization of Multiparameter Radar Estimates of Rainfall  

Science Conference Proceedings (OSTI)

The estimates of rainfall rate derived from a multiparameter radar based on reflectivity factor (RZH), differential reflectivity (RDR), and specific differential propagation phase (RDP) have widely varying accuracies over the dynamic range of the ...

V. Chandrasekar; Eugenio Gorgucci; Gianfranco Scarchilli

1993-07-01T23:59:59.000Z

285

Mapping of Airborne Doppler Radar Data  

Science Conference Proceedings (OSTI)

Two sets of equations are derived to 1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and 2) remove the platform motion from the observed Doppler velocities. These equations ...

Wen-Chau Lee; Peter Dodge; Frank D. Marks Jr.; Peter H. Hildebrand

1994-04-01T23:59:59.000Z

286

Radar System Errors in Polarization Diversity Measurements  

Science Conference Proceedings (OSTI)

The measurement capability of a polarization diversity radar is limited by several characteristics of the system and particularly by the performance of the antenna, which is characterized by the integrated cancellation ratio or integrated cross-...

James I. Metcalf; James S. Ussailis

1984-06-01T23:59:59.000Z

287

Ground Penetrating Imaging Radar Phase II  

Science Conference Proceedings (OSTI)

EPRI project "Ground Penetrating Imaging Radar Phase II," also called the "GPiR Project," started in August 1998 at Schlumberger-Doll Research, a division of Schlumberger Technology Corporation. Its goal was to determine if modern ground-penetrating radar (GPR) could make three-dimensional (3D) images of buried utility lines accurate and detailed enough to help utility companies better manage their underground infrastructure. Work began with a comparison of commercial and prototype GPR systems in the lab...

2001-06-20T23:59:59.000Z

288

An approach to visualization of large data sets from LIDAR  

E-Print Network (OSTI)

Rapid development of laser scanning technology in past decades has resulted in a wide area of its applications. LI-DAR is a system that uses this technology to gather information about distant targets. Gathered data are stored into large data sets that are further processed, visualized and analyzed. Fast and accurate visualization is the key factor when working with LIDAR point clouds. The main problem that arises is that vast amount of data can easily exceed memory and processing capacities of modern day computers. In this paper we present an approach to visualization of large LIDAR point clouds in real time entirely on graphical processing unit using a point-based rendering technique. Our method is based on dynamic data loading and efficient two-pass rendering utilizing approximation of elliptical weighted average splatting with rotated splats. Expensive rendering tasks are delegated to programmable graphics unit to save CPU resources. The proposed system offers realistic visualization of LIDAR point clouds in real time that is visually and performance wise comparable to other solutions, while not requiring any comprehensive preprocessing such as TIN generation beforehand.

Bostjan Kovac

2009-01-01T23:59:59.000Z

289

Mobile Lidar Profiling of Tropical Aerosols and Clouds  

Science Conference Proceedings (OSTI)

Lidar profiling of atmospheric aerosols and clouds in the lower atmosphere has been in progress at the Indian Institute of Tropical Meteorology (IITM), Pune (18°32?N, 73°52?E, 559 m MSL), India, for more than two decades. To enlarge the scope of ...

P. C. S. Devara; P. E. Raj; K. K. Dani; G. Pandithurai; M. C. R. Kalapureddy; S. M. Sonbawne; Y. J. Rao; S. K. Saha

2008-08-01T23:59:59.000Z

290

Lidar investigation of atmosphere effect on a wind turbine wake  

Science Conference Proceedings (OSTI)

An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It has been found out that a working wind turbine generates a wake with the maximum velocity deficit varying ...

I. N. Smalikho; V. A. Banakh; Y. L. Pichugina; W. A. Brewer; R. M. Banta; J. K. Lundquist; N. D. Kelley

291

Application of Short-Range Lidar in Wind Shear Alerting  

Science Conference Proceedings (OSTI)

Long-range lidar systems have been used operationally at the Hong Kong International Airport for wind shear alerting. They are used for monitoring the headwinds over the last 3 n mi of all of the runway corridors of the Hong Kong International ...

P. W. Chan; Y. F. Lee

2012-02-01T23:59:59.000Z

292

Extraction of Mangrove Biophysical Parameters Using Airborne LiDAR  

E-Print Network (OSTI)

Abstract: Tree parameter determinations using airborne Light Detection and Ranging (LiDAR) have been conducted in many forest types, including coniferous, boreal, and deciduous. However, there are only a few scientific articles discussing the application of LiDAR to mangrove biophysical parameter extraction at an individual tree level. The main objective of this study was to investigate the potential of using LiDAR data to estimate the biophysical parameters of mangrove trees at an individual tree scale. The Variable Window Filtering (VWF) and Inverse Watershed Segmentation (IWS) methods were investigated by comparing their performance in individual tree detection and in deriving tree position, crown diameter, and tree height using the LiDAR-derived Canopy Height Model (CHM). The results demonstrated that each method performed well in mangrove forests with a low percentage of crown overlap conditions. The VWF method yielded a slightly higher accuracy for mangrove parameter extractions from LiDAR data compared with the IWS method. This is because the VWF method uses an adaptive circular filtering window size based on an allometric relationship. As a result of the VWF method, the position

Wasinee Wannasiri; Masahiko Nagai; Kiyoshi Honda; Phisan Santitamnont; Poonsak Miphokasap

2013-01-01T23:59:59.000Z

293

Coplanar Doppler Lidar Retrieval of Rotors from T-REX  

Science Conference Proceedings (OSTI)

Dual-Doppler analysis of data from two coherent lidars during the Terrain-Induced Rotor Experiment (T-REX) allows the retrieval of flow structures, such as vortices, during mountain-wave events. The spatial and temporal resolution of this ...

Michael Hill; Ron Calhoun; H. J. S. Fernando; Andreas Wieser; Andreas Dörnbrack; Martin Weissmann; Georg Mayr; Robert Newsom

2010-03-01T23:59:59.000Z

294

Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product  

Science Conference Proceedings (OSTI)

The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

Newsom, RK; Sivaraman, C; McFarlane, SA

2012-10-31T23:59:59.000Z

295

Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake  

Science Conference Proceedings (OSTI)

An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It was found that a working wind turbine generates a wake with the maximum velocity deficit varying from 27% ...

I. N. Smalikho; V. A. Banakh; Y. L. Pichugina; W. A. Brewer; R. M. Banta; J. K. Lundquist; N. D. Kelley

2013-11-01T23:59:59.000Z

296

Use of the CSU–CHILL Radar in Radar Meteorology Education at Colorado State University  

Science Conference Proceedings (OSTI)

A recent example illustrating the use of the CSU–CHILL Doppler radar in a graduate-level course in radar meteorology at Colorado State University (CSU) is described. In addition to providing students in the Department of Atmospheric Science with “...

Steven A. Rutledge; Patrick C. Kennedy; David A. Brunkow

1993-01-01T23:59:59.000Z

297

Nonuniform Beamfilling Correction for Spaceborne Radar Rainfall Measurement: Implications from TOGA COARE Radar Data Analysis  

Science Conference Proceedings (OSTI)

A method is studied to make a nonuniform beamfilling (NUBF) correction for the path-integrated attenuation (PIA) derived from spaceborne radar measurement. The key of this method is to estimate rain-rate variability within a radar field of view ...

Toshiaki Kozu; Toshio Iguchi

1999-11-01T23:59:59.000Z

298

Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico  

Science Conference Proceedings (OSTI)

In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

Avila-Olivera, Jorge A. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, C.U., 04510 Mexico D.F. (Mexico); Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan (Mexico); Farina, Paolo [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Garduno-Monroy, Victor H. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, C.U., 58030 Morelia, Michoacan (Mexico)

2008-05-07T23:59:59.000Z

299

Strengths and Limitations of Current Radar Systems for Two Stakeholder Groups in the Southern Plains  

Science Conference Proceedings (OSTI)

Advancements in radar technology since the deployment of the Weather Surveillance Radar-1988 Doppler (WSR-88D) network have prompted consideration of radar replacement technologies. In order for the outcomes of advanced radar research and ...

Daphne S. LaDue; Pamela L. Heinselman; Jennifer F. Newman

2010-07-01T23:59:59.000Z

300

A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar  

Science Conference Proceedings (OSTI)

The installation of the network of NEXRAD (Next Generation Weather Radar) WSR-88D (Weather Surveillance Radar—1988 Doppler) radars has been an ongoing process for more than three years. An assessment is made on how these radars and related ...

Paul Bieringer; Peter S. Ray

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spurious Velocities in Doppler Radar Data Caused by a Moving Antenna Feedhorn  

Science Conference Proceedings (OSTI)

Modern Doppler weather radars use clutter filtering to reduce the strength of ground targets and enhance the detection of meteorological echoes. WSR-88D [NEXRAD (Next Generation Radar) and TDWR (Terminal Doppler Weather Radar)] radars, for ...

Ronald E. Rinehart

1991-12-01T23:59:59.000Z

302

AUGUST 2008 VOLUME 46 NUMBER 8 IGRSD2 (ISSN 0196-2892) C-band Radarsat-1 InSAR image shows water-level changes over the swamp forest in southeastern Louisiana between May 22 and June 15, 2003.  

E-Print Network (OSTI)

-level changes of coastal wetlands over southeastern Louisiana. The InSAR image suggests that water-level changes, and other species combine to place the coastal wetlands of Louisiana among the nation's most productive-level changes over the swamp forest in southeastern Louisiana between May 22 and June 15, 2003. In

303

An Integrated Display and Analysis Methodology for Multivariable Radar Data  

Science Conference Proceedings (OSTI)

Polarimetric Doppler radars provide valuable information about the kinematic and microphysical structure of storms. However, in-depth analysis using radar products, such as Doppler-derived wind vectors and hydrometeor identification, has been ...

Brenda A. Dolan; Steven A. Rutledge

2007-08-01T23:59:59.000Z

304

An 11-cm Coherent Polarimetric Radar for Meteorological Research  

Science Conference Proceedings (OSTI)

The Geophysics Directorate of the U.S. Air Force developed a unique 11-cm (S-band) coherent polarimetric radar. The radar can transmit signals of alternating orthogonal polarizations, with either circular or linear basis, and receive signals of ...

James I. Metcalf; Alexander W. Bishop; Richard C. Chanley; Timothy C. Hiett; Pio J. Petrocchi

1993-06-01T23:59:59.000Z

305

A 94-GHz Doppler Radar for Cloud Observations  

Science Conference Proceedings (OSTI)

A Doppler radar operating at 3.2 mm wavelength was designed and assembled primarily for observation of clouds and precipitation. Phase detection of the radar signals which is required for Doppler operation is implemented through the use of a ...

Roger Lhermitte

1987-03-01T23:59:59.000Z

306

Inversion of Marine Radar Images for Surface Wave Analysis  

Science Conference Proceedings (OSTI)

A method to estimate sea surface elevation maps from marine radar image sequences is presented. This method is the extension of an existing inverse modeling technique to derive wave spectra from marine radar images, which assumes linear wave ...

JoséC. Nieto Borge; Germán RodrÍguez RodrÍguez; Katrin Hessner; Paloma Izquierdo González

2004-08-01T23:59:59.000Z

307

Simulating Range Oversampled Doppler Radar Profiles of Inhomogeneous Targets  

Science Conference Proceedings (OSTI)

A new technique for generating range oversampled profiles of Doppler radar signals that have been backscattered by distributed targets is presented in this paper. The technique was developed for spaceborne cloud radars, but it can just as well be ...

N. A. J. Schutgens

2008-09-01T23:59:59.000Z

308

Dual-Polarization Radar Characteristics of an Apartment Fire  

Science Conference Proceedings (OSTI)

Dual-polarimetric microwave wavelength radar observations of an apartment fire in Huntsville, Alabama, on 3 March 2008 are examined to determine the radar-observable properties of ash and fire debris lofted into the atmosphere. Dual-polarimetric ...

Thomas A. Jones; Sundar A. Christopher; Walt Petersen

2009-10-01T23:59:59.000Z

309

Retrieval of Reflectivity in a Networked Radar Environment  

Science Conference Proceedings (OSTI)

A system for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different ...

V. Chandrasekar; S. Lim

2008-10-01T23:59:59.000Z

310

Evaluation of a 35 GHz Radar for Cloud Physics Research  

Science Conference Proceedings (OSTI)

A 1960 35 GHz radar has been modernized through the use of solid state electronics, Dopplerization and improved data-display capabilities. Radars of this frequency are particularly useful for observing the internal structures of clouds and for ...

Peter V. Hobbs; Nathan T. Funk; Richard R. Weiss Sr.; John D. Locatelli; Kumud R. Biswas

1985-03-01T23:59:59.000Z

311

On the Use of Radars for Operational Wind Profiling  

Science Conference Proceedings (OSTI)

The application of clear-air radars to operational wind profiling is considered. Several alternative techniques for determining atmospheric winds from radars are surveyed and, in light of the current interest in operational applications, the ...

B. B. Balsley; K. S. Gage

1982-09-01T23:59:59.000Z

312

95-GHz Polarimetric Radar Measurements of Orographic Cap Clouds  

Science Conference Proceedings (OSTI)

The use of millimeter-wavelength radars for cloud microphysical research was investigated in experiments at the Elk Mountain Observatory near Laramie, Wyoming, between April 1990 and March 1992. The 95-GHz polarimetric radar used in these ...

Andrew Pazmany; James Mead; Robert McIntosh; Mark Hervig; Robert Kelly; Gabor Vali

1994-02-01T23:59:59.000Z

313

Factors Affecting the Accuracy of SHOWEX HF Radar Wave Measurements  

Science Conference Proceedings (OSTI)

Ocean Surface Current Radar (OSCR) HF radar measurements of ocean waves and currents were made during the Shoaling Waves Experiment (SHOWEX) in the fall of 1999. During some periods, at some locations, good quality wave measurements were ...

Lucy R. Wyatt; Guennadi Liakhovetski; Hans C. Graber; Brian K. Haus

2005-07-01T23:59:59.000Z

314

A Dual-Wavelength Radar Method to Measure Snowfall Rate  

Science Conference Proceedings (OSTI)

A dual-wavelength radar method to estimate snowfall rate has been developed. The method suggests taking simultaneous and collocated reflectivity measurements at two radar wavelengths. Snowfall backscattering at one of these wavelengths should be ...

Sergey Y. Matrosov

1998-11-01T23:59:59.000Z

315

International Weather-Radar Networking in Western Europe  

Science Conference Proceedings (OSTI)

During the last few years there has been considerable activity in Western Europe aimed at establishing national radar networks. Concurrent with this work, several bilateral agreements to exchange weather-radar data across national boundaries have ...

C. G. Collier; C. A. Fair; D. H. Newsome

1988-01-01T23:59:59.000Z

316

The Effect of Radar Pulse Length on Cloud Reflectivity Statistics  

Science Conference Proceedings (OSTI)

When observing clouds with radars, there are a number of design parameters, such as transmitted power, antenna size, and wavelength, that can affect the detection threshold. In making calculations of radar thresholds, also known as minimum ...

Taneil Uttal; Robert A. Kropfli

2001-06-01T23:59:59.000Z

317

A Radar Study of the Plasma and Geometry of Lightning  

Science Conference Proceedings (OSTI)

Radar measurements and model studies are combined to investigate the plasma condition and the physical structure of lightning in thunderclouds. The lightning radar target is inferred to be an arclike plasma whose temperature exceeds 5000 K, ...

Earle R. Williams; Spiros G. Geotis; A. B. Bhattacharya

1989-05-01T23:59:59.000Z

318

Heating Profiles Derived From Cm-wavelength Radar During TWP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating Profiles Derived From Cm-wavelength Radar During TWP-ICE Heating Profiles Derived From Cm-wavelength Radar During TWP-ICE Courtney Schumacher and Kaycee Frederick Courtney...

319

Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach  

Science Conference Proceedings (OSTI)

From the Publisher:Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach describes an important mode of synthetic aperture radar (SAR) imaging, known as spotlight-mode SAR. By treating the subject via the principles of signal processing, ...

Paul Thompson; Daniel E. Wahl; Paul H. Eichel; Dennis C. Ghiglia; Charles V. Jakowatz

1996-01-01T23:59:59.000Z

320

Auxiliary Signal Processing System for a Multiparameter Radar  

Science Conference Proceedings (OSTI)

The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card ...

V. Chandrasekar; G. R. Gray; I. J. Caylor

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

RADIAL-BASED NOISE POWER ESTIMATION FOR WEATHER RADARS  

Science Conference Proceedings (OSTI)

A radar antenna intercepts thermal radiation from various sources including the ground, the sun, the sky, precipitation and man-made radiators. In the radar receiver, this external radiation produces noise that constructively adds to the receiver ...

Igor R. Ivi?; Christopher Curtis; Sebastián M. Torres

322

Procedures to Improve the Accuracy of Airborne Doppler Radar Data  

Science Conference Proceedings (OSTI)

The navigation correction method proposed in Testud et al. (referred to as the THL method) systematically identifies uncertainties in the aircraft Inertial Navigation System and errors in the radar-pointing angles by analyzing the radar returns ...

Brian L. Bosart; Wen-Chau Lee; Roger M. Wakimoto

2002-03-01T23:59:59.000Z

323

Estimating Urban Canopy Parameters Using Synthetic Aperture Radar Data  

Science Conference Proceedings (OSTI)

This paper introduces a remote sensing–based approach to rapidly derive urban morphological characteristics using radar satellite data. The approach is based on the expectation that the magnitude of the synthetic aperture radar (SAR) backscatter ...

Indumathi Jeyachandran; Steven J. Burian; Stephen W. Stetson

2010-04-01T23:59:59.000Z

324

Tracking system for photon-counting laser radar  

E-Print Network (OSTI)

The purpose of this thesis is to build the tracking system for a photon-counting laser radar specifically a laser radar that has the ability to perform direct and coherent detection measurement at low signal levels with ...

Chang, Joshua TsuKang

2007-01-01T23:59:59.000Z

325

VHF and UHF Doppler Radars as Tools for Synoptic Research  

Science Conference Proceedings (OSTI)

Applications of VHF and UHF Doppler radars to research in synoptic meteorology are reviewed. We find that these radars show great potential for studies of large scales, but the area of research where the instruments really excel is in studying ...

M. F. Larsen; J. Röttger

1982-09-01T23:59:59.000Z

326

Mean Vertical Motions Seen by Radar Wind Profilers  

Science Conference Proceedings (OSTI)

Radar wind profilers have been used to measure directly the vertical motion above the radar site. Mean values of vertical motions in the troposphere and lower stratosphere reported at sites in and near mountains are often several centimeters per ...

G. D. Nastrom; T. E. VanZandt

1994-08-01T23:59:59.000Z

327

A Statistical Approach to Ground Radar-Rainfall Estimation  

Science Conference Proceedings (OSTI)

This paper presents development of a statistical procedure for estimation of ensemble rainfall fields from a combination of ground radar observations and in situ rain gauge measurements. The uncertainty framework characterizes radar-rainfall ...

Alemu Tadesse; Emmanouil N. Anagnostou

2005-11-01T23:59:59.000Z

328

Estimation of Atmospheric Duct Structure Using Radar Sea Clutter  

Science Conference Proceedings (OSTI)

Retrieving atmospheric refractivity profiles from the sea surface backscattered radar clutter is known as the refractivity-from-clutter (RFC) technique. Because the relationship between refractivity and radar sea clutter is clearly nonlinear and ...

Zhao Xiaofeng; Huang Sixun

2012-09-01T23:59:59.000Z

329

The New French Operational Radar Rainfall Product. Part II: Validation  

Science Conference Proceedings (OSTI)

A new operational radar-based rainfall product has been developed at Météo-France and is currently being deployed within the French operational network. The new quantitative precipitation estimation (QPE) product is based entirely on radar data ...

P. Tabary; J. Desplats; K. Do Khac; F. Eideliman; C. Gueguen; J-C. Heinrich

2007-06-01T23:59:59.000Z

330

Operational Monitoring of Radar Differential Reflectivity Using the Sun  

Science Conference Proceedings (OSTI)

A method for the daily monitoring of the differential reflectivity bias for polarimetric weather radars is presented. Sun signals detected in polar volume data produced during operational scanning of the radar are used. This method is an ...

Iwan Holleman; Asko Huuskonen; Rashpal Gill; Pierre Tabary

2010-05-01T23:59:59.000Z

331

The Rain Profiling Algorithm Applied to Polarimetric Weather Radar  

Science Conference Proceedings (OSTI)

The algorithm developed in this paper for ground-based polarimetric radars is derived from those used for the spaceborne rain radar of TRMM (Tropical Rainfall Measurement Mission)—the so-called rain profiling algorithms. The characteristic of ...

Jacques Testud; Erwan Le Bouar; Estelle Obligis; Mustapha Ali-Mehenni

2000-03-01T23:59:59.000Z

332

Beam Multiplexing Using the Phased-Array Weather Radar  

Science Conference Proceedings (OSTI)

The recently installed S-band phased-array radar (PAR) at the National Weather Radar Testbed (NWRT) offers fast and flexible beam steering through electronic beam forming. This capability allows the implementation of a novel scanning strategy ...

Tian-You Yu; Marko B. Orescanin; Christopher D. Curtis; Dusan S. Zrni?; Douglas E. Forsyth

2007-04-01T23:59:59.000Z

333

Dual-wavelength polarimetric radar analyses of tornadic debris signatures  

Science Conference Proceedings (OSTI)

Statistical properties of tornado debris signatures (TDSs) are investigated using S- and C-band polarimetric radar data with comparisons to damage surveys and satellite imagery. Close proximity of the radars to the 10 May 2010 Moore-Oklahoma City ...

David J. Bodine; Robert D. Palmer; Guifu Zhang

334

Weather Radar Polarimetry-Trends Toward Operational Applications  

Science Conference Proceedings (OSTI)

This is a version of a speech presented at the 27th Conference on Radar Meteorology. Relative advantages of polarimetry are contrasted with the advantages accrued by the introduction of radar into meteorology and by the addition of Doppler ...

Dušan S. Zrni?

1996-07-01T23:59:59.000Z

335

Coastal Oceanography Applications of Digital Image Data from Marine Radar  

Science Conference Proceedings (OSTI)

A marine radar attached to a digital image capture system has been adapted for deployment from shore sites. Optimum operating parameters have been identified in relation to the resolution and sampling capabilities of both the radar and the ...

I. S. Robinson; N. P. Ward; C. P. Gommenginger; M. A. Tenorio-Gonzales

2000-05-01T23:59:59.000Z

336

Gust Front Characteristics as Detected by Doppler Radar  

Science Conference Proceedings (OSTI)

Gust fronts produce low altitude wind shear that can be hazardous to aircraft operations, especially during takeoff and landing. Radar meteorologists have long been able to identify gust front signatures in Doppler radar data, but in order to use ...

Diana L. Klingle; David R. Smith; Marilyn M. Wolfson

1987-05-01T23:59:59.000Z

337

Comparison of Dual-Polarization Radar Estimators of Rain  

Science Conference Proceedings (OSTI)

Several polarimetric radar estimators of rain rate R and rainwater content M are examined. The accuracy of the estimators is analyzed using a gamma drop size distribution (DSD) simulation and a radar wavelength of 11 cm. The estimators that use ...

A. V. Ryzhkov; D. S. Zrni?

1995-04-01T23:59:59.000Z

338

Radar Observations of the 3 May 1999 Oklahoma City Tornado  

Science Conference Proceedings (OSTI)

The 3 May 1999 Oklahoma City storm is unique from a weather radar perspective because a long-track violent tornado passed within close range of several Doppler radars, because a detailed damage survey was conducted immediately after the event, ...

Donald W. Burgess; Michael A. Magsig; Joshua Wurman; David C. Dowell; Yvette Richardson

2002-06-01T23:59:59.000Z

339

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown Notes Recent exploration includes a high resolution aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize the active tectonic environment, and identify Holocene structures, which are common conduits for upwelling geothermal fluids. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal

340

ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsMicroPulse LIDAR Cloud Optical Depth ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) 1999.05.01 - 2004.05.14 Site(s) SGP General Description The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and radiosonde thermodynamic profiles. The optical depth retrieval is derived following Comstock et al. (2001), which retrieves visible optical depth and layer average backscatter-to-extinction ratio (k) at the lidar wavelength for each backscatter profile. Data Information Data Directory Contacts Principal Investigator Jennifer Comstock (509) 372-424

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Adaptive Range Oversampling to Achieve Faster Scanning on the National Weather Radar Testbed Phased-Array Radar  

Science Conference Proceedings (OSTI)

This paper describes a real-time implementation of adaptive range oversampling processing on the National Weather Radar Testbed phased-array radar. It is demonstrated that, compared to conventional matched-filter processing, range oversampling can ...

Christopher D. Curtis; Sebastián M. Torres

2011-12-01T23:59:59.000Z

342

Can a VHF Doppler Radar Provide Synoptic Wind Data? A Comparison of 30 Days of Radar and Radiosonde Data  

Science Conference Proceedings (OSTI)

A number of experiments have shown that UHF and VHF Doppler radars can make “clear air” wind measurements in the troposphere and lower stratosphere, even in the presence of clouds and precipitation. Past comparisons of radar and rawinsonde ...

Miguel Folkmar Larsen

1983-10-01T23:59:59.000Z

343

Polarization Radar Measurements in Rain at 5 and 9 GHz  

Science Conference Proceedings (OSTI)

There is increased interest in dual-polarization radar measurements at 9 and 5 GHz not only for scientific reasons but also because such radars are less expensive to build and are easier to transport than 3-GHz S-band radars. Unfortunately, ...

A. R. Jameson

1991-11-01T23:59:59.000Z

344

The New French Operational Polarimetric Radar Rainfall Rate Product  

Science Conference Proceedings (OSTI)

In 2012 the Météo France metropolitan operational radar network consists of 24 radars operating at C and S bands. In addition, a network of four X-band gap-filler radars is being deployed in the French Alps. The network combines polarimetric and ...

Jordi Figueras i Ventura; Pierre Tabary

2013-08-01T23:59:59.000Z

345

Quality Assessment of Weather Radar Wind Profiles during Bird Migration  

Science Conference Proceedings (OSTI)

Wind profiles from an operational C-band Doppler radar have been combined with data from a bird tracking radar to assess the wind profile quality during bird migration. The weather radar wind profiles (WRWPs) are retrieved using the well-known ...

Iwan Holleman; Hans van Gasteren; Willem Bouten

2008-12-01T23:59:59.000Z

346

Retrieval of Cirrus Microphysical Properties with a Suite of Algorithms for Airborne and Spaceborne Lidar, Radar, and Radiometer Data  

Science Conference Proceedings (OSTI)

Algorithms are developed to convert data streams from multiple airborne and spaceborne remote sensors into layer-averaged cirrus bulk microphysical properties. Radiometers such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) observe ...

Yuying Zhang; Gerald G. Mace

2006-12-01T23:59:59.000Z

347

Lidar-Measured Winds from Space: A Key Component for Weather and Climate Prediction  

Science Conference Proceedings (OSTI)

The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate.

Wayman E. Baker; George D. Emmitt; Franklin Robertson; Robert M. Atlas; John E. Molinari; David A. Bowdle; Jan Paegle; R. Michael Hardesty; Madison J. Post; Robert T. Menzies; T. N. Krishnamurti; Robert A. Brown; John R. Anderson; Andrew C. Lorenc; James McElroy

1995-06-01T23:59:59.000Z

348

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

349

Improving the Detection of Wind Features In Backscatter LIDAR Scans Using Feature Extraction.  

E-Print Network (OSTI)

??This thesis presents the results of applying image segmentation techniques to incoherent LIDAR data to improve the detection of wind features. Improving the detection and… (more)

Rotthoff, Eric

2012-01-01T23:59:59.000Z

350

Utilizzo di dati LIDAR per la correzione del Database Topografico della Regione Veneto.  

E-Print Network (OSTI)

??Utilizzo di dati Lidar per la correzione dle Database Topografico della Regione Veneto. Sviluppo procedura per la correzione della quota dei vertici delle geometrie DEL… (more)

Lunardi, Loris

2011-01-01T23:59:59.000Z

351

Assessing understorey structural characteristics in eucalypt forests: an investigation of LiDAR techniques.  

E-Print Network (OSTI)

??The potential of airborne LiDAR technology to quantify forest structure within eucalypt forests has been evaluated with a focus on the understorey stratum. To achieve… (more)

Goodwin, Nicholas R.

2006-01-01T23:59:59.000Z

352

LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

353

Analysis of LiDAR data for fluvial geomorphic change detection at a small Maryland stream.  

E-Print Network (OSTI)

?? Numerous detailed topographic measurements, which must be periodically repeated, are required to characterize stream bank and channel geometry. Light Detection and Ranging (LiDAR) is… (more)

Gardina, Vincent J.

2009-01-01T23:59:59.000Z

354

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search...

355

LIDAR Wind Speed Measurements of Evolving Wind Fields  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

356

The Lidar System of the Pierre Auger Observatory  

E-Print Network (OSTI)

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the origin of ultrahigh energy cosmic rays with energies above 10^18 eV. The energy calibration of the detector is based on a system of four air fluorescence detectors. To obtain reliable calorimetric information from the fluorescence stations, the atmospheric conditions at the experiment's site need to be monitored continuously during operation. One of the components of the observatory's atmospheric monitoring system is a set of four elastic backscatter lidar stations, one station at each of the fluorescence detector sites. This paper describes the design, current status, standard operation procedure, and performance of the lidar system of the Pierre Auger Observatory.

S. Y. BenZvi; R. Cester; M. Chiosso; B. M. Connolly; A. Filipcic; B. Garcia; A. Grillo; F. Guarino; M. Horvat; M. Iarlori; C. Macolino; J. A. J. Matthews; D. Melo; R. Mussa; M. Mostafa; J. Pallota; S. Petrera; M. Prouza; V. Rizi; M. Roberts; J. R. Rodriguez Rojo; F. Salamida; M. Santander; G. Sequeiros; A. Tonachini; L. Valore; D. Veberic; S. Westerhoff; D. Zavrtanik; M. Zavrtanik

2006-09-03T23:59:59.000Z

357

Characterization of a 16-Bit Digitizer for Lidar Data Acquisition  

E-Print Network (OSTI)

A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy. Introduction The waveform digitizer is a critical component of lidar detection systems; it transforms the analog detector output into a digital signal by measuring the signal voltage in a discrete time interval determined by an external clock. The accuracy of the digital voltage level increases with the digitizer bit level. Technology has advanced to the point where 8- and 12-bit waveform digitizers are commercially available and commonly used in computer-automated measurement and control (CAMAC) crates, which are readily interfaced to computer systems. These systems have worked well for ground and aircraft-borne...

Cynthia Williamson And; Cynthia K. Williamson; Russell J. De Young

2000-01-01T23:59:59.000Z

358

Multifrequency and multistatic inverse synthetic aperture radar, with application to FM passive radar  

Science Conference Proceedings (OSTI)

This paper deals with the imaging of a moving target using a multifrequency and multistatic radar consisting in one receiver and several narrowband transmitters. Considering two hypotheses about the studied target, we derive two multistatic inverse synthetic ...

Guillaume Ginolhac; Françoise Schmitt; Franck Daout; Philippe Forster

2010-01-01T23:59:59.000Z

359

Effects of Raindrop-Size Distribution Variation within the Radar Scattering Volume on Radar Observables  

Science Conference Proceedings (OSTI)

Dual linear polarization weather radars measure as primary observables the mean power P?H, and P?V, corresponding to returns at horizontal and vertical polarizations, respectively. Differential reflectivity ZDR is defined as the ratio between ...

G. Scarchilli; E. Gorgucci; T. A. Seliga; K. Aydin

1990-12-01T23:59:59.000Z

360

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Subsurface Ocean Signals from an Orbiting Polarization Lidar  

E-Print Network (OSTI)

Abstract: Detection of subsurface returns from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were demonstrated. Despite the coarse range resolution of this aerosol lidar, evidence of subsurface scattering was observed as a delay and broadening of the cross-polarized signal relative to the co-polarized signal in the three near-surface range bins. These two effects contributed to an increased depolarization at the nominal depth of 25 m. These features were all correlated with near-surface chlorophyll concentrations. An increase in the depolarization was also seen at a depth of 50 m under certain conditions, suggesting that chlorophyll concentration at that depth could be estimated if an appropriate retrieval technique can be developed. At greater depths, the signal is dominated by the temporal response of the detectors, which was approximated by an analytical expression. The depolarization caused by aerosols in the atmosphere was calculated and eliminated as a possible artifact.

James H. Churnside; I J. Mccarty; Xiaomei Lu

2013-01-01T23:59:59.000Z

362

Building Extraction using LiDAR DEMs and IKONOS Images  

E-Print Network (OSTI)

An automated method for boundary representation of building objects has been considered as a core processor for 3D city modelling. Since the reconstruction of generic building shape fundamentally depends on geometric features extracted from data sources, it suffers difficulties especially when a monocular imagery with high scene complexity is solely used. The research described in this paper aims to develop an automated method for building extraction, in which individual building object is localized and boundaries of polyhedral building shape are delineated with a less specific building model. The developed technique focuses on an exploitation of synergy of Ikonos imagery combined with a LIDAR DEM. Individual buildings are localized with rectangle polygon by a hierarchical segmentation of LIDAR DEM and Ikonos multi-spectral information. This polygon is recursively partitioned by linear features extracted from Ikonos image and LIDAR space, which results in a set of convex polygons. Only polygons comprising “significant ” parts of building shape are verified and aggregated. Finally, polyhedral building shapes are reconstructed. Several results are presented with a discussion of evaluation and limitations of our method. 1.

G. Sohn; I. Dowman

2003-01-01T23:59:59.000Z

363

Supervised Parametric Classification of Aerial LiDAR Data  

E-Print Network (OSTI)

In this work, we classify 3D aerial LiDAR height data into roads, grass, buildings, and trees using a supervised parametric classification algorithm. Since the terrain is highly undulating, we subtract the terrain elevations using digital elevation models (DEMs, easily available from the United States Geological Survey (USGS)) to obtain the height of objects from a flat level. In addition to this height information, we use height texture (variation in height), intensity (amplitude of lidar response), and multiple (two) returns from lidar to classify the data. Furthermore, we have used luminance (measured in the visible spectrum) from aerial imagery as the fifth feature for classification. We have used mixture of Gaussian models for modeling the training data. Model parameters and the posterior probabilities are estimated using Expectation-Maximization (EM) algorithm. We have experimented with different number of components per model and found that four components per model yield satisfactory results. We have tested the results using leaveone -out as well as random test. Classification results are in the range of 66% -- 84% depending upon the combination of features used that compares very favorably with. trainall -test-all results of 85%. Further improvement is achieved using spatial coherence.

Amin P. Charaniya; Roberto Manduchi; Roberto M; Suresh K. Lodha

2004-01-01T23:59:59.000Z

364

Assimilating Coherent Doppler Lidar Measurements into a Model of the Atmospheric Boundary Layer. Part II: Sensitivity Analyses  

Science Conference Proceedings (OSTI)

A series of trials are performed to evaluate the sensitivity of a 4DVAR algorithm for retrieval of microscale wind and temperature fields from single-Doppler lidar data. These trials use actual Doppler lidar measurements to examine the ...

Rob K. Newsom; Robert M. Banta

2004-12-01T23:59:59.000Z

365

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description  

Science Conference Proceedings (OSTI)

This work describes the algorithms used for the fully automated retrieval of profiles of particulate extinction coefficients from the attenuated backscatter data acquired by the lidar on board the Cloud-Aerosol Lidar Infrared Pathfinder Satellite ...

Stuart A. Young; Mark A. Vaughan

2009-06-01T23:59:59.000Z

366

Comparison of High-Cloud Characteristics as Estimated by Selected Spaceborne Observations and Ground-Based Lidar Datasets  

Science Conference Proceedings (OSTI)

The characterization of high clouds as performed from selected spaceborne observations is assessed in this article by employing a number of worldwide ground-based lidar multiyear datasets as reference. Among the latter, the ground lidar ...

Artemio Plana-Fattori; Gérard Brogniez; Patrick Chervet; Martial Haeffelin; Olga Lado-Bordowsky; Yohann Morille; Frédéric Parol; Jacques Pelon; Antoine Roblin; Genevičve Sčze; Claudia Stubenrauch

2009-06-01T23:59:59.000Z

367

Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006  

Science Conference Proceedings (OSTI)

Continuous lidar observation was performed in Guangzhou, China, in the Pearl River Delta (PRD) observation campaign in July 2006 (PRD2006), using a two-wavelength Mie-scattering lidar (532 and 1064 nm) with a depolarization measurement channel at ...

Nobuo Sugimoto; Tomoaki Nishizawa; Xingang Liu; Ichiro Matsui; Atsushi Shimizu; Yuanhang Zhang; Young J. Kim; Ruhao Li; Jun Liu

2009-09-01T23:59:59.000Z

368

STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data  

Science Conference Proceedings (OSTI)

Today several lidar networks around the world provide large datasets that are extremely valuable for aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires detailed analysis of spatial and ...

Y. Morille; M. Haeffelin; P. Drobinski; J. Pelon

2007-05-01T23:59:59.000Z

369

Insects Observed Using Dual-Polarization Radar  

Science Conference Proceedings (OSTI)

Two radars of different characteristics were used on a clear night in early summer to investigate the nature of the clear air echoes. It is deduced that most of the echoes on this evening were due to insects rather than atmospheric turbulence or ...

Eugene A. Mueller; Ronald P. Larkin

1985-03-01T23:59:59.000Z

370

A Typhoon Observed with the MU Radar  

Science Conference Proceedings (OSTI)

During the passage of Typhoon 8719 a 60-h continuous observation was made of the troposphere and the lower stratosphere with the MU (middle and upper atmosphere) radar. Height profiles of the wind velocity vector were measured every 2.5 min with ...

Toru Sato; Naoki Ao; Mamoru Yamamoto; Shoichiro Fukao; Toshitaka Tsuda; Susumu Kato

1991-03-01T23:59:59.000Z

371

Acoustic Radar Studies of Rain Microphysics  

Science Conference Proceedings (OSTI)

Raindrop size distributions are obtained from the Doppler frequency spectrum of an acoustic radar. Number concentrations of 12 drop diameters with a minimum diameter 0.14 cm are obtained and averaged over 3–15 min at 20-m range gates from 20 to ...

S. G. Bradley

1997-06-01T23:59:59.000Z

372

Radar Measurement of Cooling Tower Drift  

Science Conference Proceedings (OSTI)

A method of radar measurement of drift, generated by the wet cooling towers of power plants, is proposed. The water given off by the evaporative towers consists of two kinds of droplets: the recondensation droplets—generally less than 20 ?m in ...

Henri Sauvageot

1989-09-01T23:59:59.000Z

373

DOW Radar Observations of Wind Farms  

Science Conference Proceedings (OSTI)

The growth of the wind industry in recent years has motivated investigation into wind farm interference with the operation of the nationwide Weather Surveillance Radar-1988 Doppler (WSR-88D) network. Observations of a wind farm were taken with a Doppler ...

Mallie Toth; Erin Jones; Dustin Pittman; David Solomon

2011-08-01T23:59:59.000Z

374

Generating nonlinear FM chirp waveforms for radar.  

SciTech Connect

Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

Doerry, Armin Walter

2006-09-01T23:59:59.000Z

375

Transmitter passband requirements for imaging radar.  

SciTech Connect

In high-power microwave power amplifiers for radar, distortion in both amplitude and phase should generally be expected. Phase distortions can be readily equalized. Some amplitude distortions are more problematic than others. In general, especially for SAR using LFM chirps, low frequency modulations such as gain slopes can be tolerated much better than multiple cycles of ripple across the passband of the waveform.

Doerry, Armin Walter

2012-12-01T23:59:59.000Z

376

Discover the Benefits of Radar Imaging | Open Energy Information  

Open Energy Info (EERE)

Discover the Benefits of Radar Imaging Discover the Benefits of Radar Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Discover the Benefits of Radar Imaging Author William V. Parker Published EIJ Earth Imaging Journal, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Discover the Benefits of Radar Imaging Citation William V. Parker. Discover the Benefits of Radar Imaging [Internet]. 2012. N/A. EIJ Earth Imaging Journal. [updated 2013/09/20;cited 2013/09/20]. Available from: http://eijournal.com/2012/discover-the-benefits-of-radar-imaging GEOTHERMAL ENERGYGeothermal Home Web Site: Discover the Benefits of Radar imaging Details Abstract: Unavailable Author(s): William V. Parker Published: EIJ Earth Imaging Journal, 2012

377

Measuring forest canopy height using a combination of lidar and aerial photography data  

E-Print Network (OSTI)

It has been demonstrated that the height of forest canopies can be measured with a good accuracy using small footprint lidars. This is essentially accomplished by subtracting the last return altitude (ground) from the corresponding first return altitude (canopy surface). The technique is considered superior to photogrammetric methods mainly because the ground level, which is difficult to see on aerial photos of densely forested areas, can be well identified using small footprint lidars. However, lidar cannot be used to characterized past forest states, while these can be assessed, and photogrammetically measured, in the wealth of historical aerial photographs most developed countries possess. Our goal is to replace the first return lidar data by altitude models derived from aerial photos in order to map forest canopy height changes of the past decades. This paper presents the first methodological steps which consist in comparing canopy heights obtained from lidar data only to a combination of lidar and photogrammetry data. The lidar data was acquired over an area of the boreal forest in Quebec, Canada, in 1998, using Optech’s ALTM1020 flying at an altitude of 700 m. Two stereo-pairs of aerial black and white photographs were used: 1) a pair of 1:15,000 photos taken in 1994, and 2) a pair of 1:40,000 photos taken in 1998. A lidar canopy height model (CHM) was created by subtracting ground altitudes from canopy altitudes. Aerial photo altitude models were derived using the image correlation methods of Virtuozo 3.2 software. The ground level altitudinal fit between the aerial photo altitude model and the lidar data was checked on rock outcrops. A photo CHM was created by subtracting the lidar ground altitude model from the aerial photo altitude model. The photo CHM and the lidar CHM show a good degree of correlation.

Benoît A. St-onge; Nora Achaichia

2001-01-01T23:59:59.000Z

378

ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

Rob Newsom; John Goldsmith

379

ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer (OSTI)

ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Richard Coulter; Kevin Widener; Nitin Bharadwaj; Karen Johnson; Timothy Martin

380

Lidar Measurement of Turbulence Encountered by Horizontal-Axis Wind Turbines  

Science Conference Proceedings (OSTI)

We used a continuous-wave (CW) Doppler lidar to measure wind velocity turbulence from a moving frame of reference. By directing the lidar beam to trace the perimeters of vertical-plane disks about horizontal axes parallel to the mean wind ...

R. M. Hardesty; B. F. Weber

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lidar Observations of Sea-Breeze and Land-Breeze Aerosol Structure on the Black Sea  

Science Conference Proceedings (OSTI)

This paper describes results of a lidar study of sea-breeze behavior near Akhtopol in the southeastern corner of Bulgaria. The lidar site was a few hundred meters from the western shore of the Black Sea. Analyses are presented of vertical cross ...

I. Kolev; O. Parvanov; B. Kaprielov; E. Donev; D. Ivanov

1998-10-01T23:59:59.000Z

382

An Automated Algorithm for Detection of Hydrometeor Returns in Micropulse Lidar Data  

Science Conference Proceedings (OSTI)

A cloud detection algorithm for a low power micropulse lidar is presented that attempts to identify all of the significant power returns from the vertical column above the lidar at all times. The main feature of the algorithm is construction of ...

E. E. Clothiaux; G. G. Mace; T. P. Ackerman; T. J. Kane; J. D. Spinhirne; V. S. Scott

1998-08-01T23:59:59.000Z

383

Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report  

SciTech Connect

The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

Johnson, David K; Lewis, Matthew J; ,; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

2013-02-01T23:59:59.000Z

384

Airborne lidar surveys are an at-tractive alternative to the methods  

E-Print Network (OSTI)

to changing from a visual- based aerial survey (wide swath, shallow penetration) to a lidar-based Modeling264 Airborne lidar surveys are an at- tractive alternative to the methods presentlyusedinfishery-independent surveys of epipelagic fishes (Hunter and Churnside1). They would cost much less per survey mile than ship

385

Lidar Observations of the Fine-Scale Variability of Marine Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

A Nd:YAG lidar system was flown aboard NASA's ER-2 high altitude aircraft. Observations of cloud top height were made with 70 m along-track and 7.5 m vertical-height resolution. The lidar data observed from an East Pacific stratocumulus cloud ...

Reinout Boers; James D. Spinhirne; William D. Hart

1988-07-01T23:59:59.000Z

386

Connected Components for a Fast and Robust 2D Lidar Data Segmentation  

Science Conference Proceedings (OSTI)

The paper presents a novel segmentation approach applied to a two-dimensional point-cloud extracted by a LIDAR device. The most common approaches perform well in outdoor environments where usually furniture and other objects are rather big and are composed ... Keywords: 2D Lidar Segmentation, Connected Component, Intelligent Vehicles, Point-cloud analysis, Unmanned Ground Vehicle

Daniel Ońoro Rubio, Artem Lenskiy, Jee-Hwan Ryu

2013-07-01T23:59:59.000Z

387

Three-Dimensional Mapping of Fluorescent Dye Using a Scanning, Depth-Resolving Airborne Lidar  

Science Conference Proceedings (OSTI)

Results are presented from a pilot study using a fluorescent dye tracer imaged by airborne lidar in the ocean surface layer on spatial scales of meters to kilometers and temporal scales of minutes to hours. The lidar used here employs a scanning, ...

M. A. Sundermeyer; E. A. Terray; J. R. Ledwell; A. G. Cunningham; P. E. LaRocque; J. Banic; W. J. Lillycrop

2007-06-01T23:59:59.000Z

388

Implementation of a lidar system and its usage in characterization of aerosols in the atmospheric column  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) is a recent remote sensing system which has been gradually expanding as a network among the countries actively concerned about the atmospheric contaminants, earth radiation budget, rain variations, clean air index, ... Keywords: AERONET station, Lidar system, aerosol optical depth, aerosol size distribution, air quality index, planetary boundary layer

Javier Mčndez-Rodríguez; Hamed Parsiani

2009-06-01T23:59:59.000Z

389

A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.  

SciTech Connect

The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

Luke,E.; Kollias, P.

2007-08-06T23:59:59.000Z

390

Lidar-Based Estimation of Small-Scale Rainfall: Empirical Evidence  

Science Conference Proceedings (OSTI)

A significant scale gap between radar and in situ measurements of rainfall using rain gauges and disdrometers indicates a pressing need for improved knowledge of rainfall variability at the spatial scales below those of today’s operational radar ...

Piotr A. Lewandowski; William E. Eichinger; Anton Kruger; Witold F. Krajewski

2009-03-01T23:59:59.000Z

391

Development of a Drillrod/Telemetry Radar  

Science Conference Proceedings (OSTI)

Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

Raton Technology Research, Inc.

1999-11-12T23:59:59.000Z

392

Doppler lidar observations of Russian forest fire plumes over Helsinki  

E-Print Network (OSTI)

Russia led to elevated concentrations of fine particles reducing air quality in southern Finland over a number of weeks. Predominately easterly and south-easterly winds resulted in smoke plumes extending over the Gulf of Finland and affecting eastern and southern Finland during 7–14 August 2006 and 21–23 August 2006. This article describes observations using Doppler lidar of two episodes where smoke plumes from the Russian forest fires were evident over the Helsinki area on 7 and 9 August 2006. The observations were made during a convective field campaign, part of the Helsinki Testbed, an international mesoscale meteorology research project running from

K E Bozier; G N Pearson; C G Collier; Halo Photonics

2005-01-01T23:59:59.000Z

393

Combining LIDAR and IfSAR: What can you expect?  

E-Print Network (OSTI)

Three-dimensional mapping products in the form of DEMs (Digital Elevation Models) have become much more accessible in recent years, in part due to the implementation of LIDAR and IFSAR technologies. While there is considerable familiarity with one technology or the other, they are not often examined in terms of their mutually similar characteristics or equally those that are dissimilar. The purpose of this paper is to summarize those factors which will ultimately help to determine whether one technology or the other is appropriate for a particular application. We present two examples to illustrate and suggest that in many ways they can be viewed as complementary rather than competitive technologies.

Bryan Mercer Calgary

2001-01-01T23:59:59.000Z

394

Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) |  

Open Energy Info (EERE)

Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) Author Parviz Tarikhi Published N/A, 2010 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) Citation Parviz Tarikhi. Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) [Internet]. 2010. Tunis, Tunisia. N/A. [cited 2013/09/17]. Available from: http://parviztarikhi.files.wordpress.com/2010/05/3psinsar-i-parviz_tarikhi.pdf Retrieved from "http://en.openei.org/w/index.php?title=Synthetic_Aperture_Radar_Persistent_Scatterer_Interferometry_(PSInSAR)&oldid=682949"

395

ARM - Field Campaign - 2001 Multi-Frequency Radar IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaigns2001 Multi-Frequency Radar IOP govCampaigns2001 Multi-Frequency Radar IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2001 Multi-Frequency Radar IOP 2001.03.01 - 2001.09.30 Lead Scientist : Stephen Sekelsky Data Availability http://abyss.ecs.umass.edu For data sets, see below. Summary Install UMass and NOAA Aeronomy Laboratory "guest instrument" radars at the SGP CART site adjacent to the MMCR system. Both the UMass and NOAA Aeronomy Laboratory systems will run autonomously for approximately a six month period. Description Scientific hypothesis: A. Measurements from the University of Massachusetts (UMass) Cloud Profiling Radar System (CPRS) - 95/33 GHz Radar indicate that the 95 GHz channel is much less sensitive to insect clutter than the 35 GHz channel by

396

Vertical Velocity and Buoyancy Characteristics of Coherent Echo Plumes in the Convective Boundary Layer, Detected by a Profiling Airborne Radar  

Science Conference Proceedings (OSTI)

Aircraft and airborne millimeter-wave radar observations are used to interpret the dynamics of radar echoes and radar-inferred updrafts within the well-developed, weakly sheared continental convective boundary layer. Vertically pointing radar ...

Qun Miao; Bart Geerts; Margaret LeMone

2006-06-01T23:59:59.000Z

397

Scale Dependence of Radar Rainfall Uncertainty: Initial Evaluation of NEXRAD’s New Super-Resolution Data for Hydrologic Applications  

Science Conference Proceedings (OSTI)

This study explores the scale effects of radar rainfall accumulation fields generated using the new super-resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD) network of the Weather Surveillance Radar-...

Bong-Chul Seo; Witold F. Krajewski

2010-10-01T23:59:59.000Z

398

An Evaluation of a 94-GHz Radar for Remote Sensing of Cloud Properties  

Science Conference Proceedings (OSTI)

The performance of a 94-GHz radar is evaluated for a variety of cloud conditions. Descriptions of the radar hardware, signal processing, and calibration provide an overview of the radar's capabilities. An important component of the signal ...

E. E. Clothiaux; M. A. Miller; B. A. Albrecht; T. P. Ackerman; J. Verlinde; D. M. Babb; R. M. Peters; W. J. Syrett

1995-04-01T23:59:59.000Z

399

Relationship between Radar-Estimated Precipitation and Synoptic Weather Patterns in the European Alps  

Science Conference Proceedings (OSTI)

A 9-yr (2000–08) analysis of precipitation characteristics for the central and western European Alps has been generated from ground-based operational weather radar data provided by the Swiss radar network. The radar-based precipitation analysis ...

James V. Rudolph; Katja Friedrich; Urs Germann

2011-05-01T23:59:59.000Z

400

An Early Performance Evaluation of the NEXRAD Dual Polarization Radar Rainfall Estimates for Urban Flood Applications  

Science Conference Proceedings (OSTI)

Dual polarization radars are expected to provide better rainfall estimates than single polarization radars due to their ability to characterize hydrometeor type. The goal of this study is to evaluate single and dual polarization radar rainfall ...

Luciana K. Cunha; James A. Smith; Mary Lynn Baeck; Witold F. Krajewski

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Estimating Rainfall Intensities from Weather Radar Data: The Scale-Dependency Problem  

Science Conference Proceedings (OSTI)

Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolutions. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). Often, rain gauge ...

Efrat Morin; Witold F. Krajewski; David C. Goodrich; Xiaogang Gao; Soroosh Sorooshian

2003-10-01T23:59:59.000Z

402

Hail Detection Using S- and C-Band Radar Reflectivity Difference  

Science Conference Proceedings (OSTI)

In reflectivity fields observed with conventional radar networks, hailstorm identification is not easy. In the present paper, a hailstorm detection method using two single-wavelength radars located far from each other is discussed. The two radars,...

Laurent Féral; Henri Sauvageot; Serge Soula

2003-02-01T23:59:59.000Z

403

Eddy Dissipation Rates in Thunderstorms Estimated by Doppler Radar in Relation to Aircraft In Situ Measurements  

Science Conference Proceedings (OSTI)

High-resolution aircraft turbulence measurements, well coordinated with radar Doppler spectral width measurements, have been used to verify radar-estimated energy dissipation rates within thunderstorms anvils. The radar-estimated eddy dissipation ...

Peter Meischner; Robert Baumann; Hartmut Höller; Thomas Jank

2001-10-01T23:59:59.000Z

404

A Solo-based automated quality control algorithm for airborne tail Doppler radar data  

Science Conference Proceedings (OSTI)

An automated quality control pre-processing algorithm for removing non-weather radar echoes in airborne Doppler radar data has been developed. This algorithm can significantly reduce the time and experience level required for interactive radar ...

Michael M. Bell; Wen-Chau Lee; Cory A. Wolff; Huaqing Cai

405

An Experimental Study of Small-Scale Variability of Radar Reflectivity Using Disdrometer Observations  

Science Conference Proceedings (OSTI)

Analysis of data collected by four disdrometers deployed in a 1-km2 area is presented with the intent of quantifying the spatial variability of radar reflectivity at small spatial scales. Spatial variability of radar reflectivity within the radar ...

Benjamin J. Miriovsky; A. Allen Bradley; William E. Eichinger; Witold F. Krajewski; Anton Kruger; Brian R. Nelson; Jean-Dominique Creutin; Jean-Marc Lapetite; Gyu Won Lee; Isztar Zawadzki; Fred L. Ogden

2004-01-01T23:59:59.000Z

406

Effects of Radar Sampling on Single-Doppler Velocity Signatures of Mesocyclones and Tornadoes  

Science Conference Proceedings (OSTI)

Simulated WSR-88D (Weather Surveillance Radar-1988 Doppler) radar data were used to investigate the effects of discrete azimuthal sampling on Doppler velocity signatures of modeled mesocyclones and tornadoes at various ranges from the radar and ...

Vincent T. Wood; Rodger A. Brown

1997-12-01T23:59:59.000Z

407

Bollčne-2002 Experiment: Radar Quantitative Precipitation Estimation in the Cévennes–Vivarais Region, France  

Science Conference Proceedings (OSTI)

The Bollčne-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements ...

Guy Delrieu; Brice Boudevillain; John Nicol; Benoît Chapon; Pierre-Emmanuel Kirstetter; Hervé Andrieu; D. Faure

2009-07-01T23:59:59.000Z

408

The Kinetic Energy of Hailfalls. Part IV: Patterns of Hailpad and Radar Data  

Science Conference Proceedings (OSTI)

Ground-and radar-measured patterns of hail kinetic energy from eight hailstorms have been compared. The radar patterns were shifted horizontally in such a way that the correlation coefficient between the ground and radar data reaches a maximum. ...

W. Schmid; H. H. Schiesser; A. Waldvogel

1992-10-01T23:59:59.000Z

409

Inversion of synthetic aperture radar interferograms for sources...  

Open Energy Info (EERE)

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference...

410

Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook  

SciTech Connect

The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

Widener, K; Bharadwaj, N; Johnson, K

2012-03-06T23:59:59.000Z

411

Argonne radar meteorologist Scott Collis named one of Popular...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Sciences from the Australian National University in 2007. Click to enlarge. Argonne radar meteorologist Scott Collis named one of Popular Science's 'Brilliant 10' By...

412

Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Radar Processor and Dual-Polarization K. P. Moran, B. E. Martner, and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory...

413

What is Synthetic Aperture Radar? -- Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

What is Synthetic Aperture Radar? Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must...

414

Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air  

SciTech Connect

The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

Heiser,J.H.; Smith, S.; Sedlacek, A.

2008-02-06T23:59:59.000Z

415

Simulation of Lidar Return Signals Associated with Water Clouds  

E-Print Network (OSTI)

We revisited an empirical relationship between the integrated volume depolar- ization ratio, oacc, and the effective multiple scattering factor, -n, on the basis of Monte Carlo simulations of spaceborne lidar backscatter associated with homogeneous wa- ter clouds. The relationship is found to be sensitive to the extinction coefficient and to the particle size. The layer integrated attenuated backscatter is also obtained. Comparisons made between the simulations and statistics derived relationships of the layer integrated depolarization ratio, oacc, and the layer integrated attenuated backscatter, -n, based on the measurement by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite show that a cloud with a large effective size or a large extinction coefficient has a relatively large integrated backscatter and a cloud with a small effective size or a large extinction coefficient has a large integrated volume depolarization ratio. The present results also show that optically thin water clouds may not obey the empirical relationship derived by Y. X. Hu. and co-authors.

Lu, Jianxu

2009-08-01T23:59:59.000Z

416

Wideband Waveform Design Principles for Solid-State Weather Radars  

Science Conference Proceedings (OSTI)

The use of solid-state transmitters is becoming increasingly viable for atmospheric radars and is a key part of the strategy to realize any dense network of low-powered radars. However, solid-state transmitters have low peak powers and this ...

Nitin Bharadwaj; V. Chandrasekar

2012-01-01T23:59:59.000Z

417

Detailed Observations of Wind Turbine Clutter with Scanning Weather Radars  

Science Conference Proceedings (OSTI)

The wind power industry has seen tremendous growth over the past decade and with it has come the need for clutter mitigation techniques for nearby radar systems. Wind turbines can impart upon these radars a unique type of interference that is not ...

B. M. Isom; R. D. Palmer; G. S. Secrest; R. D. Rhoton; D. Saxion; T. L. Allmon; J. Reed; T. Crum; R. Vogt

2009-05-01T23:59:59.000Z

418

The Distribution of Rainfall over Oceans from Spaceborne Radars  

Science Conference Proceedings (OSTI)

A combination of rainfall estimates from the 13.8-GHz Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the 94-GHz CloudSat Cloud Profiling Radar (CPR) is used to assess the distribution of rainfall intensity over tropical ...

Wesley Berg; Tristan L’Ecuyer; John M. Haynes

2010-03-01T23:59:59.000Z

419

A 35-GHz Scanning Doppler Radar for Fog Observations  

Science Conference Proceedings (OSTI)

To observe fog, a 35-GHz scanning Doppler radar was designed, assembled, and tested. The radar, mounted on a flatbed vehicle for portability, transmits peak powers of 100 kW in a pulse of 0.5-µs width and a beamwidth of 0.3°. Thus, a reflectivity ...

Kyosuke Hamazu; Hiroyuki Hashiguchi; Toshio Wakayama; Tomoya Matsuda; Richard J. Doviak; Shoichiro Fukao

2003-07-01T23:59:59.000Z

420

Radar Nowcasting of Total Lightning over the Kennedy Space Center  

Science Conference Proceedings (OSTI)

A long-term radar dataset over Melbourne, Florida, was matched with three-dimensional lightning data to optimize radar-derived predictors of total lightning over the Kennedy Space Center (KSC). Four years (2006–09) of summer (June–August) daytime (...

Gregory N. Seroka; Richard E. Orville; Courtney Schumacher

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Subglacial water presence classification from polar radar data  

Science Conference Proceedings (OSTI)

Ground and airborne radar depth-sounding of the Greenland and Antarctic ice sheets have been used for many years to remotely determine characteristics such as ice thickness, subglacial topography, and mass balance of large bodies of ice. Ice coring efforts ... Keywords: Ensemble classification, Machine learning, Pattern recognition, Radar remote sensing, Subglacial water

Christopher M. Gifford; Arvin Agah

2012-06-01T23:59:59.000Z

422

A Description of the CSU–CHILL National Radar Facility  

Science Conference Proceedings (OSTI)

The subject of this paper is the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) National Radar Facility’s S-band polarimetric research radar. Key features of this system include polarization agility (...

David Brunkow; V. N. Bringi; Patrick C. Kennedy; Steven A. Rutledge; V. Chandrasekar; E. A. Mueller; Robert K. Bowie

2000-12-01T23:59:59.000Z

423

Climatology of Anomalous Propagation Radar Echoes in a Coastal Area  

Science Conference Proceedings (OSTI)

Anomalous propagation (AP) of ground-based radar beam results in the detection of ground echoes beyond the horizon. One year of data gathered with an S-band meteorological radar located on the coast in southwest France is used to analyze the ...

Frédéric Mesnard; Henri Sauvageot

2010-11-01T23:59:59.000Z

424

The Measurement of Precipitation with Synthetic Aperture Radar  

Science Conference Proceedings (OSTI)

The radar equation for the measurement of precipitation by SAR is identical to that for a conventional radar. The achievable synthetic beamwidth, ?s, is proportional to ?v/U, the ratio of the spread of the precipitation Doppler spectrum to the ...

David Atlas; Richard K. Moore

1987-09-01T23:59:59.000Z

425

High-Frequency Skywave Radar Track of Tropical Storm Debra  

Science Conference Proceedings (OSTI)

Tropical Storm Debra was tracked over a 31 h period in the Gulf of Mexico using the Wide Aperture Research Facility (WARF) high-frequency (HF) skywave radar in California. In contrast to the first WARF skywave radar tracking experiment in which ...

Joseph W. Maresca Jr.; Christopher T. Carlson

1981-04-01T23:59:59.000Z

426

A Robust Dual-Frequency Radar Profiling Algorithm  

Science Conference Proceedings (OSTI)

In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and ...

Mircea Grecu; Lin Tian; William S. Olson; Simone Tanelli

2011-07-01T23:59:59.000Z

427

Radio Acoustic Sounding with a UHF Volume Imaging Radar  

Science Conference Proceedings (OSTI)

An implementation of a radio acoustic sounding system (RASS) using a UHF volume imaging radar is presented. The volume-imaging ability of the radar permits the study the spatial structure of the RASS echo observing both the diffraction pattern on ...

Paco López Dekker; Stephen J. Frasier

2004-05-01T23:59:59.000Z

428

Ultrawideband radar clutter measurements of forested terrain, 1991--1992  

Science Conference Proceedings (OSTI)

The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

1993-06-01T23:59:59.000Z

429

Radar-cross-section reduction of wind turbines. part 1.  

SciTech Connect

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

2012-03-05T23:59:59.000Z

430

Properties of tropical convection observed by ARM millimeter-radars  

NLE Websites -- All DOE Office Websites (Extended Search)

Properties of tropical convection observed by ARM millimeter-radars Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into cloud classes according to the radar reflectivity structures of these cloud systems, associated rainfall, and surface radiative properties. These observations of cloud properties are composited with respect to various phases of the Madden Julian Oscillation, which is a dominant mode of variability at Manus Island. A method of better

431

W-Band ARM Cloud Radar - Specifications and Design  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band ARM Cloud Radar - Specifications and Design W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest National Laboratory Richland, Washington J. B. Mead ProSensing, Inc. Amherst, Massachusetts Abstract The Atmospheric Radiation Measurement (ARM) Program and ProSensing, Inc. have teamed to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. The WACR will be co- located with the ARM millimeter wave cloud radar (MMCR) with planned operation to begin in early 2005. This radar will complement the measurements of the MMCR and will aid in filtering out insect contamination in the data. In this poster we present the design goals, expected performance characteristics, and the detailed design for the WACR. Introduction The MMCR has been operating at the Southern Great Plains (SGP) site since 1998. It has proven to be

432

Inversion of synthetic aperture radar interferograms for sources of  

Open Energy Info (EERE)

Inversion of synthetic aperture radar interferograms for sources of Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Authors Bill Foxall and D. W. Vasco Published Journal Journal of Volcanology and Geothermal Research, 2008 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Citation Bill Foxall,D. W. Vasco. 2008. Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie

433

Synthetic Aperture Radar Movie Gallery -- Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthetic Aperture Radar Movie Gallery Synthetic Aperture Radar Movie Gallery This gallery features movies of Sandia National Laboratories' synthetic aperture radar imagery of Albuquerque, New Mexico and Washington, DC. Sandia's Twin-Otter SAR produced these high-resolution stripmap images in real time. (Note: The movies below have been downsampled greatly to make them suitable for viewing on the world wide web. These movies are not recommended for modems of speeds less than 56 kbps due to their large file sizes.) Albuquerque, NM Area Movies Sandia National Laboratories' Twin-Otter SAR produced these Ku-Band 0.3 and 1.0 meter resolution images of Albuquerque, NM in real time. Synthetic aperture radar movie of west Gibson Blvd 0.3 meter airborne synthetic aperture radar movie from I-25 to Maxwell along Gibson Blvd. (Length: 30 seconds)

434

PATTERN: Advantages of High Resolution Weather Radar Networks [EVS Event]  

NLE Websites -- All DOE Office Websites (Extended Search)

PATTERN: Advantages of High Resolution Weather Radar Networks PATTERN: Advantages of High Resolution Weather Radar Networks September 30, 2013 Speaker: Dr. Katharina Lengfeld Meteorological Institute, University of Hamburg, Germany Date: Monday, September 30, 2013 Time: 11 am - 12 noon Location: Argonne National Laboratory TCS Building 240 Room 4301 Precipitation observations with radars operating in the X-band frequency range are essential for meeting present and future requirements for flood forecasting, water management, and other hydro-meteorological applications. Besides having higher resolution, these systems are cost-effective compared to S- or C-band radars because of smaller antenna size. Disadvantages of single X-band radars are the large influence of attenuation by liquid water and a relatively short range.

435

LiDAR At Twenty-Nine Palms Area (Page, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Twenty-Nine Palms Area (Page, Et Al., 2010) Twenty-Nine Palms Area (Page, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Twenty-Nine Palms Geothermal Area (Page, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown Notes Primary LiDAR application to this project was Airborne Laser Swath Mapping (ALSM). This particular application was used to gather data over a specific land area then used to create a Digital Elevation Model (DEM) with a resolution of approximately 1m in the horizontal direction and 10cm in the vertical direction. The LiDAR data gathered for MCAGCC was analyzed in conjunction with other data, such as aerial photography and field

436

Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research  

Science Conference Proceedings (OSTI)

A polarization (0.694-?m wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from Project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day–night ...

Kenneth Sassen; Byung Sung Cho

1992-11-01T23:59:59.000Z

437

A Comparison of Mixing Depths Observed by Ground-Based Wind Profilers and an Airborne Lidar  

Science Conference Proceedings (OSTI)

The authors compare the mixing depths in the daytime convective boundary layers that were observed remotely by wind profilers and an airborne lidar during the 1995 Southern Oxidants Study. The comparison is used to determine whether the mixing ...

A. B. White; C. J. Senff; R. M. Banta

1999-05-01T23:59:59.000Z

438

The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations  

Science Conference Proceedings (OSTI)

A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and ...

W. E. Eichinger; D. I. Cooper; P. R. Forman; J. Griegos; M. A. Osborn; D. Richter; L. L. Tellier; R. Thornton

1999-11-01T23:59:59.000Z

439

Lidar Determinations of Atmospheric Ice Crystal Layers at South Pole during Clear-Sky Precipitation  

Science Conference Proceedings (OSTI)

Results of lidar measurements of atmospheric ice crystal layers during 36 clear-sky precipitation events at South Pole (2850 m MSL) during the winter over the period March-November 1975 are presented and correlated with ice crystal replicator, ...

Vern N. Smiley; Bruce M. Whitcomb; Bruce M. Morley; Joseph A. Warburton

1980-09-01T23:59:59.000Z

440

Characterization of Aircraft Wake Vortices by 2-?m Pulsed Doppler Lidar  

Science Conference Proceedings (OSTI)

The 2-?m pulsed Doppler lidar, already successfully used for wind and turbulence measurements, has been modified for long-range wake-vortex characterization. In particular, a four-stage data processing algorithm has been developed to achieve ...

Friedrich Köpp; Stephan Rahm; Igor Smalikho

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Variational Analysis for Airborne Conically Scanned Doppler Lidar to Retrieve Mesoscale Wind Fields  

Science Conference Proceedings (OSTI)

An airborne pulsed Doppler lidar implementing a downlooking conical scan rotating around the vertical axis is under development. The information contained in the measured radial velocities is studied to assess the capacity to retrieve the 3D wind ...

Alain Dabas; Julie Périn; Pierre H. Flamant

1997-10-01T23:59:59.000Z

442

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements  

Science Conference Proceedings (OSTI)

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ...

Jennifer M. Comstock; Kenneth Sassen

2001-10-01T23:59:59.000Z

443

Coincident Lidar and Aircraft Observations of Entrainment into Thermals and Mixed Layers  

Science Conference Proceedings (OSTI)

Coincident observations of the daytime convective boundary layer over Oklahoma were made with the NCAR Queen Air aircraft and the University of Wisconsin ground-based lidar. The two data sets have been merged to provide a unique visual ...

Timothy D. Crum; Roland B. Stull; Edwin W. Eloranta

1987-07-01T23:59:59.000Z

444

Pressure Measurements Using an Airborne Differential Absorption Lidar. Part I: Analysis of the Systematic Error Sources  

Science Conference Proceedings (OSTI)

Systematic error sources that require correction when making remote airborne measurements of the atmospheric pressure field in the lower troposphere, using an oxygen differential absorption lidar, are analyzed. A detailed analysis of this ...

Cyrille N. Flamant; Geary K. Schwemmer; C. Laurence Korb; Keith D. Evans; Stephen P. Palm

1999-05-01T23:59:59.000Z

445

Simultaneous Measurements of Atmospheric Water Vapor with MIR, Raman Lidar, and Rawinsondes  

Science Conference Proceedings (OSTI)

Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured ...

J. R. Wang; S. H. Melfi; P. Racette; D. N. Whitemen; L. A. Chang; R. A. Ferrare; K. D. Evans; F. J. Schmidlin

1995-07-01T23:59:59.000Z

446

Chirp-Induced Bias in Velocity Measurements by a Coherent Doppler CO2 Lidar  

Science Conference Proceedings (OSTI)

Radial wind velocity measurements by a pulsed CO2 Doppler lidar may be biased even in stationary atmospheric conditions. The authors show it is due to random speckle fluctuations of the backscattered signal and is related to the dissymmetry of ...

Alain M. Dabas; Philippe Drobinski; Pierre H. Flamant

1998-04-01T23:59:59.000Z

447

Lagrangian Coherent Structure Analysis of Terminal Winds Detected by Lidar. Part I: Turbulence Structures  

Science Conference Proceedings (OSTI)

The accurate real-time detection of turbulent airflow patterns near airports is important for safety and comfort in commercial aviation. In this paper, a method is developed to identify Lagrangian coherent structures (LCS) from horizontal lidar ...

Wenbo Tang; Pak Wai Chan; George Haller

2011-02-01T23:59:59.000Z

448

Simulation of Coherent Doppler Lidar Performance for Space-Based Platforms  

Science Conference Proceedings (OSTI)

The performance of coherent Doppler lidar velocity estimates for a space-based platform are produced using computer simulations of raw data and statistical descriptions of the resulting velocity estimates. The random spatial variability of the ...

Rod Frehlich

2000-02-01T23:59:59.000Z

449

Weather and Climate Needs for Lidar Observations from Space and Concepts for Their Realization  

Science Conference Proceedings (OSTI)

The spectrum of weather and climate needs for lidar observations from space is dismissed This paper focuses mainly on the requirements for winds, temperature, moisture, and pressure. Special emphasis is given to the needs for wind observations ...

David Atlas; C. Lawrence Korb

1981-09-01T23:59:59.000Z

450

Lidar Descriptions of Mixing-Layer Thickness Characteristics in a Complex Terrain/Coastal Environment  

Science Conference Proceedings (OSTI)

Airborne lidar and supplementary measurements made during a major study of air chemistry in southern California (SCCCAMP 1985) provided a rare opportunity to examine atmospheric boundary-layer structure in a coastal area with complex terrain. ...

James L. McElroy; Ted B. Smith

1991-05-01T23:59:59.000Z

451

Power Ratio Estimation in Incoherent Backscatter Lidar: Heterodyne Receiver with Square Law Detection  

Science Conference Proceedings (OSTI)

Comparative return irradiance estimation in a two channel heterodyne lidar receiver should be facilitated by processing finite data samples obtained in a period short compared with that of atmospheric fluctuations affecting beam propagation. Here ...

B. J. Rye

1983-11-01T23:59:59.000Z

452

Virtual Towers Using Coherent Doppler Lidar during the Joint Urban 2003 Dispersion Experiment  

Science Conference Proceedings (OSTI)

During the Joint Urban 2003 (JU2003) atmospheric field experiment in Oklahoma City, Oklahoma, of July 2003, lidar teams from Arizona State University and the Army Research Laboratory collaborated to perform intersecting range–height indicator ...

R. Calhoun; R. Heap; M. Princevac; R. Newsom; H. Fernando; D. Ligon

2006-08-01T23:59:59.000Z

453

Potential for a Lidar-Based, Portable, 1 km Meteorological Tower  

Science Conference Proceedings (OSTI)

Lidar measurements of wind, temperature and water vapor, using a variety of techniques that rely on the detection and analysis of laser light backscattered from the atmosphere, allow data to be obtained that are similar to those hypothetically ...

R. L. Schwiesow

1983-05-01T23:59:59.000Z

454

High-Resolution Doppler Lidar Observations of Transient Downslope Flows and Rotors  

Science Conference Proceedings (OSTI)

The authors present observations of the temporal evolution of downslope windstorms with rotors and internal hydraulic jumps of unprecedented detail and spatiotemporal coverage. The observations were carried out by means of a coherent Doppler lidar ...

Christian Kühnlein; Andreas Dörnbrack; Martin Weissmann

2013-10-01T23:59:59.000Z

455

Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns  

Science Conference Proceedings (OSTI)

Monte Carlo calculations of multiple-scattered contributions to the total energy received in a lidar beam have been made for a representative cirrus ice-cloud scattering phase function. The phase function is varied arbitrarily near the back ...

C. M. R. Platt

1981-01-01T23:59:59.000Z

456

The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data  

Science Conference Proceedings (OSTI)

The work is concerned with the inversion of horizontal lidar data into the aerosol particle size distribution (APSD). The aerosol is assumed to consist of spherical particles of continental and oceanic origin. The particular refraction index is ...

Kusiel S. Shifrin; Ilia G. Zolotov

2003-10-01T23:59:59.000Z

457

Major Advances Foreseen in Humidity Profiling from the Water Vapour Lidar Experiment in Space (WALES)  

Science Conference Proceedings (OSTI)

The need for an absolute standard for water vapor observations, in the form of a global dataset with high accuracy and good spatial resolution, has long been recognized. The European Space Agency's Water Vapour Lidar Experiment in Space (WALES) ...

É Gérard; D. G. H. Tan; L. Garand; V. Wulfmeyer; G. Ehret; P. Di Girolamo

2004-02-01T23:59:59.000Z

458

Modeling the Aerosol Extinction versus Backscatter Relationship for Lidar Applications: Maritime and Continental Conditions  

Science Conference Proceedings (OSTI)

A model to derive functional relationships linking extinction (?) and backscatter (?) of continental and maritime aerosol at 532 nm is presented and tested. These relationships are needed to solve the single-wavelength lidar equation, where both ...

Francesca Barnaba; Gian Paolo Gobbi

2004-03-01T23:59:59.000Z

459

Lidar-Based Characterization of the Geometry and Structure of Water Clouds  

Science Conference Proceedings (OSTI)

Lidar remote sensing measurements of low-level water clouds in the form of vertical soundings and instantaneous (1 min) azimuth-over-elevation scans are reported. Retrievals are made of the liquid water content and effective droplet diameter at ...

Luc R. Bissonnette; Gilles Roy; Grégoire Tremblay

2007-08-01T23:59:59.000Z

460

Polarization Lidar at Summit, Greenland for the Detection of Cloud Phase and Particle Orientation  

Science Conference Proceedings (OSTI)

Accurate measurements of cloud properties are necessary to document the full range of cloud conditions and characteristics. The Cloud, Aerosol Polarization and Backscatter Lidar (CAPABL) has been developed to address this need by measuring ...

Ryan R. Neely III; Matthew Hayman; Robert Stillwell; Jeffrey P. Thayer; R. Michael Hardesty; Michael O’Neill; Matthew D. Shupe; Catherine Alvarez

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Experimental Cloud Lidar Pilot Study (ECLIPS) for Cloud—Radiation Research  

Science Conference Proceedings (OSTI)

The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and ...

C. M. Platt; S. A. Young; A. I. Carswell; S. R. Pal; M. P. McCormick; D. M. Winker; M. DelGuasta; L. Stefanutti; W. L. Eberhard; M. Hardesty; P. H. Flamant; R. Valentin; B. Forgan; G. G. Gimmestad; H. Jäger; S. S. Khmelevtsov; I. Kolev; B. Kaprieolev; Da-ren Lu; K. Sassen; V. S. Shamanaev; O. Uchino; Y. Mizuno; U. Wandinger; C. Weitkamp; A. Ansmann; C. Wooldridge

1994-09-01T23:59:59.000Z

462

Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling  

Science Conference Proceedings (OSTI)

Cloud signals from a vertically pointing, range-corrected ruby lidar and a rotating beam ceilometer showed excellent agreement in the height at which peak signal occurred. However, pilot reports of ceiling were at significantly lower altitude ...

W. L. Eberhard

1986-09-01T23:59:59.000Z

463

Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles  

Science Conference Proceedings (OSTI)

Several recent studies have utilized a Haar wavelet covariance transform to provide automated detection of the boundary layer top from lidar backscatter profiles by locating the maximum in the covariance profiles. This approach is effective where ...

Ian M. Brooks

2003-08-01T23:59:59.000Z

464

Evaluating Light Rain Drop Size Estimates from Multi-Wavelength Micropulse Lidar Network Profiling  

Science Conference Proceedings (OSTI)

We investigate multi-wavelength retrievals of median equivolumetric drop diameter, D0, suitable for drizzle and light rain, through collocated 355/527 nm Micro Pulse Lidar NETwork (MPLNET) observations collected during precipitation occurring 9 ...

Simone Lolli; Ellsworth J. Welton; James. R. Campbell

465

Retrieval of Microscale Wind and Temperature Fields from Single- and Dual-Doppler Lidar Data  

Science Conference Proceedings (OSTI)

Dual-Doppler lidar observations are used to assess the accuracy of single-Doppler retrievals of microscale wind and temperature fields in a shear-driven convective boundary layer. The retrieval algorithm, which is based on four-dimensional ...

Rob K. Newsom; David Ligon; Ron Calhoun; Rob Heap; Edward Cregan; Marko Princevac

2005-09-01T23:59:59.000Z

466

Backscatter Lidar Observations of Lower Tropospheric Dynamics during Southern California Wildfires  

Science Conference Proceedings (OSTI)

Wavelike features suggesting gravity waves were revealed by lidar observations (from El Segundo, California) of smoke layers produced by large wildfires in the Southern California region during a Santa Ana event. Unique features of the ...

Steven Beck; David Stoker; James Hecht; Richard Walterscheid

2009-07-01T23:59:59.000Z

467

A Comparison of Vertical Velocity in Cirrus Obtained from Aircraft and Lidar Divergence Measurements during FIRE  

Science Conference Proceedings (OSTI)

Techniques are presented to obtain vertical velocity in cirrus clouds from in situ aircraft lateral wind measurements and from ground-based remote Doppler lidar measurements. In general, direct measurements of absolute vertical velocity w from ...

I. Gultepe; A. J. Heymsfield; D. H. Lenschow

1990-02-01T23:59:59.000Z

468

Two-Dimensional Vector Wind Fields from Volume Imaging Lidar Data  

Science Conference Proceedings (OSTI)

Spatially resolved wind fields are derived by cross correlation of aerosol backscatter data from horizontal and vertical scans of the University of Wisconsin volume imaging lidar during the 1997/98 Lake-Induced Convection Experiment. Data from ...

Shane D. Mayor; Edwin W. Eloranta

2001-08-01T23:59:59.000Z

469

The Multiple Altimeter Beam Experimental Lidar (MABEL): An Airborne Simulator for the ICESat-2 Mission  

Science Conference Proceedings (OSTI)

This paper presents the motivation for, and initial results from, the Multiple Altimeter Beam Experimental lidar (MABEL) instrument. The MABEL instrument provides a new capability for airborne altimetry measurements and serves as a prototype and ...

Matthew McGill; Thorsten Markus; V. Stanley Scott; Thomas Neumann

2013-02-01T23:59:59.000Z

470

Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization  

Science Conference Proceedings (OSTI)

Two versions of the portable aerosol Raman lidar system (Polly) are presented. First, the two-channel prototype is depicted. It has been developed for the independent and simultaneous determination of particle backscatter and extinction ...

Dietrich Althausen; Ronny Engelmann; Holger Baars; Birgit Heese; Albert Ansmann; Detlef Müller; Mika Komppula

2009-11-01T23:59:59.000Z

471

Derivation of Effective Aerodynamic Surface Roughness in Urban Areas from Airborne Lidar Terrain Data  

Science Conference Proceedings (OSTI)

An automated technique was developed that uses only airborne lidar terrain data to derive the necessary parameters for calculation of effective aerodynamic surface roughness in urban areas. The technique provides parameters for geometric models ...

Donald E. Holland; Judith A. Berglund; Joseph P. Spruce; Rodney D. McKellip

2008-10-01T23:59:59.000Z

472

In Situ Cloud Sensing with Multiple Scattering Lidar: Design and Validation of an Airborne Sensor  

Science Conference Proceedings (OSTI)

The in situ cloud lidar is designed to measure cloud volumes of millions of cubic meters to overcome the sampling limitations of traditional cloud probes in inhomogeneous clouds. This technique sends laser pulses horizontally from an aircraft ...

K. Franklin Evans; Darren O’Connor; Pat Zmarzly; R. Paul Lawson

2006-08-01T23:59:59.000Z

473

Cluster Analysis: A new approach applied to Lidar measurements for Atmospheric Boundary Layer height estimation  

Science Conference Proceedings (OSTI)

Several procedures are widely applied to estimate the Atmospheric Boundary Layer (ABL) top height by using aerosols as tracers from lidar measurements. These methods represent different mathematical approaches relying on either the abrupt step of ...

Daniel Toledo; Carmen Córdoba-Jabonero; Manuel Gil-Ojeda

474

The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment  

Science Conference Proceedings (OSTI)

The development of the polarization lidar field over the past two decades is reviewed, and the current cloud-research capabilities and limitations are evaluated. Relying on fundamental scattering principles governing the interaction of polarized ...

Kenneth Sassen

1991-12-01T23:59:59.000Z

475

Lidar Observations of Mixed Layer Dynamics: Tests of Parameterized Entrainment Models of Mixed Layer Growth Rate  

Science Conference Proceedings (OSTI)

Ground based lidar measurements of the atmospheric mixed layer depth, the entrainment zone depth and the wind speed and wind direction were used to test various parameterized entrainment models of mixed layer growth rate. Six case studies under ...

R. Boers; E. W. Eloranta; R. L. Coulter

1984-02-01T23:59:59.000Z

476

Raman Lidar Measurements during the International H2O Project. Part I: Instrumentation and Analysis Techniques  

Science Conference Proceedings (OSTI)

The NASA Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP), which occurred in May and June 2002 in the midwestern part of the United States. The SRL received extensive optical ...

D. N. Whiteman; B. Demoz; K. Rush; G. Schwemmer; B. Gentry; P. Di Girolamo; J. Comer; I. Veselovskii; K. Evans; S. H. Melfi; Z. Wang; M. Cadirola; B. Mielke; D. Venable; T. Van Hove

2006-02-01T23:59:59.000Z

477

Remote sensing of atmospheric particles using LIDAR, Calipso satellite, & AERONET: algorithm development  

Science Conference Proceedings (OSTI)

Algorithms have been developed for the determination of essential parameters such as Aerosol Size Distribution, Angstrom coefficient, and Single Scattering Albedo necessary in the determination of regional climatological model and weather prediction ... Keywords: AERONET, Calipso, atmospheric parameters, lidar, remote sensing

Javier Mčndez; Hamed Parsiani; Emmanuel Sanchez

2009-01-01T23:59:59.000Z

478

Airborne Doppler Lidar Investigation of Sea Surface Reflectance at a 355-nm Ultraviolet Wavelength  

Science Conference Proceedings (OSTI)

The analysis of the sea surface reflectance for different incidence angles based on observations of an airborne Doppler lidar at an ultraviolet wavelength of 355 nm is described. The results were compared to sea surface reflectance models, ...

Zhigang Li; Christian Lemmerz; Ulrike Paffrath; Oliver Reitebuch; Benjamin Witschas

2010-04-01T23:59:59.000Z

479

Observations of Typhoon Melissa during the Lidar In-Space Technology Experiment (LITE)  

Science Conference Proceedings (OSTI)

The Lidar In-Space Technology Experiment (LITE) provided the first high-resolution (15 m) vertical profiling of clouds and aerosols from space. The LITE instrument flew aboard the space shuttle as its prime payload during Space Transportation ...

Thomas A. Kovacs; M. Patrick McCormick

2003-07-01T23:59:59.000Z

480

Raman Lidar Profiling of Atmospheric Water Vapor: Simultaneous Measurements with Two Collocated Systems  

Science Conference Proceedings (OSTI)

Raman lidar is a loading candidate for providing the detailed space-and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric watervapor are described using two collocated ...

J. E. M. Goldsmith; Scott E. Bisson; Richard A. Ferrare; Keith D. Evans; David N. Whiteman; S. H. Melfi

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "lidar radar insar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

We demonstrate that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. We consider three different angles: the wind turning, the angle between the stress ...

Jacob Berg; Jakob Mann; Edward G. Patton

482

Remote Measurement of Turbulent Wind Spectra by Heterodyne DopplerLidar Technique  

Science Conference Proceedings (OSTI)

Heterodyne Doppler lidars (HDLs) are used to monitor atmospheric wind field and wind turbulence at remote distance. This last application calls for the derivation of wind spectra, which can be characterized by the dissipation rate and the ?-...

Philippe Drobinski; Alain M. Dabas; Pierre H. Flamant

2000-12-01T23:59:59.000Z

483

Doppler Lidar Measurements of Turbulent Structure Function over an Urban Area  

Science Conference Proceedings (OSTI)

Analysis of radial wind velocity data from the Salford pulsed Doppler infrared lidar is used to calculate turbulent spectral statistics over the city of Salford in the United Kingdom. The results presented here, first, outline the error ...

F. Davies; C. G. Collier; G. N. Pearson; K. E. Bozier

2004-05-01T23:59:59.000Z

484

High-Resolution Doppler Lidar for Boundary Layer and Cloud Research  

Science Conference Proceedings (OSTI)

The high-resolution Doppler lidar (HRDL) was developed to provide higher spatial, temporal, and velocity resolution and more reliable performance than was previously obtainable with CO2-laser-based technology. The improved performance is needed ...

Christian J. Grund; Robert M. Banta; Joanne L. George; James N. Howell; Madison J. Post; Ronald A. Richter; Ann M. Weickmann

2001-03-01T23:59:59.000Z

485

Polarization Lidar and Synoptic Analyses of an Unusual Volcanic Aerosol Cloud  

Science Conference Proceedings (OSTI)

Over an unusually brief three-day period in early August 1989, spectacular twilight effects indicative of a stratospheric volcanic cloud were seen at Salt Lake City, Utah. Concurrent polarization lidar observations detected an aerosol layer at ...

Kenneth Sassen; John D. Horel

1990-12-01T23:59:59.000Z

486

Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study  

Science Conference Proceedings (OSTI)

The vertical profiling of CO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform ...

Fabien Gibert; Grady J. Koch; Jeffrey Y. Beyon; Timothy W. Hilton; Kenneth J. Davis; Arlyn Andrews; Pierre H. Flamant; Upendra N. Singh

2011-03-01T23:59:59.000Z

487

Lidar Measurement of Ammonia Concentrations and Fluxes in a Plume from a Point Source  

Science Conference Proceedings (OSTI)

A field experiment was performed that demonstrated the ability of a scanning carbon dioxide (CO2) coherent lidar system to measure the concentration distribution of ammonia in a plume from a point source. This application of the differential ...

Yanzeng Zhao; W. Alan Brewer; Wynn L. Eberhard; Raul J. Alvarez

2002-12-01T23:59:59.000Z

488

Recent Lidar Technology Developments and Their Influence on Measurements of Tropospheric Water Vapor  

Science Conference Proceedings (OSTI)

In this paper the influences of recent technology developments in the areas of lasers, detectors, and optical filters of a differential absorption lidar (DIAL) system on the measurement of tropospheric water vapor (H20) profiles are discussed. ...

Syed Ismail; Edward V. Browell

1994-02-01T23:59:59.000Z

489

Semiempirical Model for the Reliability of a Matched Filter Frequency Estimator for Doppler Lidar  

Science Conference Proceedings (OSTI)

The author proposes a heuristic semiempirical model for predicting the reliability of a matched-filter frequency estimator applied to Doppler lidar signals. The model is tuned by a single coefficient ? empirically related to the ratio of the ...

Alain Dabas

1999-01-01T23:59:59.000Z

490

Applications of an Infrared Doppler Lidar in Detection of Wind Shear  

Science Conference Proceedings (OSTI)

In December 2005, operational wind shear alerting at the Hong Kong International Airport (HKIA) reached an important milestone with the launch of the automatic Lidar (light detection and ranging) Windshear Alerting System (LIWAS). This signifies ...

C. M. Shun; P. W. Chan

2008-05-01T23:59:59.000Z

491

A Comparison of Cloud Cover Statistics from the GLAS Lidar with HIRS  

Science Conference Proceedings (OSTI)

The cloud dataset from the Geoscience Laser Altimeter System (GLAS) lidar on the Ice, Cloud, and Land Elevation Satellite (ICESat) spacecraft is compared to the cloud analysis of the Wisconsin NOAA High Resolution Infrared Radiation Sounder (HIRS)...

Donald Wylie; Edwin Eloranta; James D. Spinhirne; Steven P. Palm

2007-10-01T23:59:59.000Z

492

Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs  

Science Conference Proceedings (OSTI)

This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman ...

Tetsu Sakai; David N. Whiteman; Felicita Russo; David D. Turner; Igor Veselovskii; S. Harvey Melfi; Tomohiro Nagai; Yuzo Mano

2013-07-01T23:59:59.000Z

493

Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees  

Science Conference Proceedings (OSTI)

The paper describes a methodology for tree species classification using features that are derived from small-footprint full waveform Light Detection and Ranging (LIDAR) data. First, 3-dimensional coordinates of the laser beam reflections, the intensity, ...

J. Reitberger; P. Krzystek; U. Stilla

2008-03-01T23:59:59.000Z

494

Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event  

Science Conference Proceedings (OSTI)

The University of Basilicata Raman lidar system (BASIL) is operational in Potenza, Italy, and it is capable of performing high-resolution and accurate measurements of atmospheric temperature and water vapor based on the application of the ...

Paolo Di Girolamo; Donato Summa; Rossella Ferretti

2009-09-01T23:59:59.000Z

495

DOE/SC-ARM/TR-098 Micropulse Lidar Cloud Mask Value-Added Product...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Micropulse Lidar Cloud Mask Value-Added Product Technical Report C Sivaraman J Comstock July 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

496

Tracking random finite objects using 3D-LIDAR in marine environments  

E-Print Network (OSTI)

This paper presents a random finite set theoretic formulation for multi-object tracking as perceived by a 3D-LIDAR in a dynamic environment. It is mainly concerned with the joint detection and estimation of the unknown and ...

Lee, Kwang Wee

497

Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002  

Science Conference Proceedings (OSTI)

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high ...

C. Kiemle; G. Ehret; A. Fix; M. Wirth; G. Poberaj; W. A. Brewer; R. M. Hardesty; C. Senff; M. A. LeMone

2007-04-01T23:59:59.000Z

498

Polarization Lidar at Summit, Greenland, for the Detection of Cloud Phase and Particle Orientation  

Science Conference Proceedings (OSTI)

Accurate measurements of cloud properties are necessary to document the full range of cloud conditions and characteristics. The Cloud, Aerosol Polarization and Backscatter Lidar (CAPABL) has been developed to address this need by measuring ...

Ryan R. Neely III; Matthew Hayman; Robert Stillwell; Jeffrey P. Thayer; R. Michael Hardesty; Michael O'Neill; Matthew D. Shupe; Catherine Alvarez

2013-08-01T23:59:59.000Z

499

A Simple Model for Correcting Sodar and Lidar Errors in Complex Terrain  

Science Conference Proceedings (OSTI)

Ground-based sensing of wind profiles by sodars and lidars is becoming the standard for wind energy and other applications. However, there remain difficulties in complex terrain since the instruments sense wind components in spatially separated ...

Stuart Bradley

2012-12-01T23:59:59.000Z

500

Concept design, analysis, and integration of the new u.p.c. multispectral lidar system.  

E-Print Network (OSTI)

??The increasing need for range-resolved aerosol and water-vapour atmospheric observation networks worldwide has given rise to multi-spectral LIDARs (Light Detection and Ranging, a synonym of… (more)

Kumar, Dhiraj

2012-01-01T23:59:59.000Z