National Library of Energy BETA

Sample records for lidar radar insar

  1. Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel Gohring, Miao Wang, Michael Schnurmacher, Tinosch Ganjineh

    E-Print Network [OSTI]

    Rojas, Raúl

    Radar/Lidar Sensor Fusion for Car-Following on Highways Daniel G¨ohring, Miao Wang, Michael Schn-time algorithm which enables an autonomous car to comfortably follow other cars at various speeds while keeping that depends on the position as well as the velocity of the followed car. Radar sensors provide reliable

  2. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the

    E-Print Network [OSTI]

    Protat, Alain

    -term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing effect is governed primarily by the equi- librium between their albedo effect and their green- house

  3. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  4. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  5. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore »using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  6. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore »under stratocumulus, where cloud water path is retrieved with an error of 31 g m?2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m?2.« less

  7. Detecting and monitoring UCG subsidence with InSAR

    SciTech Connect (OSTI)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  8. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations

    E-Print Network [OSTI]

    Sandwell, David T.

    Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J

  9. 6.4 ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    @lidar.ssec.wisc.edu 2 NOAA Earth Systems Research Laboratory, 325 Broadway, Boulder, CO, USA taneil seatainers are joined together as shelter for the lidar, radar, and PAREI instruments. The 35 GHz radar antenna is seen on the near corner of the shelter and the zenith facing lidar window is located

  10. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics...

  11. Automatic registration of LIDAR and optical images of urban scenes

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  12. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  13. Statistical methods for 2D-3D registration of optical and LIDAR images

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    2009-01-01

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

  14. Surface deformation analysis over a hydrocarbon reservoir using InSAR with ALOS-PALSAR data

    E-Print Network [OSTI]

    ?ahin, Sedar Cihan

    2013-01-01

    InSAR has been developed to estimate the temporal change on the surface of Earth by combining multiple SAR images acquired over the same area at different times. In the last two decades, in addition to conventional InSAR, ...

  15. Allan variance computed in space domain: Application to InSAR data to characterize noise and geophysical signal

    E-Print Network [OSTI]

    Cavalié, Olivier

    2015-01-01

    The Allan variance was introduced fifty years ago for analyzing the stability of frequency standards. Beside its metrological interest, it is also an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. But, it was also used in other fields: accelerometry, geophysics, geodesy, astrophysics and even finances! However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance onto spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space (over the SAR image spatial coverage) and in time thank to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this p...

  16. Sandia Energy - Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Friendly Blades Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Radar Friendly Blades Radar Friendly BladesTara...

  17. CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED AT EUREKA, CANADA.

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    CLOUD FRACTION STATISTICS DERIVED FROM 2YEARS OF HIGH SPECTRAL RESOLUTION LIDAR DATA ACQUIRED(AHSRL) and the NOAA 8.6 mm wavelength cloud radar (MMCR). Both instruments have operated nearly continuously since Sept 2005. This paper presents a record of cloud cover, cloud altitude and cloud phase derived

  18. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data

    E-Print Network [OSTI]

    Simons, Mark

    Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure models of surface deformation: Noise structure and data downsampling, Geochem. Geophys. Geosyst., 6, Q of data points. Here we estimate the actual covariance structure of noise in InSAR data. We compare

  19. Open-source software for geodetic imaging: ROI_PAC for InSAR and pixel tracking

    E-Print Network [OSTI]

    Pritchard, Matt

    1 Open-source software for geodetic imaging: ROI_PAC for InSAR and pixel tracking Authors: Matthew. Acknowledgements Section I. Introduction Section II. Getting started: Data & software Raw data format Available software for InSAR and pixel tracking Appendix 0: Some basic LINUX commands Appendix 1: Getting

  20. Raman Lidar (RL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2009-03-01

    The Raman lidar at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) Central Facility (SGPRL) is an active, ground-based laser remote sensing instrument that measures height and time resolved profiles of water vapor mixing ratio and several cloud- and aerosol-related quantities. The system is a non-commercial custom-built instrument developed by Sandia National Laboratories specifically for the ARM Program. It is fully computer automated, and will run unattended for many days following a brief (~5-minute) startup period. The self-contained system (requiring only external electrical power) is housed in a climate-controlled 8’x8’x20’ standard shipping container.

  1. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar2

  2. Railway Subsidence Monitoring by High Resolution INSAR Time Series Analysis in Tianjin

    E-Print Network [OSTI]

    Perissin, Daniele

    Railway Subsidence Monitoring by High Resolution INSAR Time Series Analysis in Tianjin Qingli Luo1 and the development of urban are seriously affected by the subsidence of them. Permanent Scatterers (PS) technology was developed as a powerful tool for subsidence monitoring. High resolution of 1m data can be provided by Terra

  3. Synthetic Aperture Radar Interferometry with 3 satellites

    E-Print Network [OSTI]

    Wong, Wallace D. (Wallace Dazheng)

    2005-01-01

    Our study investigates interferometric SAR (InSAR) post-processing height retrieval techniques. We explore the possible improvements by adding a third satellite to the two already in orbit, and examine some potential uses ...

  4. PoroTomo Subtask 3.4 Analysis of existing InSAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kurt Feigl

    2014-12-26

    Attributes of synthetic aperture radar (SAR) data acquired by TerraSAR-X and TandemX satellite missions and archived at WINSAR facility.

  5. PoroTomo Subtask 3.4 Analysis of existing InSAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kurt Feigl

    Attributes of synthetic aperture radar (SAR) data acquired by TerraSAR-X and TandemX satellite missions and archived at WINSAR facility.

  6. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  7. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  8. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations

    E-Print Network [OSTI]

    Fialko, Yuri

    Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications

  9. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications of predicted profiles: topography, uplift rate, and shear strain. The present topography of Mount Sedom stage and at the Plio-Pleistocene pre-emergent stage of the Sedom diapir, respectively. The uplift

  10. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  11. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    SciTech Connect (OSTI)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The high permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.

  12. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing TTU Advanced Doppler Radar TTU Advanced Doppler...

  13. Position Announcement Postdoctoral Research Associate Lidar Remote Sensing

    E-Print Network [OSTI]

    Salvaggio, Carl

    Position Announcement Postdoctoral Research Associate ­ Lidar Remote Sensing Department Summary: The employee will provide remote sensing expertise and conduct research in lidar remote sensing from advanced terrestrial, airborne, and satellite remote sensing platforms, including UASs (Unmanned

  14. Doppler radar flowmeter

    DOE Patents [OSTI]

    Petlevich, Walter J. (Uniontown, PA); Sverdrup, Edward F. (Adamsburg, PA)

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  15. Heterodyne lidar for chemical sensing

    SciTech Connect (OSTI)

    Oldenborg, R. C. (Richard C.); Tiee, J. J. (Joe J.); Shimada, T. (Tsutomu); Wilson, C. W. (Carl W.); Remelius, D. K. (Dennis K.); Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics have to be validated. The baseline coherent DIAL detection sensitivity that can be achieved averaging multiple laser pulses and by comparisons of different wavelengths will be demonstrated. Factors that are presently limiting performance and attempts to circumvent these issues will be discussed.

  16. REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR CAMPAIGN IN ANTARCTICA

    E-Print Network [OSTI]

    Chu, Xinzhao

    REFURBISHMENT AND UPGRADE OF FE BOLTZMANN/RAYLEIGH TEMPERATURE LIDAR AT BOULDER FOR A MCMURDO LIDAR conditions, refurbishment and upgrade of the system was necessary in order to restore its performance. More

  17. Effects of Radar Beam Shielding on Rainfall Estimation for the Polarimetric C-Band Radar

    E-Print Network [OSTI]

    Effects of Radar Beam Shielding on Rainfall Estimation for the Polarimetric C-Band Radar KATJA, polarimetric weather radar located in Trappes, France, were used to examine the effects of radar beam shielding-based rainfall estimates to beam shielding for C-band radar data during four typical rain events encountered

  18. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  19. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  20. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  1. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  2. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  3. Signal processing for airborne bistatic radar 

    E-Print Network [OSTI]

    Ong, Kian P

    The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...

  4. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  5. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  6. Radar operation in a hostile electromagnetic environment

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  7. Lidar Bacscatter Cross-Section Radar Bacscatter Cross-Section Mixed Phase

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    S S I AC A N A D A U.K.IRE. ICELAND NORWAY SWEDEN FINLAND LATVIA LITH. BELARUS UKRAINE POLAND DENMARK GERMANY EST. KAZ. JAPAN (DENMARK) Greenland (NORWAY) Svalbard (NORWAY) (NORWAY) CHINA UNITED STATES Faroe AC A N A D A U.K.IRE. ICELAND NORWAY SWEDEN FINLAND LATVIA LITH. BELARUS UKRAINE POLAND DENMARK

  8. EISCAT Radar School, Kiruna, 2005 Outrigger in

    E-Print Network [OSTI]

    into regional fibre network, sharing costs with schools, health centres etc. #12;Bo Thidé EISCAT Radar School Thidé EISCAT Radar School, Kiruna,, 200515 LOFAR Phase 2 into Lower Saxony, Schleswig in innovative ways #12;Bo Thidé EISCAT Radar School, Kiruna,, 200524 LOFAR was conceived by the astrophysics

  9. Bachelor project: Ferromagnetische radar absorberende coatings

    E-Print Network [OSTI]

    Vuik, Kees

    Bachelor project: Ferromagnetische radar absorberende coatings Begeleider: D.R. van der Heul niet alleen een bijzondere vormgeving, maar zijn ook bedekt met radar absorbing coatings. De radar absorbing coatings (RAC) zetten de inkomende elektromagnetische golven om in warmte, die vervolgens naar de

  10. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  11. RADAR: THE CASSINI TITAN RADAR MAPPER C. ELACHI1,

    E-Print Network [OSTI]

    . SODERBLOM5 , S. VETRELLA11 , S. D. WALL1, , C. A. WOOD12 and H. A. ZEBKER13 1Jet Propulsion Laboratory rates, the data volumes, and power. This article describes the science objectives, operational modes at visible wave- lengths has been demonstrated most dramatically by the success of the Magellan radar

  12. Oil spill fluorosensing lidar for inclined onshore or shipboard operation

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    Oil spill fluorosensing lidar for inclined onshore or shipboard operation Renata Karpicz, Andrej An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some the back- ground water column fluorescence from signals such as yellow substance. This enables oil

  13. Ris-R-Report LIDAR Wind Speed Measurements from a

    E-Print Network [OSTI]

    Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: "SpinnerEx 2009" Nikolas: LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009) Division: Wind Energy Division application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner

  14. Lidar on the Phoenix mission to Mars James Whiteway,1

    E-Print Network [OSTI]

    Duck, Thomas J.

    Lidar on the Phoenix mission to Mars James Whiteway,1 Michael Daly,2 Allan Carswell,3 Thomas Duck,4 from the surface of Mars as part of the Phoenix mission. This will measure the height profile, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10

  15. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  17. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  18. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  19. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  20. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  1. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  2. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  3. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  4. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  8. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  9. Polar Mesosphere Winter Echoes -by ESRAD, EISCAT and lidar

    E-Print Network [OSTI]

    Kirkwood, Sheila

    fluctuations with scale-sizes as short as the 3 m needed to produce radar echoes at 52 MHz at half maximum echo power) than the 300 m resolution of the radar measurements. When the radar echoes km. A sharp cut-off in PMWE occurrence was found at ~ 102 , independent of electron density

  10. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  11. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  12. Radar channel balancing with commutation

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  13. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  14. Rayleigh lidar observations of mesosphere temperature structure

    SciTech Connect (OSTI)

    Meriwether, J.W.; Dao, P.D.; Mcnutt, R.T.; Klemetti, W.; Moskowitz, W.; Davidson, G. [Hanscom Air Force Base, MA (United States)]|[PhotoMetrics, Inc., Woburn, MA (United States)

    1994-08-01

    Ground-based observations of atmospheric density profiles to 92 km were obtained for four successive seasons between summer 1989 and spring 1990. These results were obtained with a powerful Rayleigh lidar facility located at Wright Patterson Air Force Base (Dayton, Ohio). This instrument combined a 14-W XeF laser transmitter with a 2.54-m receiver mirror to observe returns from altitudes between 40 and 95 km. Analysis of the scale height dependence of the density profiles produced temperatures with a measurement error of about 5 K (approximately 2.5%) at 90 km when the lidar data was averaged for 20 min. and smoothed in height over 2.7 km. Examination of these profiles for the total of 18 nights showed that there often existed in the mesophere a layer of enhanced temperatures when compared with the U.S. standard profile. The layer centroid height was about 85 km for summer and 70 to 75 km for winter. Data obtained for the equinoctial periods showed the amplitude of these layers to be weak. The winter temperature profiles showed evidence for long-period waves passing through the region of the thermal anomaly while the equinox profiles revealed more sporadic wave activity with shorter vertical wavelengths. Both the winter and summer temperature data displayed regions where the observed lapse rate approached the adiabatic lapse rate. In the summer the wave activity near the iversion layer was weak.

  15. Ultra-wideband radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  16. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  17. Title: Shuttle Radar Topography Mission (SRTM) Data Creator /

    E-Print Network [OSTI]

    Title: Shuttle Radar Topography Mission (SRTM) Data Creator / Copyright Owner: National Aeronautics@yorku.ca Citation: National Aeronautics and Space Administration. "Shuttle Radar Topography Mission (SRTM

  18. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  19. Mitigation of Coastal Bluff Instability in San Diego County, California/Evaluating Seacliff Morphology and Erosion Control in San Diego County Using LIDAR and GIS

    E-Print Network [OSTI]

    Ashford, Scott

    2005-01-01

    County Using LIDAR and GIS In order to evaluate seacliffgeographic information systems (GIS) analysis. LIDAR is the

  20. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-24

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates somemore »of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  1. A motor drive control system for the Lidar Polarimeter 

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  2. Sandia Energy - Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNewPhotoionizationPowerRadar Friendly Blades

  3. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  4. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  5. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E. (Las Vegas, NV)

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  6. Quantifying and relating land-surface and subsurface variability in permafrost environments using lidar and surface geophsical datasets

    SciTech Connect (OSTI)

    Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Gangodagmage, C [Los Alamos National Laboratory (LANL); Dafflon, B [Lawrence Berkeley National Laboratory (LBNL); Wainwright, H [Lawrence Berkeley National Laboratory (LBNL); Peterson, J [Lawrence Berkeley National Laboratory (LBNL); Gusmeroli, A [University of Alaska, Fairbanks; Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Wilson, Cathy [Los Alamos National Laboratory (LANL); Rowland, J [Los Alamos National Laboratory (LANL); Tweedie, Craig [University of Texas, El Paso; Wullschleger, Stan D [ORNL

    2013-01-01

    The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a systematic way, suggesting the presence of three laterally distinct subsurface zones. Analysis of zone-based subsurface point measurements suggests that the geophysically-defined zones have unique distributions of hydrological, thermal, and geochemical properties and that the subsurface (geophysically-based) and land-surface (lidar-based) zonation is consistent. Although the close linkage between land surface (polygonal geomorphology) and subsurface (active layer) variability revealed through our study is not surprising, to our knowledge this is the first study to document such relationships using high resolution and non-invasive approaches. This study suggests the potential of using coincident lidar and surface geophysical measurements to quantify land surface and subsurface properties (respectively) and their linkages, which are likely to play a role in terrestrial ecosystem evolution and feedbacks to climate. These findings open the way for future research focused on using combined geophysical and remote sensing datasets to estimate subsurface and land-surface properties in high resolution and over large regions as is needed for process understanding and numerical model initialization in high latitude terrestrial ecosystems.

  7. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and tonal lineaments were used to define possible faults in both the LiDAR and LSA photo data sets.The LiDAR and LSA photo analysis has identified a large number of previously...

  8. Development and characterization analysis of a radar polarimeter 

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01

    . ACKNOWLEDGEMENTS. TABLE OF CONTENTS LIST OF TABLES. LIST OF FIGURES . CHAPTER I. INTRODUCTION. Problem Statement . Approach. Scope of Thesis CHAPTER II. OPERATION OF RADAR SYSTEMS Background. Frequency Modulated Continuous Wave Radar System. Pulse Radar... System. Overview of the Radar Polarimeter System. Configuration of the RPS. The Truck System Specification. The Radar Head Assembly . The IF Section. Pulse Shaper (Pulse Expander} Section. The IF Receiver Section. The Digital Controller Circuit...

  9. THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES

    E-Print Network [OSTI]

    Kerekes, John

    THEORETICAL MODELING OF LIDAR RETURN PHENOMENOLOGY FROM SNOW AND ICE SURFACES J. Kerekes, J. Zhang the science of lidar sensing of complex ice and snow surfaces as well as in support of the upcoming ICESat- 2 from snow and ice surfaces. First, the anticipated lidar return characteristics for a sloped non

  10. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  11. Radar deception through phantom track generation 

    E-Print Network [OSTI]

    Maithripala, Diyogu Hennadige Asanka

    2006-04-12

    This thesis presents a control algorithm to be used by a team of ECAVs (Electronic Combat Air Vehicle) to deceive a network of radars through the generation of a phantom track. Each ECAV has the electronic capability of ...

  12. Multi-baseline interferometric synthetic aperture radar applications and error analysis

    E-Print Network [OSTI]

    Chua, Song Liang

    2007-01-01

    In this thesis, we deal primarily with the multi-baseline SAR configuration utilizing three satellites. Two applications of InSAR, multi-baseline height retrieval and multi-baseline compensation of CCD's slope biasing ...

  13. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  15. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  16. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  18. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  19. Imaging doppler lidar for wind turbine wake profiling

    DOE Patents [OSTI]

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  20. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  1. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  2. ORIGINAL PAPER Synergistic use of very high-frequency radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carbon sequestration (Hyde et al. 2007; Lucas et al. 2000; Skole and Tucker 1993). The traditional field · Introduction Accurate estimation of aboveground bio- mass is essential to better understand the carbon cycleSAR . Scanning lidar. Profiling lidar. Aboveground biomass . Best subsets regression . Carbon 1 Introduction

  3. Automatic Construction of Building Footprints from Airborne LIDAR Data

    E-Print Network [OSTI]

    Chen, Shu-Ching

    1 Automatic Construction of Building Footprints from Airborne LIDAR Data Keqi Zhang, Jianhua Yan. INTRODUCTION BUILDING footprints are one of the fundamental GIS data components that can be used to estimate, and estimation of building base elevation for flood insurance [2]. In addition, footprint data in combination

  4. Airborne lidar detection and characterization of internal waves in a

    E-Print Network [OSTI]

    Shaw, Joseph A.

    on the strength of the wind. This tends to create a layer of less dense water on top of the more dense water below of water with lower density at the surface. This layer is typically mixed with the water below. The airborne lidar detected a thin plankton layer at the bottom of the upper layer of the water

  5. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  6. Lidar fluorosensing of mineral oil spills on the sea surface

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    be discriminated from heavy fuel, and from less harmful substances like fish oil or vegetable oil, Fig. 3, whichLidar fluorosensing of mineral oil spills on the sea surface Theo Hengstermann and Rainer Reuter Airborne .fluorosensor measurements over maritime oil spills show that this method enables a sensitive

  7. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    , M K¨uhn3 and J Peinke4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3 Endowed Chair of Wind Energy, University of Stuttgart, Germany E-mail: 1 matthias relevance for wind energy utilization. Different technologies are in use in this field, among them LIDAR

  8. Research Article Application of Short-Range LIDAR in

    E-Print Network [OSTI]

    Tang, Wenbo

    a series of meteorological instruments, including long-range LIDAR (light detection and ranging) systems Island of complex terrain to the south. The Lantau Island is composed of rows of northeast- southwest are brought about by strong winds across the Lantau Island to the south of the airport, including the strong

  9. Radar Testbed Characterization for Evaluation of Modulated Scatterer Concepts

    E-Print Network [OSTI]

    Casper, Matt

    2010-05-27

    of fields including, mass data collection, SAR calibration, and military communication. A radar testbed was developed and charactersized to enable experimental evaluation of communication via modulated scatterer concepts. The radar operates with a 1.84-GHz...

  10. Tracking system for photon-counting laser radar

    E-Print Network [OSTI]

    Chang, Joshua TsuKang

    2007-01-01

    The purpose of this thesis is to build the tracking system for a photon-counting laser radar specifically a laser radar that has the ability to perform direct and coherent detection measurement at low signal levels with ...

  11. Wind turbine impacts on HF radar ocean surface measurements in

    E-Print Network [OSTI]

    Wyatt, Lucy

    Wind turbine impacts on HF radar ocean surface measurements in Liverpool Bay Alice Robinson School. The characterisation of the wind turbine interference is assessed and the radar cross section estimated. The modulation with wind turbine interference in a HF radar footprint are made. #12;Contents Contents iv List of Tables vii

  12. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  13. Comparing synthetic aperture radar and LiDAR for above-ground biomass estimation in Glen Affric, Scotland 

    E-Print Network [OSTI]

    Tan, Chue Poh

    2012-06-25

    Quantifying above-ground biomass (AGB) and carbon sequestration has been a significant focus of attention within the UNFCCC and Kyoto Protocol for improvement of national carbon accounting systems (IPCC, 2007; UNFCCC, ...

  14. Signal to Noise Analysis of iRadar sensors

    SciTech Connect (OSTI)

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  15. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  16. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  17. TABU SEARCH FOR TARGET-RADAR

    E-Print Network [OSTI]

    Hindsbergery and Ren e Victor Valqui Vidalz y Planning and Environment Department Elkraft Power Systems section presents our nal conclusions. 2 The DEHAWK system DEHAWK is a modernization program of the Danish DEHAWK system looking only at two types of units: the illumination radars denoted HIPIR's, HIgh-Power

  18. WAVE-DRIVEN SURFACE FROM HF RADAR

    E-Print Network [OSTI]

    Miami, University of

    FEATURE INTERNAL CURRENTS WAVE-DRIVEN SURFACE FROM HF RADAR By Lynn K. Shay Observations from recent experiments · . . have revealed internal wave signatures. SURFACE CURRENTobservations from high oscillations are within the inter- nal wave continuum from the buoyancy to the in- ertial frequencies

  19. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  20. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-07

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine powermore »performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.« less

  1. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  2. Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

    E-Print Network [OSTI]

    Window Transmission Monitoring and Cleaning Schemes used with the LIDAR Thomson Scattering Diagnostic on the JET Tokamak

  3. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  4. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Michael Jensen

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  5. Development of a Drillrod/Telemetry Radar

    SciTech Connect (OSTI)

    Raton Technology Research, Inc.

    1999-11-12

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  6. A framework for comparing geomechanical models of InSAR-measured surface deformation

    E-Print Network [OSTI]

    De Laplante, Neil Edward James

    2011-01-01

    High-quality Interferometric Synthetic Aperture Radar (InSAR) surface deformation data for field sites around the world has become widely available over the past decade. Geomechanical models based on InSAR data occur ...

  7. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  8. AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA

    E-Print Network [OSTI]

    Schindler, Konrad

    AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling of accurate and complete 3D building models with high degree of automation. Aerial images and LiDAR data

  9. BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES

    E-Print Network [OSTI]

    Shan, Jie

    BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using. The normal vectors are then clustered together to determine the principal directions of the roof planes

  10. 3-D tomographic imaging of ocean mines from real and simulated lidar returns

    E-Print Network [OSTI]

    Singer, Andrew C

    3-D tomographic imaging of ocean mines from real and simulated lidar returns Nail C¸adalli, Peter J of underwater objects, where the trans- mitted laser beam can penetrate the air-water interface and illuminate by using an accurate statistical model that incorporates multiple scattering. Keywords: lidar, ocean optics

  11. NNSA Completes its Critical Radar Arming and Fuzing Test for...

    National Nuclear Security Administration (NNSA)

    its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  12. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  13. Inversion of synthetic aperture radar interferograms for sources...

    Open Energy Info (EERE)

    Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference...

  14. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation (TSPEAR & IFT&E) Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Siting: Wind TurbineRadar Interference...

  15. Design and Development of Dual Polarized, Stacked Patch Antenna Element for S-Band Dual-Pol Weather Radar Array

    E-Print Network [OSTI]

    Bhardwaj, Shubhendu

    2012-01-01

    in Weather Detection . . . . . . . . . . . . . . . . . .for S-Band Weather Radar . . . . . . . . . . . . . Dual-polpatterns of polarimetric weather radars,” Journal of

  16. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic- HemisphericCloudsgovCampaignsLidar

  17. Lidar Inter-Comparison Exercise Final Campaign Report A Protat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging ofLibSciTeaming UpLidar

  18. Coastal Ocean Studies in Southern San Diego Using High-Frequency Radar Derived Surface Currents

    E-Print Network [OSTI]

    Kim, Sung Yong

    2009-01-01

    high-frequency radar derived surface current measured andcoastal region Chapter 5 derived surface current by viib) vector current map derived from HF radars in southern San

  19. Coastal ocean studies in southern San Diego using high- frequency radar derived surface currents

    E-Print Network [OSTI]

    Kim, Sung Yong

    2009-01-01

    high-frequency radar derived surface current measured andcoastal region Chapter 5 derived surface current by viib) vector current map derived from HF radars in southern San

  20. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

  1. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical PropertiesgovCampaignsCloud Radar IOP ARM

  2. Category:Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap Contact Properties Jump to:sourceRadar

  3. How Radar Works | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II WindHoultonHouston,Radar

  4. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect (OSTI)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  5. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  6. Reconfigurable Data Acquisition System for Weather Radar Applications

    E-Print Network [OSTI]

    Tessier, Russell

    Reconfigurable Data Acquisition System for Weather Radar Applications Rishi Khasgiwale, Luko Krnan-speed data acquisition and processing. Weather-processing systems need to be capable of im- plementing and distribution system for weather radar applications that meets these needs is described in this paper. This FPGA-based

  7. Clock SynthesisRadar Timing/Control PRF Generator

    E-Print Network [OSTI]

    Kansas, University of

    Clock SynthesisRadar Timing/Control AWG DAQ PRF Generator Receiver Transmitter Transmission Through waveform generator for pulse generation. The transmission pulse used currently is a modified linear FM, including a description of the bistatic synchronization technique. The link budget and radar performance

  8. Passive Synthetic Aperture Radar Imaging of Ground Moving Targets

    E-Print Network [OSTI]

    Yazici, Birsen

    waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone of opportunity such as radio, cell phone, and television transmission towers. The absence of active signal synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate

  9. Complex-optical-field lidar system for range and vector velocity measurement

    E-Print Network [OSTI]

    Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

    2012-11-01

    lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Opt. Lett. 37(11), 2022–2024 (2012). 11. Y. Zhang, M. O’Sullivan, and R. Hui, “Digital subcarrier multiplexing for flexible spectral allocation in optical transport network...

  10. Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and

    E-Print Network [OSTI]

    Simons, Mark

    designed to measure the strain rate across the region around Yucca Mountain. The LSM earthquake complicates parameters; 7260 Seismology: Theory and modeling; KEYWORDS: InSAR, joint inversion, seismic, Yucca Mountain 1. Introduction [2] Yucca Mountain, a proposed long-term (103 ­105 years) disposal site for high-level radioactive

  11. Target Discrimination in Synthetic Aperture Radar (SAR) using Artificial Neural Networks 1 TargetDiscriminationinSyntheticApertureRadar(SAR)

    E-Print Network [OSTI]

    Slatton, Clint

    Target Discrimination in Synthetic Aperture Radar (SAR) using Artificial Neural Networks 1 Target principe@cnel.ufl.edu Abstract: This paper addresses target discrimination in synthetic aperture radar (SAR classification but here the goal is discrimination. We will show that the two applications require different cost

  12. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  13. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  14. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  15. ERADERAD 20062006Proceedings ofProceedings of Detecting weather radar clutter

    E-Print Network [OSTI]

    results from investigations into detection of weather radar clutter by data fusion with satellite-basedERADERAD 20062006Proceedings ofProceedings of Detecting weather radar clutter using satellite-based nowcasting products. Weather radar data from three C-band Doppler weather radars of the Danish Meteorological

  16. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOE Patents [OSTI]

    Ormesher, Richard C. (Albuquerque, NM); Tise, Bertice L. (Albuquerque, NM); Axline, Jr., Robert M. (Albuquerque, NM)

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  17. ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility

    E-Print Network [OSTI]

    ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility six dual frequency cloud radar systems. These radars will be used by the Atmospheric Radiation on the effects of clouds and precipitation on the climate. Four cloud radar systems will be permanently installed

  18. Fully automatic calibration of LIDAR and video streams from a vehicle

    E-Print Network [OSTI]

    Bileschi, Stanley M.

    This work describes a fully automatic technique to calibrate a geometric mapping between lidar and video feeds on a mobile ground-based platform. This data association is a crucial first step for any multi-modal scene ...

  19. USING LIDAR TO MEASURE PERFLUOROCARBON TRACERS FOR THE VERIFICATION AND MONITORING

    E-Print Network [OSTI]

    and pilot-scale indoor experiments using an a continuous wave, line-tunable infrared CO2 laser were used region Using a pilot-scale lidar system in a 40 m indoor hallway air concentrations of PMCH were

  20. Stochastic Inversion of InSAR Data to Assess the Probability of Pressure Penetration into the Lower Caprock at In Salah

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramirez, Abelardo; Foxall, William

    2014-05-28

    Stochastic inversions of InSAR data were carried out to assess the probability that pressure perturbations resulting from CO2 injection into well KB-502 at In Salah penetrated into the lower caprock seal above the reservoir. Inversions of synthetic data were employed to evaluate the factors that affect the vertical resolution of overpressure distributions, and to assess the impact of various sources of uncertainty in prior constraints on inverse solutions. These include alternative pressure-driven deformation modes within reservoir and caprock, the geometry of a sub-vertical fracture zone in the caprock identified in previous studies, and imperfect estimates of the rock mechanical properties.more »Inversions of field data indicate that there is a high probability that a pressure perturbation during the first phase of injection extended upwards along the fracture zone ~ 150 m above the reservoir, and less than 50% probability that it reached the Hot Shale unit at 1500 m depth. Within the uncertainty bounds considered, it was concluded that it is very unlikely that the pressure perturbation approached within 150 m of the top of the lower caprock at the Hercynian Unconformity. The results are consistent with previous deterministic inversion and forward modeling studies.« less

  1. Stochastic Inversion of InSAR Data to Assess the Probability of Pressure Penetration into the Lower Caprock at In Salah

    SciTech Connect (OSTI)

    Ramirez, Abelardo; Foxall, William

    2014-05-28

    Stochastic inversions of InSAR data were carried out to assess the probability that pressure perturbations resulting from CO2 injection into well KB-502 at In Salah penetrated into the lower caprock seal above the reservoir. Inversions of synthetic data were employed to evaluate the factors that affect the vertical resolution of overpressure distributions, and to assess the impact of various sources of uncertainty in prior constraints on inverse solutions. These include alternative pressure-driven deformation modes within reservoir and caprock, the geometry of a sub-vertical fracture zone in the caprock identified in previous studies, and imperfect estimates of the rock mechanical properties. Inversions of field data indicate that there is a high probability that a pressure perturbation during the first phase of injection extended upwards along the fracture zone ~ 150 m above the reservoir, and less than 50% probability that it reached the Hot Shale unit at 1500 m depth. Within the uncertainty bounds considered, it was concluded that it is very unlikely that the pressure perturbation approached within 150 m of the top of the lower caprock at the Hercynian Unconformity. The results are consistent with previous deterministic inversion and forward modeling studies.

  2. Simulation of Lidar Return Signals Associated with Water Clouds 

    E-Print Network [OSTI]

    Lu, Jianxu

    2010-01-14

    depolarization is not shown and the sensitivity studies on the empirical relationship are not very clear. Thus more details are needed for further research. This thesis will present another way to derive the multiple-scattering lidar equa- tion reported by Rakovi....0?m when 10 million photons are sampled. The idea is from Winker and Poole [9]. 38 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 Ef fec tiv eM ult ipl eS cat ter ing Fa cto r?? Integrated Volume Depolarization Ratio ?acc 3?m4?m 6?m8?m 15?m20?m (1??acc...

  3. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect (OSTI)

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  4. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  5. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  6. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-01-01

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  7. Single data set detection for multistatic doppler radar 

    E-Print Network [OSTI]

    Shtarkalev, Bogomil Iliev

    2015-06-29

    The aim of this thesis is to develop and analyse single data set (SDS) detection algorithms that can utilise the advantages of widely-spaced (statistical) multiple-input multiple-output (MIMO) radar to increase their ...

  8. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect (OSTI)

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  9. Predicting Millimeter Wave Radar Spectra for Autonomous Navigation

    E-Print Network [OSTI]

    Jose, Ebi

    Millimeter Wave (MMW) radars are currently used as range measuring devices in applications such as automotive driving aids (Langer and Jochem, 1996), (Rohling and Mende, 1996), the mapping of mines (Brooker et al., 2005) ...

  10. A spatial display for Ground-Penetrating Radar change detection

    E-Print Network [OSTI]

    Quimby, Paul W

    2013-01-01

    Ground-Penetrating Radar (GPR) enables the exploration and mapping of subterranean volumes for applications such as construction, humanitarian demining, archeology, and environmental science. In each of these applications, ...

  11. Laser Radar Point-Target Localization at High Photon Efficiency

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    2013-01-01

    Minimum error-probability laser radar point-target localization is analyzed, including the effects of dark counts, background counts, and target speckle. Results from preliminary table-top experiments are reported.

  12. Prospects of the WSR-88D Radar for Cloud Studies

    E-Print Network [OSTI]

    Melnikov, Valery M.; Zrni?, Dusan S.; Doviak, Richard J.; Chilson, Phillip B.; Mechem, David B.; Kogan, Yefim L.

    2011-04-01

    Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D ...

  13. Investigation of tornado models and structure by use of radar 

    E-Print Network [OSTI]

    Finley, William Andrew

    1957-01-01

    has been nost helpful in giving advice as to interpretation of radar echoes. Dr. gaiter J. Saucier has rendered invaluable assistance by the explanation and analysis of certain physical concepts. The wenbers of tha drafting section and photography... 6. Radar Echo Associated with Worchester, Massachusetts Tornado 21 7, Typical Thunderstorn Reproduced frow The Thunderstorn S. Modified Thundatstorn in Dry Enwiroment 9. Vertical Cross Section of Precipitation Pattern in Sinplified Horisontal...

  14. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  15. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  16. Tides in the mesopause region over Fort Collins, Colorado (41N, 105W) based on lidar temperature observations

    E-Print Network [OSTI]

    - teristics of the westward traveling solar tidal waves in the mesopause region, which can impact thermal hopefully stimulate future tidal studies with lidar temperature, and zonal and meridional wind observations: tides, mesopause region, lidar temperature, midlatitude 1. Introduction [2] Atmospheric solar tides

  17. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing

    E-Print Network [OSTI]

    Baum, Bryan A.

    A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2]. Other studies have compared CO2- slicing cloud heights with those computed from lidar data [Smith in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling

  18. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  19. Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ. 351, 2011).

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ hydrology; drop distribution; multifractals INTRODUCTION Weather radars remain the only measuring devices

  20. Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina

    E-Print Network [OSTI]

    Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

    2013-01-01

    At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.

  1. Potential application of the Motorola MSR-20 Radar to DOE site security

    SciTech Connect (OSTI)

    Arlowe, D.; Rebeil, P.; Vigil, R.

    1993-09-01

    This paper describes the results of testing the MSR-20 radar and provides guidance on how this radar may be used to provide early detection and warning of approaching intruders beyond DOE facility site boundaries.

  2. Analog FIR Filter Used for Range-Optimal Pulsed Radar Applications 

    E-Print Network [OSTI]

    Su, Eric Chen

    2014-08-13

    Matched filter is one of the most critical block in radar applications. With different measured range and relative velocity of a target we will need different bandwidth of the matched filter to maximize the radar signal to noise ratio (SNR...

  3. Assessing and Analyzing Near-Surface Radar Snow Accumulation Layers at Summit, Greenland

    E-Print Network [OSTI]

    Overly, Thomas Buckmaster

    2010-04-28

    High vertical-resolution 0.5&mdash2 GHz frequency-modulated continuous-wave radar data collected near Summit on the Greenland Ice Sheet reveal continuous horizons connecting the GRIP and GISP2 deep ice cores. Traced radar ...

  4. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet

    E-Print Network [OSTI]

    Legarsky, J.; Gogineni, Sivaprasad; Akins, T. L.

    2001-10-01

    We developed a synthetic aperture radar (SAR) processing algorithm for airborne/spaceborne ice-sounding radar systems and applied it to data collected in Greenland. By using focused SAR (phase-corrected coherent averaging), we improved along...

  5. Integrating radar stratigraphy with high resolution visible stratigraphy of the north polar layered deposits, Mars

    E-Print Network [OSTI]

    Byrne, Shane

    Integrating radar stratigraphy with high resolution visible stratigraphy of the north polar layered that radar reflectors can be used as geometric prox- ies for visible stratigraphy. Furthermore in the stratigraphy of the pola

  6. Incoherent scatter radar detection of enhanced plasma line in ionospheric E-region over Arecibo

    E-Print Network [OSTI]

    Pradipta, Rezy

    2006-01-01

    A series of incoherent scatter radar (ISR) observation were conducted at the Arecibo Observatory from December 27, 2005 until January 3, 2006. From plasma line measurements that were taken during this radar campaign, we ...

  7. Analysis of TRMM Precipitation Radar Algorithms and Rain over the Tropics and Southeast Texas 

    E-Print Network [OSTI]

    Funk, Aaron

    2013-12-10

    The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) 2A23 algorithm classifies rain echo as stratiform or convective while the 2A25 algorithm corrects vertical profiles of radar reflectivity for attenuation ...

  8. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  9. Tracking moving radar targets with parallel, velocity-tuned filters

    DOE Patents [OSTI]

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  10. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect (OSTI)

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  11. Statistical maritime radar duct estimation using hybrid genetic algorithmMarkov

    E-Print Network [OSTI]

    Gerstoft, Peter

    Statistical maritime radar duct estimation using hybrid genetic algorithm­Markov chain Monte Carlo encountered in low- altitude maritime radar applications. This is done by statistically estimating the duct of unknowns. Citation: Yardim, C., P. Gerstoft, and W. S. Hodgkiss (2007), Statistical maritime radar duct

  12. Relationship between ice water content and equivalent radar reflectivity for clouds consisting of nonspherical ice particles

    E-Print Network [OSTI]

    Baum, Bryan A.

    Relationship between ice water content and equivalent radar reflectivity for clouds consisting investigates the relationship between ice water content (IWC) and equivalent radar reflectivity (Ze) at 94 GHz. Baum, and A. J. Heymsfield (2008), Relationship between ice water content and equivalent radar

  13. Receiver Antenna Array for a Multichannel Sense-and-Avoid Radar for Small UAVs

    E-Print Network [OSTI]

    Kansas, University of

    Receiver Antenna Array for a Multichannel Sense-and-Avoid Radar for Small UAVs Jose Francisco for use in a sense-and-avoid radar for use in the Cessna C-172 and small Unmanned Aerial Vehicles (UAVs. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . ..10 1.1.1 Multichannel Sense-and-Avoid Radar for UAVs. . . . . . . . . . . . . . . . . . . . . . ...10

  14. A Semi-Automatic Approach for Estimating Near Surface Internal Layers From Snow Radar

    E-Print Network [OSTI]

    A Semi-Automatic Approach for Estimating Near Surface Internal Layers From Snow Radar Imagery 300 MHz 40 cm 300 m 10 W 20000 ft Patch Array Vivaldi Array Twin-Otter P-3 Snow Radar Snow Cover snow radar echograms #12;Future Work · Improve near surface layer detection algorithms for more data

  15. A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY

    E-Print Network [OSTI]

    A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY changing polar ice sheets. Identifying and tracing near surface internal layers in snow radar echograms can developed an approach for semi-automatically esti- mating near surface internal layers in snow radar

  16. Experimental Demonstration of Cognitive Radar for Target Localization under Strong Interference

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    suppressed in arbitrary bands and with low correlation sidelobes as well. Target localization is demonstrated in [2]. The knowledge-aided fully adaptive approach is explored in cognitive radar which can possess differentiate cognitive radar from previous radar systems are cognitive engine and knowledge base. Cognitive

  17. Principles and Design Considerations for Short-Range Energy Balanced Radar Networks

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    behind "Off- The-Grid" (OTG) weather radar networks. These are envisioned as self-contained networks. Donovan1 , David J. McLaughlin1 , Jim Kurose2 1 Electrical and Computer Engineering, 2 Computer Science of the troposphere that are unobserved by today's long-range weather radars. Future distributed radar networks

  18. Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar

    E-Print Network [OSTI]

    radar data. 1 Introduction The National Weather Service operates the WSR-88D (Weather Surveillance Radar, weather, and even airborne dust. Consequently, data must be interpreted manually by a highly information collected by Doppler radar. Our model is based on wind profiling algorithms from the weather

  19. Doppler weather radar based nowcasting of cyclone Ogni Soma Sen Roy1,

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    Doppler weather radar based nowcasting of cyclone Ogni Soma Sen Roy1, , V Lakshmanan2 , S K Roy@yahoo.com In this paper, we describe offline analysis of Indian Doppler Weather Radar (DWR) data from cyclone Ogni using). Processing of Indian Doppler Weather Radar (DWR) data for nowcasting application under the sub-project Local

  20. A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities

    E-Print Network [OSTI]

    A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities Ke Xu of the technique and its potential for nowcasting weather radar reflectivities. Key Words: Bayesian, dilation to nowcasting weather radar reflectivities into two general categories. The first is the use of simple

  1. A network of over 10 relatively closely spaced VHF windprofiler radars is under construction in Ontario

    E-Print Network [OSTI]

    Barron, John

    construction in Ontario and Quebec, Canada. Using frequencies in the range 40 to 55 MHz, this network for this, a new network of radars is being developed on a trial basis in the provinces of Ontario and Quebec. The radar network is called the O-QNet network (Ontario- Quebec Network). The proposed radar

  2. Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar 

    E-Print Network [OSTI]

    Hudlow, M.D.

    1967-01-01

    measurements taken with weather radar. In addition, accurate estimates of lag time can be made from radar observations. For a storm which is unevenly distributed over the watershed, it is demonstrated that a better estimation of lag time may be made from radar...

  3. Radar wind profiler signal characteristics during bird migration episodes Volker Lehmann1 and Gerd Teschke2

    E-Print Network [OSTI]

    Teschke, Gerd

    Radar wind profiler signal characteristics during bird migration episodes Volker Lehmann1 and Gerd-stationary wind profiler radar signals, which are frequently occurring during the seasonal bird migration as one of the primary sampling parameters of the wind profiler is discussed. 1. Introduction Radar wind

  4. Wavelet-based Methods for Clutter Removal from Radar Wind Profiler Data

    E-Print Network [OSTI]

    Teschke, Gerd

    Wavelet-based Methods for Clutter Removal from Radar Wind Profiler Data Lutz A. Justena, Gerd ABSTRACT The common way to process radar wind profiler (RWP) data by moments estimation of the Fourier filtering, radar wind profiler, signal processing, time-frequency decomposition 1. INTRODUCTION In recent

  5. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  6. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect (OSTI)

    Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

    1997-08-01

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  7. Master Thesis: Dual-Doppler technique applied to scanning lidars for the characterization of

    E-Print Network [OSTI]

    Peinke, Joachim

    -lidar system was developed and installed at the offshore wind farm "alpha ventus". This system includes three and wind turbine wakes in large wind farms offshore. Wind Energy, 12(5):431­444, 2009. [2] Brian Hirth, D of multiple wakes in a wind farm M. van Dooren Supervisors: D. Trabucchi, K. S. Hansen University

  8. Estimation of tropical forest structural characteristics using large-footprint lidar

    E-Print Network [OSTI]

    Weishampel, John F.

    Estimation of tropical forest structural characteristics using large-footprint lidar Jason B in identifying the amount of carbon in terrestrial vegetation pools and is central to global carbon cycle studies. Although current remote sensing techniques recover such tropical forest structure poorly, new large-footprint

  9. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore »true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  10. Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements

    E-Print Network [OSTI]

    Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements Régis DANIELIAN (Vestas Wind System) Hans Ejsing JØRGENSEN (Wind Energy Department, Risø. Contact: haej@risoe.dk) Torben MIKKELSEN (Wind Energy Department, Risø. Contact: tomi@risoe.dk) Jacob MANN (Wind Energy Department, Risø

  11. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  12. Remote sensing the wind using Lidars and Sodars Ioannis Antoniou (1)

    E-Print Network [OSTI]

    masts for their mounting and the costs associated with the purchase, erection and instrumentation for wind energy applications. The first reason is that the cost (purchase, erection, instrumentation with power curve and resource assessment measurements. Both SODAR (SOund Detection And Ranging) and LIDAR

  13. ARCTIC OBSERVATIONS WITH THE UNIVERSITY OF WISCONSIN HIGH SPECTRAL RESOLUTION LIDAR

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    ) as part of the US National Oceanic and At- mospheric Administration (NOAA) SEARCH program. SEARCH seeks- lution Lidar has provided nearly continuous data since its August 2005 deployment at Eureka, Canada (80N. An expanded transmitted beam and low pulse energy make the output beam eye safe. Using molecular scattering

  14. Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike

    E-Print Network [OSTI]

    Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

  15. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects

    E-Print Network [OSTI]

    Singer, Andrew C

    returns from the surrounding water medium and ocean bottom. Our results provide a generalization ocean lidar return, obtained by a CCD array. © 2002 Optical Society of America OCIS codes: 010.3640, 030 a laser to generate a short, high-powered pulse of light. The transmitted laser beam can penetrate the air

  16. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  17. Control Based Sensor Management for a Multiple Radar Monitoring Scenario

    E-Print Network [OSTI]

    Baclawski, Kenneth B.

    . The emitters exhibit a quasi-periodic radiation pattern, each in a different frequency band metaphor of software development, we map this problem onto a control architecture with one system that monitor sources of electronic radiation in the environment (such as radars). The sources emit radiation

  18. Greenland snow accumulation estimates from satellite radar scatterometer data

    E-Print Network [OSTI]

    Long, David G.

    Greenland snow accumulation estimates from satellite radar scatterometer data Mark R. DrinkwaterWinds on QuikScat (QSCAT) satellite instruments are used to illustrate spatiotemporal variability in snow in backscatter, B, in the range 20 ­60 are compared with historical snow accumulation data and recent

  19. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  20. Assessment Of The Wind Farm Impact On The Radar

    E-Print Network [OSTI]

    Norman, Evgeny D

    2010-01-01

    This study shows the means to evaluate the wind farm impact on the radar. It proposes the set of tools, which can be used to realise this objective. The big part of report covers the study of complex pattern propagation factor as the critical issue of the Advanced Propagation Model (APM). Finally, the reader can find here the implementation of this algorithm - the real scenario in Inverness airport (the United Kingdom), where the ATC radar STAR 2000, developed by Thales Air Systems, operates in the presence of several wind farms. Basically, the project is based on terms of the department "Strategy Technology & Innovation", where it has been done. Also you can find here how the radar industry can act with the problem engendered by wind farms. The current strategies in this area are presented, such as a wind turbine production, improvements of air traffic handling procedures and the collaboration between developers of radars and wind turbines. The possible strategy for Thales as a main pioneer was given as ...

  1. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS component of wind velocity. Thus, there is no direct measurement of the three-dimensional (3-D) wind field

  2. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  3. ECE/METR6613 Title: Weather Radar Polarimetry

    E-Print Network [OSTI]

    Zhang, Guifu

    ECE/METR6613 Title: Weather Radar Polarimetry (Wave Interactions with Geophysical Media) Class: 2 and Weather Observations, 2006, 1993, 1984 · Reference books 1. Akira Ishimaru: Wave Propagation and Scattering in Random Media, 1997, 1978 2. V. N. Bringi and V. Chandrasekar: Polarimetric Doppler Weather

  4. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  5. Automated Target Recognition Using Passive Radar and Coordinated Flight Models

    E-Print Network [OSTI]

    Lanterman, Aaron

    of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so Georgia Institute of Technology, Atlanta, GA 30332, USA ABSTRACT Rather than emitting pulses, passive system is in the transmitter, whereas designers of "hitchhiking" or "parasitic" radars have high

  6. Topography of the Lunar Poles from Radar Interferometry: A

    E-Print Network [OSTI]

    Margot, Jean-Luc

    Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations J. L. Margot,1 * D. B. Campbell,1 R. F. Jurgens,2 M. A. Slade2 Detailed topographic maps of the lunar poles are 1030 and 2550 square kilometers for the north and south poles, respectively. Topographic depressions

  7. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 8, AUGUST 2005 1707 Validation of the Shuttle Radar Topography

    E-Print Network [OSTI]

    Sarabandi, Kamal

    of the Shuttle Radar Topography Mission Height Data Charles G. Brown, Jr., Member, IEEE, Kamal Sarabandi, Fellow, IEEE, and Leland E. Pierce, Senior Member, IEEE Abstract--The Shuttle Radar Topography Mission (SRTM Radar Topography Mission, validation. I. INTRODUCTION THE Shuttle Radar Topography Mission (SRTM

  8. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    SciTech Connect (OSTI)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  9. AMS Annual Meeting, Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar. 20-24 January 2008, New Orleans, LA

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    minimizes a cost function that includes the departure of the analysis from the background, the departure constraint on the analyzed wind field. The ARPS 3DVAR is described in detail in Gao et al. 2004 and Hu et al US likely aided in this thunderstorm development. The thunderstorm complex grew in areal extent

  10. Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systems 

    E-Print Network [OSTI]

    Zhao, Kaiguang

    2009-05-15

    LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatiallyexplicit mapping of forest characteristics, such as canopy height and Leaf Area Index...

  11. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOE Patents [OSTI]

    Schmitt, Randal L. (Tijeras, NM); Henson, Tammy D. (Albuquerque, NM); Krumel, Leslie J. (Cedar Crest, NM); Hargis, Jr., Philip J. (Albuquerque, NM)

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  12. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  13. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect (OSTI)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  14. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect (OSTI)

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  15. Radar Nowcasting of Total Lightning over the Kennedy Space Center 

    E-Print Network [OSTI]

    Seroka, Gregory Nicholas

    2011-08-08

    intracloud (IC) and/or total (IC + CG) lightning. In addition to CG lightning, IC flashes are of great concern to KSC launch operations. Four years (2006-2009) of summer (June, July, August) daytime (about 14-00 Z) Weather Surveillance Radar ? 1988... Page 1 Florida flash density from 1986-95. ......................................................... 3 2 LDAR-I and LDAR-II site locations ........................................................ 13 3 Various estimates of LDAR-I flash...

  16. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    E-Print Network [OSTI]

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  17. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  18. Statistical maritime radar duct estimation using hybrid genetic algorithm-Markov chain Monte Carlo method

    E-Print Network [OSTI]

    Yardim, Caglar; Gerstoft, Peter; Hodgkiss, William S.

    2007-01-01

    Estimating evaporation duct heights from radar sea echo,”Estimation of surface-based duct parameters from surfaceapplication of an evaporation duct model,” Radio Science,

  19. Technology demonstration of Ka-band digitally-beamformed radar for ice topography mapping

    E-Print Network [OSTI]

    Sadowy, G; Heavey, B; Moller, D; Rignot, E; Zawadzki, M; Rengarajan, S

    2007-01-01

    Beamformed Radar for Ice Topography Mapping Gregory Sadowy,Glacier and Land Ice Surface Topography Interferometer) is aGLISTIN will collect ice topography measurements over a wide

  20. TARSHA-KURDI, F., LANDES, T., GRUSSENMEYER, P., (2008). Extended RANSAC algorithm for automatic detection of building roof planes from Lidar data.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2008-01-01

    detection of building roof planes from Lidar data. The Photogrammetric Journal of Finland. Vol. 21, n°1, 2008, pp.97-109. EXTENDED RANSAC ALGORITHM FOR AUTOMATIC DETECTION OF BUILDING ROOF PLANES FROM LIDAR the detection of 3D building roof planes are of crucial importance. For this purpose, this paper studies

  1. Proceedings of 2011 NSF Engineering Research and Innovation Conference, Atlanta, Georgia Grant #0856420 LiDAR and optical imaging for 3-D fracture orientations

    E-Print Network [OSTI]

    Maerz, Norbert H.

    #0856420 LiDAR and optical imaging for 3-D fracture orientations Otoo, J. N., Maerz, N. H. Missouri manifest themselves in rock cuts as ,,facets that can be measured by LIDAR or fracture ,,traces that can mechanical break or fracture of negligible tensile strength, it has a low shear strength and high fluid

  2. Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ. 3XX, 2011).

    E-Print Network [OSTI]

    Reading, University of

    for radars with klystron transmitters, for which the frequency of the transmitted signal is essentially with klystron transmitters. Klystron transmitters are very stable in terms of frequency. Weather radars

  3. Apodized RFI filtering of synthetic aperture radar images.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  4. Compressive Radar with Off-Grid and Extended Targets

    E-Print Network [OSTI]

    Fannjiang, Albert

    2012-01-01

    Compressed sensing (CS) schemes are proposed for monostatic as well as synthetic aperture radar (SAR) imaging of sparse targets with chirps. In particular, a simple method is developed to improve performance with off-grid targets. Tomographic formulation of spotlight SAR is analyzed by CS methods with several bases and under various bandwidth constraints. Performance guarantees are established via coherence bound and the restricted isometry property. CS analysis provides a fresh and clear perspective on how to optimize temporal and angular samplings for spotlight SAR.

  5. Comments on: Texas Tech University mobile doppler radars provide unique

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11texas-tech-university-mobile-doppler-radars-provide-unique-wind-measurements-to-multi-instrument-doe-field-campaign

  6. Instructions to: TOM: Teaching flow over Mountains -Worksheet at the radar site

    E-Print Network [OSTI]

    : Is it snowing/raining? What is the intensity (light, heavy)? What do you think the temperature is? How much snow driving to the radar site it was cold and snowing lightly. The snowflakes were small. There was no wind by HighresLOW 8:42 am / 0142 UTC Radar truck leveled #12; 6 EXERCISE 5 Once you are done with Exercises

  7. Stratocumulus Liquid Water Content from Dual-Wavelength Radar ROBIN J. HOGAN

    E-Print Network [OSTI]

    Reading, University of

    Stratocumulus Liquid Water Content from Dual-Wavelength Radar ROBIN J. HOGAN , NICOLAS GAUSSIAT ABSTRACT A technique is described to retrieve stratocumulus liquid water content (LWC) using the integrated water content of the column, which is then partitioned with height according to the radar

  8. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave] Ground-penetrating radar (GPR) ground wave techniques were applied to estimate soil water content travel time measurements using 900 and 450 MHz antennas and analyzed these data to estimate water content

  9. Connectivity in a UAV Multi-static Radar Network David W. Casbeer

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    Connectivity in a UAV Multi-static Radar Network David W. Casbeer and A. Lee Swindlehurst This paper describes a multi-static radar network composed of multiple unmanned air vehicles (UAVs). Time-delay and Doppler measurements taken by the UAV team are passed to a centralized processor to determine optimal

  10. CHARACTERIZATION OF BASIC SCATTERING MECHANISMS USING LABORATORY BASED POLARIMETRIC SYNTHETIC APERTURE RADAR IMAGING

    E-Print Network [OSTI]

    Kerekes, John

    with an adjacent vertical surface. In this case, major portion of the transmitted energy is back scattered towards the radar. Theses appear as bright regions in the radar image and occur typically in the urban areas, is related to the wavelength in free space through the diameter of the can [6]. The wavelength in free space

  11. FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION

    E-Print Network [OSTI]

    FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION Evgeny in the microwave range. Microwave-radar and microwave-induced thermoacoustic methods both struggle when-induced thermoacoustic (MIT) methods measure and process the acoustic signals induced by differential microwave heating

  12. Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl)

    E-Print Network [OSTI]

    Stoffelen, Ad

    Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl) Royal Netherlands wind profiles at a high temporal resolution. Several algorithms and quality ensuring procedures for the extraction of wind profiles from radar volume data have been published. A comparison and verification

  13. Chapter C-XV-1 Complementary Waveforms for Sidelobe Suppression and Radar Polarimetry

    E-Print Network [OSTI]

    Pezeshki, Ali

    by the ability to control new degrees of freedom and each new generation of radar platforms requires fundamental are increasingly being equipped with arbitrary wave- form generators which enable transmission of different that effectively utilize the degrees of freedom available to current and future generation of radar systems

  14. ERADERAD 20062006Proceedings ofProceedings of The Danish weather radar network

    E-Print Network [OSTI]

    ERADERAD 20062006Proceedings ofProceedings of The Danish weather radar network Rashpal S. Gill, Søren Overgaard and Thomas Bøvith Danish Meteorological Institute, Copenhagen, Denmark. 1 Introduction The Danish Meteorological Institute (DMI) operates four c- band radars for weather monitoring. Three

  15. FMCW radars for snow research Hans-Peter Marshall a,b,, Gary Koh a

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    FMCW radars for snow research Hans-Peter Marshall a,b,, Gary Koh a a Cold Regions Research; accepted 16 April 2007 Abstract Frequency Modulated Continuous Wave (FMCW) radars have been used by snow measurements, as properties such as snow depth can be measured quickly and non- destructively. Recent advances

  16. Satellite and radar analysis of the volcanic-cumulonimbi at Mount Pinatubo, Philippines, 1991

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Satellite and radar analysis of the volcanic-cumulonimbi at Mount Pinatubo, Philippines, 1991, Philippines. The observed phenomena included deep convection resulting from (1) lower level eruptions, (2 and radar analysis of the volcanic-cumulonimbi at Mount Pinatubo, Philippines, 1991, J. Geophys. Res., 110

  17. Phase Correction for Coherent Noise Reduction in Short-Range Radar Measurements

    E-Print Network [OSTI]

    Kansas, University of

    electromagnetic energy and geophysical media in a number of remote sensing applications. Unlike long-range and intermediate-range radar systems, the sensitivity of short-range radars is not limited by thermal noise method to account for variations in the phase of the systematic noise sources. This extends the noise

  18. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    E-Print Network [OSTI]

    Kirkwood, Sheila

    Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko Ogawa1 (200x) xx:1­8 Finland HF and Esrange MST radar observations of polar mesosphere summer echoes Tadahiko in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant

  19. Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear

    E-Print Network [OSTI]

    Marsden, Jerrold

    Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics run-off which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal envi- ronment

  20. OEP Terminal and CONUS Weather Radar Coverage Gap Identification Analysis for NextGen

    E-Print Network [OSTI]

    Cho, John Y. N.

    coverage. The assimilation of data from ground-based profiling instruments and airborne sensors, and is computationally intensive. Such height corrections to weather radar data are not currently conducted operationally to be even slower. Weather observation data from the aircraft surveillance radars are updated quickly enough

  1. MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR of structural health monitoring (SHM). In this paper, we report on a millimeter-wave Doppler radar sensor sensing, millimeter-waves, structural health monitoring. INTRODUCTION Structural health monitoring based

  2. A new framebased statistical strategy for bird migration clutter removal in wind profiler radar data

    E-Print Network [OSTI]

    Teschke, Gerd

    A new frame­based statistical strategy for bird migration clutter removal in wind profiler radar clutter removal routine for wind profiler radar data. The basic idea is to put together already existing of the expansion. A Relaxation of the clas- sical constraint T = 2 generates a crucial degree of freedom

  3. Off-The-Grid X-band Weather Radar Network for the West

    E-Print Network [OSTI]

    Gilbes, Fernando

    Off-The-Grid X-band Weather Radar Network for the West Coast of Puerto Rico José A. Ortiz CASA UPRM infrastructure, Low Cost · Off-the-Grid Radars · Mesh Network on West Coast Puerto Rico · Weather Reflectivity infrastructure ­ Low maintenance cost · Off the Grid · Better for uneven terrains · Improved resolution #12

  4. Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2

    E-Print Network [OSTI]

    Cho, John Y. N.

    Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2 February 21, 2010 John to the public through the National Technical Information Service, Springfield, VA 22161 Signal Processing) was developed for the Terminal Doppler Weather Radar (TDWR), enhanced signal processing algorithms taking

  5. Reflectivity retrieval in a networked radar environment: Demonstration from the CASA IP1

    E-Print Network [OSTI]

    Jayasumana, Anura P.

    using data from the first Integration Project (IP1) radar network in Oklahoma. Electromagnetic waves, the lowest coverage altitude gets higher with range due to earth curvature [1]. A networked radar environment is capable of high spatial coverage and temporal resolution. The Engineering Research Center for CASA

  6. Snow stratigraphy measurements with high-frequency FMCW radar: Comparison with snow micro-penetrometer

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    Snow stratigraphy measurements with high-frequency FMCW radar: Comparison with snow micro The stratigraphy of an alpine snowpack is very important for avalanche danger assessment, as well as interpretation. Tools which can quickly characterize snowpack stratigraphy, such as high frequency radar and mechanical

  7. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  8. A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective Systems

    E-Print Network [OSTI]

    Dong, Xiquan

    A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective A decade of collocated Atmospheric Radiation Measurement Program (ARM) 35-GHz Millimeter Cloud Radar (MMCR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data over the ARM Southern Great Plains (SGP) site have

  9. Surface M2 tidal currents along the North Carolina shelf observed with a high-frequency radar

    E-Print Network [OSTI]

    Miami, University of

    Surface M2 tidal currents along the North Carolina shelf observed with a high-frequency radar measured by a high-frequency (HF) radar. The Ocean Surface Current Radar (OSCR) was deployed at the U. M., and L. K. Shay, Surface M2 tidal currents along the North Carolina shelf observed with a high-frequency

  10. Hydrogen geocorona: simultaneous optical and radar observations at Arecibo

    SciTech Connect (OSTI)

    Kerr, R.B.

    1986-01-01

    Observations of the geocoronal H/sub ..cap alpha../ emission with a high resolution Fabry-Perot interferometer were made simultaneously with observations of the topside F region using the incoherent scatter radar at Arecibo, for the purpose of monitoring the exobase temperature and the hydrogen velocity distribution over half of a solar cycle. The variation of H density with solar activity agrees with that of previous observations. These observations have shown that the charge exchange reaction of H with H/sup +/ perturbs the ballistic hydrogen velocity distribution above the exobase in the fall and winter months at Arecibo. The exobase temperature is hotter than would be expected for winter solar minimum conditions due to a drop of the protonosphere base during these periods. A multi-constituent analysis of the radar data places the base of the protonosphere near 550 km in the early morning hours of the late fall and early winter. A maximum in downward ion velocities is also observed during these times. For observations near the neutral equinox, the charge exchange reaction does not significantly perturb the neutral hydrogen velocity distribution.

  11. Merged and corrected 915 MHz Radar Wind Profiler moments

    SciTech Connect (OSTI)

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  12. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  13. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  14. Quantifying Surface Subsidence along US Highway 50, Reno County, KS using Terrestrial LiDAR

    E-Print Network [OSTI]

    Herrs, Andrew J.

    2010-04-23

    by Brett Bennett of the Kansas Geological Survey. Initial scouting of the study area was done with the help of Bob Henthorne from KDOT. LiDAR acquisition at each project site was accomplished with the help of Nick Laskares, Willy Rittase, Ken Stalder..., Mike Taylor, Lynn Watney, the Hutchinson KDOT maintenance crew, and KDOT’s Salina Regional Geology Department. Kwan Yee Cheng and Richard Styron also helped with plotting data in MATLAB. ArcMap techniques were demonstrated by Prabin Shilpakar from...

  15. Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.Raman Lidar

  16. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  17. Marine boundary layer structure as observed by space-based Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, T.; Wang, Z.; Zhang, D.

    2015-12-03

    The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ? 0.5 to ? 0.8 and the MBL decoupling magnitude ismore »mainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  18. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore »sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing. « less

  19. Ultra-wideband short-pulse radar with range accuracy for short range detection

    SciTech Connect (OSTI)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  20. Geomorphic Evaluation of Radar Imagery of Southeastern Panama and Northwestern Colombia

    E-Print Network [OSTI]

    Lewis, Anthony J.

    1971-02-01

    Layover. • • • • • • • • • • • • 35 2.4 2.5 Radar Power Return. . • • • • • • • • • • • • • • · . . 2.4. 1 Slope Determination from Radar Power Return. • Radar Shadow . • • ... . • . • • . . .* ~ • • • • • • • 2.5. 1 Types of Elevated Terrain... Features within the Study Area • • 79 3.3. 1.1 Shoreline Coastal Configuration. 79 3.3.1.2 Tidal Flats. . . . • • • . . • . • .• 79 3.3.1.3 Mangrove Coasts • . 0 • • • • 0 82 3.3.1.4 Beach Ridges and Wave Refraction.. 82 3.3. 1.5 Barrier Reefs and Surf...

  1. Using LiDAR and normalized difference vegetation index to remotely determine LAI and percent canopy cover at varying scales 

    E-Print Network [OSTI]

    Griffin, Alicia Marie Rutledge

    2009-05-15

    The use of airborne LiDAR (Light Detection and Ranging) as a direct method to evaluate forest canopy parameters is vital in addressing both forest management and ecological concerns. The overall goal of this study was to develop the use of airborne...

  2. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  3. Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter Biber

    E-Print Network [OSTI]

    Zell, Andreas

    Plant Species Classification using a 3D LIDAR Sensor and Machine Learning Ulrich Weiss and Peter of the plant and species. Automatically distinguishing between plant species is a challenging task, because of the appearances and the differences between the plants used by humans, into a formal, computer understandable form

  4. Two antenna, two pass interferometric synthetic aperture radar

    DOE Patents [OSTI]

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  5. Iterative Self-Dual Reconstruction on Radar Image Recovery

    SciTech Connect (OSTI)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis; Mascarenhas, Nelson

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

  6. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  7. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  8. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  9. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  10. A Real-Time, Three Dimensional, Rapidly Updating, Heterogeneous Radar Merger Technique

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    nearly all the WSR-88D radars are compressed using block encoding (Burrows and Wheeler 1994) and transmit in a earth-relative context is extremely important for down stream applications of the data. A combination

  11. Development of an electronically tunable ultra-wideband radar imaging sensor and its components 

    E-Print Network [OSTI]

    Han, Jeongwoo

    2006-08-16

    and receiver respectively for timing control. A novel integrated CSH (Coupled-Slotline Hybrid)sampling mixer has been developed along with the design of the strobe pulse generator appropriate for the impulse radar system. The integrated sampling mixer has...

  12. Understanding the Signal Structure in DVB-T Signals for Passive Radar Detection

    E-Print Network [OSTI]

    Nehorai, Arye

    Audio Broadcast (DAB), Digital Video Broadcast (DVB), FM radio, cellphone base-stations, and various attractive opportunity for radar. Digital television transmitters offer a powerful, well-defined signal

  13. Establishing the sensitivity of Synthetic Aperture Radar to above-ground biomass in wooded savannas 

    E-Print Network [OSTI]

    Viergever, Karin Marijke

    2008-01-01

    Radar for biomass estimation has been widely investigated for temperate, boreal and tropical forests, yet tropical savanna woodlands, which generally form non-continuous cover canopies or sparse woodlands, have been largely ...

  14. New target detector based on geometrical perturbation filters for polarimetric Synthetic Aperture Radar (POL-SAR) 

    E-Print Network [OSTI]

    Marino, Armando

    2010-01-01

    Synthetic Aperture Radar (SAR) is an active microwave remote sensing system able to acquire high resolution images of the scattering behaviour of an observed scene. The contribution of SAR polarimetry (POLSAR) in detection ...

  15. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas 

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22

    -derived Products....26 1.6 Thesis Objectives and Hypothesis...........................................................................27 2. DATA AND METHODOLOGY..................................................................................29 2.1 Radar............................................................................................42 2.4.4 Storm Cell Position Forecast............................................................................44 2.5 Lightning Correlation..............................................................................................45 2.6 CG...

  16. Numerical modelling of high-frequency ground-penetrating radar antennas 

    E-Print Network [OSTI]

    Warren, Craig

    2009-01-01

    Ground-Penetrating Radar (GPR) is a non-destructive electromagnetic investigative tool used in many applications across the fields of engineering and geophysics. The propagation of electromagnetic waves in lossy materials ...

  17. Radar signal pre-processing to suppress surface bounce and multipath

    DOE Patents [OSTI]

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  18. Thunderstorm lightning and radar characteristics: insights on electrification and severe weather forecasting 

    E-Print Network [OSTI]

    Steiger, Scott Michael

    2007-04-25

    Total lightning mapping, along with radar and NLDN cloud-to-ground lightning data, can be used to diagnose the severity of a storm. Analysis of the 13 October 2001 supercell event (Dallas-Fort Worth, Texas), some supercells ...

  19. Low-Cost Differential Front-End for Doppler Radar Vital Sign Monitoring

    E-Print Network [OSTI]

    Fletcher, Richard Ribon

    We present a differential front end design for improving the performance of short-range low-cost Doppler radars for vital sign detection with application to automotive driver safety systems, health monitoring, and security ...

  20. Wearable Doppler radar with integrated antenna for patient vital sign monitoring

    E-Print Network [OSTI]

    Fletcher, Richard Ribon

    A 2.45 GHz wearable Doppler radar unit with radio data link is presented for use in portable patient monitoring and emergency response. Unlike portable Electrocardiograms (ECG) or Photoplethysmography (PPG), the near-field ...

  1. Ground penetrating radar technique to locate coal mining related features: case studies in Texas 

    E-Print Network [OSTI]

    Save, Neelambari R

    2006-04-12

    The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff ...

  2. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar 

    E-Print Network [OSTI]

    Runnels, R.C.

    1967-01-01

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud ...

  3. Stratocumulus Liquid Water Content from Dual-Wavelength Radar ROBIN J. HOGAN

    E-Print Network [OSTI]

    Hogan, Robin

    global cov- erage. By reflecting most of the incoming solar radiation back to space and yet emitting et al. 1984; Slingo 1990). The potential of cloud radar to measure stratocumu- lus has been

  4. Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite 

    E-Print Network [OSTI]

    Henderson, Rodney Stuart

    1979-01-01

    DIGITAL METEOROLOGICAL RADAR DATA COMPARED WITH DIGITAL INFRARED DATA FROM A GEOSTATIONARY METEOROLOGICAL SATELLITE A Thesis by RODNEY STUART HENDFRSON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIFNCE May I979 Ma jor Subject: Meteorology DIGITAL METEOROLOGICAL RADAR DATA COMPARED WITH DIGITAL INFRARED DATA FROM A GEOSTATIONAFY METEOROLOGICAL SATELLITE A Thesis by RODNEY STUART HENDERSON Approved...

  5. Mesoscale divergence, vorticity, and vertical motion compared to radar and rainfall patterns 

    E-Print Network [OSTI]

    Withers, Donald Mead

    1971-01-01

    !e degree of PIASTER OF SCIENCE August 1971 Major Subject: PJeteorology MESOSCALE DIVERGENCE& VORTICITY& AND VERTICAL MOTION COMPARED TO RADAR AND RAINI'ALL PATTERNS A Thesis by DONALD MEAD NITHERS Approved as to style and content by: 88.... ( (Chairman of Committee) (Member) (Head of Depa ent) (Member) August 1971 ASS TRACT Mesoscale Divergence, Vorticity, and Vertica] Motion Compared to Radar and Rainfall Patterns. (August 1971) Donald Mead Nithers, B. S. , University of Oklahoma...

  6. Sedimentological Reinterpretation of Surficial Unconsolidated Debris Flows and Stream Deposits of the Southern Flanks of Grand Mesa, CO: An Integrated LiDAR Approach 

    E-Print Network [OSTI]

    Blakeley, Mitchell W.

    2014-08-08

    . This study developed a sedimentological description and interpretation of these deposits and tested the capabilities of terrestrial LiDAR (Light Detection and Ranging) for use in sedimentological studies. This research addressed the origin of the deposits...

  7. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect (OSTI)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  8. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect (OSTI)

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  9. Raman Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2 RadiometerRafael L.Ralph T.

  10. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  11. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  12. Decadal scale variations in ice flow along Whillans Ice Stream and its tributaries, West Antarctica

    E-Print Network [OSTI]

    Stearns, Leigh; Jezek, Kenneth C.; van der Veen, Cornelis J.

    2005-01-05

    We investigate velocity changes occurring along Whillans Ice Stream (WIS) by comparing velocities derived from repeat aerial photographs acquired in 1985–89 (average date of 1987) to interferometric satellite radar (InSAR) ...

  13. Decadal-scale variations in ice flow along Whillans Ice Stream and its tributaries, West Antarctica

    E-Print Network [OSTI]

    Stearns, Leigh; Jezek, K.A.; van der Veen, Cornelis J.

    2005-01-01

    We investigate velocity changes occurring along Whillans Ice Stream (WIS) by comparing velocities derived from repeat aerial photographs acquired in 1985–89 (average date of 1987) to interferometric satellite radar (InSAR) ...

  14. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOE Patents [OSTI]

    Mast, Jeffrey E. (Livermore, CA)

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  15. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOE Patents [OSTI]

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  16. 6 Radar wind profiler and radiosonde wind vectors during MILAGRO This supplemental section shows vertical profiles of horizontal wind vectors from the radar wind profilers at T0, T1

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    6 Radar wind profiler and radiosonde wind vectors during MILAGRO This supplemental section shows vertical profiles of horizontal wind vectors from the radar wind profilers at T0, T1 and T2 along with radiosonde wind vectors at MEX and T1 (labelled as T1R). An arrow pointing up shows winds blowing towards

  17. Performance analysis and algorithm enhancement of feature-aided-tracker (FAT) simulation software using 1-D high-range-resolution (HRR) radar signature profiles

    E-Print Network [OSTI]

    O'Brien, Michael J. (Michael James), 1981-

    2005-01-01

    The current Lincoln Laboratory (LL) MATLAB Feature-Aided-Tracker (FAT) software was adjusted and appended to provide a robust ground-target radar tracking simulation tool. It utilizes algorithms from the LL UAV Radar Moving ...

  18. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  19. Real time assimilation of HF radar currents into a coastal ocean model

    E-Print Network [OSTI]

    Breivik, Øyvind; 10.1016/S0924-7963(01)00002-1

    2012-01-01

    A real time assimilation and forecasting system for coastal currents is presented. The purpose of the system is to deliver current analyses and forecasts based on assimilation of high frequency radar surface current measurements. The local Vessel Traffic Service monitoring the ship traffic to two oil terminals on the coast of Norway received the analyses and forecasts in real time. A new assimilation method based on optimal interpolation is presented where spatial covariances derived from an ocean model are used instead of simplified mathematical formulations. An array of high frequency radar antennae provide the current measurements. A suite of nested ocean models comprise the model system. The observing system is found to yield good analyses and short range forecasts that are significantly improved compared to a model twin without assimilation. The system is fast; analysis and six hour forecasts are ready at the Vessel Traffic Service 45 minutes after acquisition of radar measurements.

  20. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  1. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  2. Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 29 refs., 30 figs., 14 tabs.

  3. Executive summary: Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Phillipines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 9 refs., 9 figs., 3 tabs.

  4. Radar imagery interpretation to provide information about several geothermal sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nation-wide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential geothermal and petroleum prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 7 refs., 20 figs., 2 tabs.

  5. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  6. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  7. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  8. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  9. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  10. IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 2, APRIL 2002 155 Very High-Frequency Radar Mapping of

    E-Print Network [OSTI]

    Miami, University of

    Weisberg, P. Edgar An, Alexander Soloviev, and Mark Luther Abstract--An ocean surface current radar (OSCR coastal ocean currents over a 7.5 km 8 km domain with a horizontal resolution of 250 m at 700 grid points at the SFOMC. Index Terms--ADCP, coastal ocean circulation, current profiles, surface currents, VHF radar

  11. Evaluation of Ice Water Content Retrievals from Cloud Radar Reflectivity and Temperature Using a Large Airborne In Situ Microphysical Database

    E-Print Network [OSTI]

    Protat, Alain

    Evaluation of Ice Water Content Retrievals from Cloud Radar Reflectivity and Temperature Using the performances of the proposed ice water content (IWC)­radar reflectivity Z and IWC­Z­temperature T relationships produce a very different ice water path, spanning an order of magnitude (Stephens et al. 2002). Clouds

  12. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    E-Print Network [OSTI]

    Ellingson, Steven W.

    be an excellent receiver for solar radar, potentially demonstrating accurate geomagnetic storm prediction fromThe Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar A Ground-Based Instrument Paper for the 2010 NRC Decadal Survey of Solar and Space

  13. 864 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 3, MAY 1998 Radar Measurements of Snow

    E-Print Network [OSTI]

    Sarabandi, Kamal

    of Snow: Experiment and Analysis John R. Kendra, Member, IEEE, Kamal Sarabandi, Senior Member, IEEE conducted to improve our understanding of radar backscatter from snow-covered ground surfaces. The first experiment involves radar backscatter measurements at C- and X-band of artificial snow of varying depths

  14. On the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch Paquita Zuidema Chris Fairall

    E-Print Network [OSTI]

    Zuidema, Paquita

    that calculations of the implied cloud-top entrainment were sensitive to the liquid water flux term of the radar reflectivity is shown graphically below. We estimate an error in the liquid water fluxOn the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch

  15. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  16. The Shuttle Radar Topography Mission Farr, Tom G., Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott Hensley, Michael

    E-Print Network [OSTI]

    1 The Shuttle Radar Topography Mission Farr, Tom G., Paul A. Rosen, Edward Caro, Robert Crippen Barbara, CA Douglas Alsdorf Ohio State University Columbus, OH The Shuttle Radar Topography Mission. The Need for Global Topography At the foundation of modern geosciences, quite literally, is knowledge

  17. An Integrated Display and Analysis Methodology for Multivariable Radar Data BRENDA A. DOLAN AND STEVEN A. RUTLEDGE

    E-Print Network [OSTI]

    Rutledge, Steven

    -depth analysis using radar products, such as Doppler-derived wind vectors and hydrometeor identification, has in real time. This study focuses on modifying and automating several radar- analysis and quality of intense rainfall, hail, strong updrafts, and other features such as mesocyclones and convergence lines

  18. Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic

    E-Print Network [OSTI]

    Shepherd, Simon

    Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar, or cross polar cap potential, ÈPC. Periods are chosen to satisfy the criteria that (1) the solar wind-based radars to functional forms of the electrostatic potential [Ruohoniemi and Baker, 1998]; and global mag

  19. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect (OSTI)

    Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz; Keck, Chris; Sullivan, Jonathan; Brigada, David; Parker, Lorri; Younger, Richard; Biddle, Jason

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  20. A multi-sensor physically based weather/non-weather radar echo classifier using polarimetric and environmental data in a real-time

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    A multi-sensor physically based weather/non-weather radar echo classifier using polarimetric-hydrometeors. In this work, a multi-sensor physically based algorithm is designed to classify weather/non-weather radar, 2004). Manual quality control (QC) of radar reflectivity data has been practiced at commercial weather

  1. MeteoSvizzera, 6605 Locarno, Switzerland email: Katja.Friedrich@meteoswiss.ch http://www.meteoswiss.ch P11B8: Effects of Radar Beam Shielding on Rainfall

    E-Print Network [OSTI]

    ://www.meteoswiss.ch P11B8: Effects of Radar Beam Shielding on Rainfall Estimation for Polarimetric C-band Radar Katja In the case of radar beam shielding, a weaker transmitted signal reaches precipitation at further ranges 1998 with: Complete shielding in Partial shielding in No shielding to the South 1 2 3 2 4 Height

  2. The use of ground-penetrating radar with a cooperative target

    E-Print Network [OSTI]

    Allen, Christopher Thomas; Shi, K.; Plumb, R. G.

    1998-09-01

    trenchless technology involving the installation of pipes having an internal diameter too small for man entry with steering via remote control. In this operation, the detection and avoidance of existing underground structures (pipelines and cables... into the indoor ground-penetrating radar test tank (the sand pit) at the Radar Systems and Remote Sensing Labo- ratory, The University of Kansas, Lawrence [6]. This test tank is a reinforced concrete enclosure measuring approximately 3.6 5.2 m and is 1.8 m deep...

  3. Comparative analyses for the prediction of streamflow from small watershed by use of digitized radar data 

    E-Print Network [OSTI]

    Braatz, Dean Thomas

    1973-01-01

    , 1972. 6. CONCLUSIONS AND RECOMMENDATIONS. 57 61 81 92 95 a. Conclusions. 95 b. Recommendations 97 APPENDIX A. . . 99 LIST OF REFERENCES. 101 VITA. 106 LIST OF TABLES Table Page Streamflow statistics for the Delaware Creek and Little... relationship of Miller (1972) for the sub-basins of the Delaware Creek and the Little Washita River. 52 Basin average of actual rainfall compared to 0-deg and tilt, digital-radar, estimated rainfall for May 31, 1971, for the periods when radar data were...

  4. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  5. R&D Argon Detector at Ash River (RADAR) - Letter of Intent

    E-Print Network [OSTI]

    Adamson, P; Guzowski, P; Habig, A; Holin, A; Huang, J; Kordosky, M; Kreymer, A E; Lang, K; Marshak, M; Mehdiyev, R; Miller, W H; Naples, D; Nichol, R J; Patterson, R B; Sousa, A; Thomas, J; Whitehead, L H

    2013-01-01

    The RADAR project proposes to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the project's construction is 5 years, with running happening between 2018 and 2023.

  6. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  7. On reconciling ground-based with spaceborne normalized radar cross section measurements

    E-Print Network [OSTI]

    Baumgartner, F.; Munk, J.; Jezek, K. C.; Gogineni, Sivaprasad

    2002-02-01

    . Previously, ground-based and spaceborne radar backscatter have been reconciled by defining an effective range 82 10111 17 82 115 431482, where 82 115 is the antenna range to the snow surface, as illustrated in Fig. 1 [1], [2]. The additional term 1482... is an added range accounting for radar penetration into the scattering medium, which can be significant. The relative size of 1482 is directly related to firn physical properties and is determined experimentally such that 27 48 does not vary with antenna...

  8. On the radar cross section (RCS) prediction of vehicles moving on the ground

    SciTech Connect (OSTI)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  9. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2012-05-01

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  10. Tracking Atmospheric Ducts Using Radar Clutter: I. Evaporation Duct Tracking Using Kalman Filters

    E-Print Network [OSTI]

    Gerstoft, Peter

    Tracking Atmospheric Ducts Using Radar Clutter: I. Evaporation Duct Tracking Using Kalman Filters 92093­0238, USA Introduction This paper addresses the problem of tracking evaporation ducts in marine-standard electromagnetic propagation due to formation of lower atmospheric sea ducts is a common occurrence in maritime

  11. Tracking Atmospheric Ducts Using Radar Clutter: II. Surface-based Duct Tracking Using Multiple Model

    E-Print Network [OSTI]

    Gerstoft, Peter

    Tracking Atmospheric Ducts Using Radar Clutter: II. Surface-based Duct Tracking Using Multiple variability in tracking surface-based ducts in marine and coastal environments. The method tracks of the problem and evaporation duct tracking has been introduced in [1]. In previous studies, atmospheric

  12. Automatic Calibrations for Improved Quality Assurance of Coastal HF Radar Currents

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    to the public via the U.S. Integrated Ocean Observing System (USIOOS): http://www.ioos.gov/hfradar/. These real Monitoring, Monitoring Harmful Algal Blooms, Fisheries Management, Modeling, Marine Navigation, Ocean Energy. INTRODUCTION Currently, over 130 HF radar units are providing coastal surface current maps to the public via

  13. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry

    E-Print Network [OSTI]

    Amelung, Falk

    Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar in the subsidence and rebound occurring over stressed aquifer systems, in conjunction with measurements, generally permanent aquifer system compaction and land subsidence at yearly and longer timescales, caused

  14. Radar interferometry for measuring tidal strains across cracks on David Sandwell,1

    E-Print Network [OSTI]

    Sandwell, David T.

    Radar interferometry for measuring tidal strains across cracks on Europa David Sandwell,1 Paul and the plate has been relatively thin ($2 km) [Carr et al., 1998]. However, the present-day average shell relationships and a variety of morphologic characteristics [Carr et al., 1998; Greenberg et al., 1998]. Simple

  15. Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Government of the Republic of the Philippines has invited new bids from international companies to explore for oil and gas in onshore and offshore sedimentary basins. To assist the private oil industry in the evaluation of the petroleum potential of these basins, the Government, with the assistance of a loan from the World Bank has completed a nation-wide basin evaluation program. The primary objective of the project is to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum prospects within the areas imaged by radar. Secondary goals are to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. Geologic maps were prepared for each petroleum prospect region and are included in this report. A discussion on radar principles, lithography, and stratigraphy of the areas is also included. 29 refs., 27 figs., 12 tabs.

  16. Assessing the capabilities of ground penetrating radar for applications in geologic and engineering subsurface studies 

    E-Print Network [OSTI]

    Servos, Stacia Lynn

    1998-01-01

    relative electric permittivity is high (&,=8 1), will cause the relative electric pen-permittivity of soils and rocks to increase. A contrast in electric pen-permittivity between two media gives rise to a reflection in the radar profile. Ground penetrating...

  17. Radar scattering of linear dunes and mega-yardangs: Application to Titan

    E-Print Network [OSTI]

    Paillou, Philippe; Radebaugh, Jani; Wall, Stephen

    2015-01-01

    The Ku-band (13.8 GHz - 2.2 cm) RADAR instrument onboard the Cassini-Huygens spacecraft has revealed the richness of the surface of Titan, as numerous seas, lakes, rivers, cryo-volcanic flows and vast dune fields have been discovered. Linear dunes are a major geomorphological feature present on Titan, covering up to 17% of its surface, mainly in equatorial regions. However, the resolution of the RADAR instrument is not good enough to allow a detailed study of the morphology of these features. In addition, other linear wind-related landforms, such as mega-yardangs (linear wind-abraded ridges formed in cohesive rocks), are likely to present a comparable radar signature that could be confused with the one of dunes. We conducted a comparative study of the radar radiometry of both linear dunes and mega-yardangs, based on representative terrestrial analogues: the linear dunes located in the Great Sand Sea in western Egypt and in the Namib Desert in Namibia, and the mega-yardangs observed in the Lut Desert in easter...

  18. Global mapping and characterization of Titan's dune fields with Cassini: Correlation between RADAR and VIMS observations

    E-Print Network [OSTI]

    Narteau, Clément

    Global mapping and characterization of Titan's dune fields with Cassini: Correlation between RADAR dunes have been observed in the equatorial regions of Titan, Saturn's largest moon. As the Cassini-resolution coverage of Titan's surface increases, revealing new dune fields and allowing refinements

  19. Abstract--Enabled by a dense network of Doppler weather radars with overlapping coverage, Distributed Collaborative

    E-Print Network [OSTI]

    Kurose, Jim

    for high accuracy wind field retrieval. This paper describes the multi- user, multi-attribute utilities are very large size (28 foot diameter antenna) and very high power (half megawatt). At approximately $10-numbers of high-power, high-cost, long-range radars with a paradigm based on Distributed Collaborative Adaptive

  20. Testing the Hill model of transpolar potential with Super Dual Auroral Radar Network observations

    E-Print Network [OSTI]

    Shepherd, Simon

    as a function of solar wind speed and ram pressure, the interplanetary magnetic field, the reconnection electric electric potential and is an important indicator of the amount of energy flowing into and throughTesting the Hill model of transpolar potential with Super Dual Auroral Radar Network observations S

  1. Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry

    E-Print Network [OSTI]

    Holland, David

    Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar Space Flight Center, Greenbelt, MD, USA 4 Earth System Science Interdisciplinary Center, University is usually packed with dense ice melange. Helheim Glacier accelerated and retreated between 2000 and 2005

  2. Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity

    E-Print Network [OSTI]

    Bellan, Paul M.

    Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity P. M. Bellan1 Received by assuming the ice grains are coated by a thin metal film; substantial evidence exists indicating that such a film exists and is caused by the deposition of iron and sodium atoms on the ice grain from iron

  3. A NOVEL APPROACH TO PROFILE CLOUD MICROPHYSICS USING DUAL-FREQUENCY RADARS

    E-Print Network [OSTI]

    .S. Department of Energy Office of Science ABSTRACT Single-frequency radar measurements provide insufficient Contract No. DE-AC02- 98CH10886 with the U.S. Department of Energy. The publisher by accepting-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others

  4. ADDING VALUE TO ARM PRECIPITATION RADAR MEASUREMENTS Scott Collis, Argonne National Laboratory

    E-Print Network [OSTI]

    of Energy Office of Science ABSTRACT The procurement of a network of C- and X-band scanning radars has lead- 98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do

  5. Adaptive Beamforming Technique for Accurate Vertical Wind Measurements with Multichannel MST Radar

    E-Print Network [OSTI]

    Sato, Toru

    -constrained minimization of power (NC-DCMP) algo- rithm, which provides not only robustness but also higher accuracy thanAdaptive Beamforming Technique for Accurate Vertical Wind Measurements with Multichannel MST Radar wind estimates due to contamination by horizontal wind components. An adaptive beamforming technique

  6. Observations of a tornadic supercell over Oxfordshire using a pair of Doppler radars

    E-Print Network [OSTI]

    Reading, University of

    the Cotswolds and Oxfordshire, and on into the home counties. There have been few previous detailed observations to determine whether the Oxfordshire tornado was associated with the presence of a `supercell' - a long-lived of the basic principles of weather radar may be found in the Met Office's Fact Sheet number 15 (UK Met Office

  7. Radar Observations of MJO and Kelvin Wave Interactions During DYNAMO/AMIE/CINDY2011 

    E-Print Network [OSTI]

    DePasquale, Amanda Michele

    2013-07-05

    on the order of hours or days. These events and the overall MJO convective envelope may interact with convectively coupled waves such as Kelvin waves that propagate more rapidly eastward with time scales of 3-5 days. Radar and sounding data collected during...

  8. Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in Central Oklahoma

    E-Print Network [OSTI]

    Xue, Ming

    Observations in Central Oklahoma GUIFU ZHANG AND SEAN LUCHS School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma ALEXANDER RYZHKOV Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma MING XUE School of Meteorology, and Center for Analysis

  9. FRESNEL-ZONE MEASUREMENT AND ANALYSIS OF A DUAL-POLARIZED METEOROLOGICAL RADAR ANTENNA

    E-Print Network [OSTI]

    Collings, Iain B.

    FRESNEL-ZONE MEASUREMENT AND ANALYSIS OF A DUAL- POLARIZED METEOROLOGICAL RADAR ANTENNA D.B. Hayman Fresnel-zone holographic technique was used to obtain the radiation pattern for the upgraded antenna in the measurement of this antenna and the analysis of the results. Keywords: Antenna measurements, Fresnel zone

  10. Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression

    E-Print Network [OSTI]

    Kansas, University of

    ;iii Abstract Laser radar systems will play an increasingly important role in global climate change Incubator Program, NRA-98-OES-05 NASA, Langley Research Center Technical Report The University of Kansas #12 (frequency downconversion process) 3.11 Receiver--Data acquisition system 3.12 Receiver

  11. Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere

    E-Print Network [OSTI]

    Carlson, Charles W.

    to investigate the causes of the radar signal ``blackout'' periods when ground reflections from the subsurface magnetic fields, diurnal cycles of ionization, and solar activity. We find that the shorter blackout periods are well correlated with solar activity and that the longest period of blackouts was likely

  12. Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1

    E-Print Network [OSTI]

    Borchers, Brian

    Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1 , Jan M. H, paleoclimatology (Maher and Thompson, 1995), soil development (Singer et al., 1996; Van Dam et al., 2008 et al., 2011), the detection of unexploded ordnance (UXO) and land mines (Van Dam et al., 2005

  13. Local and global statistics of clear-air Doppler radar Andreas Muschinski

    E-Print Network [OSTI]

    Muschinski, Andreas

    Local and global statistics of clear-air Doppler radar signals Andreas Muschinski CIRES, University 6 October 2003; accepted 30 October 2003; published 27 January 2004. [1] A refined theoretical statistics like locally averaged velocities, local velocity variances, local dissipation rates, and local

  14. Tsunami signature in the ionosphere: A simulation of OTH radar observations

    E-Print Network [OSTI]

    Occhipinti, Giovanni "Ninto"

    Tsunami signature in the ionosphere: A simulation of OTH radar observations Pierdavide Coïsson,1 ionospheric anomalies following major earthquakes and tsunamis have been detected. Global Positioning System and identification of new techniques to detect ionospheric tsunami signatures. We explore here a new groundbased

  15. Harmonic Path (HAPA) Algorithm for Noncontact Vital Signs Monitoring with IRUWB Radar

    E-Print Network [OSTI]

    Ingram, Mary Ann

    Harmonic Path (HAPA) Algorithm for Non­contact Vital Signs Monitoring with IR­UWB Radar Van Nguyen. INTRODUCTION Vital sign monitoring is fundamental in health care as knowledge of the patient's heart rate (HR consistently and accurately [1]. Currently the most common form of vital sign monitoring in hospitals is pulse

  16. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave that the GPR estimates had a root mean square error of volumetric water content of the order of 0 agriculture Citation: Grote, K., S. Hubbard, and Y. Rubin, Field-scale estimation of volumetric water content

  17. STUDY OF CLOUD LIFETIME EFFECTS USING THE SGP HETEROGENEOUS DISTRIBUTED RADAR NETWORK: PRELIMINARY CONSIDERATIONS

    E-Print Network [OSTI]

    STUDY OF CLOUD LIFETIME EFFECTS USING THE SGP HETEROGENEOUS DISTRIBUTED RADAR NETWORK: PRELIMINARY-dimensional morphology and life cycle of clouds. Detailing key cloud processes as they transit from the formation stage to precipitation onset and cloud dissipation is critical towards establishing uncertainties in climate models

  18. Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar

    E-Print Network [OSTI]

    Nesbitt, Steve

    Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar Stephen W. Nesbitt1 and Alison M. Anders2 Received 4 March 2009; revised 6 July 2009 of topography and precipitation, a tropics-wide (±36° latitude) high resolution (0.1°) ten year (1998

  19. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  20. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  1. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  2. InSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source History ViewInQbator Jump to:

  3. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect (OSTI)

    Chiswell, S.

    2010-01-15

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.

  4. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 2, JUNE 2007 245 Vehicle Classification Based on the Radar

    E-Print Network [OSTI]

    such as truck volume estimating, traffic planning, roadway tolling, etc.; see e.g., [1]­[4] and references. Another strength is that MW radar sensors are largely immune to adverse weather and light conditions

  5. The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model

    E-Print Network [OSTI]

    Hogan, Robin

    in Evaluating a Mesoscale Model ROBIN J. HOGAN, MARION P. MITTERMAIER,* AND ANTHONY J. ILLINGWORTH Department-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating

  6. HF Radar Performance in a Low-Energy Environment: CODAR SeaSonde Experience on the West Florida Shelf*

    E-Print Network [OSTI]

    both tidal and subtidal frequency bands. By examining the HF radar radial velocities at low wave energy have evolved along with coastal ocean circulation-observing technologies. Early inferences on surface

  7. Airborne UHF Radar for Fine Resolution Mapping of Near Surface Accumulation Layers in Greenland and West Antarctica

    E-Print Network [OSTI]

    Lewis, Cameron Scott

    2010-11-01

    as understanding sea level rise. Previously developed accumulation layer radars were used as templates for the current single channel system. Improvements were incorporated including increased output power, increased receiver sensitivity, single antenna operation...

  8. Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes

    E-Print Network [OSTI]

    Tsoflias, Georgios P.; Becker, Matthew W.

    2008-08-26

    Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency...

  9. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  10. Using LiDAR, Aerial Photography, and Geospatial Technologies to Reveal and Understand Past Landscapes in Four West Central Missouri Counties

    E-Print Network [OSTI]

    Price, R. Zane

    2012-05-31

    . Each sensor offers unique advantages and disadvantages due to the design and construction of the sensor. LiDAR can strip away vegetation to present a bare earth model (a DTM) of terrain, useful in the detection of features revealed by subtle elevation...

  11. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Combined lidar and sun-photometer retrievals of ash particle size and mass

    E-Print Network [OSTI]

    Hogan, Robin

    -photometer retrievals of ash particle size and mass concentration from the Eyjafjallaj¨okull volcano Robin J. Hogan,1 the need for lidar monitoring stations capa- ble of routinely estimating the vertical profile of ash mass to demonstrate that large errors are likely in methods that attempt to infer the properties of the ash from

  12. Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use in the TAMBEETLE Southern Pine Beetle Infestation Growth Model 

    E-Print Network [OSTI]

    Stukey, Jared D.

    2011-02-22

    , individual bole height (IBH), diameter at breast height (DBH), length of crown (CrHT), and age for use in TAMBEETLE; (2) to estimate individual tree age using lidar-estimated height and site index provided by the United States Department of Agriculture (USDA...

  13. 7 Plots of Biomass Burning and Dust Plumes This supplementary section shows curtain plots from the NASA Langley airborne High Spectral Resolution Lidar for

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    7 Plots of Biomass Burning and Dust Plumes This supplementary section shows curtain plots from the NASA Langley airborne High Spectral Resolution Lidar for cases of fresh biomass burning plumes and dust: Curtain plots of HSRL backscatter coefficients and intensive properties for transects over fresh biomass

  14. A dual polarized x-band pulse radar for ground based electromagnetic scattering experiment / by Allen William White 

    E-Print Network [OSTI]

    White, Allen William

    1978-01-01

    A DUAL POLARIZED X-BAND PULSE RADAR FOR GROUND BASED ELECTROMAGNETIC SCATTERING EXPERIMENT A Thesis by Allen William White Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1978 Major Subject: Electrical Engineering A DUAL POLARIZED X-BAND PULSE RADAR FOR GROUND BASED ELECTROMAGNETIC SCATTERING EXPERIMENTS A Thesis by Allen William White Approved as to style and content by: x m n o ommzttee...

  15. Low-Cost 63% Efficient 2.5-kW UHF Power Amplifier for a Wind Profiler Radar

    E-Print Network [OSTI]

    Popovic, Zoya

    Low-Cost 63% Efficient 2.5-kW UHF Power Amplifier for a Wind Profiler Radar Brad Lindseth1,2 , Tom describes a low-cost 449-MHz 2.5-kW peak pulse amplifier for use in a wind profiling radar. New high- powerW cost upwards of US$30,000 [2,3]. The goal of this work is to develop a low-cost UHF power amplifier

  16. Vertical profiles of radar reflectivity of convective cells in tropical and mid-latitude mesoscale convective systems 

    E-Print Network [OSTI]

    Lutz, Kurt Reed

    1992-01-01

    VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Meteorology VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Approved...

  17. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect (OSTI)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

  18. Antarctica X-band MiniSAR Crevasse Detection Radar : draft final report.

    SciTech Connect (OSTI)

    Sander, Grant J.; Bickel, Douglas Lloyd

    2010-08-01

    This document is the final report for the 2009 Antarctica Crevasse Detection Radar (CDR) Project. This portion of the project is referred to internally as Phase 2. This is a follow on to the work done in Phase 1 reported on in [1]. Phase 2 involved the modification of a Sandia National Laboratories MiniSAR system used in Phase 1 to work with an LC-130 aircraft that operated in Antarctica in October through November of 2009. Experiments from the 2006 flights were repeated, as well as a couple new flight tests to examine the effect of colder snow and ice on the radar signatures of 'deep field' sites. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica during the fall of 2009.

  19. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-11-13

    The C-band scanning ARM precipitation radar (C-SAPR) is a scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 350-kW magnetron transmitter, this puts 125 kW of transmitted power for each polarization. The receiver for the C-SAPR is a National Center for Atmospheric Research (NCAR) -developed Hi-Q system operating in a coherent-on-receive mode. The ARM Climate Research Facility operates two C-SAPRs; one of them is deployed near the Southern Great Plains (SGP) Central Facility near the triangular array of X-SAPRs, and the second C-SAPR is deployed at ARM’s Tropical Western Pacific (TWP) site on Manus Island in Papua New Guinea.

  20. R&D Argon Detector at Ash River (RADAR) - Letter of Intent

    E-Print Network [OSTI]

    P. Adamson; S. Agarwalla; A. Aurisano; J. J. Evans; P. Guzowski; A. Habig; A. Holin; J. Huang; M. Kordosky; A. E. Kreymer; K. Lang; M. Marshak; R. Mehdiyev; W. H. Miller; D. Naples; R. J. Nichol; V. Paolone; R. B. Patterson; A. Sousa; J. Thomas; L. H. Whitehead

    2013-09-28

    In the RADAR project described in this Letter of Intent, we propose to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the project's construction is 5 years, with running happening between 2018 and 2023.

  1. Electron-density comparisons between radar observations and 3-D ionospheric model calculations. Master's thesis

    SciTech Connect (OSTI)

    Johnson, M.W.

    1990-01-01

    A comparison of electron densities calculated from the Utah State University First-Principals Ionospheric Model with simultaneous observations taken at Sondrestrom, Millstone, and Arecibo incoherent-scatter radars was undertaken to better understanding the response of the ionosphere at these longitudinally similar yet latitudinally separated locations. The comparison included over 50 days distributed over 3 1/2 years roughly symmetrical about the last solar-minimum in 1986. The overall trend of the comparison was that to first-order the model reproduces electron densities responding to diurnal, seasonal, geomagnetic, and solar-cycle variations for all three radars. However, some model-observation discrepancies were found. These include, failure of the model to correctly produce an evening peak at Millstone, fall-spring equinox differences at Sondrestrom, tidal structure at Arecibo, and daytime NmF2 values at Arecibo.

  2. Incremental online object learning in a vehicular radar-vision fusion framework

    SciTech Connect (OSTI)

    Ji, Zhengping; Weng, Juyang; Luciw, Matthew; Zeng, Shuqing

    2010-10-19

    In this paper, we propose an object learning system that incorporates sensory information from an automotive radar system and a video camera. The radar system provides a coarse attention for the focus of visual analysis on relatively small areas within the image plane. The attended visual areas are coded and learned by a 3-layer neural network utilizing what is called in-place learning, where every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through inhibitory and excitatory connections with other neurons. The modeled bottom-up, lateral, and top-down connections in the network enable sensory sparse coding, unsupervised learning and supervised learning to occur concurrently. The presented work is applied to learn two types of encountered objects in multiple outdoor driving settings. Cross validation results show the overall recognition accuracy above 95% for the radar-attended window images. In comparison with the uncoded representation and purely unsupervised learning (without top-down connection), the proposed network improves the recognition rate by 15.93% and 6.35% respectively. The proposed system is also compared with other learning algorithms favorably. The result indicates that our learning system is the only one to fit all the challenging criteria for the development of an incremental and online object learning system.

  3. A 77 GHz Transceiver for Automotive Radar System Using a120nm In AlAs/In GaAs Metamorphic HEMTs

    E-Print Network [OSTI]

    Kwon, Youngwoo

    A 77 GHz Transceiver for Automotive Radar System Using a120nm 0.4 0.35 In AlAs/In GaAs Metamorphic-mail:ykwon@snu.ac.kr) Abstract -- In this work, we demonstrate a compact 77GHz single-chip transceiver for an automotive radar at the transmitter and a 5dB conversion gain at the receiver. Index Terms -- Automotive radar, 77GHz, MHEMT, MMIC

  4. Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX 

    E-Print Network [OSTI]

    Smith, Christina Lynn

    2005-08-29

    The mixing layer (ML) heights inferred from radiosondes, wind profilers, airborne lidar, airborne microwave temperature profiler (MTP), and in-situ aircraft data were compared during the Texas 2000 Air Quality Study in the Houston area...

  5. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  6. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  7. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  11. JUNE 2002 835F R I S C H E T A L . The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars

    E-Print Network [OSTI]

    Shupe, Matthew

    . (1999). Another retrieval for stratocumulus cloud properties using solar radiation, microwave ra obtained from a microwave radiometer; the second uses the radar reflectivity and an assumption

  12. Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Xu, Qin; Zhang, Pengfei; Yang, Qing; Shaw, William J.; Flaherty, Julia E.

    2014-08-01

    The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory’s 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVar retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.

  13. Development of Radar Navigation and Radio Data Transmission for Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Larry G. Stolarczyk; Gerald L. Stolarczyk; Larry Icerman; John Howard; Hooman Tehrani

    2007-03-25

    This Final Technical Report summarizes the research and development (R&D) work performed by Stolar Research Corporation (Stolar) under U.S. Department of Energy (DOE) Contract Number DE-FC26-04NT15477. This work involved the development of radar navigation and radio data transmission systems for integration with microhole coiled tubing bottom hole assemblies. Under this contract, Stolar designed, fabricated, and laboratory and field tested two advanced technologies of importance to the future growth of the U.S. oil and gas industry: (1) real-time measurement-while-drilling (MWD) for guidance and navigation of coiled tubing drilling in hydrocarbon reservoirs and (2) two-way inductive radio data transmission on coiled tubing for real-time, subsurface-to-surface data transmission. The operating specifications for these technologies are compatible with 3.5-inch boreholes drilled to a true vertical depth (TVD) of 5,000 feet, which is typical of coiled tubing drilling applications. These two technologies (i.e., the Stolar Data Transmission System and Drill String Radar) were developed into pre-commercial prototypes and tested successfully in simulated coiled tubing drilling conditions. Integration of these two technologies provides a real-time geosteering capability with extremely quick response times. Stolar is conducting additional work required to transition the Drill String Radar into a true commercial product. The results of this advanced development work should be an important step in the expanded commercialization of advanced coiled tubing microhole drilling equipment for use in U.S. hydrocarbon reservoirs.

  14. Sandia National Laboratories land use permit for operations at Oliktok Alaska Long Range Radar Station.

    SciTech Connect (OSTI)

    Catechis, Christopher Spyros

    2013-02-01

    The property subject to this Environmental Baseline Survey (EBS) is located at the Oliktok Long Range Radar Station (LRRS). The Oliktok LRRS is located at 70%C2%B0 30' W latitude, 149%C2%B0 53' W longitude. It is situated at Oliktok Point on the shore of the Beaufort Sea, east of the Colville River. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  15. ARM - PI Product - Merged and corrected 915 MHz Radar Wind Profiler moments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSAProductsMerged and corrected 915 MHz Radar Wind

  16. Moab Site Installs Radar Unit to Monitor for Future Potential Rockfalls |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment.Efficiency RebateDepartment of Energy radar

  17. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming Upgrades to the ARM MMCRs: Improved Radar

  18. To cite this document: Mure-Dubois, James and Vincent, Franois and Bonacci, David Sonar and radar SAR processing for parking lot detection. (2011) In

    E-Print Network [OSTI]

    Mailhes, Corinne

    2011-01-01

    SAR processing for parking lot detection. (2011) In: International Radar Symposium (IRS) 2011, 07-oatao@inp-toulouse.fr #12;Sonar and Radar SAR Processing for Parking Lot Detection James Mure-Dubois , Franc¸ois Vincent non-trivial test scenes. The chosen application is parking lot detection. Laboratory results obtained

  19. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  20. An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis

    E-Print Network [OSTI]

    Xue, Ming

    sensing of the lower atmosphere. The devel- opment of low-cost, high-spatial density (also short range (WSR-88D) radar and a network of four low-cost radars planned for the Oklahoma test bed by the new of the Atmosphere (CASA). Such networks are meant to adaptively probe the lower atmosphere that is often missed

  1. Compressive radar with off-grid targets: a perturbation approach This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Fannjiang, Albert

    Compressive radar with off-grid targets: a perturbation approach This article has been downloaded.1088/0266-5611/29/5/054008 Compressive radar with off-grid targets: a perturbation approach Albert Fannjiang1,3 and Hsiao-Chieh Tseng2 1. In particular, a simple, perturbation method is developed to reduce the gridding error for off-grid targets

  2. Radar Remote Sensing Estimates of Waves and Wave Forcing at a Tidal Inlet GUILLERMO M. DAZ MNDEZ AND MERRICK C. HALLER

    E-Print Network [OSTI]

    Haller, Merrick

    Radar Remote Sensing Estimates of Waves and Wave Forcing at a Tidal Inlet GUILLERMO M. DÍAZ MÉNDEZ transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking-wave conditions, in good agreement (R 5 0.95) with observations. 1. Introduction Remote sensing technology offers

  3. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Ho, Cheng,

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  4. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1991-01-01

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  5. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  6. UWB radar technique for arc detection in coaxial cables and waveguides

    SciTech Connect (OSTI)

    Maggiora, R.; Salvador, S.

    2009-11-26

    As spread spectrum technology has revolutionized the communications industry, Ultra Wide Band (UWB) technology is dramatically improving radar performances. These advanced signal processing techniques have been adapted to coaxial cables and waveguides to provide new features and enhanced performance on arc detection. UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its 'radar cross section' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The 'background scattering' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non-sensed zones (for example, to be insensitive to antenna load variations)

  7. On the computation of preliminary orbits for space debris with radar observations

    E-Print Network [OSTI]

    Giovanni F. Gronchi; Linda Dimare; Davide Bracali Cioci; Helene Ma

    2015-01-29

    We introduce a new method to perform preliminary orbit determination for space debris on low Earth orbits (LEO). This method works with tracks of radar observations: each track is composed by $n\\ge 4$ topocentric position vectors per pass of the satellite, taken at very short time intervals. We assume very accurate values for the range $\\rho$, while the angular positions (i.e. the line of sight, given by the pointing of the antenna) are less accurate. We wish to correct the errors in the angular positions already in the computation of a preliminary orbit. With the information contained in a pair of radar tracks, using the laws of the two-body dynamics, we can write 8 equations in 8 unknowns. The unknowns are the components of the topocentric velocity orthogonal to the line of sight at the two mean epochs of the tracks, and the corrections $\\Delta$ to be applied to the angular positions. We take advantage of the fact that the components of $\\Delta$ are typically small. We show the results of some tests, performed with simulated observations, and compare this algorithm with Gibbs' method and the Keplerian integrals method.

  8. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  9. Comparison of optically measured and radar-derived horizontal neutral winds. Master's thesis

    SciTech Connect (OSTI)

    Christie, M.S.

    1990-01-01

    Nighttime thermospheric winds for Sondrestrom, Greenland from 11 nights between 1983 and 1988, have been compared to learn about the O(+)-O collision cross section and the high-latitude atomic oxygen density. The horizontal winds in the magnetic meridian were derived indirectly from incoherent-scatter radar (ISR) measurements on ion velocities antiparallel to the magnetic field and directly from Fabry-Perot interferometer (FPI) measurements of Doppler shifts of the (6300-A) emission of atomic oxygen. In deriving the radar winds, the O(+)-O collision cross section, was scaled by a factor of f what was varied from 0.5 to 5.1. On the basis of several arguments the altitude of the 6300-A emission was assumed to be 230 km. The best agreement between the ISR and FPI winds was obtained when f was increased substantially, to between 1.7 and 3.4. If the average peak emission altitude were higher, these factors would be larger; if it were lower, they would be somewhat smaller. However, if the average altitude were substantially lower it would have been more difficult to have obtained agreement between the two techniques.

  10. Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

    SciTech Connect (OSTI)

    Foxall, W; Schultz, C A; Tralli, D M

    2004-09-21

    The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic ground motion on phase coherence over interferometric time intervals. Since the temporal sampling requirement may be finer than that possible for a high-altitude sensor to traverse a synthetic aperture length, a geostationary, real-aperture Ka-band system or constellation for equatorial and moderate-latitude global coverage is one option considered. The short wavelength would maximize interferometric sensitivity to small surface displacements and minimize required antenna area. Engineering issues include the design and deployment of a large ({approx} 100m) fixed aperture antenna; and fast electronic beam steering (entire aperture within nominal 1 s interferometric interval) with high-efficiency integrated transmit/receive modules. For a suborbital system, platform instability is an issue whereas at high earth orbit signal-to-noise and attendant power requirements dominate. Data delivery requirements include large-volume data storage and transmission; development of real-time, on-board event detection and processing algorithms, and data management structures for these very large data sets. A far-term roadmap would comprise a proof-of-concept demonstration using a laser or radar system mounted on a stratospheric balloon or UAV to image seismic wavefields from planned events (e.g. large mine blasts and/or purpose-designed explosions) and earthquake targets of opportunity. The technological challenges to developing any such seismic monitoring system, whether laser- or radar-based, are at this stage enormous. However, these concept studies suggest the long-term feasibility of such a system and drive the development of enabling technologies while fostering collaboration on meeting scientific and operational challenges of agencies such as NASA, DOE and DoD.

  11. cbs4denver.com -CSU Researches Develop Improved Radar For Troops http://cbs4denver.com/local/csu.radar.improvements.2.697978.html 1 of 2 4/11/2008 9:17 PM

    E-Print Network [OSTI]

    Chong, Edwin K. P.

    Lifestyle Beauty & Style Family Apr 11, 2008 5:09 pm US/Mountain Digg | Facebook | E-mail | Print Reporting be to develop the actual radars which Chong says could be small portable units with a battery and some sort

  12. Radar Nowcasting of Total Lightning over the Kennedy Space Center GREGORY N. SEROKA,* RICHARD E. ORVILLE, AND COURTNEY SCHUMACHER

    E-Print Network [OSTI]

    Radar Nowcasting of Total Lightning over the Kennedy Space Center GREGORY N. SEROKA,* RICHARD E-derived predictors of total lightning over the Kennedy Space Center (KSC). Four years (2006­ 09) of summer (June houses the Kennedy Space Center (KSC) and its critical daily operations. While examining storms over

  13. REDUCTION OF VIBRATION-INDUCED ARTIFACTS IN SYNTHETIC-APERTURE-RADAR IMAGERY USING THE FRACTIONAL FOURIER TRANSFORM

    E-Print Network [OSTI]

    Santhanam, Balu

    REDUCTION OF VIBRATION-INDUCED ARTIFACTS IN SYNTHETIC-APERTURE-RADAR IMAGERY USING THE FRACTIONAL of objects exhibit- ing low-level vibrations are accompanied by localized arti- facts, or ghost targets to the non-stationary nature of the returned signals from vibrating objects. Re- cently, a method based

  14. A 1.56 THz Spot Scanning Radar Range for Fully Polarimetric W-Band Scale Model Measurements

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    , with a fourth mixer providing a system phase reference. The full 2x2 complex polarization scattering matrix (PSM simple calibration objects and a tank are presented. Keywords: Compact Range, PSM, Radar, RCS, Scale polarization scattering matrix (PSM) for each resolved scattering center. Theoretically, the PSM provides

  15. Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part II: RangeVelocity Ambiguity Mitigation

    E-Print Network [OSTI]

    Cho, John Y. N.

    ­Velocity Ambiguity Mitigation JOHN Y. N. CHO Lincoln Laboratory, Massachusetts Institute of Technology, Lexington of the multi-PRI RV ambiguity mitigation scheme is demonstrated using simulated and real weather radar data, with excellent results. Combined with the adaptive clutter filter, this technique will be used within the larger

  16. Modeling of Tsunami Detection by High Frequency Radar Based on Simulated Tsunami Case Studies in the Mediterranean Sea

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    basin) and HF radar remote sensing to develop and validate a new type of tsunami detection algorithm as low as 5 cm/s, i.e., in deeper water, beyond the shelf and further away from the coast, thus providing to the near- est coastal areas, and thus both their energy spreading is low and their propagation time

  17. Using a Low-Order Model to Detect and Characterize Tornadoes in Multiple-Doppler Radar Data

    E-Print Network [OSTI]

    Gao, Jidong

    , University of Oklahoma, Norman, Oklahoma TIAN-YOU YU School of Electrical and Computer Engineering the tornado path and radar-grid-scale features of the horizontal wind field in the vicinity of the tornado. Introduction A major focus in severe weather research for opera- tional applications is the development

  18. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    E-Print Network [OSTI]

    Ellingson, Steven W.

    construction in New Mexico, and discuss the scientific goals of the project in the areas of solar, ionosphericThe Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research Laboratory, Washington, DC 20375 Stephen M. White AFRL

  19. An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations

    E-Print Network [OSTI]

    Vadas, Sharon

    with an OH airglow imager and the meteor radar at the MU Observatory in Japan. This was a wave breaking event to anticipate the scales of secondary waves generated through local body forcing and their potentialAn estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor

  20. Dual-Band Multi-Channel Airborne Radar for Mapping the Internal and Basal Layers of Polar Ice Sheets

    E-Print Network [OSTI]

    Marathe, Kiran Chidambara

    2008-03-06

    peak power of 1.6 kW for collecting data to develop effective ice sheet models. The pulse signal has a duration of 3 us or 10 us. The radar has 1 transmitter and 6 receivers inside the aircraft and an 8 element dipole antenna array mounted beneath...

  1. Evaluation of Terrestrial Laser Scanning and Ground Penetrating Radar for Field-Based High-Throughput Phenotyping in Wheat Breeding 

    E-Print Network [OSTI]

    Thompson, Sean M

    2014-08-05

    laser scanning (TLS) and ground penetrating radar (GPR) have the potential to fill this gap by non-invasively estimating biomass and mapping three-dimensional above- and below-ground vegetation. The research objective was to evaluate the use of TLS...

  2. Effects of Signal Processing and Antenna Frequency on the Geostatistical Structure of Ground-Penetrating Radar Data

    E-Print Network [OSTI]

    Barrash, Warren

    Effects of Signal Processing and Antenna Frequency on the Geostatistical Structure of Ground with application of signal processing or by changing the signal frequency. We perform geostatistical analyses of surface radar reflection profiles in order to investigate the effects of data processing and antenna

  3. Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction of Tornadic Mesovortices in an MCS

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma KEITH BREWSTER Center for Analysis and Prediction of Storms, Norman, Oklahoma JIDONG GAO National Severe Storms

  4. ERAD 2012 -THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Bird migration monitoring across Europe using

    E-Print Network [OSTI]

    Graaf, Martin de

    monitoring across Europe using weather radar M. de Graaf1, H. Leijnse1, A. Dokter2, J. Shamoun-Baranes2, H for monitoring bird migration across Europe. Reflections from birds (around -10 dBZ) are generally much weaker data from the autumn of 2011 from several stations in western Europe. With the resulting data bird

  5. Earth and Planetary Science Letters 377378 (2013) 239247 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Roering, Joshua J.

    2013-01-01

    : landslides hydrology precipitation InSAR lidar pore-water pressure diffusion Precipitation drives seasonal velocity changes in slow-moving landslides by increasing pore-water pressure and reducing the effective normal stress along basal shear zones. This pressure change is often modeled as a pore-water pressure

  6. Airborne Multiwavelength High-Spectral-Resolution Lidar (HSRL-2) Observations During TCAP 2012: Vertical Proles of Optical and Microphysical Properties of a Smoke/Urban Haze Plume Over the Northeastern Coast of the US

    SciTech Connect (OSTI)

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; Burton, S. P.; Chemyakin, Eduard; Kolgotin, A.; Hair, John; Cook, A. L.; Harper, David; Rogers, R. R.; Hare, Rich; Cleckner, Craig; Obland, Michael; Tomlinson, Jason M.; Berg, Larry K.; Schmid, Beat

    2014-10-10

    We present rst measurements with the rst airborne multiwavelength High-Spectral Resolution Lidar (HSRL-2), developed by NASA Langley Research Center. The instrument was operated during the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed out ow of urban haze and fresh biomass burning smoke from the East Coast of the US out over the West Atlantic Ocean. Lidar ratios at 355 and 532 nm were ... sr indicating moderately absorbing aerosols. Extinctionrelated Angstrom exponents were 1.5{2 pointing at comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieves particle e*ective radii of approximately 0.2 *m, which is in agreement with the large Angstrom exponents. We nd reasonable agreement to particle size parameters obtained from situ measurements carried out with the DOE G-1 aircraft that ew during the lidar observations.

  7. Digital Doppler radial velocity data compared objectively with digital reflectivity radar data 

    E-Print Network [OSTI]

    Beaver, Thomas Foster

    1980-01-01

    . , few components toward or away from the radar greater than -1 5 m s . However at 3 km and 4 km a def1n1te area of convergence is noted (Figs. 9 and 10). Although neither the ref lect1vity nor radial veloc1ty analyses at th1s time ind1cate any def1... I N 4 N CLI ILI IL O J ILI 6 0 ) Id CC OE IC + ILI IC I Vl ?T T W 0 0 0 LLI 0 Z 4( W 3 C- 7: LLI ri 4 4 I I N 0' 0 \\L III gQ ~ 4 N NZ WO 8 I 4l zj WN ~4I III W I- g I 0 R 0 O. I 0 0 ~ N 0 0 LI 0 0...

  8. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    SciTech Connect (OSTI)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  9. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  10. THE USE OF GROUND-PENETRATING RADAR FOR ARCHAEOLOGY: DETERMINING SITE FORMATION PROCESSES AND SUBSURFACE FEATURES ON TUTUILA ISLAND, AMERICAN SAMOA 

    E-Print Network [OSTI]

    Welch, Daniel

    2006-07-11

    complement traditional archaeological techniques. This thesis presents the results of a study using ground-penetrating radar in the mountain settings of American Samoa, a chain of volcanic islands in the South Pacific. Our results show that in American Samoa...

  11. An efficient ground penetrating radar finite-difference time-domain subgridding scheme and its application to the non-descructive testing of masonry arch bridges 

    E-Print Network [OSTI]

    Diamanti, Nectaria

    This thesis reports on the application of ground penetrating radar (GPR) as a non-destructive technique for the monitoring of ring separation in brick masonry arch bridges. In addition, research is reported on the ...

  12. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  13. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-30

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  14. With a ground-based Doppler lidar on the Northwest side of a wind farm in the Tehachapi Pass of California, measurements were collected for repeating sector sweeps to the Northwest, measuring up to

    E-Print Network [OSTI]

    With a ground-based Doppler lidar on the Northwest side of a wind farm in the Tehachapi Pass. The method being explored uses real-time measurements of wind velocity made upstream of the wind farm and models the power output of a turbine in the wind farm as though it were located upstream. This determines

  15. ESTIMATION OF THE LIDAR OVERLAP FUNCTION BY NON-LINEAR A. C. Povey1, R. G. Grainger1, D. M. Peters1, J. L. Agnew2, and D. Rees3

    E-Print Network [OSTI]

    Oxford, University of

    for the extinction profile, constrained by aerosol opti- cal thickness. Considering simulated data, the scheme is successful even where the aerosol profile deviates sig- nificantly from the simple model assumed. Application. Further, many methods of lidar analysis are designed to only consider regions where the overlap function

  16. Sondrestrom incoherent scatter radar observations during the lower thermosphere coupling study: September 21-26, 1987

    SciTech Connect (OSTI)

    Johnson, R.M. (Univ. of Michigan, Ann Arbor (USA))

    1991-02-01

    The incoherent scatter radar located at Soendre Stroemfjord, Greenland, obtained E and F region measurements during the first Lower Thermosphere Coupling Study (LTCS 1), September 21-26, 1987. Lower thermospheric neutral winds deduced from these measurements show that the neutral dynamics are influenced by both tidal oscillations and magnetospheric forcing. During an interval which was relatively quiet geomagnetically, September 23-24, a semidiurnal oscillation dominated the neutral motion. The model equinox tidal amplitudes and phases of Forbes (1982) for the diurnal tide are roughly in agreement with the observed diurnal oscillation for the first four days of the experiment. Vertical variations in the observed diurnal phases are consistent with the results of Forbes and Hagan (1988) and may provide evidence of dissipation of the propagating (1, 1) tidal mode. The semidiurnal motion observed during this period is not well represented by the recent theoretical results for the amplitude and phase of the semidiurnal tide (Forbes and Vial, this issue). Neutral winds obtained during a geomagnetically active interval, September 25-26, displayed a flow pattern that was significantly distorted from that observed during the preceding, relatively quiet interval. Although the changes in the zonal winds throughout this active interval were consistent with the direction of the ion drag force at 115 km and above, the variations in the meridional winds suggest that other forces, such as pressure gradients driven by Joule heating, need to be considered to explain the observations.

  17. Method and apparatus for reducing range ambiguity in synthetic aperture radar

    DOE Patents [OSTI]

    Kare, Jordin T. (San Ramon, CA)

    1999-10-26

    A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.

  18. On the detection of crevasses in glacial ice with synthetic-aperture radar.

    SciTech Connect (OSTI)

    Brock, Billy C.

    2010-02-01

    The intent of this study is to provide an analysis of the scattering from a crevasse in Antarctic ice, utilizing a physics-based model for the scattering process. Of primary interest is a crevasse covered with a snow bridge, which makes the crevasse undetectable in visible-light images. It is demonstrated that a crevasse covered with a snow bridge can be visible in synthetic-aperture-radar (SAR) images. The model of the crevasse and snow bridge incorporates a complex dielectric permittivity model for dry snow and ice that takes into account the density profile of the glacier. The surface structure is based on a fractal model that can produce sastrugi-like features found on the surface of Antarctic glaciers. Simulated phase histories, computed with the Shooting and Bouncing Ray (SBR) method, are processed into SAR images. The viability of the SBR method for predicting scattering from a crevasse covered with a snow bridge is demonstrated. Some suggestions for improving the model are given.

  19. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  20. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect (OSTI)

    Henry Revercomb, David Tobin, Robert Knuteson, Lori Borg, Leslie Moy

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004. More specifically, our major achievements for ARM include 1. Development of the Atmospheric Emitted Radiance Interferometer (AERI) to function like a satellite on the ground for ARM, providing a steady stream of accurately calibrated spectral radiances for Science Team clear sky and cloud applications (Knuteson et al. 2004a), 2. Detailed radiometric calibration and characterization of AERI radiances, with uncertainty estimates established from complete error analyses and proven by inter-comparison tests (Knuteson et al. 2004b), 3. AERI data quality assessment and maintenance over the extended time frames needed to support ARM (Dedecker et al., 2005) 4. Key role in the radiative transfer model improvements from the AERI/LBLRTM QME (Turner et al. 2004) and AERI-ER especially from the SHEBA experiment (Tobin et al. 1999), 5. Contributed scientific and programmatic leadership leading to significant water vapor accuracy improvements and uncertainty assessments for the low to mid troposphere (Turner et al. 2003a, Revercomb et al. 2003), 6. Leadership of the ARM assessment of the accuracy of water vapor observations from radiosondes, Raman Lidar and in situ aircraft observations in the upper troposphere and lower stratosphere (Tobin et al. 2002, Ferrare et al. 2004), 7. New techniques for characterizing clouds from AERI (DeSlover et al. 1999, Turner 2003b, Turner et al. 2003b), 8. Initial design and development of the Scanning-HIS aircraft instrument and application to ARM UAV Program missions (Revercomb et al. 2005), and 9. Coordinated efforts leading to the use of ARM observations as a key validation tool for the high resolution Atmospheric IR Sounder on the NASA Aqua platform (Tobin et al. 2005a) 10. Performed ARM site and global clear sky radiative closure studies that shows closure of top-of-atmosphere flux at the level of ~1 W/m2 (Moy et al 2008 and Section 3 of this appendix) 11. Performed studies to characterize SGP site cirrus cloud property retrievals and assess impacts on computed fluxes and heating rate profiles (Borg et al. 2008 and Section 2 of this appendix).

  1. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticle sizefractiongovMeasurementsLatent

  2. published in JGR, 105, 21,781-21,794, 2000 Deformation and seismicity in the Coso geothermal

    E-Print Network [OSTI]

    Simons, Mark

    published in JGR, 105, 21,781-21,794, 2000 Deformation and seismicity in the Coso geothermal area. Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California with the production area of the Coso geothermal plant. The maximum subsidence rate in the peak of the anomaly is 3

  3. 982 November 2013 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING Introduction

    E-Print Network [OSTI]

    Amelung, Falk

    characterization using satellite-based Interferometric Synthetic Aperture Radar (InSAR), which measures ground generally preceded by long-term slow motion. Opening the Way to Systematic Global- Scale Ground DeformationCharac Geolog a Globa Spaceb 982 November 2013 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING #12

  4. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    SciTech Connect (OSTI)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  5. InSAR (Monaster And Coolbaugh, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res. Bd. May, 2004) | Open Energy(Monaster

  6. Measuring Soil Water Content with Ground Penetrating Radar: A Review J. A. Huisman,* S. S. Hubbard, J. D. Redman, and A. P. Annan

    E-Print Network [OSTI]

    Hubbard, Susan

    Measuring Soil Water Content with Ground Penetrating Radar: A Review J. A. Huisman,* S. S. Hubbard: soil water content determined from reflected climate anomalies, such as continental droughts andwave velocity, soil water content determined from ground wave veloc- large-scale precipitation events (Entekhabi

  7. Stratocumulus Liquid Water Content from Dual Wavelength Radar Robin J. Hogan # , Anthony J. Illingworth, John W. F. Goddard + , Suzanne C. H. M. Jongen # and Henri Sauvageot ++

    E-Print Network [OSTI]

    Hogan, Robin

    Stratocumulus Liquid Water Content from Dual Wavelength Radar Robin J. Hogan # , Anthony J­ quid water content (LWC) of such clouds, but active measure­ ments are required in order to obtain information on the vertical distribution of liquid water in the cloud. One of the main prob­ lems

  8. 6 Model Evaluation III -Radiosonde and radar wind profiler cluster This section describes some of the cluster by cluster comparisons between the WRFb simulations and the radiosonde

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    excess moisture transport from the Gulf of Mexico. For wind speed, the most striking feature6 Model Evaluation III - Radiosonde and radar wind profiler cluster analysis This section describes wind profiler clusters. The clusters and the method used to obtain them are described in detail in de

  9. Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012

    E-Print Network [OSTI]

    Meng, Zhiyong

    wind damage occurred in Beijing, China, during a heavy rainfall event. Through a damage survey that had showed significant evidence that the wind damage was caused by a mesocyclonic tornado rated as a category surface winds at multiple places along the swath. The radar analyses examined here show that the tornado

  10. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 Radar-based Retrievals of Cloud Properties in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 1 Radar Radiation Measurement (ARM) program Cloud and Radiation Testbed (CART) sites, all techniques discussed here can be applied to measurements taken at the different ARM sites. Briefly summarized here

  11. 36 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY 2006 A Novel ELF Radar for Major Oil Deposits

    E-Print Network [OSTI]

    Taflove, Allen

    for Major Oil Deposits Jamesina J. Simpson, Student Member, IEEE, and Allen Taflove, Fellow, IEEE Abstract--This letter proposes a novel extremely low frequency (ELF) radar for major oil deposits. Using our recently provides a sensitive means to detect oil fields that are located within several kilometers of the Earth

  12. Cassandra Wheeler Univ. of Colorado Department of Atmospheric and Oceanic Sciences (ATOC)

    E-Print Network [OSTI]

    .) #12;1. Overview of ASCOS Field Campaign and Remote Sensors 2. Vertically Pointing Radars 3. Ceilometer on the energy budget NOAA's Contribution: Remotely observe cloud layers and environmental conditions Svalbard Oden #12;Ka-Band Radar S-Band Radar Wind Profiler Scanning Radiometer Lidar Ceilometer 2-Channel

  13. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  14. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect (OSTI)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  15. Storm-induced changes of the topside ionosphere as deduced from incoherent-scatter radars. Master's thesis

    SciTech Connect (OSTI)

    Lunn, K.J.

    1990-01-01

    Incoherent scatter radar observations from Millstone Hill, Saint Santin, and Arecibo are used to illustrate changes of the topside ionosphere during a geomagnetic storm. These observations consist of electron density, electron and ion temperatures, and ion velocity components parallel and perpendicular to the magnetic field. These parameters can further describe changes in ion composition, electric fields, and neutral winds. Attention is given to a specific storm during the Equinox Transition Study (ETS) of September 1984. In order to isolate the storm effects in the topside ionosphere, a comparison will be made between a disturbed and quiet day. A novel result from this study is the finding of correlated oscillations between parallel and perpendicular ion velocity components which are apparently storm induced. Previously, these oscillations have been observed primarily at night, but now it's noticed that during storm conditions there are prominent oscillations during the day.

  16. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 8. 3. Special radar, radio, and photographic studies of weapons effects. Part 1, 2, 3, and 4

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    Contents include: Part 1--radar-scope photography; Part 2--effects of atomic detonation on radio propagation; Part 3; photographic assessment of bomb damage; Part 4--film fogging studies.

  17. Spectral and Angular Ground-Based Radar BackScatter Measurements of Greenland Snow Facies. BAUMGARTNER1 F., JEZEK2 K., FORSTER3 R.R., GOGINEN14S.P., and ZABEL5 LH.H.

    E-Print Network [OSTI]

    Kansas, University of

    . The radar cross section of the lens c1 is expressed in meters squared. The sum is made over the successiveSpectral and Angular Ground-Based Radar BackScatter Measurements of Greenland Snow Facies. BAUMGARTNER1 F., JEZEK2 K., FORSTER3 R.R., GOGINEN14S.P., and ZABEL5 LH.H. 1'2'3'5TheByrd Polar Research

  18. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  19. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  20. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    SciTech Connect (OSTI)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.; Burton, S. P.; Ferrare, R. A.; Hostetler, Chris A.; Berg, Larry K.; Lefer, Barry; Haman, C.; Hair, John; Rogers, Ray; Butler, Carolyn; Cook, A. L.; Harper, David

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF15 Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.

  1. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  2. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  3. Towards the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS and seismic networks

    E-Print Network [OSTI]

    Berngardt, O I; Kutelev, K A; Zherebtsov, G A; Dobrynina, A A; Shestakov, N V; Zagretdinov, R V; Bakhtiyarov, V F; Kusonsky, O A

    2015-01-01

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite 'Chelyabinsk', based on the data from the network of GPS receivers, coherent decameter radar EKB SuperDARN and network of seismic stations. It is shown, that 6-14 minutes after the bolide explosion, GPS network observed the cone-shaped wavefront of TIDs that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661+/-256m/s, which corresponds to the expected acoustic wave speed for 240km height. 14 minutes after the bolide explosion, at distances of 200km we observed the emergence and propagation of a TID with spherical wavefront, that is interpreted as gravitational mode of internal acoustic waves. The propagation velocity of this TID was 337+/-89m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB SuperDARN radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite...

  4. VOLUME 37 MARCH 1998J O U R N A L O F A P P L I E D M E T E O R O L O G Y 1998 American Meteorological Society 241

    E-Print Network [OSTI]

    Liou, K. N.

    - tistics were obtained by Mace (1997) based on the 94- GHz radar returns data. During a number of field ex multilayer cirrus cloud systems using AVHRR data. It is based on the physical properties of the AVHRR 0.63- m ground-based lidar and radar im- ages, balloon-borne replicator data, and NCAR­CLASS humidity soundings

  5. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility009 ARM Orientation 1 WarrenARM8

  6. ARM - Radar Backgrounder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPress Releases Related2 ScienceObjectives

  7. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home

  8. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Homepolarization ARM Data Discovery Browse Data Comments? We

  9. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Homepolarization ARM Data Discovery Browse Data Comments?

  10. Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCO RenewableRGSRadar Jump to:

  11. ackerman_radar.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup!

  12. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— We wantInvestigationsMeasurement (ARM) Program A

  13. EM Properties of Magnetic Minerals at RADAR frequencies. D. E. Stillman and G. R. Olhoeft, Department of Geophysics, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (dstillma@mines.edu).

    E-Print Network [OSTI]

    Stillman, David E.

    EM Properties of Magnetic Minerals at RADAR frequencies. D. E. Stillman and G. R. Olhoeft on Earth [3]? It has beeen suggested that the active mag- netic mineral on Mars is titanomaghemite and of magnetic minerals were made versus frequency and temperature (300K-180K). Magnetic minerals and Martian

  14. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ�� cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10�° (latitude) x 10�° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  15. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  16. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR

    E-Print Network [OSTI]

    Amelung, Falk

    Click Here for Full Article Measurements and predictions of subsidence induced by soil technique is presented for measuring and predicting ground subsidence associated with soil consolidation used to measure land subsidence in Mokpo city, Korea which had been primarily built on land reclaimed

  19. InSAR At Brady Hot Springs Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res. Bd. May, 2004) | Open

  20. InSAR At Brady Hot Springs Area (Oppliger, Et Al., 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res. Bd. May, 2004) | OpenInformation