Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liberia-NREL Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Liberia-NREL Biomass Resource Assessment Liberia-NREL Biomass Resource Assessment Jump to: navigation, search Logo: Liberia Biomass Resource Assessment Name Liberia Biomass Resource Assessment Agency/Company /Organization National Renewable Energy Laboratory Partner U.S. Agency for International Development Sector Energy Focus Area Biomass Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/docs/fy09o Country Liberia Western Africa References Assessment of Biomass Resources in Liberia [1] Abstract This study was conducted to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels

2

Biomass Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

3

NREL: Renewable Resource Data Center - Biomass Resource Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

4

NREL: International Activities - Biomass Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

5

Biomass Resource Library  

NLE Websites -- All DOE Office Websites (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

6

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

7

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

8

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers (EERE)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

9

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

10

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

11

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

12

NREL: Learning - Student Resources on Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy...

13

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Biomass Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Biomass Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Biomass Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Biomass Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Biomass Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

14

Biomass Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

extraction of both the fruit and the waste product of the plant itself. References: Biomass Resources Corporation1 This article is a stub. You can help OpenEI by expanding it....

15

Assessment of Biomass Resources in Afghanistan  

SciTech Connect

Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

Milbrandt, A.; Overend, R.

2011-01-01T23:59:59.000Z

16

Biomass Resource Allocation among Competing End Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resource Allocation Biomass Resource Allocation among Competing End Uses Emily Newes, Brian Bush, Daniel Inman, Yolanda Lin, Trieu Mai, Andrew Martinez, David Mulcahy, Walter Short, Travis Simpkins, and Caroline Uriarte National Renewable Energy Laboratory Corey Peck Lexidyne, LLC Technical Report NREL/TP-6A20-54217 May 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Biomass Resource Allocation among Competing End Uses Emily Newes, Brian Bush, Daniel Inman,

17

Assessment of Biomass Resources in Afghanistan  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Biomass Assessment of Biomass Resources in Afghanistan Anelia Milbrandt and Ralph Overend Technical Report NREL/TP-6A20-49358 January 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Assessment of Biomass Resources in Afghanistan Anelia Milbrandt and Ralph Overend Prepared under Task No. WF3N.7001 Technical Report NREL/TP-6A20-49358 January 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

18

NREL: Energy Analysis - Sustainable Biomass Resource Development and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A flowchart illustrating the process flow of life-cycle assessment. Enlarge image NREL's international work in sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can use existing resources in a sustainable manner. It also examines the environmental and socio-economic impacts of resource development and use. Our analysts also look at the relationship of sustainable land use and biomass resource development. They look at whether there is available land to support bioenergy. They also study how we can use this available land for biomass resource development in a sustainable manner. Another key question is how biomass resource development is linked to food supply,

19

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

20

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network (OSTI)

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Biomass energy: the scale of the potential resource  

E-Print Network (OSTI)

of biomass energy in the global energy system is dependent on the complex interplay of four major factors as novel biomass-to-fuel conversion processes for increas- ing the yield of usable energy from each unitBiomass energy: the scale of the potential resource Christopher B. Field1 , J. Elliott Campbell1

22

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. Photo of two men standing in front of large sugar cane plants. Sugar cane is used in Hawaii and other locations to produce energy and ethanol for alternative fuels. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops.

23

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

24

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Miami Dade County Resource Recovery Fac Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miami Dade County Resource Recovery Fac Biomass Facility Miami Dade County Resource Recovery Fac Biomass Facility Jump to: navigation, search Name Miami Dade County Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida Coordinates 25.7889689°, -80.2264393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7889689,"lon":-80.2264393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Riveside Resource Recovery LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Riveside Resource Recovery LLC Biomass Facility Riveside Resource Recovery LLC Biomass Facility Jump to: navigation, search Name Riveside Resource Recovery LLC Biomass Facility Facility Riveside Resource Recovery LLC Sector Biomass Facility Type Landfill Gas Location Will County, Illinois Coordinates 41.5054724°, -88.0900762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5054724,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Southeast Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Southeast Resource Recovery Biomass Facility Southeast Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

North County Regional Resource Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Regional Resource Biomass Facility Regional Resource Biomass Facility Jump to: navigation, search Name North County Regional Resource Biomass Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503°, -80.2767327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6514503,"lon":-80.2767327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Imperial Valley Resource Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Imperial Valley Resource Recovery Plant Biomass Facility Imperial Valley Resource Recovery Plant Biomass Facility Jump to: navigation, search Name Imperial Valley Resource Recovery Plant Biomass Facility Facility Imperial Valley Resource Recovery Plant Sector Biomass Owner Itaska Location Brawley, California Coordinates 32.9786566°, -115.530267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9786566,"lon":-115.530267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pioneer Valley Resource Recovery Biomass Facility Pioneer Valley Resource Recovery Biomass Facility Jump to: navigation, search Name Pioneer Valley Resource Recovery Biomass Facility Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314°, -72.6624209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1172314,"lon":-72.6624209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Hillsborough County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hillsborough County Resource Recovery Biomass Facility Hillsborough County Resource Recovery Biomass Facility Jump to: navigation, search Name Hillsborough County Resource Recovery Biomass Facility Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Microsoft PowerPoint - Biomass Resource Assessments and What...  

Office of Environmental Management (EM)

Biomass Resource Assessments What do you need to know? Marcus Kauffman, Oregon Dept. of Forestry Tribal Leaders Forum Series July 9, 2014 why do we care? * feedstock and raw...

33

Montgomery County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Montgomery County Resource Recovery Biomass Facility Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Montgomery County, Maryland Coordinates 39.1547426°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1547426,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Chapter 2 - Biomass for Biorefining: Resources, Allocation, Utilization, and Policies  

Science Journals Connector (OSTI)

Abstract This chapter discusses the importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass use. Bioenergy development depends on maximizing the amount of biomass obtained from agriculture and forestry, while prioritizing nature conservation and the protection of soils, water, and biodiversity. The major challenges facing the commercial production of biofuels and bioproducts are sustainable biomass availability and capital-intensive biomass processing facilities. The two main competitors for biomass resources are biopower and biofuels, and their future status depends on the federal and state regulations governing them. A combination of policies encouraging infrastructure investment and supporting favorable market conditions appears to be the most effective means for establishing an economically sustainable biofuel supply chain. Understanding the extent of biomass resources, their potential in energy markets, and the most economic utilization of biomass is important in the development of policies that improve energy security and mitigate climate change.

Stephen R. Hughes; Nasib Qureshi

2014-01-01T23:59:59.000Z

35

Biomass and Other Unconventional Energy Resources  

E-Print Network (OSTI)

. The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr.... The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr...

Gershman, H. G.

1982-01-01T23:59:59.000Z

36

Assessment of Biomass Resources from Marginal Lands in APEC Countries |  

Open Energy Info (EERE)

from Marginal Lands in APEC Countries from Marginal Lands in APEC Countries Jump to: navigation, search Logo: Assessment of Biomass Resources from Marginal Lands in APEC Countries Name Assessment of Biomass Resources from Marginal Lands in APEC Countries Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps, Publications Website http://www.biofuels.apec.org/p Country Australia, Brunei, Canada, Chile, China, Indonesia, Japan, South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand, South-Eastern Asia, Northern America, South America, Eastern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, Central America, Australia and New Zealand, Melanesia, South America, South-Eastern Asia, Eastern Europe, , South-Eastern Asia, Northern America, South-Eastern Asia

37

Bay Resource Management Center Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Center Biomass Facility Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass Facility Type Municipal Solid Waste Location Bay County, Florida Coordinates 30.1805306°, -85.684578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1805306,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Survey of Biomass Resource Assessments and Assessment Capabilities in APEC  

Open Energy Info (EERE)

Assessments and Assessment Capabilities in APEC Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Name Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Website http://www.nrel.gov/internatio Country Australia, Brunei, Canada, Chile, China, Indonesia, Japan, South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand, South-Eastern Asia, Northern America, South America, Eastern Asia, South-Eastern Asia, Eastern Asia, Eastern Asia, South-Eastern Asia, Central America, Australia and New Zealand, Melanesia, South America, South-Eastern Asia, Eastern Europe, , South-Eastern Asia, Northern America, South-Eastern Asia

39

SEMASS Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SEMASS Resource Recovery Biomass Facility Jump to: navigation, search Name SEMASS Resource Recovery Biomass Facility Facility SEMASS Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Plymouth County, Massachusetts Coordinates 41.9120406°, -70.7168469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9120406,"lon":-70.7168469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

biomass resources can help meet state and national bioenergythis chemically complex help meet state goals for increasingLCFS), and can similarly help meet significant promise for

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resources Overview Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Darlene Steward, NREL Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 2 Objective * Identify the primary opportunities and challenges for producing and utilizing methane from renewable resources o Biogas from digestion of: - Manure Management - Wastewater Treatment - Food Processing o Landfill gas 3 Bio-energy Pathways; Three Broad Categories of Products Biomass to liquid fuels pathways Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009 Biomass to bioproducts pathways 4 Energy Product Pathway is the Focus of this Workshop Biomass to electricity and/or heat pathways Focus on * Landfill gas * Wastewater treatment sludge * Animal manure * Food processing Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009

42

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources overview and perspectives on best fits for fuel cells. Presented by Darlene Steward, National Renewable Energy Laboratory, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

43

RESOURCES BIOMASS & BIOFUELS MRS BULLETIN VOLUME 33 APRIL 2008 www.mrs.org/bulletin Harnessing Materials for Energy  

E-Print Network (OSTI)

Conversion of Cellulosic Biomass to Ethanol The overall approach to converting cellulosic biomass to ethanol381 RESOURCES · BIOMASS & BIOFUELS MRS BULLETIN · VOLUME 33 · APRIL 2008 · www.mrs.org/bulletin · Harnessing Materials for Energy What Is Cellulosic Biomass? Although ethanol is now made from the sugars

California at Riverside, University of

44

Assessment of Biomass Resources from Marginal Lands in APEC Economies  

SciTech Connect

The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

Milbrandt, A.; Overend, R. P.

2009-08-01T23:59:59.000Z

45

Towards sustainable production of clean energy carriers from biomass resources  

Science Journals Connector (OSTI)

A great fraction of the worlds energy requirements are presently met through the unfettered use of fossil-derived fuels. However, due to the anticipated demise of these energy sources and the environmental and socioeconomic concerns associated with their use, a recent paradigm shift is to displace conventional fuels with renewable energy sources. Among various alternatives, biomasses have garnered tremendous interests as potential feedstock for clean energy production. While numerous biorefinery schemes and conversion technologies exist for the transformation of biomass into usable energy forms, they are not cost-efficient and economically viable to compete with the existing petroleum-refinery technologies. In particular, the recalcitrant nature of several feedstock presents a major technological obstacle for their processing and transformation. Providentially, the synergistic integration of various biochemical and bioprocessing technologies is aiding in the establishment of future biomass energy programs. This article reviews the state of the art and future challenges in the recent development of biomass and associated transformation technologies for clean production of biofuels.

Kajan Srirangan; Lamees Akawi; Murray Moo-Young; C. Perry Chou

2012-01-01T23:59:59.000Z

46

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

renewableenergyresourcesincludebiomass,solarthermalresources: wind, closed?loop biomass, open? loop biomass, geothermal energy, solar

Cattolica, Robert

2009-01-01T23:59:59.000Z

47

An overview of the biomass resource potential of Norway for bioenergy use  

Science Journals Connector (OSTI)

This paper provides an overview of the Norwegian biomass resources for bioenergy use, bioenergy market and frame conditions through a comparison with Denmark, Finland and Sweden, which have a leading role in bioenergy production in the European Union. Although the contribution of renewable energy in Norway is among the highest in Europe (58%), mainly due to hydroelectricity, bioenergy has a low contribution to Norwegian energy supply (6%). As the experience from the other EU Member States showed, long-term, stable policies and relatively strong incentives are needed to initiate and build up a bioenergy market. In Norway, there is still a significant available potential for increasing the bioenergy contribution to the energy supply. The abundance and relatively low prices of energy (i.e. fossil fuels and electricity), in connection with the need of high investment costs, did not favour so far bioenergy production. Additional forest biomass may be mobilized in Norway by more intensive management of currently exploited forests. However, there are several limitations related to topography, accessibility and economics. The biomass resources and the full range of technologies available for heat or electricity generation both at small and large scale that can provide good opportunities for increased bioenergy production. The experience gained in Denmark, Finland and Sweden may be relevant for Norway, as well as for other EU Member States, where there is a deficit of mobilization of biomass resources and insufficient industrial integration of bioenergy with other forest-based sectors.

Nicolae Scarlat; Jean-Francois Dallemand; Odd Jarle Skjelhaugen; Dan Asplund; Lars Nesheim

2011-01-01T23:59:59.000Z

48

Pilot design of biomass energy resources inquiry system based on MapX: a case of Liyang city in China  

Science Journals Connector (OSTI)

With the rapid development of large- and medium-scale biomass energy utilisation in Jiangsu Province of China, to explore the potential of biomass energy resources availability becomes increasingly necessary. This paper analyses the biomass energy resources within Liyang City of Changzhou and designs a referral information system based on MapX software provided by Mapinfo GIS platform. The system is secondarily developed according to practical demand and achieves many functions of professional GIS software such as amplification, dwindling, scale enquiry, point enquiry, thememap and so on. The enquiry system will provide valuable reference to energy and environmental policies or relevant biomass energy enterprises.

Peibing Yan; Weiming Wu; Xiaohua Wang

2008-01-01T23:59:59.000Z

49

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

50

Assessment of biomass energy resources and related technologies practice in Bangladesh  

Science Journals Connector (OSTI)

Abstract Bangladesh is energy starve country facing a severe power crisis for the last few decades because of inadequate power generation capacity compared with demand. The power generation of the country largely depends on the non-renewable (fossil fuel) energy sources, mainly on the natural gas as accounts 64.5% of recent installed capacity. This trend causes rapid depletion of non-renewable energy sources. Thus, it is necessary to trim down the dependency on non-renewable energy sources and utilize the available renewable resources to meet the huge energy demand facing the country. Most of the people living in rural, remote, coastal and isolated areas in Bangladesh have no electricity access yet. However, renewable energy resources, especially biomass can play a pivotal role to electrify those rural, remote, coastal and isolated areas in the country. Humankind has been using biomass as an energy source for thousands of years. This study assesses the bio-energy potential, utilization and related Renewable Energy Technologies (RETs) practice in Bangladesh. Improved cooking stove, biogas plant and biomass briquetting are the major \\{RETs\\} commonly practiced in Bangladesh. The assessment includes the potential of agricultural residue, forest residue, animal manure and municipal solid waste. The estimated total amount of biomass resource available for energy in Bangladesh in 20122013 is 90.21 million tons with the annual energy potential of 45.91 million tons of coal equivalent. The recoverable amount of biomass (90.21 million tons) in 20122013 has an energy potential of 1344.99PJ which is equivalent to 373.71TWh of electricity.

P.K. Halder; N. Paul; M.R.A. Beg

2014-01-01T23:59:59.000Z

51

A Geographic Perspective on the Current Biomass Resource Availability in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

A Geographic Perspective on A Geographic Perspective on the Current Biomass Resource Availability in the United States A. Milbrandt Technical Report NREL/TP-560-39181 December 2005 A Geographic Perspective on the Current Biomass Resource Availability in the United States A. Milbrandt Prepared under Task No. HY55.2200 Technical Report NREL/TP-560-39181 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

52

Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Biomass Resource Assessments Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Energy Working Group November 2008 NREL/TP-6A2-43710. Posted with permission. Report prepared for the APEC Energy Working Group under EWG 01/2007A by: Anelia Milbrandt National Renewable Energy Laboratory (NREL) Golden, Colorado, USA Web site: www.nrel.gov Dr. Ralph P. Overend NREL Research Fellow (Retired) Ottawa, Ontario, Canada APEC# 208-RE-01.9 Acknowledgments The authors would like to acknowledge and thank the project overseer Mr. Jeffrey Skeer (Department of Energy, USA and chair of APEC Biofuels Task Force) for his support and guidance throughout this project. The authors also greatly appreciate the time and valuable contributions of the following individuals:

53

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

recycling and biomass conversion. More than a million tonsmost cellulosic biomass conversion processes should operateConversion process Fuel type Solid Thermochemical Biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

54

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

power plant. and pyrolysis of biomass by heating underpyrolysis oils) Producer gas Synthesis gas (syngas) Substitute natural gas (SNG) Hydrogen Biochemical Biosolids Physiochemical Densified biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

55

Assessment of Biomass Resources from Marginal Lands in APEC Economies, August 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL/TP-6A2-46209 NREL/TP-6A2-46209 Posted with permission. Assessment of Biomass Resources from Marginal Lands in APEC Economies Energy Working Group August 2009 This report was prepared for the APEC Energy Working Group under EWG 11/2008A by: Anelia Milbrandt National Renewable Energy Laboratory (NREL) Golden, Colorado, USA Web site: www.nrel.gov Dr. Ralph P. Overend NREL Research Fellow (Retired) Ottawa, Ontario, Canada APEC#209-RE-01.4 Acknowledgments The authors would like to acknowledge and thank the project overseer, Mr. Jeffrey Skeer (Department of Energy, USA and chair of the APEC Biofuels Task Force), for his support, review, and guidance throughout this project. We also thank Mr. Mark Stumborg from Agriculture and Agri-Food Canada for his review and recommendations.

56

Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options  

Science Journals Connector (OSTI)

Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options ... This effort simultaneously proceeded with an enforcement of the industry and households to reduce or eliminate the discharge of toxic pollutants into the sewer. ... A lot of effort has been put into the manufacturing of valuable products by thermal solidification of the inorganic sludge compounds, especially in Japan. ...

Wim Rulkens

2007-09-25T23:59:59.000Z

57

Feasibility study and resource assessment for biomass CHP plant at sawmill facility.  

E-Print Network (OSTI)

??Combined Heat and Power (CHP) technology to use woody biomass as a fuel has beensignificantly advancing in the past years, but the approach to analyze (more)

Guthula, Phani Kishor.

2011-01-01T23:59:59.000Z

58

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

In addition to ethanol, other energy types might emerge inthe higher octane of ethanol offsets the energy penalty forto increase ethanol yields. Energy uses for biomass Fig. 4.

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

59

Biomass Basics  

Energy.gov (U.S. Department of Energy (DOE))

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

60

NREL: Climate Neutral Research Campuses - Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

62

Quantitative appraisal of biomass resources and their energy potential in Egypt  

Science Journals Connector (OSTI)

Abstract The utilization of biomass as a renewable source of energy is important from the energetic as well as the environmental viewpoint. It can reduce the rate of fossil fuel depletion caused by the rapid increase in energy consumption. This paper presents an estimation of the biomass and its potential energy in Egypt. Four main types of biomass energy sources are included: agricultural residues (dedicated bioenergy crop residues), municipal solid wastes, animal wastes, and sewage sludge. The potential biomass quantity and its theoretical energy content were computed according to statistical reports, literature reviews, and personal investigations. The results show that Egypt produces a considerable amount of biomass with a total theoretical energy content of 416.91015J. The dry biomass produced from bioenergy crop residue sources has been estimated at about 12.33 million tons/year, of which 63.75% is produced from rice straw. This source represents the highest percentage (44.6%) of the total theoretical potential energy in Egypt, followed by municipal solid wastes, which could produce 41.7% from an annual amount of 34.6 million tons. Meanwhile, the rest of the total theoretical potential energy could be produced from animal and sewage wastes. The estimated biomass with its considerable potential energy content represents an important renewable energy source in Egypt.

N. Said; S.A. El-Shatoury; L.F. Daz; M. Zamorano

2013-01-01T23:59:59.000Z

63

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

fuel purchases. On an energy basis, corn prices of $4 perEthanol from corn using biomass for process energy exceedssuch as the Midwest Corn Belt. Energy crops may aid in

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

64

Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites  

SciTech Connect

Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

2014-09-16T23:59:59.000Z

65

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

66

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

67

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

solar, geothermal, and biomass energy resources in Nevadamay make it difficult for biomass energy companies to accessmay be an opportunity for biomass energy crops and biomass

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

68

Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator  

Science Journals Connector (OSTI)

Abstract This paper deals with how demand response can contribute to the better integration of renewable energy resources such as wind power, solar, small hydro, biomass and CHP. In particular, an economic evaluation performed by means of the micro-power optimization model HOMER Energy has been done, considering a micro-grid supplied by a biomass gasification power plant, operating isolated to the grid and in comparison with other generation technologies. Different scenarios have been simulated considering variations in the power production of the gasified biomass generator and different solutions to guarantee the balance generation/consumption are analyzed, demonstrating as using demand response resources is much more profitable than producing this energy by other conventional technologies by using fossil fuels.

Lina Montuori; Manuel Alczar-Ortega; Carlos lvarez-Bel; Alex Domijan

2014-01-01T23:59:59.000Z

69

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

70

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

usebiomass,waste,orrenewableresources(includingwind,and emerging renewable resource technologies. new, and emerging renewable resources. The goal of

Cattolica, Robert

2009-01-01T23:59:59.000Z

71

The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen  

Science Journals Connector (OSTI)

Abstract The impact of limited water and nitrogen (N) supply on maize productivity and on the utilisation efficiency of key production resources (radiation, water and N) was quantified in two field experiments during consecutive seasons in Canterbury, New Zealand. In experiment 1 crops were subjected to five N treatment rates (0400kgN/ha) and, in experiment 2, to three N (0 to 250kg/haN) and two water regimes (dryland and fully irrigated) using a rain-shelter structure. Limited N and water reduced yield and affected resource-use efficiencies. Total biomass ranged from 8Mg DM/ha for dryland nil N crops to up to 28MgDM/ha for fully irrigated and N fertilised crops. Radiation use efficiency declined with N and water limitation from a maximum of 1.4gDM/MJ to 0.6g DM/MJ. Transpiration water use efficiency was higher in water stressed crops than irrigated crops (5070kgDM/ha/mm) and increased linearly with N fertilizer rates in proportion to the increase in radiation use efficiency. The crop conductance decreased from 0.19mm/MJ in irrigated crops to 0.07mm/MJ in dryland crops with negligible response to N fertilizer rates. Nitrogen use efficiency declined with N input rates from 100 to 150kg DM/kg N, being inversely related to the efficiency of both water and radiation use. Dryland crops recovered 25% less N from applied fertilizer than irrigated crops. These results highlight that benchmarks of resource efficiency need to consider the level of intensification of the production system and illustrate trade-offs between yield targets and the efficiency of water and N use, that depend on the scale of analysis. To establish a balance between economic returns and environmental impacts, these trade-offs need to be managed depending on the relative values assigned to the use-efficiency of each input resource in relation to crop productivity.

Edmar I. Teixeira; Michael George; Thibault Herreman; Hamish Brown; Andrew Fletcher; Emmanuel Chakwizira; John de Ruiter; Shane Maley; Alasdair Noble

2014-01-01T23:59:59.000Z

72

Biomass Resources , Worldwide  

Science Journals Connector (OSTI)

The way bioenergy is developed, under what conditions, and...78, 79] with examples of such scenarios for Argentina). Bioenergy has the opportunity to contribute to climate ... and developing countries alike but t...

Dr. Andr Faaij

2012-01-01T23:59:59.000Z

73

Biomass Resources , Worldwide  

Science Journals Connector (OSTI)

The way bioenergy is developed, under what conditions, and...78, 79] with examples of such scenarios for Argentina). Bioenergy has the opportunity to contribute to climate ... and developing countries alike but t...

Dr. Andr Faaij

2013-01-01T23:59:59.000Z

74

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network (OSTI)

liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

75

CFD Modeling of Biomass Gasification Using a Circulating Fluidized Bed Reactor.  

E-Print Network (OSTI)

??Biomass, as a renewable energy resource, can be utilized to generate chemicals, heat, and electricity. Compared with biomass combustion, biomass gasification is more eco-friendly because (more)

Liu, Hui

2014-01-01T23:59:59.000Z

76

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

77

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

78

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

SciTech Connect

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

79

Availability Assessment of Carbonaceous Biomass in California as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuel  

E-Print Network (OSTI)

is available for biomass conversion technologies, animalor residual biomass materials for conversion into valuableCalifornias biomass resources is based on conversion as

Valkenburg, C; Norbeck, J N; Park, C S

2005-01-01T23:59:59.000Z

80

Biomass recycling and the origin of phenotype in fungal mycelia  

Science Journals Connector (OSTI)

...resource in each cell, the biomass conversion efficiency (gamma0.2...genotype In modelled systems where biomass conversion efficiency, gamma, is low...at each time step due to the biomass conversion efficiency parameter, but...

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Synthetic biology and biomass conversion: a match made in heaven?  

Science Journals Connector (OSTI)

...Y. 2007 Harnessing energy from plant biomass. Curr. Opin. Chem...processes for conversion of biomass to useful products...Biodegradation, Environmental Biomass Biotechnology methods...Biology methods Ecology Energy-Generating Resources...

2009-01-01T23:59:59.000Z

82

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network (OSTI)

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

83

Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances  

Science Journals Connector (OSTI)

The conversion of biomass into resources has gained considerable attention for ... the most effective methods among several processes for conversion of biomass into resources, because water under high temperature...

Yusuke Takeuchi; Fangming Jin; Kazuyuki Tohji

2008-04-01T23:59:59.000Z

84

Experimental Study on the Combustion Characteristics of Stalk Biomass Fuel  

Science Journals Connector (OSTI)

China is an agriculture country. Biomass resource will be up to 65 hundred ... average heating value is 15000kJ/kg, those biomass resources are equivalent to 33 hundred million ... double annual total energy cons...

Jian-xing Ren; Fang-qin Li; Qi-fen Li

2007-01-01T23:59:59.000Z

85

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan

2007-01-01T23:59:59.000Z

86

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

87

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

88

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

89

Biomass Program Monthly News Blast: August  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The updated report and its supporting data improve our understanding of future biomass markets and will be a critical resource for landowners, businesses, and other potential...

90

Utilization of durian biomass for biorenewable applications.  

E-Print Network (OSTI)

??The utilization of tropical fruit biomass as feedstock for biorenewable resources is an attractive proposition due to its abundance and potential to reduce reliance on (more)

Bin Bujang, Ahmad Safuan

2014-01-01T23:59:59.000Z

91

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

92

Availability and Assessment of Carbonaceous Biomass in the United States as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuels  

E-Print Network (OSTI)

is available for biomass conversion technologies, animalor residual biomass materials for conversion into valuableCalifornias biomass resources is based on conversion as

Valkenburg, C; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

93

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

94

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

95

Resources  

Energy.gov (U.S. Department of Energy (DOE))

Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

96

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

97

Harvesting a renewable resource under uncertainty  

E-Print Network (OSTI)

is pervasive for renewable resources, and it can play aConsider a valuable renewable resource whose biomass X2003. Harvesting a renewable resource under uncertainty,

Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

98

AGCO Biomass Solutions: Biomass 2014 Presentation  

Energy.gov (U.S. Department of Energy (DOE))

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

99

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

100

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Maps Biomass Maps These maps illustrate the biomass resources available in the United States by county. Biomass feedstock data are analyzed both statistically and graphically using a geographic information system (GIS). The following feedstock categories are evaluated: crop residues, forest residues, primary and secondary mill residues, urban wood waste, and methane emissions from manure management, landfills, and domestic wastewater treatment. Biomass Resources in the United States Map of Total Biomass Resources in the United States Total Resources by County Total Biomass per Square Kilometer These maps estimate the biomass resources currently available in the United States by county. They include the following feedstock categories: crop residues (5 year average: 2003-2007) forest and primary mill residues

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biomass Crop Assistance Program (BCAP) | Open Energy Information  

Open Energy Info (EERE)

Biomass Crop Assistance Program (BCAP) Biomass Crop Assistance Program (BCAP) Jump to: navigation, search Tool Summary Name: Biomass Crop Assistance Program (BCAP) Agency/Company /Organization: United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Develop Finance and Implement Projects Resource Type: Guide/manual User Interface: Website Website: www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap Cost: Free The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. Overview The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. The Biomass Crop

102

Biomass and Coal Fly Ash in Concrete: Strength, Durability, Microstructure, Quantitative Kinetics of Pozzolanic Reaction and Alkali Silica Reaction Investigations.  

E-Print Network (OSTI)

?? Biomass represents an important sustainable energy resource, with biomass-coal cofiring representing among the most effective and cost efficient CO2 reduction strategies. Fly ash generated (more)

Wang, Shuangzhen

2007-01-01T23:59:59.000Z

103

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

104

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

105

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

106

Biomass shock pretreatment  

SciTech Connect

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

107

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Ld

2012-01-01T23:59:59.000Z

108

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network (OSTI)

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

Singh, Anup

109

ORNL/TM-2008/105 Cost Methodology for Biomass  

E-Print Network (OSTI)

ORNL/TM-2008/105 Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Resource and Engineering Systems Environmental Sciences Division COST METHODOLOGY FOR BIOMASS FEESTOCKS ....................................................................................................... 3 2.1.1 Integrated Biomass Supply Analysis and Logistics Model (IBSAL).......................... 6 2

Pennycook, Steve

110

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network (OSTI)

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

111

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

112

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

113

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

114

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

115

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

116

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

118

Biomass Analytical Library  

NLE Websites -- All DOE Office Websites (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

119

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

120

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

122

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

123

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

124

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

125

A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid  

E-Print Network (OSTI)

R.G.B and J.A.E. ). Keywords: biomass carboxylic acids 10.1002/cssc.201000111 A Direct, Biomass-Based Synthesis ofaro- matic compounds from biomass resources could provide a

2010-01-01T23:59:59.000Z

126

Evaluation of Basic Parameters for Packaging, Storage and Transportation of Biomass Material from Field to Biorefinery  

E-Print Network (OSTI)

for biofuels primarily because it is a renewable _________________ This thesis follows the style of Biomass and Bioenergy. 2 and sustainable resource. Secondly, it has a low sulfur content and a positive impact on the environment[1]. Biomass energy...

Paliwal, Richa

2012-02-14T23:59:59.000Z

127

Biomass as Traditional and Local Source of Energy in the Czech Republic  

Science Journals Connector (OSTI)

The paper is focused on history of biomass usage in the Czech Republic importance ... policy. It is also clarified usage of biomass energy in present times from the sources point ... resources. There is defined...

Eduard Scerba; Jan Skorpil; Emil Dvorsky

2009-01-01T23:59:59.000Z

128

Mapping Biomass Distribution Potential  

E-Print Network (OSTI)

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

129

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

consists of biomass and hydropower resources. The technologyBiomass, geothermal, and hydropower are found to represent acost of Washington (WA) hydropower under the competitive

Mills, Andrew

2010-01-01T23:59:59.000Z

130

Astonfield Renewable Resources Ltd ARRL | Open Energy Information  

Open Energy Info (EERE)

Astonfield Renewable Resources Ltd ARRL Jump to: navigation, search Name: Astonfield Renewable Resources Ltd. (ARRL) Place: New York, New York Zip: 10017 Sector: Biomass, Solar...

131

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

132

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

133

Sandia National Laboratories: Lignocellulosic Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

134

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

135

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

136

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen ber den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

137

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Biomass Investment Group Inc BIG | Open Energy Information  

Open Energy Info (EERE)

Investment Group Inc BIG Investment Group Inc BIG Jump to: navigation, search Name Biomass Investment Group Inc (BIG) Place Asheville, North Carolina Zip 28806 Sector Biomass Product Developing large-scale production of biomass resources using environmentally-friendly and sustainable production systems and conversion technologies. References Biomass Investment Group Inc (BIG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biomass Investment Group Inc (BIG) is a company located in Asheville, North Carolina . References ↑ "Biomass Investment Group Inc (BIG)" Retrieved from "http://en.openei.org/w/index.php?title=Biomass_Investment_Group_Inc_BIG&oldid=342850" Categories:

139

Biomass Scenario Model | Open Energy Information  

Open Energy Info (EERE)

Biomass Scenario Model Biomass Scenario Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Scenario Model (BSM) Agency/Company /Organization: National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options Topics: Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: bsm.nrel.gov/ Country: United States Cost: Free OpenEI Keyword(s): EERE tool, Biomass Scenario Model UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Biomass energy analysis for crop dehydration  

SciTech Connect

In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

Whittier, J.P.; Haase, S.G.; Quinn, M.W. [and others

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pretreated densified biomass products  

SciTech Connect

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

142

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

143

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

144

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

145

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

146

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

147

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

148

Research and development on biomass energy in China  

Science Journals Connector (OSTI)

Like developed countries, China is facing two serious constraints energy shortage and environmental pollution, which hinder the development of the national economy and improvements in living conditions. On the other hand, China has a huge amount of biomass resource. It is estimated that the total amount of biomass resource is up to 5.2x108 tons of oil equivalent (TOE) in which crop residue resource is up to 2.7x108 TOE, firewood over 5.2x107 TOE and animal dung about 1.0x108 TOE. Biomass is a clean energy resource and can be explored as a convenient energy. Since the 1980s, several Chinese institutes have developed various biomass energy conversion technologies and applied these successfully in rural areas. Up to 1999, about 1.58 million TOE of energy consumption in China came from biomass energy through energy-efficient technology and biomass energy conversion technology. China is planning to develop biomass energy on a larger scale. By 2010, energy provided by these technologies may reach up to 14.1 million TOE. Through advanced technologies, biomass will give us more benefits in energy, the environment and the economy if some problems related to technical, economic, political and financial issues can be resolved successfully.

Z. Yuan; C.Z. Wu; H. Huang; G.F. Lin

2002-01-01T23:59:59.000Z

149

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass.  

E-Print Network (OSTI)

??Lignocellulosic biomass is the most abundant source of organic carbon on Earth with the highest potential to economically and sustainably replace fossil resources for large-scale (more)

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

150

Development of a Web-based woody biomass energy expert system.  

E-Print Network (OSTI)

??Woody biomass is evolving as a potential bioenergy feedstock at an industrial scale to provide the required supply for industries relying on these resources at (more)

Dhungana, Sabina.

2009-01-01T23:59:59.000Z

151

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

152

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

153

Grid-Connected Renewable Energy Generation Toolkit-Biomass | Open Energy  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Biomass Grid-Connected Renewable Energy Generation Toolkit-Biomass Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass Agency/Company /Organization: United States Agency for International Development Sector: Energy Focus Area: Biomass Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_2/index.shtml#update Grid-Connected Renewable Energy Generation Toolkit-Biomass Screenshot References: Grid-Connected Renewable Energy-Biomass[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Biomass Biomass Toolkit References ↑ "Grid-Connected Renewable Energy-Biomass" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Biomass&oldid=375080

154

Tree Biomass Estimates on Forest Land in California's North Coast Region1  

E-Print Network (OSTI)

Tree Biomass Estimates on Forest Land in California's North Coast Region1 Tian-Ting Shih2 Tree biomass is one essential component in a forest ecosystem and is getting more attention nowadays due to its sequestration, energy production, and other natural and social resources uses and impacts. A biomass estimator

Standiford, Richard B.

155

Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure  

Science Journals Connector (OSTI)

...typically recorded. Biomass is an alternative...of resource use; energy flow is correlated...that the same total energy flux would support a larger biomass of a large bodied...by a decrease in biomass, community energy use remained approximately...

2010-01-01T23:59:59.000Z

156

Hydrothermal Liquefaction of Biomass in Hot-Compressed Water, Alcohols, and Alcohol-Water Co-solvents for Biocrude Production  

Science Journals Connector (OSTI)

HTL technology is particularly promising for converting wet biomass resources such as microalgae, agro waste streams (e.g., manures), municipal/industrial wastewater sludge and fresh/green forest biomass/residues...

Chunbao Charles Xu; Yuanyuan Shao

2014-01-01T23:59:59.000Z

157

Biomass and Coal Fly Ash in Concrete: Strength, Durability, Microstructure, Quantitative Kinetics of Pozzolanic Reaction and Alkali Silica Reaction Investigations.  

E-Print Network (OSTI)

??Biomass represents an important sustainable energy resource, with biomass-coal cofiring representing among the most effective and cost efficient CO2 reduction strategies. Fly ash generated during (more)

Wang, Shuangzhen 1971-

2007-01-01T23:59:59.000Z

158

Environmental implications of increased biomass energy use. Final report  

SciTech Connect

This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

1992-03-01T23:59:59.000Z

159

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

160

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-05-01T23:59:59.000Z

162

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

163

Downdraft gasification of biomass.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

164

Biomass: Biogas Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

165

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

166

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

167

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

168

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

169

Biomass Indirect Liquefaction Workshop  

Energy.gov (U.S. Department of Energy (DOE))

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

170

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

171

Woody biomass energy potential in 2050  

Science Journals Connector (OSTI)

Abstract From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 023Gm3/year (0165EJ/year) when energy wood prices vary in a range of 030$/GJ (0216$/m3). If we add household fuelwood to energy wood, then woody biomass could satisfy 218% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%.

Pekka Lauri; Petr Havlk; Georg Kindermann; Nicklas Forsell; Hannes Bttcher; Michael Obersteiner

2014-01-01T23:59:59.000Z

172

Arctic energy resources  

SciTech Connect

The Arctic is a vulnerable region with immense resources. These range from the replenishable (tidal energy, hydroelectricity, wood, biomass, fish, game, and geothermal energy) to the non-replenishable (coal, minerals, natural gas, hydrocarbon deposits). But the problems of exploiting such resources without damaging the environment of the Arctic are formidable. In this book all aspects are considered: occurrence of energy resources; the technological and economic aspects of exploration and exploitation; the environmental and social impact of technological development.

Rey, L.

1983-01-01T23:59:59.000Z

173

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

174

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

175

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

176

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

177

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

178

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

179

Module Handbook Specialisation Biomass Energy  

E-Print Network (OSTI)

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

180

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

182

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

183

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

184

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

185

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

186

Developing better biomass feedstock | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

187

NREL: Biomass Research - Video Text  

NLE Websites -- All DOE Office Websites (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

188

Bioconversion of biomass to methane  

SciTech Connect

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

189

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

190

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

191

Agricultural Biomass Income Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Agricultural Biomass Income Tax Credit (Personal) < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate Statewide annual limit of 5 million in total credits Program Info Start Date 1/1/2011 State New Mexico Program Type Personal Tax Credit Rebate Amount 5 per wet ton Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0171.pdf House Bill 171] of 2010 created a tax credit for agricultural biomass from a dairy or feedlot transported to a facility that uses agricultural biomass to generate electricity or make biocrude or other liquid or gaseous fuel for commercial use. For the purposes of this tax credit, agricultural biomass means wet manure. The Energy, Minerals and Natural Resources Department may

192

Agricultural Biomass Income Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Agricultural Biomass Income Tax Credit (Corporate) < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate Statewide annual limit of 5 million in total credits Program Info Start Date 1/1/2011 State New Mexico Program Type Corporate Tax Credit Rebate Amount 5 per wet ton Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0171.pdf House Bill 171] of 2010 created a tax credit for agricultural biomass from a dairy or feedlot transported to a facility that uses agricultural biomass to generate electricity or make biocrude or other liquid or gaseous fuel for commercial use. For the purposes of this tax credit, agricultural biomass means wet manure. The Energy, Minerals and Natural Resources Department may

193

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

194

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

195

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

196

DOE 2014 Biomass Conference  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

197

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

198

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

199

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

200

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biomass 2014 Poster Session  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

202

DOE-Biomass Cookstoves Technical Meeting:Summary Report | Open Energy  

Open Energy Info (EERE)

DOE-Biomass Cookstoves Technical Meeting:Summary Report DOE-Biomass Cookstoves Technical Meeting:Summary Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE-Biomass Cookstoves Technical Meeting: Summary Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Biomass, - Biomass Combustion Topics: Co-benefits assessment, - Energy Access Resource Type: Publications Website: www1.eere.energy.gov/biomass/pdfs/cookstove_meeting_summary.pdf Cost: Free Language: English References: DOE-Biomass Cookstoves Technical Meeting: Summary Report[1] Logo: DOE-Biomass Cookstoves Technical Meeting: Summary Report "The U.S. Department of Energy's (DOE's) offices of Policy and International Affairs (PI) and Energy Efficiency and Renewable Energy (EERE) held a meeting on January 11-12, 2011, to gather input on a

203

Conversion of Biomass Syngas to DME Using a Microchannel Reactor  

Science Journals Connector (OSTI)

Conversion of Biomass Syngas to DME Using a Microchannel Reactor ... The purpose of the research discussed here is to develop such a process capable of converting syngas generated from gasification of dispersed biomass resources. ... MeOH was converted to water and hydrocarbons, with up to 70% selectivity to C2-4 olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with P compds. ...

Jianli Hu; Yong Wang; Chunshe Cao; Douglas C. Elliott; Don J. Stevens; James F. White

2005-02-18T23:59:59.000Z

204

Mini-biomass electric generation  

SciTech Connect

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

205

NREL: Learning - Student Resources on Bioproducts  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioproducts Bioproducts Photo of a student at a desk. Many of the materials we use in school, such as glue and the plastic for colored markers, can be developed from biomass. The following resources provide information on bioproduct or biobased product technologies. If you are unfamiliar with these technologies, see the introduction to bioproducts. Grades 6-8 NREL Renewable Energy Activities-Choices for Tomorrow Has biomass activities for students. High School and College Level Biomass Pyrolysis Network Provides information on scientific and technological developments in biomass pyrolysis. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources

206

U.S. Department of Energy Biomass Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biofuels Technology Algae Biofuels Technology Office Of Biomass Program Energy Efficiency and Renewable Energy Jonathan L. Male May 27, 2010 Biomass Program * Make cellulosic ethanol cost competitive, at a modeled cost for mature technology of $1.76/gallon by 2017 * Help create an environment conducive to maximizing production and use of biofuels- 21 billion gallons of advanced biofuels per year by 2022 (EISA) Feedstocks Biofuels Infrastructure Integrated Biorefineries Conversion Develop and transform our renewable and abundant, non-food, biomass resources into sustainable, cost-competitive, high-performance biofuels, bioproducts and biopower. Focus on targeted research, development, and demonstration * Through public and private partnerships * Deploy in integrated biorefineries

207

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

208

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

209

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

210

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

211

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

212

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

213

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

214

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

215

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

216

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

217

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

218

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

219

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

220

NREL: Biomass Research - David W. Templeton  

NLE Websites -- All DOE Office Websites (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

222

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

223

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

224

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

225

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

226

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

228

Fixed Bed Biomass Gasifier  

SciTech Connect

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

229

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

230

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

231

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

232

Biomass Feedstock National User Facility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

233

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

234

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

235

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

236

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

237

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

238

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

239

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

240

13, 3226932289, 2013 Biomass burning  

E-Print Network (OSTI)

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

242

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

243

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

244

THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK  

E-Print Network (OSTI)

97505 THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources

245

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

246

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

247

Biogas and Biomass to Energy Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Energy Sources Maximum Rebate Feasibility Studies: $2,500 Biogas to Energy Systems: $225,000 Biomass to Energy Systems: $500,000 Program Info Start Date 12/16/1997 State Illinois Program Type State Grant Program Rebate Amount Up to 50% of project cost Provider University of Illinois at Chicago '''The most recent application period closed April 30, 2012. Check the program web site for updates on future solicitations. ''' The Renewable Energy Resources Program (RERP) promotes the development of

248

Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids  

Science Journals Connector (OSTI)

Growing concerns on global warming and the depletion of traditional resources have driven us to look for green and sustainable energy sources. As a biomass-derived platform chemical, the production of 5-HMF has b...

Xinhua Qi; Richard L. Smith Jr.; Zhen Fang

2014-01-01T23:59:59.000Z

249

Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass  

Science Journals Connector (OSTI)

is a promising renewable resource for biofuels and numerous value-added chemicals. Pyrolysis is a widely adopted process for the thermal breakdown of biomass feedstocks in the absence of oxygen which leads ...

Pankaj K. Kanaujia

2014-10-01T23:59:59.000Z

250

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Recovery of energy from sludge-Comparison of the various2006. Wim Rulkens, Sewage sludge as a biomass resource forEpstein, E. , Sewage sludge and effluent use in agriculture,

FAN, XIN

2012-01-01T23:59:59.000Z

251

Experimental and Simulation Study of Fluidization Behavior of Palm Biomass in a Circulating Fluidized Bed Riser  

Science Journals Connector (OSTI)

? Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City, Egypt ... Compared with the other renewable energy resources, biomass is abundant in annual production, up to 2740 quads (1 quad = 1015 Btu), with geographically widespread distribution in the world. ...

Ahmad Hussain; Iqbal Ahmed; Hani Hussain Sait; Mohamed Ismail Bassyouni; Abdelkarim Morsy Hegab; Syed Waheed ul Hasan; Farid Nasir Ani

2013-11-15T23:59:59.000Z

252

A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project  

Science Journals Connector (OSTI)

...climate, geography, biological resources, cultural traditions and politico-economic situations. A range of biomass feedstocks are employed for bioenergy production in the Asia-Oceania countries, such as oil palm (Malaysia and Indonesia...

2011-01-01T23:59:59.000Z

253

Catalytic Reforming of Biomass Raw Fuel Gas to Syngas for FT Liquid Fuels Production  

Science Journals Connector (OSTI)

The gasification of biomass to obtain a syngas provides a competitive means for clean FT (Fischer-Tropsch) liquid fuels from renewable resources. The feasibility of the process depends on the upgrading of raw ...

Tiejun Wang; Chenguang Wang; Qi Zhang

2009-01-01T23:59:59.000Z

254

Progress in the technology of energy conversion from woody biomass in Indonesia  

Science Journals Connector (OSTI)

Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can ... conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations

Tjutju Nurhayati; Yani Waridi; Han Roliadi

2006-09-01T23:59:59.000Z

255

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

256

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

257

10/9/2003 1 Export of biomass from Russia  

E-Print Network (OSTI)

10/9/2003 1 Export of biomass from Russia in the context of climate change policies By: Hans Jansen Complex of Northwest Russia and expanding interaction with EU countries in environment protection" (11- 12 #12;Timber Resources of Russia Ekaterinburg St.-Petersburg Moscow Novosibirsk Nizhni Novgorod Rostov

258

Energy and Society (ER 100/200, PP 184/284) Fall 2013 Topics: Biomass, Transportation, Climate Change Problem Set #7  

E-Print Network (OSTI)

Energy and Society (ER 100/200, PP 184/284) Fall 2013 Topics: Biomass, Transportation, Climate work at the wheels (motion). How much energy from one acre- year of biomass is delivered to the wheels for transportation, if we are concerned about utilizing biomass resources most energy efficiently, should we use

Kammen, Daniel M.

259

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

262

High-biomass sorghums for biomass biofuel production  

E-Print Network (OSTI)

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

263

Policies for Renewable Energies/Biomass in India | Open Energy Information  

Open Energy Info (EERE)

Policies for Renewable Energies/Biomass in India Policies for Renewable Energies/Biomass in India Jump to: navigation, search Name Policies for Renewable Energies/Biomass in India Agency/Company /Organization Government of India Sector Energy Focus Area Renewable Energy, Biomass Topics Policies/deployment programs Website http://www.nri.org/projects/bi Country India UN Region South-Eastern Asia References Policies for Renewable Energies/Biomass in India[1] Overview "India's search for new and renewable energy resources that would ensure sustainable development and energy security began in early 70's of the last century. Consequently, use of various renewable energy resources and efficient use of energy were identified as the two thrust areas of the sustainable development. Realising the need for concentrated efforts in

264

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the worlds annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

265

Biomass District Heat System for Interior Rural Alaska Villages  

SciTech Connect

Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the right sized harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

Wall, William A.; Parker, Charles R.

2014-09-01T23:59:59.000Z

266

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

267

Biomass 2014: Breakout Speaker Biographies  

Energy.gov (U.S. Department of Energy (DOE))

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29July 30 in Washington, D.C.

268

Biomass 2009: Fueling Our Future  

Energy.gov (U.S. Department of Energy (DOE))

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

269

NREL: Biomass Research - Joseph Shekiro  

NLE Websites -- All DOE Office Websites (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

270

Biomass IBR Fact Sheet: POET  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

271

NREL: Biomass Research - Michael Resch  

NLE Websites -- All DOE Office Websites (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

272

Resource Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount...

273

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

274

The feasibility of producing alcohol fuels from biomass in Australia  

Science Journals Connector (OSTI)

Apart from cost, the net production of energy is the most important factor in evaluating the feasibility of producing renewable fuels from woody biomass. Unlike sugar, the effort required to make woody materials fermentable is considerable, and has been a major barrier to the use of such materials to produce renewable fuels. The Energy Profit Ratio (EPR) of fossil fuels is declining rapidly as conventional oil resources decline, but the EPR of biomass fuels is often not as high as commonly thought. I conclude that producing methanol from wood not only has a much higher yield, but is also cheaper than the more popular ethanol.

Chris Mardon

2007-01-01T23:59:59.000Z

275

C3Bio.org - Resources: NIFA - Carbon and Energy Efficient Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations NIFA - Carbon and Energy Efficient Conversion of Biomass to Biofuels About 0 review(s) (Review this) Share: ... Share this resource: Facebook Twitter...

276

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

277

Colorado Renewable Resource Cooperative | Open Energy Information  

Open Energy Info (EERE)

Colorado Renewable Resource Cooperative Colorado Renewable Resource Cooperative Jump to: navigation, search Name Colorado Renewable Resource Cooperative Place Colorado Sector Biomass Product Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References Colorado Renewable Resource Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colorado Renewable Resource Cooperative is a company located in Colorado . References ↑ "Colorado Renewable Resource Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Colorado_Renewable_Resource_Cooperative&oldid=343780" Categories: Clean Energy Organizations

278

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

279

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

280

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

282

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

283

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

284

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

285

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

286

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

287

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

288

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

289

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

290

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

291

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

292

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

293

Mobile Biomass Pelletizing System  

SciTech Connect

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

294

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Data Biomass Data These datasets represent the biomass resource availability in the United States by county. The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture, U.S. Forest Service, EPA and other organizations. Geographic Coordinate System Name: GCS_North_American_1983 Coverage File Size Last Updated Metadata Urban Wood and Secondary Mill Residues (Zip 6.8 MB) 5/23/2012 Urban Wood and Secondary Mill Residues.xml Geographic Coordinate System Name: WGS 1984 Coverage File Size Last Updated Metadata Crop Residues (Zip 6.81 MB) 10/28/2008 Crop Residues.xml Forest and Primary Mill Residues (Zip 69.75 MB) 10/28/2008 Forest and Primary Mill Residues.xml Note - These datasets are designed to be used in GIS software applications.

295

A network design model for biomass to energy supply chains with anaerobic digestion systems  

Science Journals Connector (OSTI)

Abstract Development and implementation of renewable energy systems, as a part of the solution to the worldwide increasing energy consumption, have been considered as emerging areas to offer an alternative to the traditional energy systems with limited fossil fuel resources and to challenge environmental problems caused by them. Biomass is one of the alternative energy resources and agricultural, animal and industrial organic wastes can be treated as biomass feedstock in biomass to energy conversion systems. This study aims to develop an effective supply chain network design model for the production of biogas through anaerobic digestion of biomass. In this regard, a mixed integer linear programming model is developed to determine the most appropriate locations for the biogas plants and biomass storages. Besides the strategic decisions such as determining the numbers, capacities and locations of biogas plants and biomass storages, the biomass supply and product distribution decisions can also be made by this model. Mainly, waste biomass is considered as feedstock to be digested in anaerobic digestion facilities. To explore the viability of the proposed model, computational experiments are performed on a real-world problem. Additionally, a sensitivity analysis is performed to account for the uncertainties in the input data to the decision problem.

?ebnem Y?lmaz Balaman; Hasan Selim

2014-01-01T23:59:59.000Z

296

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

297

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

298

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

299

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

300

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biomass 2014: Additional Speaker Biographies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

302

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

303

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

304

ARM - Biomass Burning Observation Project (BBOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

305

Biomass Renewable Energy Opportunities and Strategies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

306

Molecular Characterization of Biomass Burning Aerosols Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

307

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

NLE Websites -- All DOE Office Websites (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

308

Biomass Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

309

Pelleting characteristics of torrefied forest biomass.  

E-Print Network (OSTI)

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 C) to generate energy dense and hydrophobic biomass suitable for producing pellets. (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

310

High temperature, optically transparent plastics from biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

311

Heat transfer efficiency of biomass cookstoves.  

E-Print Network (OSTI)

??Nearly half of the worlds human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

312

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

313

Northeast regional biomass program. Second & third quarterly reports, October 1, 1995--March 31, 1996  

SciTech Connect

The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut. Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market.

NONE

1996-07-01T23:59:59.000Z

314

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

315

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

316

Isolation and Characterization of Acid-Tolerant, Thermophilic Bacteria for Effective Fermentation of Biomass-Derived Sugars to Lactic Acid  

Science Journals Connector (OSTI)

...TP-510-32438. National Renewable Energy Laboratory, Golden, Colo...potential to reduce the cost of SSF by minimizing the...cellulases, a significant cost component in the use of biomass as a renewable resource, for the production...

Milind A. Patel; Mark S. Ou; Roberta Harbrucker; Henry C. Aldrich; Marian L. Buszko; Lonnie O. Ingram; K. T. Shanmugam

2006-05-01T23:59:59.000Z

317

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time theyll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

318

DOE Office of Indian Energy Foundational Course: Biomass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BIOMASS BIOMASS Presented by the National Renewable Energy Laboratory Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Resource Map & Project Scales  Technology Overview(s): - Siting - Costs  Successful Project Example(s)  Policies Relevant to Project Development  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian lands and homes. As part of this commitment and on behalf of DOE, the Office of Indian Energy is leading education and capacity building efforts in

319

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

ES. CaliforniaEnergyCommission. MapofSolarResourceEnergy Resource Type MW Additional MW MW Production BkWh Geothermal Biomass Small Hydro 830 est Wind Solar

Budhraja, Vikram

2008-01-01T23:59:59.000Z

320

Biothermal gasification of biomass  

SciTech Connect

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Selection and performance of Materials for Biomass Gasifiers  

SciTech Connect

Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

Keiser, James R [ORNL] [ORNL; Hemrick, James Gordon [ORNL] [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Blau, Peter J [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Pint, Bruce A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

322

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

323

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

324

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

325

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

326

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

327

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

328

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

329

Chapter 15 - Catalytic Thermochemical Processes for Biomass Conversion to Biofuels and Chemicals  

Science Journals Connector (OSTI)

Abstract Biomass is the most abundant and biorenewable resource with great potential for sustainable production of chemicals and fuels. Thermochemical conversion technologies (pyrolysis, gasification and hydrothermal liquefaction) are a promising option for transforming biomass feedstocks into liquid oils and chemicals. In the article, for the thermal process of biomass for biofuels and chemicals, the effect of reaction conditions, reactors, solvents and catalysts on the yield and distribution of the products are reviewed. Fast pyrolysis of cellulose is primarily conducted over catalysts with proper acidity/basicity and has undergone many pilot tests. Gasification is typically conducted over supported noble metal catalysts and has been profiled as being CO2-neutral, having a high potential to provide power, chemicals and fuels. Catalytically hydrothermal liquefaction of biomass produces a very complex mixture of liquid products; therefore, novel technology for separation and extraction of downstream products from hydrothermal liquefaction of lignocellulosic biomass need to be developed.

Lin Mei Wu; Chun Hui Zhou; Dong Shen Tong; Wei Hua Yu

2014-01-01T23:59:59.000Z

330

Global (International) Energy Policy and Biomass  

SciTech Connect

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

331

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network (OSTI)

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

332

Vanadium catalysts break down biomass for fuels  

E-Print Network (OSTI)

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

333

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network (OSTI)

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

334

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

335

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

336

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

337

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

338

GrIPP-NET A S M Renewable Resources in Southeast Asia RENEWABLE RESOURCES IN SOUTHEAST ASIA (SEA)  

E-Print Network (OSTI)

This paper summarizes the wind, small hydro, biomass resource potentials of SEA. 2. Wind Resources Selected areas in the region have good wind energy potential. Based on a World Bank-AAEP study, there are good to excellent wind resource areas for large-scale wind generation that can be found in the

N. C. Domingo; F. V. Ferraris

339

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network (OSTI)

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

340

Marketing Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Utility Toolkit Informational...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Life cycle assessment of energy crop production with special attention to the establishment of regional biomass utilisation systems  

Science Journals Connector (OSTI)

We conducted a life cycle assessment of energy crop production for bioethanol to clarify the potentialities of biomass utilisation systems in Japan, focusing on cumulative fossil energy demand and global warming potential. Their reductions were evaluated under two scenarios; one was improving cultivation technologies and breeding of new crop varieties, and the other was setting up of regional biomass utilisation systems, in which biomass resources from various industries were utilised mutually and effectively. It was proved that the improvement in cultivation technologies and the establishment of regional biomass utilisation systems have large potential for saving fossil fuel resources and reducing greenhouse gas emissions. Although these results largely depend on scenarios including the lifetime and coverage area of agricultural machinery, and types of biomass utilisation, it was concluded that substitution of petrol by bioethanol converted from these energy crops has considerable potential for rendering our society more sustainable.

Susumu Uchida; Kiyotada Hayashi; Mitsuru Gau; Tsutomu Kajiyama; Shigekiyo Shirasawa; Hiroyuki Takahashi; Yoshifumi Terajima; Makoto Matsuoka; Masaru Yoshinaga

2012-01-01T23:59:59.000Z

342

3D Chemical Image using TOFSIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

D D Chemical Imaging DOI: 10.1002/anie.201205243 3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass** Seokwon Jung, Marcus Foston, Udaya C. Kalluri, Gerald A. Tuskan, and Arthur J. Ragauskas* Many researchers consider biofuels, including bioethanol and biodiesel, as a resource to supplement or replace large portions of future transportation fuel requirements. This shift in research focus is due in part to limitations in fossil resources and recent concerns about the environment. [1] Lignocellulosic biomass (for example, agricultural resides, forestry wastes, and energy crops) has been highlighted as a potential resource for biofuel production. [2] Lignocellulosic biomass is mainly composed of polysaccharides (that is, cellulose and hemicelluloses) and lignin (polyphenolic macro- molecules). [3] Cellulose,

343

Coalbiomass co-combustion: An overview  

Science Journals Connector (OSTI)

Abstract The energy sector in the global scenario faces a major challenge of providing energy at an affordable cost and simultaneously protecting the environment. The energy mix globally is primarily dominated by fossil fuels, coal being the major contributor. Increasing concerns on the adverse effect of the emissions arising from coal conversion technologies on the environment and the gradual depletion of the fossil fuel reserves had led to global initiatives on using renewables and other opportunity resources to meet the future energy demands in a sustainable manner. Use of coal with biomass as a supplementary fuel in the combustion or gasification based processes is a viable technological option for reducing the harmful emissions. Co-combustion of coal with biomass for electricity generation is gradually gaining ground in spite of the fact that their combustion behavior differ widely due to wide variations in their physical and chemical properties. This article deals with the technical aspects of co-combustion with emphasis on the fundamentals of devolatilization, ignition, burnout and ash deposition behavior along with the constraints and uncertainties associated with the use of different types of biomass of diverse characteristics and the likely impact of partial replacement of coal by biomass on the emission of CO2, SOx, NOx. Other issues of no less importance like sustained availability of biomass, transportation and storage, effect on biodiversity, etc., are left out in the study. The investigations reported in the study reflect the potential of biomass as co-fuel, and the scope of maximizing its proportion in the blend in the coal based power plants and the derived benefits.

S.G. Sahu; N. Chakraborty; P. Sarkar

2014-01-01T23:59:59.000Z

344

Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995  

SciTech Connect

The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

NONE

1995-07-01T23:59:59.000Z

345

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

346

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

347

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network (OSTI)

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

348

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network (OSTI)

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

349

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

350

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

351

August 2012 Biomass Program Monthly News Blast | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

352

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

353

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

354

Biomass Program Monthly News Blast: October | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

355

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

356

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

357

Biomass Program Monthly News Blast: July | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

358

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

359

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

360

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

362

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

363

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

364

Biomass Program Monthly News Blast: August | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

365

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

366

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

367

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

368

Biomass Program Monthly News Blast: June | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

369

April 2012 Biomass Program News Blast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

370

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network (OSTI)

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

371

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

372

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

373

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

374

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

375

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

376

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

377

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy, biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

378

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network (OSTI)

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

379

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

380

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

382

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

383

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

384

NREL: Biomass Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

385

CEZ Obnovitelne zdroje sro Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

CEZ Obnovitelne zdroje sro Renewable Resources CEZ Obnovitelne zdroje sro Renewable Resources Jump to: navigation, search Name CEZ Obnovitelne zdroje sro (Renewable Resources) Place Prague 4, Czech Republic Zip 140 53 Sector Biomass, Renewable Energy Product Subsidiary of CEZ Group that is focused on energy generation from renewable resources, except for combustion of biomass with coal. References CEZ Obnovitelne zdroje sro (Renewable Resources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEZ Obnovitelne zdroje sro (Renewable Resources) is a company located in Prague 4, Czech Republic . References ↑ "[ CEZ Obnovitelne zdroje sro (Renewable Resources)]" Retrieved from "http://en.openei.org/w/index.php?title=CEZ_Obnovitelne_zdroje_sro_Renewable_Resources&oldid=343432"

386

Survey of Biomass Resource Assessments and Assessment Capabilities...  

Open Energy Info (EERE)

South Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Chinese Taipei, Thailand, United States, Vietnam Australia and New Zealand,...

387

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

388

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

389

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

390

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network (OSTI)

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

391

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

392

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

393

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

394

Treatment of biomass to obtain ethanol  

DOE Patents (OSTI)

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

395

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

396

Biomass Sales and Use Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

397

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

398

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; Andr P. C. Faaij

2009-06-01T23:59:59.000Z

399

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

400

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

402

Volatile Organic Compounds Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.510 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

403

Marine macroalgae: an untapped resource for producing fuels and chemicals  

Science Journals Connector (OSTI)

As world energy demand continues to rise and fossil fuel resources are depleted, marine macroalgae (i.e., seaweed) is receiving increasing attention as an attractive renewable source for producing fuels and chemicals. Marine plant biomass has many advantages over terrestrial plant biomass as a feedstock. Recent breakthroughs in converting diverse carbohydrates from seaweed biomass into liquid biofuels (e.g., bioethanol) through metabolic engineering have demonstrated potential for seaweed biomass as a promising, although relatively unexplored, source for biofuels. This review focuses on up-to-date progress in fermentation of sugars from seaweed biomass using either natural or engineered microbial cells, and also provides a comprehensive overview of seaweed properties, cultivation and harvesting methods, and major steps in the bioconversion of seaweed biomass to biofuels.

Na Wei; Josh Quarterman; Yong-Su Jin

2013-01-01T23:59:59.000Z

404

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

405

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

406

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

407

Comprises over of Energy Resources  

E-Print Network (OSTI)

to 1% of the region's energy resources. Hydro- power 46% Coal 18% Energy Efficiency 16% Natural Gas 11 Coke* (45.6 MW) Biomass (395.4 MW) Nuclear (1,054.9 MW) Wind (1,129.7 MW) Natural Gas (3,180.6 MW) Energy Efficiency (4,633 MW) Coal (5,396 MW) Hydropower (13,401.8 MW) Dispatched Average Megawatts

408

Dairy Biomass as a Renewable Fuel Source  

E-Print Network (OSTI)

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

409

Biomass Derivatives Competitive with Heating Oil Costs.  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

410

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network (OSTI)

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

411

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

412

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055) Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055) DOI: 10.3334/CDIAC/lue.ndp055 data Data PDF PDF graphics Graphics Please note: these data have been updated for the year 2000 Contributors Sandra Brown1 Greg Gaston2 Work on this project was initiated while at the Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 61801, U.S.A. 1Present address: Winrock International, Arlington, Virgina. 2Present address: Department of Geosciences, Oregon State University. Prepared by T.W. Beaty, and L.M. Olsen. Carbon Dioxide Information Analysis Center Environmental Sciences Division OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6290 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

413

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database (NDP-068) DOI: 10.3334/CDIAC/lue.ndp068 data Data PDF PDF Appendix A is reprint of Brown et al. paper in Geocarto International, Vol. 8; copyright 1993 Geocarto International Centre and reprinted with kind permission from the publisher) image Contributors Sandra Brown1 Louis R. Iverson2 Anantha Prasad2 Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 1Present address: Winrock International, Arlington, Virginia 2Present address: United States Forest Service, Northeast Research Station, Delaware, Ohio Prepared by Tammy W. Beaty, Lisa M. Olsen, Robert M. Cushman, and Antoinette L. Brenkert Carbon Dioxide Information Analysis Center

414

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

415

Increasing biomass in Amazonian forest plots  

Science Journals Connector (OSTI)

...Malhi and O. L. Phillips Increasing biomass in Amazonian forest plots Timothy R...by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian...Therefore we present a new analysis of biomass change in old-growth Amazonian forest...

2004-01-01T23:59:59.000Z

416

4, 52015260, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

417

4, 707745, 2007 Proxies of biomass  

E-Print Network (OSTI)

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

418

Biomass Gasification at The Evergreen State College  

E-Print Network (OSTI)

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

419

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

420

Thermodynamics of Energy Production from Biomass  

E-Print Network (OSTI)

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network (OSTI)

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

422

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

423

Also inside this issue: Bioengineering Better Biomass  

E-Print Network (OSTI)

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

424

Woody Biomass Logistics Robert Keefe1  

E-Print Network (OSTI)

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

425

5, 1045510516, 2005 A review of biomass  

E-Print Network (OSTI)

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

426

4, 51355200, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

427

Researchers at the Biomass Energy Center  

E-Print Network (OSTI)

HARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken from the atmosphere via photosynthesis: turning sunlight into energy. Unlike fossil fuels, however, biomass

Lee, Dongwon

428

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network (OSTI)

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

429

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network (OSTI)

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

430

Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994  

SciTech Connect

The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

NONE

1995-07-01T23:59:59.000Z

431

Intrepid Technology and Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Intrepid Technology and Resources Inc Intrepid Technology and Resources Inc Jump to: navigation, search Name Intrepid Technology and Resources Inc Place Idaho Falls, Idaho Zip 83402 Sector Biomass Product The company specialises in development of biomass/biofuel plants, primarily biogas projects(methane from processing animal waste). References Intrepid Technology and Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Intrepid Technology and Resources Inc is a company located in Idaho Falls, Idaho . References ↑ "Intrepid Technology and Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Intrepid_Technology_and_Resources_Inc&oldid=347071" Categories:

432

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

434

Rural electrification: Waste biomass Russian northern territories. Final report  

SciTech Connect

The primary objective of this pre-feasibility evaluation is to examine the economic and technical feasibility of replacing distillate fuel with local waste biomass in the village of Verkhni-Ozerski, Arkhangelsk Region, Russia. This village is evaluated as a pilot location representing the off-grid villages in the Russian Northern Territories. The U.S. Department of Energy (DOE) has agreed to provide technical assistance to the Ministry of Fuel and Energy (MFE). MFE has identified the Northern Territories as a priority area requiring NREL`s assistance. The program initially affects about 900 off-grid villages. Biomass and wind energy, and to a lesser extent small hydro (depending on resource availability) are expected to play the dominant role in the program, Geothermal energy may also have a role in the Russian Far East. The Arkhangelsk, Kariela, and Krasnoyarsk Regions, all in the Russian Northern Territories, have abundant forest resources and forest products industries, making them strong candidates for implementation of small-scale waste biomass-to-energy projects. The 900 or so villages included in the renewable energy program span nine administrative regions and autonomous republics. The regional authorities in the Northern Territories proposed these villages to MFE for consideration in the renewable energy program according to the following selection criteria: (a) Remote off-grid location, (b) high cost of transporting fuel, old age of existing power generation equipment, and (d) preliminary determination as to availability of alternative energy resources. Inclusion of indigenous minorities in the program was also heavily emphasized. The prefeasibility study demonstrates that the project merits continuation and a full feasibility analysis. The demonstrated rate of return and net positive cash flow, the willingness of Onegales and local/regional authorities to cooperate, and the immense social benefits are all good reasons to continue the project.

Adamian, S. [ECOTRADE, Inc., Glendale, CA (United States)

1998-02-01T23:59:59.000Z

435

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

436

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

437

Residual biomass recovery from fully-mechanized delayed thinnings on Spanish Pinus spp. plantations  

Science Journals Connector (OSTI)

Abstract In Spain, five million hectares of conifer plantations require thinning. As only a small part produces pulpwood, they are a major potential biomass resource. A time-study is performed on the recovery of logging residues in a Pinus plantation on gentle terrain in order to analyze the main factors affecting the productivity and cost of biomass and pulpwood harvesting. The first factor is the branches and tops piling method, either using the forest harvester head to bunch them along the strip road sides (method S) while processing the timber, or leaving them on the strip road centre (method C) and using a 175 HP bulldozer with a raking implement to pile them up afterwards. The second factor is the top diameter separating pulpwood and biomass, 8 or 10cm. Mechanized felling-processing productivity is greater for the method C and the smaller diameter. Hauling biomass off with forwarder is also significantly more productive when piled by bulldozer. Productivity equations were fitted for pulpwood and biomass forwarding. The direct cost of biomass recovery ranged from 29.7 to 31.5 per green tonne (H=51%). The roundwood and biomass effective yields per hectare were measured. This allowed evaluating the cost balance for roundwood/roundwood plus biomass harvesting, based on the net income per hectare. Under the 2013 Spanish market conditions, recovery of residual biomass is economically preferable to harvesting only roundwood in the studied stands. The greater net income balance corresponds to the piling method using the bulldozer (C) and the larger top diameter (10cm).

E. Tolosana; R. Laina; Y. Ambrosio; M. Martn

2014-01-01T23:59:59.000Z

438

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

439

Biomass Energy Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Program Biomass Energy Program Biomass Energy Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Savings Category Bioenergy Maximum Rebate $75,000 Program Info State Alabama Program Type State Grant Program Rebate Amount Varies by project and interest rate Provider Alabama Department of Economic and Community Affairs The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on loans to install approved biomass projects. Technical assistance is also available through the program. Industrial, commercial and institutional facilities; agricultural property owners; and city, county, and state government entities are eligible.

440

Resources & Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Smart grid fact sheet Department of...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products  

Science Journals Connector (OSTI)

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products ... One of the most promising options to produce transportation fuels from biomass is the so-called biomass-to-liquids (BtL) route, in which biomass is converted to syngas from which high-quality Fischer?Tropsch (FT) fuels are synthesized. ... Alternatively to converting biomass into liquids or coal-like material, new and dedicated feeding systems for biomass can be developed. ...

Robin W. R. Zwart; Harold Boerrigter; Abraham van der Drift

2006-08-29T23:59:59.000Z

442

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

443

Training and Learning Resources | Open Energy Information  

Open Energy Info (EERE)

Training and Learning Resources Training and Learning Resources Jump to: navigation, search Where can I learn more about clean energy technologies? The trainings, websites, presentations and publications listed below provide general and technical information on clean energy technologies, as well as policy, market and financial information to better inform clean energy decisions. Contents 1 Featured Training Resources 1.1 Clean Energy 1.1.1 Cross-cutting 1.1.2 Energy Efficiency 1.1.3 Renewable Energy 1.2 Energy Modeling 1.3 Local Planning 1.4 Sustainable Development and Climate Change 2 Featured Presentations 2.1 Biomass 2.2 Solar 2.3 Planning 3 Featured Websites 4 Search by Sector 5 Search All Resources 6 Country-Specific Training Programs 7 Add Resources Featured Training Resources Clean Energy

444

NREL: Renewable Resource Data Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of a man and a woman checking solar measurement instruments. Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for particular areas than others. Knowing the resources of a region, state, city, or neighborhood is therefore critical to renewable energy planning and siting. RReDC provides detailed resource information through tools, reports, maps, and data collections. Additional resource data can be found on the NREL

445

NREL: Biomass Research - Josh Schaidle  

NLE Websites -- All DOE Office Websites (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

446

Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions  

Science Journals Connector (OSTI)

Cellulosic biomass essentially consists of cellulose, hemicellulose, and lignin. To obtain energy from cellulosic biomass with minimum given energy, following three steps are required, namely...3, 4...]. Since or...

Mitsuru Abe; Hiroyuki Ohno

2014-01-01T23:59:59.000Z

447

California's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district: Energy Resources district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 4th congressional district American River Ventures ClipperCreek Inc Connect Renewable Energy Inc DayStar Solar LLC formerly International Energy Trading LLC Environmental Capital Group LLC Green Energy Project Development INC G E P D Pacific Power Management SMA America SMA America, LLC Solar Power Inc SPI United Natural Foods Energy Generation Facilities in California's 4th congressional district Oroville Biomass Facility Rocklin Biomass Facility SPI Lincoln Biomass Facility SPI Loyalton Biomass Facility Retrieved from "http://en.openei.org/w/index.php?title=California%27s_4th_congressional_district&oldid=18156

448

Strategic Biomass Solutions (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Industry Recruitment/Support Training/Technical Assistance Provider Mississippi Technology Alliance The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors and economic developers in the renewable energy sector. It offers companies strategic guidance for making their technology investor ready and connects companies to early stage private capital and available tax incentives. SBS assists

449

Biomass Energy Program Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

450

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Figure1:WestBiofuelsBiomassGasificationtoPowerprocesswillutilize gasificationtechnologyprovidedbyis pioneeringthegasificationtechnologythathasbeen

Cattolica, Robert

2009-01-01T23:59:59.000Z

451

Mediterranean land abandonment and associated biomass variation.  

E-Print Network (OSTI)

??Biomass is an important factor in environmental processes, such as erosion, carbon storage, climate change and land degradation. Human-induced changes in plant community systems and (more)

Hoogeveen, S.S.

2011-01-01T23:59:59.000Z

452

Biomass Program Monthly News Blast - May 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012; Travis Tempel; Atlanta, Georgia U.S. Environmental Protection Agency's Biogas Technology Market Summit, May 14, 2012, Brian Duff; Washington, D.C. Biomass R&D...

453

April 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chain & Logistics Conference, May 10-11, 2012, Travis Tempel, Atlanta, Georgia EPA Biogas Technology Market Summit, May 14, 2012, Brian Duff, Washington, DC Biomass R&D...

454

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

455

Biomass Renewable Energy Opportunities and Strategies Forum  

Energy.gov (U.S. Department of Energy (DOE))

The forum will give tribal leaders and staff an opportunity to interact with other Tribes, federal agencies, and industry to learn more about biomass energy development.

456

Decentralised energy systems based on biomass.  

E-Print Network (OSTI)

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

457

Determination of Extractives in Biomass: Laboratory Analytical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

458

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

459

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan....

460

NREL: Biomass Research - Thermochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

462

NREL: Biomass Research - Courtney E. Payne  

NLE Websites -- All DOE Office Websites (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

463

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

464

Biomass Indirect Liquefaction Strategy Workshop: Summary Report  

Energy.gov (U.S. Department of Energy (DOE))

This report is based on the proceedings of the U.S. DOEs Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

465

Biomass Program Peer Review Sustainability Platform | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between...

466

NREL: Biomass Research - Justin B. Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

467

Abengoa Bioenergy Biomass of Kansas, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

468

NREL: Biomass Research - Capabilities in Integrated Biorefinery...  

NLE Websites -- All DOE Office Websites (Extended Search)

pilot plant, researchers study biochemical processes for converting lignocellulosic biomass to ethanol. At NREL, teams of researchers focus on developing an integrated...

469

NREL: Biomass Research - Mark R. Nimlos  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

470

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

471

NREL: Biomass Research - Working With Us  

NLE Websites -- All DOE Office Websites (Extended Search)

research expertise. Working with outside organizations is the key to moving advanced biomass conversion technology and processes for the production of bio-based products-i.e.,...

472

Utility Promoters for Biomass Feedstock Biotechnology - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy...

473

NREL: Biomass Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. April 26, 2013 Combining Strategies Speeds the Work...

474

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network (OSTI)

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

475

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network (OSTI)

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

476

Developing Functionalized Graphene Materials for Biomass Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

477

Characterization of Catalysts for Aftertreatment and Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

478

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

479

Tools & Resources | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Home | Science & Discovery | Clean Energy | Tools & Resources SHARE Tools & Resources The following lists contain links to informational guides, helpful tools, and detailed resources. Energy and Transportation Fuel Economy.gov Freight Analysis Framework Transportation Energy Data Book National Household Transportation Survey Biomass Energy Databook Vehicle Technologies Market Report Intelligent Transportation Systems Tracking ITS Overview Commercial Motor Vehicle Roadside Technology Corridor FEERC Interactive Tour Building Technologies Research Foundation Handbook Roof Savings Calculator ZEBRAlliance WUFI Insulation Fact Sheet Heat Pump Design Model BCHP Screening Tool Low-Slope Roof Calculator for Commercial Buildings Moisture Control in Low Slope Roofing

480

Small-scale biomass gasification CHP utilisation in industry: Energy and environmental evaluation  

Science Journals Connector (OSTI)

Abstract Biomass gasification is regarded as a sustainable energy technology used for waste management and producing renewable fuel. Using the techniques of life cycle assessment (LCA) and net energy analysis this study quantifies the energy, resource, and emission flows. The purpose of the research is to assess the net energy produced and potential environmental effects of biomass gasification using wood waste. This paper outlines a case study that uses waste wood from a factory for use in an entrained flow gasification CHP plant. Results show that environmental impacts may arise from toxicity, particulates, and resource depletion. Toxicity is a potential issue through the disposal of ash. Particulate matter arises from the combustion of syngas therefore effective gas cleaning and emission control is required. Assessment of resource depletion shows natural gas, electricity, fossil fuels, metals, and water are all crucial components of the system. The energy gain ratio is 4.71MJdelivered/MJprimary when only electricity is considered, this increases to 13.94MJdelivered/MJprimary if 100% of the available heat is utilised. Greenhouse gas emissions are very low (715gCO2-e/kWhe) although this would increase if the biomass feedstock was not a waste and needed to be cultivated and transported. Overall small-scale biomass gasification is an attractive technology if the high capital costs and operational difficulties can be overcome, and a consistent feedstock source is available.

P.W.R. Adams; M.C. McManus

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liberia-nrel biomass resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Biomass Research and Development Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass Research and Biomass Research and Development Initiative to someone by E-mail Share Alternative Fuels Data Center: Biomass Research and Development Initiative on Facebook Tweet about Alternative Fuels Data Center: Biomass Research and Development Initiative on Twitter Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Google Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Delicious Rank Alternative Fuels Data Center: Biomass Research and Development Initiative on Digg Find More places to share Alternative Fuels Data Center: Biomass Research and Development Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass Research and Development Initiative

482

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

483

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

SciTech Connect

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

484

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network (OSTI)

to Ethanol. Enzymatic Conversion of Biomass for Fuelsto Ethanol. Enzymatic Conversion of Biomass for FuelsBiomass. Enzymatic Conversion of Biomass for Fuels

Qing, Qing

2010-01-01T23:59:59.000Z

485

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

of the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsof the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsfor analytical pyrolysis. 7.5.2 Biomass analysis All biomass

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

486

U.S. Department of Energy Biomass Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Biomass Program U.S. Department of Energy Biomass Program Biomass Program Acting Director Valerie Reed's presentation on the Biomass Program at the September...

487

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

488

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network (OSTI)

, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its compared two LCA methods--(1) a numbers-based LCA that relies on catch numbers at length as input data and (2) a new biomass-based LCA that relies on catch biomass at length--by applying both to simulated

489

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large Wildfires  

E-Print Network (OSTI)

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large: Global Biomass Burning & Carbon Emissions Standard Emissions Inventories: Burned Area & GFED recently daily. Fire occurrenceoccurrence Roy et al.Roy et al. Carbon emissions (C) = burned area . fuel

490

Energy Efficiency Resource Standards Resources  

Energy.gov (U.S. Department of Energy (DOE))

Energy efficiency resource standards mandate a quantified energy efficiency goal for an energy provider or jurisdiction within a predetermined timeframe.

491

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-18T23:59:59.000Z

492

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-11T23:59:59.000Z

493

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network (OSTI)

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

494

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment  

E-Print Network (OSTI)

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

Bae, Jin-Woo

495

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Cost with Starting Point Assumptions ($/MWh) Energy- Weighted Median (10th; 90th Percentile) Hydro Biomass Geothermalenergy levels on resource composition, costs, and transmission expansion Impact 12% Renewables (TWh/yr) Geothermal

Mills, Andrew D

2011-01-01T23:59:59.000Z

496

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? With continued developments in biorefinery capacity and technology, the feedstock resources identified in the report could produce about 85 billion gallons of biofuels -- enough to replace approximately 30 percent

497

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network (OSTI)

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

498

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network (OSTI)

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

Kammen, Daniel M.

499

Lessons learned from existing biomass power plants  

SciTech Connect

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

500

Processes for pretreating lignocellulosic biomass: A review  

SciTech Connect

This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

McMillan, J.D.

1992-11-01T23:59:59.000Z