Sample records for lexington kentucky offices

  1. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions NationalKentucky

  2. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  3. EMPLOYMENT SUMMARY Lexington, VA 24450

    E-Print Network [OSTI]

    Marsh, David

    EMPLOYMENT SUMMARY Lexington, VA 24450 Website : http://www.wlu.edu Phone : 540-458-8400 WASHINGTON AND LEE UNIVERSITY - 2011 Sydney Lewis Hall Total graduates 123 Unemployed - seeking 2 Employment status unknown 5 Unemployed - not seeking 0 Employed 111 97 14 Pursuing graduate degree FT 5 EMPLOYMENT STATUS

  4. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  5. Lexington Children`s Museum final report on EnergyQuest

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    EnergyQuest is a museum-wide exhibit that familiarizes children and their families with energy sources, uses, and issues and with the impact of those issues on their lives. It was developed and built by Lexington Children`s Museum with support from the US Department of Energy, Kentucky Utilities, and the Kentucky Coal Marketing and Export Council. EnergyQuest featured six hands-on exhibit stations in each of six museum galleries. Collectively, the exhibits examine the sources, uses and conservation of energy. Each EnergyQuest exhibit reflects the content of its gallery setting. During the first year after opening EnergyQuest, a series of 48 public educational programs on energy were conducted at the Museum as part of the Museum`s ongoing schedule of demonstrations, performances, workshops and classes. In addition, teacher training was conducted.

  6. DOE Selects Contractor for Depleted Hexafluoride Conversion Project...

    Broader source: Energy.gov (indexed) [DOE]

    to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and...

  7. Microenterprise Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded the Kentucky Micro-Enterprise Loan (KMEL) program...

  8. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  9. EMPLOYMENT SUMMARY FOR 2011 GRADUATES Lexington, VA 24450

    E-Print Network [OSTI]

    Marsh, David

    EMPLOYMENT SUMMARY FOR 2011 GRADUATES Lexington, VA 24450 Website : http://www.wlu.edu Phone : 540 Total graduates 129 Unemployed - Not Seeking 1 Employment Status Unknown 3 Unemployed - Seeking 7 Employed - Undeterminable * 0 0 0 0 0 Employed - Bar Passage Required 71 6 2 2 81 Pursuing Graduate Degree

  10. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  11. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  12. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  13. Forestry Policies (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky's forests are managed by the State Energy and Environment Cabinet, Department of Natural Resources, Division of Forestry. In 2010 the Division completed its Statewide Assessment of Forest...

  14. Microsoft Word - Ross-Lexington No1 Meter project-CX .doc

    Broader source: Energy.gov (indexed) [DOE]

    Power Administration (BPA) proposes to install meters under the Ross-Lexington No. 1 transmission line, between towers 15 and 16, to better understand and predict line sag....

  15. Rural Innovation Fund (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

  16. OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction of an existing Corps of Engineers floodwall and levee system. The city of Paducah is the non-Federal sponsor

  17. Columbia Gas of Kentucky- Home Savings Rebate Program (Kentucky)

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

  18. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  19. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  20. CX-002393: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002393: Categorical Exclusion Determination Dewatering of Fine Coal Pellets CX(s) Applied: B3.6 Date: 05242010 Location(s): Lexington, Kentucky Office(s):...

  1. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  2. CX-002701: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemical Stabilization of Fine Coal Waste: Elimination of Slurry ImpoundmentsCX(s) Applied: B3.6Date: 06/11/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  3. CX-002289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal RecoveryCX(s) Applied: B3.6Date: 05/19/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  5. albany shale kentucky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Bakken, Dobson, Patrick 2014-01-01 9 Kentucky Annual Economic Report Computer Technologies and Information Sciences Websites Summary: 2014 Kentucky Annual Economic Report...

  6. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  7. Qualifying RPS State Export Markets (Kentucky)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific...

  8. Chapter 63 General Standards of Performance (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 63, entitled Air Quality: General Standards of Performance, is promulgated under the authority of the Division of Air Quality within the Energy and...

  9. DOE Awards Task Order for Lexington Project Office Audit | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTP DOEDepartment

  10. LOCAL CLIMATOLOGICAL DATA COMMERCE/NOAA/NOAA PUBLISHED STATIONS c/o INFORMATION MANUFACTURING CORPORATION

    E-Print Network [OSTI]

    __ WICHITA KENTUCKY C __ JACKSON C __ LEXINGTON C __ LOUISVILLE C __ PADUCAH LOUISIANA C __ BATON ROUGE C

  11. A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH

    E-Print Network [OSTI]

    Hayes, Jane E.

    can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

  12. Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientificObservation of aObservingOff-Grid

  13. Chapter 53 Ambient Air Quality (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet’s Department...

  14. Alternative Fuels Data Center: Kentucky Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Kentucky, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  15. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  16. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  17. Kentucky

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU

  18. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  19. Agriculture and Natural Resources Family and Consumer Sciences 4-H Youth Development Community and Economic Development COOPERATIVE EXTENSION SERVICE UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, LEXINGTON, KY, 40546

    E-Print Network [OSTI]

    Hayes, Jane E.

    prevalent for use in diesel engines. Biodiesel commonly is made from oil feedstock, such as soybean or other that at least 9 percent of the U.S. gasoline and diesel fuel supplies in 2012 will be from renew- ablesources

  20. Agriculture and Natural Resources Family and Consumer Sciences 4-H Youth Development Community and Economic Development COOPERATIVE EXTENSION SERVICE UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, LEXINGTON, KY, 40546

    E-Print Network [OSTI]

    Hayes, Jane E.

    petroleum or from biomass feedstocks. Butanol can be made from biomass through fermentation using organisms

  1. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01T23:59:59.000Z

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  2. Coal rank trends in eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.

    1984-12-01T23:59:59.000Z

    Examination of coal rank (by vitrinite maximum reflectance) for eastern Kentucky coals has revealed several regional trends. Coal rank varies from high volatile C (0.5% R/sub max/) to medium volatile bituminous (1.1% R/sub max/), and generally increases to the southeast. One east-west-trending rank high and at least four north-south-trending rank highs interrupt the regional increase. The east-west-trending rank high is associated with the Kentucky River faults in northeastern Kentucky. It is the only rank high clearly associated with a fault zone. The four north-south-trending rank highs are parallel with portions of major tectonic features such as the Eastern Kentucky syncline. Overall, though, the association of north-south-trending rank highs with tectonic expression is not as marked as that with the anomaly associated with the Kentucky River faults. It is possible that the rank trends are related to basement features with subdued surface expression. Rank generally increases with depth, and regional trends observed in one coal are also seen in overlying and underlying coals. The cause of the regional southeastward increase in rank is likely to be the combined influence of greater depth of burial and proximity to late Paleozoic orogenic activity. The anomalous trends could be due to increased depth of burial, but are more likely to have resulted from tectonic activity along faults and basement discontinuities. The thermal disturbances necessary to increase the coal rank need not have been great, perhaps on the order of 10-20/sup 0/C (18-36/sup 0/F) above the metamorphic temperatures of the lower rank coals.

  3. Petrographic characterization of Kentucky coals. Final report. Part VI. The nature of pseudovitrinites in Kentucky coals

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.

    1984-02-01T23:59:59.000Z

    Overall average pseudovitrinite content for 1055 eastern Kentucky coal samples is nearly 9% while average percentage of pseudovitrinite for 551 western Kentucky coals is approximately 4%. Examination of variation in pseudovitrinite content relative to rank changes shows uniformity in pseudovitrinite percentages within the 4 to 7 V-type interval for eastern Kentucky coals but a gradual increase in pseudovitrinite content for western Kentucky coals over the same rank interval. Coals from both coal fields show similar, distinct increases in pseudovitrinite percentage in the highest V-type categories. However, it is suggested here that these supposed increases in pseudovitrinite percentages are not real but rather, indicate distinct increase in the brightness of nitrinite resulting from increased alteration of vitrinite beginning at this stage of coalification and continuing into the higher rank stages. This conclusion is reached when it is found that differences between pseudovitrinite and vitrinite reflectance are least in coals at these high rank intervals of Kentucky and, also, when vitrinite particles are often visually observed having brightness equal to that of pseudovitrinite particles. Relation of pseudovitrinite to other sulfur forms and total sulfur in general shows no significant trends, although the relatively high pyritic sulfur content in western Kentucky coals, coupled with relatively low inert percentages suggest the existence of predominantly reducing, or at least non-oxidizing conditions in the Pennsylvanian peat swamps of western Kentucky. Initial work involving Vicker's microhardness testing of coals indicates that microhardness values for pseudovitrinite are higher than those for vitrinite within the same sample regardless of coal rank or coal field from which the sample was collected. 15 references, 9 figures, 9 tables.

  4. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18T23:59:59.000Z

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  5. Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the...

  6. Ethanol Production Tax Credit (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince...

  7. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  8. Petrographic characterization of Kentucky coals. Annual report

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.

    1981-09-29T23:59:59.000Z

    The study of the petrography of Kentucky coals sponsored by the US Department of Energy currently involves three projects as described below: semi-inert macerals, spectral fluorescence of liptinites, and pyrite size/form/microlithotype distribution. Progress to date has varied due to requirements for training personnel and due to equipment problems. With the two-year continuation of the grant further study will apply results from the above projects to stratigraphic problems.

  9. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John [no longer with UK

    2011-09-13T23:59:59.000Z

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  10. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions

  11. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    development for pH, nutrients, and pathogens in several Kentucky streams, 2) Evaluation of the impacts of Environmental Health (NIEH), and east Kentucky PRIDE (Personal Responsibility in a Desirable Environment): 1) Environmental Protection Scholarship (NREPC), 2) Technical support for the Maxey Flats Nuclear Disposal Site

  12. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    of environmental assessment and cleanup activities at the Paducah Gaseous Diffusion Plant. Six student research involving radiation and other contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant. The Kentucky River Authority supported watershed management services in the Kentucky River

  13. 20 University of Kentucky College of Health Sciences 21University of Kentucky College of Health Sciences Connection | College of Health Sciences Connection | College of Health Sciences

    E-Print Network [OSTI]

    Hayes, Jane E.

    Cincinnati Reds Clean Sweep Carwash Comedy Off Broadway Elk Creek Vineyards Embassy Suites Hotel Griffin Gate Marriott Resort and Spa Heaven Hill Distilleries, Inc. Heavenly Ham Homewood Suites by Hilton Lexington

  14. Eigenvalue Problems and the LTSA Algorithm for Nonlinear ...

    E-Print Network [OSTI]

    Eigenvalue Problems and the LTSA Algorithm for Nonlinear Dimensionality Reduction Qiang Ye Department of Mathematics University of Kentucky Lexington, ...

  15. Energy Incentive Programs, Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowa Energy IncentiveKentucky

  16. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, CaliforniaI Jump to:Adairville, Kentucky:

  17. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho CategoricalKentucky Categorical

  18. Kentucky Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy Resources Jump to: navigation,Kentucky

  19. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee: EnergyKentucky:

  20. Hopkinsville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville, Kentucky: Energy Resources

  1. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky Utilities

  2. Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky

  3. Columbia, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s EnergyColquittWashington:RiverKentucky:

  4. CX-002296: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computational Fluid Dynamics (CFD) Analysis Density Separator of an Air-Based Density SeparatorCX(s) Applied: B3.6Date: 05/18/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-002297: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Strategies to Minimize the Release of Toxic Metals from Coal Waste Impoundments Through Control of Coal TailingsCX(s) Applied: B3.6Date: 05/18/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31T23:59:59.000Z

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  7. DOE West Kentucky Regional Science Bowl | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

  8. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Energy Savers [EERE]

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

  9. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky invested 140,000 of a 2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the...

  10. Kentucky Utilities Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  11. Transitioning Kentucky Off Oil: An Interview with Clean Cities...

    Broader source: Energy.gov (indexed) [DOE]

    fuel, and we're very proud of that. Also, Kentucky has the largest fleet of hybrid electric school buses in the nation and that's given our coalition a lot of credibility....

  12. Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  13. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and the Paducah Gaseous Diffusion Plant), the Kentucky Deparmtnet of Military Affairs (Technical Support and cleanup at the Paducah Gaseous Diffusion Plant over the next several years. Five research projects were

  14. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and at the Paducah Gaseous Diffusion Plant). The Kentucky at the Paducah Gaseous Diffusion Plant. Seven student research enhancement projects were selected for support

  15. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ), and the Kentucky River Authority (KRA): 1) Technical Support for the Paducah Gaseous Diffusion Plant (CHS) 2 capability of wetland soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant

  16. Thesis office Internship office

    E-Print Network [OSTI]

    Thesis office Internship office Servicedesk Smartstudie Look at the thesis project flowchart when (education). Submit your thesis application form to: ThesisOffice-TNW@tudelft.nl. At the internship office you can find information about internships, other student experiences and tips. Contact: Internship

  17. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant). The Kentucky Diffusion Plant. Over 20 technical projects supported through the consortium presented results during 2007 with efforts supporting a variety of environmental assessment and cleanup activities at the Paducah Gasous

  18. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    on environmental assessment and cleanup evaluation at the Paducah Gaseous Diffusion Plant over the next several for Health Services (Technical Support for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant Federal Facilities Agreement and Agreement in Principle), the Kentucky Department

  19. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Flats Disposal Site (CHS) 2) Technical support for the Paducah Gaseous Diffusion Plant (CHS) 3 soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to bind Attenuation of a Trichloroethene-Contaminated Aquifer System, Paducah, Kentucky, MS Thesis, Department

  20. Microsoft Word - DRAFT FY15 Award Fee Plan LATA - 09-19-2014...

    Office of Environmental Management (EM)

    PPPO Lexington Robert E. Edwards III Lead Contracting Officer, PPPO Lexington Pamela Thompson *Contracting Officer William Creech *Technical Lead David Dollins *Project Team...

  1. Directions to the River's Edge Catering & Conference Center, Naval Air Station Patuxent River For mapping GPS program reference, Lexington Park, MD is the town just outside the base gates. Physical

    E-Print Network [OSTI]

    Yener, Aylin

    Rev 0310 Directions to the River's Edge Catering & Conference Center, Naval Air Station Patuxent. Physical address is 46870 Tate Road ­ Bldg 2815, Patuxent River, MD. 20670. REC&C (301) 342-6210. From River For mapping GPS program reference, Lexington Park, MD is the town just outside the base gates

  2. Petrographic characterization of Kentucky coals. Quarterly progress report, March 1982-May 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  3. Petrographic characterization of Kentucky coals. Quarterly progress report, June 1982-August 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  4. Chapter 51 Attainment and Maintenance of the National Ambient Air Quality Standards (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 51, entitled Attainment and Maintenance of the National Ambient Air Quality Standards, is promulgated under the authority of the Division of Air Quality...

  5. Petrography of the Herrin (No. 11) coal in western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D.

    1981-06-01T23:59:59.000Z

    The Herrin (No.11) coal in western Kentucky is in the upper part of the Pennsylvanian (Des Moinesian) Carbondale Formation. Samples were obtained from 13 mines in Kentucky and one mine in Illinois in three equal benches from two to three channels for a total of 93 samples. The rank of the coal (as vitrinite reflectance) is high volatile C bituminous in the Moorman Syncline and high volatile A bituminous in the Webster Syncline. Reflectance does not vary between mines in the Moorman Syncline. The percentage of total vitrinite macerals for each mine is over 85% and the percentage of total vitrinite plus liptinite macerals is over 89% (average over 90%) (both on dry, mineral-free basis). 37 refs.

  6. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  7. Clean Cities: Kentucky Clean Cities Partnership coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowa

  8. 276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin Drug-Free Policy Policy Statement as a Drug-Free Institution The University of Kentucky is committed to providing a healthy and safe to the unlawful possession, use, dispensa- tion, distribution or manufacture of alcohol or illicit drugs. Conduct

  9. Petrographic characterization of Kentucky coals. Quarterly progress report, March-May 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    This project consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Techniques developed in the first three areas were used in additional research on Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky. Some of the findings are: percent variations (pseudovitrinite-vitrinite/vitrinite X100) indicate greater dispersions in Vicker's microhardness values, MH(v), of vitrinite and pseudovitrinite from eastern Kentucky coals than those of western Kentucky coals; reflectance data confirm a previously suspected rank increase from eastern Knott and Magoffin Counties to eastern Pike County; microhardness investigation of Upper Elkhorn 2 coal in eastern Kentucky indicates that pseudovitrinite is consistently harder than vitrinite; and of the western coals studied, Dunbar and Lead Creek, there appears to be some correlations between vitrinite, ash, sulfur, and thickness. 6 tables.

  10. advanced fischer-tropsch technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarterly Report Fossil Fuels Websites Summary: 40308 University of Kentucky Research Foundation 201 Kinkead Hall Lexington, KY 40506 University of Chemical Engineering...

  11. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    of Kentucky FE 315 10 Donald Krastman 5110 -10112 Lexington, Fayette County, KY CAVITATION PRETREATMENT OF A FLOTATION FEEDSTOCK FOR ENHANCED COAL RECOVERY A test program is...

  12. Lawrence County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentianIllinois: EnergyKentucky:

  13. Leslie County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:New York:Leslie County, Kentucky:

  14. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control DesignKentucky: Energy Resources Jump to:

  15. Franklin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind FarmKentucky: Energy

  16. Adair County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, California Sector:NewKentucky: Energy

  17. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County,InformationBushyhead,Iowa:Kentucky:

  18. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point,Kentucky: Energy

  19. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International NewOklahoma: EnergyChowanKentucky: Energy

  20. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation,SchmidNorth Carolina:94934°,Iowa:Kentucky:

  1. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: Energy Resources Jump to:Kentucky:

  2. Knox County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermalKnowlton, Wisconsin:Kentucky:

  3. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky DNR

  4. Kentucky's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky

  5. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWestOhio:RhodeKentucky:

  6. Henderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station -Yinge IndustrialKentucky:

  7. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle BiscuitsPemery Corporation JumpKentucky: Energy

  8. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake,Hampshire:Illinois: EnergyKentucky:

  9. City of Fulton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCity of Fulton, Kentucky

  10. City of Princeton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity of Princeton, Kentucky

  11. Grant County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas:InformationIndiana:Kentucky:

  12. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave)Georgia:Iowa:Kentucky:

  13. Marshall County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri: EnergyMarlboro, New9972934°,Iowa:Kentucky:

  14. Martin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills,Kentucky: Energy Resources

  15. McLean County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show Map Loading map...Kentucky:

  16. Mercer County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: EnergyKentucky: Energy Resources Jump

  17. Crittenden County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,Crisp County,Kentucky:

  18. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to:TIAX LLCTSNergy JumpKentucky)

  19. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBP SolarKentucky: Energy

  20. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia | OpenMonona1851445°,Kentucky: Energy

  1. Montgomery County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky: Energy

  2. Bath County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County, Texas:Missouri:Kentucky:

  3. Bell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | OpenCounty, Kentucky: Energy

  4. Pulaski County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: Energy Resources Jump to:

  5. Russell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky: Energy Resources Jump to:

  6. Fort Knox, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox, Kentucky:

  7. Kentucky National Guard Radiation Specialist Course | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945: Trinity TestKarenKentucky National Guard

  8. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOEJim Turnure,FieldsKentucky

  9. Atmospheric fluidized-bed combustion testing of western Kentucky limestones

    SciTech Connect (OSTI)

    Zimmerman, G.P.; Holcomb, R.S.; Guymon, R.H.

    1982-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is studying and testing the burning of coal in an atmospheric fluidized-bed combustor (AFBC) as a means of generating electricity and/or process heat in an environmentally acceptable manner. The abundant, high-sulfur coal resources in this country can be utilized effectively in such a system. The ORNL test program supporting the 20-MW(e) AFBC pilot plant planned for operation by the Tennessee Valley Authority (TVA) in 1982 is described. During the test program 625 hours of coal combustion were accumulated in a 25-cm-diam bench scale AFBC. The fuel was Kentucky No. 9 coal with about 4% sulfur. Five different limestones from the Western Kentucky area were tested for their ability to reduce sulfur dioxide emissions. The bench scale combustor was operated under a variety of conditions including changes in bed temperature, bed height and superficial velocity. At a superficial velocity of 1.2 m/s, four of the five limestones achieved 90% sulfur retention with weight ratios of limestone feed to coal feed near 0.40:1 under no recycle (once through) operation. Carbon utilization (based on carbon loss data) averaged 84% for these tests. Two of the more promising stones were tested by recycling the material elutriated from the combustor. The amount of fresh limestone required for 90% sulfur retention was reduced by up to 50%. Carbon utilization approaching 98% was obtained under these conditions.

  10. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant 

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a...

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  12. Building on Success: Educational Diversity and Equity in Kentucky Higher Education

    E-Print Network [OSTI]

    The Civil Rights Project/ Proyecto Derechos Civiles

    2008-01-01T23:59:59.000Z

    moving toward graduation. A pilot project will begin thisGraduation Rate Crisis, Cambridge: Harvard Education Press, 2004. The Civil Rights ProjectProjects in Education Research Center, the research arm of Education Week. Kentucky reported a graduation

  13. Testing of Western Kentucky No. 9 coal in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Pettit, R.

    1984-05-01T23:59:59.000Z

    This report deals with the characterization of a western Kentucky No. 9 coal as an atmospheric fluidized-bed combustor (AFBC) feedstock. It is the first of a series of four reports, each dealing with a different Kentucky coal. All of the coal tests were conducted using an Oregon dolomite from the central Kentucky region. The tests were conducted in a 2 ft. 8 in. x 2 ft. 5 in. atmospheric fluidized bed combustor. The Western Kentucky No. 9 coal tested had a heating value of 12200 Btu/lb. The Oregon dolomite used contained 61% CaCO3 and 31% MgCO3. Detailed feedstock analyses are presented in Appendix E. Seven steady-state test runs were conducted over a two-week period. The runs were at one of 100%, 85%, or 70% loads. The air flowrate, bed temperature, and stack sulfur dioxide emissions rate were kept approximately constant during these tests to facilitate comparison.

  14. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  15. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    's subcontractors, the Commonwealth of Kentucky or any agency thereof, or the United States Government or any agency thereof. INTRODUCTION Tri-State Synfuels Project Tri-State Synfuels Company, a partnershi of Texas Eastern Corporation and Texas Gas Transmis...Eion Corporat ion affiliates, proposes to produce li~Uid transportation fuels and substitute natural gas rom coal using the indirect liquefaction appr ach (Reference 1). The proj ect is sited in Hende son County, Kentucky and will, if built, use COIer...

  16. Kentucky, Tennessee: corniferous potential may be worth exploring

    SciTech Connect (OSTI)

    Currie, M.T.

    1982-05-01T23:59:59.000Z

    The driller's term, corniferous, refers to all carbonate and clastic strata, regardless of geologic age, underlying the regional unconformity below the late Devonian-early Mississippian New Albany shale and overlying the middle Silurian Clinton shale in the study area. From oldest to youngest, the formations that constitute the corniferous are the middle Silurian Keefer formation, the middle Silurian Lockport dolomite, the upper Silurian Salina formation, the lower Devonian Helderberg limestone, the lower Devonian Oriskanysandstone, the lower Devonian Onondaga limestone, and in the extreme western portion of the study area, the middle Devonian Boyle dolomite. The overlying New Albany shale also is termed Ohio shale or Chattanooga shale in the Appalachian Basin. To drillers, it is known simply as the black shale. The study area is located in E. Kentucky on the western flank of the Appalachian Basin and covers all or parts of 32 counties.

  17. Portsmouth Paducah Project Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination from more than 2.4 billion gallons. C-400 TCE Source Reduction Interim Remedial Action In 2005, DOE, the Commonwealth of Kentucky and the U.S. Environmental...

  18. Campus Sustainability Office Campus Planning Office

    E-Print Network [OSTI]

    Caughman, John

    Campus Sustainability Office (CSO) Campus Planning Office (CPO) Campus Sustainability Manager (Molly Bressers) Campus Sustainability Office and Campus Planning Office September 2014 Student Employee

  19. West Kentucky Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Coordinator: Don Dihel Email:Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Buz Smith Email:Robert.Smith@lex.doe.gov Phone: 270-441-6821 Last modified: 1012014 10:45:1...

  20. CMTA Office

    High Performance Buildings Database

    Prospect, KY When CMTA outgrew their old office space, the consultant engineering company decided to construct a new building. Not only does the structure provide offices for the firm, it also showcases progressive design elements and allows the firm to test new technologies and demonstrate their effectiveness to clients. The new CMTA office building is located in a live-work development on the outskirts of Louisville, KY. The location was selected to place the office close to where the employees live.

  1. President Office Vice President Office

    E-Print Network [OSTI]

    Wu, Yih-Min

    Affairs Division Computer Information Management Division Media Instruction and Production Center Division Campus Security Supplies Office Office of Research and Development Planning Section and Waste Control Division Radiation Protection Division Biological Pollution Control Division #12

  2. A Radiation Laboratory Curriculum Development at Western Kentucky University

    SciTech Connect (OSTI)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

    2009-03-10T23:59:59.000Z

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  3. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1982 to February 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set. Due to the discrete nature of the projects, the final reports will be submitted in several parts. The first report on spectral fluorescence is in development and should be submitted prior to the end of the project. The other reports will be submitted shortly after the end of the project.

  4. Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Robertson, J.D.; Wong, A.S. [Univ. of Kentucky, Lexington, KY (United States); Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1996-01-01T23:59:59.000Z

    The Shawnee power station in western Kentucky consists of ten 150-MW units, eight of which burn low-sulfur (< 1 wt %) eastern Kentucky and central West Virginia coal. The other units burn medium- and high-sulfur (> 1 wt %) coal in an atmospheric fluidized-bed combustion unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25 wt %. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6% to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety, but there is a portion that is a thick-walled variety similar to a petroleum coke.

  5. Petrography and chemistry of fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Wild, G.D. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1994-12-31T23:59:59.000Z

    The Shawnee Power Station in western Kentucky consists of ten 150 MW units, eight of which burn low-sulfur eastern Kentucky and central West Virginia coal. The other units bum medium and high-sulfur coal in an AFBC unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25%. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6 to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety but there is a portion which is a thick-walled variety similar to a petroleum coke.

  6. Testing of Oregon dolomite from central Kentucky in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    This report is the first in a series of six limestone reports, and describes the results of testing of an Oregon dolomite from central Kentucky (1/8 in. x 0, 63% CaCO/sub 3/, 31% MgCO/sub 3/) in a 2 ft/ 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All six limestones (or dolomites) were tested using the same coal, a washed Western Kentucky No. 9 coal (1/4 in. x 0, 3.1% sulfur, 9% ash, 13230 Btu/lb.). Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn high-sulfur coals efficiently in an AFBC when Oregon dolomite from central Kentucky is used as the sulfur sorbent.

  7. Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

  8. Petrographic characterization of Kentucky coals. Final report. Part V. Pyrite size/form/microlithotype distribution in western Kentucky prepared coals and in channel samples from western Kentucky and western Pennsylvania

    SciTech Connect (OSTI)

    Frankle, K.A.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Pyrite and marcasite distribution has been characterized in several western Kentucky coals, western Pennsylvania coals, and coals from western Kentucky preparation plants using three parameters of size, morphology, and microlithotype association. A classification system was developed to provide a consistent method for recording different pyrite/marcasite types. Sulfides were microscopically measured and placed in one of six size divisions (<5, 5 to 10, 10 to 40, 40 to 75, 75 to 100, or >150..mu..m) rather than absolute size. Five categories (euhedral, framboidal, dendritic, massive, or cleat) describe pyrite/marcasite morphology. The third parameter identifies the microlithotype (vitrite, clarite, inertite, liptite, durite, vitrinertite, trimacerite, or carbominerite) in which the pyrite occurs (not including the measured sulfide). Carbominerite is a mineral/organic association dominated by mineral matter. The percentage of each variable represents the total number of counts per sample and not the volume of pyrite. Throughout the studies, both sulfides are collectively referred to as pyrite unless otherwise specified. This paper describes the different studies which were undertaken to test the usefulness of this pyrite classification system. Systematic trends in pyrite variability were determined for the Springfield coal and Herrin of western Kentucky. Pyrite characterization of the Lower Kittanning coal from western Pennsylvania shows that certain pyrite morphologies can be an expression of the environments deposition of coal bodies. Studies of western Kentucky prepared coals demonstrate that pyrite characterization apparently can provide a method for predicting pyrite behavior and the extent of pyrite removal for specific coals. 77 references, 15 figures, 19 tables.

  9. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  10. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Compliance Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. Please send updates to...

  11. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with construction and operation of a 6,000 tons per stream day capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  12. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  13. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    -1- Reservoir characterization using oil-production-induced microseismicity, Clinton County;-2- Abstract Microseismic monitoring tests were conducted from 1993 to 1995 in the Seventy-Six oil field, Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at

  14. Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  15. Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  16. Sustainability Performance Office | Department of Energy

    Energy Savers [EERE]

    Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office...

  17. Comparisons of pyrite variability from selected western Kentucky and western Pennsylvania coals

    SciTech Connect (OSTI)

    Frankie, K.A.; Hower, J.C.

    1983-03-01T23:59:59.000Z

    Pyrite (and marcasite) variation in the lower Kittanning coal of western Pennsylvania has been petrographically characterized using three parameters of size (categories rather than absolute size), morphology (framboidal, euhedral, dendritic, massive, and cleat), and microlithotype (organic) association. The purpose of this study is to evaluate what influence paleo-environments have on the nature of variation of pyrite in coal. Comparison of coals has been done using the percentages of pyrite in the microlithotypes vitrite and clarite. In the lower Kittanning coal, framboidal pyrite is generally less abundant and dendritic pyrite was not observed at all. Euhedral pyrite exhibited no clear variation between the two environments. Massive pyrite was more abundant in the set of samples from the mine with the highest average pyritic sulfur but otherwise exhibited no variation. In contrast, a larger percentage of pyrite in the western Kentucky coals examined is framboidal and dendritic. Mines examined in the Moorman syncline of western Kentucky do have a framboidal pyrite percentage comparable to the lower Kittanning samples, but the percentage of dendritic pyrite (particularly in the Western Kentucky No. 9 coal) is significantly higher for the western Kentucky coals. Bulk petrography of the coals is similar with all having greater than 80% total vitrinite. The association of the pyritic sulfur does, however, change significantly between the various coals studied and particularly between the coals of western Kentucky and among the marine lower Kittanning samples and the fresh water lower Kittanning samples. Among the pyrite in the fresh water coals, massive (perhaps epigenetic) pyrite dominates the associations.

  18. Fellows' Officers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office ofPublicDirectoryOfficers

  19. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  20. Executive Officer

    Broader source: Energy.gov [DOE]

    THIS VACANCY ANNOUNCEMENT HAS BEEN MODIFIED TO EXTEND THE CLOSING DATE. A successful candidate in this position will serve as the Executive Officer to the Administrator of the Bonneville Power...

  1. Office of Chief Financial Officer

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-19T23:59:59.000Z

    This Order implements the provisions of the Chief Financial Officers Act of 1990 within the Department of Energy. Cancels SEN 34-91. Canceled by DOE O 520.1A.

  2. Portsmouth/Paducah Project Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    many of the earliest settlers within the VMD hailed from Virginia, present-day West Virginia, and Kentucky, many of the first settlers in rest of Pike County came from...

  3. WNR Offices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading*Official DocumentsOffices,

  4. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecade Year-0DecadeOffice

  5. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  6. Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

    1988-08-01T23:59:59.000Z

    The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

  7. Testing of Eastern Kentucky Amburgy coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the third in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Amburgy coal (1/4 in. x 0, 3.3% sulfur, 11% ash, 12920 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All 4 coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn eastern Kentucky Amburgy coal efficiently in an AFBC while keeping emissions below EPA limits.

  8. Testing of Western Kentucky No. 11 coal in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the second of a series of four coal reports, and describes the results of testing of a Western Kentucky No. 11 coal (1/4 in. x 0, 3.8% sulfur, 33% ash, 83/50 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5 ft./s are presented. Operating problems encountered are described, and include problems with large variations in coal ash and Btu contents, cyclone downleg blockage, moisture in feed material, and fouling of heat-transfer surfaces caused by high carryover rates. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn Western Kentucky No. 11 coal efficiently in an AFBC provided that the boiler control system is designed to handle large variations in coal ash and Btu contents.

  9. Testing of Eastern Kentucky Hazard coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the fourth in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Hazard No. 9 coal (1/4 in. x 0, 3.4% sulfur, 11% ash, 12640 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% C-CO/sub 2/, 31% MgCO/sub 2/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial velocity fluidized beds is warranted, and that it is feasible to burn Eastern Kentucky Hazard No. 9 coal efficiently in an AFBC while keeping emissions below EPA limits.

  10. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet)(Million(Million(Million

  11. Ohio County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State Lands andOguni

  12. Oldham County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of StateOklahomaField,Olde West Chester,

  13. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucks

  14. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce Operating Costs andGas andto Its

  15. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6Thousand4 16 22 13Year Jan Feb

  16. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)Fuel Consumption (Million2009 2010 2011YearDecadeYear

  17. Office of Chief Financial Officer

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-11-27T23:59:59.000Z

    Page Change 1 to DOE O 520.1 modifies the responsibility statement to include NNSA Field CFO positions, modifies Heads of Field Elements responsibilities for consistency with the CFO responsibilities, and makes a minor change to reflect the establishment of the Office of Management, Budget and Evaluation. Cancels SEN 34-9.

  18. National Energy Technology Laboratory Office of Fossil Energy

    E-Print Network [OSTI]

    - Kentucky Clean Coal #12;SECA 4/15/03 SECA Program Status · SECA and SECA Hybrids and Zero Emission Systems

  19. A Look at Office Buildings - Index

    Gasoline and Diesel Fuel Update (EIA)

    professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building...

  20. Petrographic characterization of Kentucky coal. Final report. Part III. Petrographic characterization of the Upper Elkhorn No. 2 coal zone of eastern Kentucky

    SciTech Connect (OSTI)

    Raione, R.P.; Hower, J.C.

    1984-01-01T23:59:59.000Z

    This report presents the study of the Upper Elkhorn No. 2 coal zone in the Big Sandy Reserve District and the surrounding area of eastern Kentucky. The seams were analyzed using megascopic and microscopic petrography and chemical methods. The Upper Elkhorn No. 2 consists predominantly of clarain. A fair degree of correlation of fusain bands and clay partings between data sites is apparent. Microscopically, the vitrinite group of macerals are dominant. A rank increase from high volatile B to high volatile A bituminous to the southwest was noted. Pseudovitrinite is associated negatively with vitrinite and has a higher reflectance and microhardness than vitrinite. Both factors may indicate source material and/or environmental differences in the respective origins of the maceral. High inertinite and lipinite areas, low ash and sulfur contents, and the distribution of thin coals may be indicative of paleotopographic highs. 62 references, 26 figures, 8 tables.

  1. Privacy Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange . . .

  2. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirectionsDirector's Office Print Roger

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. Aerobic and Anaerobic Transformations of Pentachlorophenol in Wetland Soils Elisa M. D'Angelo* and K. R. Reddy

    E-Print Network [OSTI]

    Florida, University of

    . of Agronomy, Univ. of Kentucky, N-122 Agricultural Sci. Bldg. North, Lexington, KY 40546-0091; and K.R. Reddy), availability of electron acceptors (Haggblom et al., 1993), electron donors (Ku- watsuka and Igarashi, 1975

  8. Eos,Vol. 84, No. 46, 18 November 2003 0.00001 [Frankel et al.,2000].Only three sets

    E-Print Network [OSTI]

    Myneni, Ranga B.

    ,228 Mining and Mineral Resources Building,University of Kentucky, Lexington; E-mail: zmwang- mulation,and litter fall inputs to soil carbon pools.Global NPP of vegetation can be predicted using

  9. Microsoft Word - 12.18.13 NEPA UK FT DSEA draft DearReaderLtr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Project, Lexington, Kentucky (DOEEA-1642S). DOE prepared this...

  10. Petrographic characterization of Kentucky coals. Quarterly progress report, September-November 1981

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1981-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of research in three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington (No. 4, also known as Mining City and Lewisport) coal will apply techniques developed in the first three areas. Certain suits of coals from other states will also be studied to expand the variability in the samples. Preliminary results are reported.

  11. Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

  12. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01T23:59:59.000Z

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  13. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)

    2012-09-01T23:59:59.000Z

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  14. Office of Chief Financial Officer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National Idling ReductionOfficeVolume 3

  15. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    Weston, Ken

    Finance & Administration Controller's Office April 2014 Michael Williams Controller Controller ICOFA 61318 Revised: 4/4/2014 #12;Finance & Administration Controller's Office Accounting & Asset Coordinator Property Surplus Sales 81269 Revised: 4/4/2014 #12;Finance & Administration Controller's Office

  16. SITE OFFICE CONSOLIDATION

    Broader source: Energy.gov [DOE]

    Paul Golan, Site Office Manager, SLAC/LBNL, will present on the role of the DOE Site Office. We anticipate that Paul will cover the role of the DOE Site Office, operating model, and vision.

  17. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  18. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1981-February 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1982-01-01T23:59:59.000Z

    The project involves three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability for the project which involves the determination of coal rank through the use of fluorescence measurements on sporinite, all samples have been studied and data analysis is still incomplete. Interpretation of results will be presented in future reports. The actual developments of pseudovitrinites are being investigated. Two possible mechanisms for the origin of pseudovitrinites have been suggested. The first mechanism is differential coalification of similar materials. The second factor for influencing the development of pseudovitrinite is an actual difference in original plant composition. Pyrite analysis of western Kentucky coals has been completed, however data reduction is still incomplete. Changes in the petrography of western coals may be related to depositional environments of the coal.

  19. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-12-31T23:59:59.000Z

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  20. College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90 M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M,teaching,extension,andregula- tory functions of the College of Agriculture are combined into a coordinated, mutually support

  1. 85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M. Cox of Agriculture are combined into a coordinated, mutually supporting program of undergraduate

  2. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  3. LANSCE | Training Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header TA-53 Training Office User Specific Training LANL Training Services (Internal) LANL UTRAIN (Internal) LANL EXTRAIN (External) Training Office dotline Please note current...

  4. Chief Information Officer

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced senior level executive to serve as the Chief Information Officer (CIO). The Chief Information Officer (CIO) reports directly...

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. Columbia University Postdoctoral Officers

    E-Print Network [OSTI]

    Grishok, Alla

    Columbia University Postdoctoral Officers Handbook 2013 #12;Greetings! I am excited to welcome you to the Columbia University community of scholars and investigators. The Columbia University Office of Postdoctoral Director, Office of Postdoctoral Affairs Columbia University in the city of new york office of postdoctoral

  11. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01T23:59:59.000Z

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrianâ?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEâ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onâ?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  12. Petrographic investigation of River Gem Coal, Whitley County, eastern Kentucky Coal Field

    SciTech Connect (OSTI)

    Pollock, J.D.; Hower, J.C.

    1987-09-01T23:59:59.000Z

    The River Gem coal of the Breathitt Formation (Middle Pennsylvanian) was studied at three sites in a surface mine in the Holly Hill quadrangle, Whitley County, Kentucky. The River Gem coal is correlative with the Lily and Manchester coals in neighboring Knox, Laurel, and Clay Counties, Kentucky, and the Clintwood coal in Pike County, Kentucky. At the northern site, a 14-cm rider is separated from the 92.5-cm seam by 22 cm of shale. At the two southern sites, the rider is missing. At the latter sites, the 10 cm thick top bench of the seam is separated from the lower 63 cm of the seam by a 14-cm bony lithotype not found at the northern site. The lower 63 cm of the seam in the south and the main seam in the north are characterized by moderate ash and sulfur percentages (4.4-6.8% ash, 1.4-2.3% total sulfur, 0.6-1.1% pyritic sulfur, 74-81% vitrinite, 23-32% Fe/sub 2/O/sub 3/, and 2.3-4.5% CaO). In contrast, the upper bench in the south and the rider have 18.7-27.0% ash, 8.8-11.4% total sulfur, 5.1-6.4% pyritic sulfur, 92.3-93.6% vitrinite, 45.7-57.8% Fe/sub 2/O/sub 3/ and 0.13-0.20% CaO. The bone has over 26% ash, 5.5% total sulfur, 3.2% pyritic sulfur, and 93.1% vitrinite. The overall similarity of the seam and rider characteristics between the north and south suggests that the southern bone is the lateral equivalent of the northern shale. The sulfide in the upper bench or rider and in the bone consists of fine (generally less than 10 ..mu..m), euhedral and framboidal pyrite with common massive pyrite. Massive pyrite appears as an overgrowth of fine pyrite in some places. Massive forms of marcasite, less abundant than pyrite, exhibit some evidence of developing later than the massive pyrite. A variety of < 2-..mu..m pyrite occurs as abundant, but isolated, unidimensional to tabular grains within corpocollinite, some of which is transitional to resinite.

  13. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    SciTech Connect (OSTI)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O'Connor, J.T.; Brownfield, I.K.

    1999-07-01T23:59:59.000Z

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.

  14. Petrographic characterization of Kentucky coals: relationship between sporinite spectral fluorescence and coal rank of selected western Kentucky coals. Final report, Part I. [Vitrinite

    SciTech Connect (OSTI)

    Poe, S.H.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    A total of 43 coal samples were analyzed - the majority from western Kentucky, with a few from Pennsylvania for comparative purposes - using quantitative fluorescence microscopy of sporinite to determine if coal rank as determined by vitrinite maximum reflectance could be predicted by data gathered from selected fluorescence parameters. All eight parameters (wavelength of highest intensity, area under curve to the left of the peak, area in the blue wavelengths (400 to 500 nm), green (500 to 570 nm), yellow (570 to 630 nm), blue-red ratio, and red-green ratio were found to statistically predict coal rank. The general research hypothesis, which included all the variables, had a R/sup 2/ = 0.354. The results of the step-wise regression yielded red and yellow (collective R/sup 2/ = 0.341) as the best predictor variables of coal rank. The individual parameters of area of red wavelength and blue-red ratio accounted for the greatest variance in predicting coal rank, while the parameter yellow area was the least predictive of coal rank. 31 references, 7 figures, 5 tables.

  15. Site Office Contracting Officer E-mail address Ames Site Office...

    National Nuclear Security Administration (NNSA)

    Office Contracting Officer E-mail address Ames Site Office Jackie York Jacquelyn.york@ch.doe.gov Argonne Site Office Jacquelyn York Jacquelyn.york@ch.doe.gov Brookhaven Site Office...

  16. Pond Creek coal seam in eastern Kentucky - new look at an old resource

    SciTech Connect (OSTI)

    Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

    1986-05-01T23:59:59.000Z

    The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

  17. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.

    1983-12-01T23:59:59.000Z

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  18. Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, Southeastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Taulbee, D.N.; Morrell, L.G. [Univ. of Kentucky, Lexington, KY (United States)] [and others

    1994-12-31T23:59:59.000Z

    The nature of the association of major, minor, and trace elements with coal has been the subject of intensive research by coal scientists (Swaine; and references cited therein). Density gradient centrifugation (DGC) offers a technique with which ultrafine coal particles can be partitioned into a density spectrum, portions of which represent nearly pure monomaceral concentrates. DGC has been typically conducted on demineralized coals assuring, particularly at lower specific gravities, that the resulting DGC fractions would have very low ash contents. In order to determine trends in elemental composition, particularly with a view towards maceral vs. mineral association, it is necessary to avoid demineralization. To this end the low-ash, low-sulfur Blue Gem coal bed (Middle Pennsylvanian Breathitt Formation) from Knox County, Kentucky, was selected for study. The objective of this study was to determine the petrography and chemistry, with particular emphasis on the ash geochemistry, of DGC separates of lithotypes of the Blue Gem coal bed.

  19. Stress, seismicity and structure of shallow oil reservoirs of Clinton County, Kentucky. Final report

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Kentucky Geological Survey, Lexington, KY (United States)

    1995-12-12T23:59:59.000Z

    Between 1993 and 1995 geophysicists of the Los Alamos National Laboratory, in a project funded by the US Department of Energy, conducted extensive microseismic monitoring of oil production in the recently discovered High Bridge pools of Clinton County and were able to acquire abundant, high-quality data in the northern of the two pools. This investigation provided both three-dimensional spatial and kinetic data relating to the High Bridge fracture system that previously had not been available. Funded in part by the Los Alamos National Laboratory, the Kentucky Geological Survey committed to develop a geological interpretation of these geophysical results, that would be of practical benefit to future oils exploration. This publication is a summary of the results of that project. Contents include the following: introduction; discovery and development; regional geology; fractured reservoir geology; oil migration and entrapment; subsurface stress; induced seismicity; structural geology; references; and appendices.

  20. Palynologic and petrographic cycles in the McLeansboro Group, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research); Helfrich, C.T. (Eastern Kentucky Univ., Richmond, KY (United States)); Williams, D.A. (Kentucky Geological Survey, Henderson, KY (United States))

    1992-01-01T23:59:59.000Z

    The McLeansboro Group in the Western Kentucky coal field spans the upper Desmoinesian and the Missourian and Virgilian series. Extensive drilling has demonstrated the lateral continuity of major and minor beds in the group, making it possible to study vertical and lateral changes in palynology and petrology. The Desmoinesian (Westphalian D) Baker (No. 13) and Wheatcroft (No. 13a) coal beds were included in the study but the primary emphasis is on the Missourian and Virgilian (Stephanian) coals. Patoka fm (lower Missourian) coals are dominated by tree fern spores with lesser sphenopsids, ferns, and cordaites. This is in marked contrast to the arborescent lycopod-dominated Desmoinesian coals. Only the No. 15 coal bed exceeds 80% vitrinite with the No. 16 coal bed vitrinite content of < 72% being the lowest of any Western Kentucky humic coal. The Bond Fm. (upper Missourian) represents a distinct floristic cycle with a greater diversity of plant groups including herbaceous lycopods, relatively minor contributors to the Patoka coals. The coals generally exceed 80% vitrinite. The Mattoon Fm. (Virgilian) coals have a variety of polynomorph assemblages. The low-sulfur Geiger Lake coal bed is dominated by tree ferns with important contributions from ferns and sphenopsids. Similar to the underlying tree fern interval, vitrinite contents are <80%. The uppermost Mattoon coals are dominated by ferns and are notable in being the only >1 m thick coals in the Stephanian portion of the section, with the top coal being 4.3 m thick. The uppermost coals are generally > 80% vitrinite. The palynologic/petrographic cycles appear to represent fluctuating dry (low vitrinite) and wet intervals within the Missourian/Virgilian which itself was drier than the Desmoinesian.

  1. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  5. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Finance & Administration Controller's Office July 2014 Michael Williams Controller Controller Administrative Services 51111 Catherine Hebert Program Director ICOFA 61318 Revised: 7/28/2014 #12;Finance Surplus Property 81269 Revised: 7/28/2014 #12;Finance & Administration Controller's Office Disbursement

  6. Manager, Carlsbad Field Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM), Carlsbad Field Office (CBFO) is seeking a highly experienced and motivated executive-minded individual to fill its...

  7. Office of Information Management

    Broader source: Energy.gov [DOE]

    The Office of Information Management provides a broad range of information technology services in support of the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU).

  8. Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Richland Operations Office P.O. Box 550 &?ATES0Richland, Washington 99352 10O-AMSE-0054 A PR I Mr. J. G. Lehew III, President and Chief Executive Officer...

  9. Lexington, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation,

  10. Lexington, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation,Oklahoma: Energy

  11. Lexington, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold Kostal GmbH CoAfricaLewis

  12. Mathematics Business Office

    E-Print Network [OSTI]

    Mathematics Business Office. Welcome to new faculty · Moving Procedures · Forms · Travel; Research. Pre-Award Center · Vice President for Research ...

  13. Columbia University Postdoctoral Officers

    E-Print Network [OSTI]

    Grishok, Alla

    Columbia University Postdoctoral Officers Handbook 2011 #12;Greetings! I am excited to welcome you to the Columbia University community of scholars and investigators. The Columbia University Office of Postdoctoral of Postdoctoral Affairs Columbia university in the City of new york offiCe of postdoCtoral affairs 840 Interchurch

  14. Proceedings of IMECE2005 2005 ASME International Mechanical Engineering Congress and Exposition

    E-Print Network [OSTI]

    McDonough, James M.

    short-pulse laser heating of metals. Tzou proposed the dual phase-lag (DPL) model [8­11] that reduces FOR EFFICIENTLY SOLVING A MICROSCALE HEAT TRANSPORT EQUATION DURING FEMTOSECOND LASER HEATING OF NANOSCALE METAL of Kentucky Lexington, Kentucky, 40506 Illayathambi Kunadian Center for Applied Energy Research University

  15. Geologic controls on sulfur content of the Blue Gem coal seam, southeastern Kentucky

    SciTech Connect (OSTI)

    Rimmer, S.M.; Moore, T.A.; Esterle, J.S.; Hower, J.C.

    1985-01-01T23:59:59.000Z

    Detailed petrographic and lithologic data on the Blue Gem coal seam for a local area in Knox County, Kentucky, suggest that a relationship may exist between overlying roof lithology, petrographic composition of the coal, and sulfur content. In the western part of the area, where thick (20-40 feet) shale sequences overlie the coal, sulfur contents are low (less than 1%). In isolated areas where discontinuous sandstones occur within 6 feet of the coal, sulfur contents range from 1% to over 3%. In the east, a sandstone body usually overlies and frequently scours out the coal, yet sulfur content varies independently of roof lithology. Towards the east, there is an increase in abundance, thickness and variability of fusain bands within the coal and an increase in pyrite and siderite either as cell fillings in fusinite or as masses within vitrinite; early emplacement of these minerals is indicated by compaction features. Data suggest the importance of depositional environment of the peat and overlying sediments as a control on sulfur occurrence. High sulfur contents in the west are related to sandstone bodies which may have allowed sulfate-bearing waters to permeate into the peat. In the east, where increases in pyrite, siderite and fusain content of the coal and coarsening of the overlying sediments suggest a change in environment, the presence or absence of pyrite-containing fusain bands may account for sulfur variability. Siderite occurrence may reflect local fluctuations in sulfate supply to the peat swamp.

  16. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  17. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  18. New industrial heat pump applications to a synthetic rubber production, Louisville, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The site selected for this study is the American Synthetic Rubber Corporation's polybutadiene plant in Louisville, Kentucky. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The process studied involves a solution polymerization of butadiene monomer in the presence of toluene, which acts as a solvent. The results indicate that there is an excellent prospect for heat integration and heat pump application. The heat integration option requires an investment of about 8900 sq. ft. in additional area, to save about one third of the present steam consumption. Two process streams were identified for potential heat pump application. One of them is the combined overhead vapor stream from the stripping section, composed of steam and toluene mixture. The other stream is the overhead vapor from the concentration section, composed mainly of toluene. Economic analysis were performed, both for closed cycle and semi open cycle heat pumps. The potential for semi-open cycle (MVR) hear pumps looks extremely good. 15 figs., 11 tabs.

  19. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01T23:59:59.000Z

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  1. Evaluation of the Berea sandstone formation in eastern Pike County, Kentucky

    SciTech Connect (OSTI)

    Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States)); Luffel, D. (ResTech Houston, Inc., Houston, TX (United States)); Kubik, W. (K A Energy Consultants, Tulsa, OK (United States))

    1993-08-01T23:59:59.000Z

    The Gas Research Institute (GRI) has been sponsoring a cooperative well program with Ashland Exploration, Inc., (AEI) during the past two years targeting the Devonian Shale and Berea sandstone formations in Pike County of eastern Kentucky. Operators typically complete both the shales and Berea in one well bore in this area. This presentation summarizes the research results of the Berea cooperative well, the COOP 2 (Ashland FMC 80). The specific objectives of the Berea evaluation in the COOP 2 were to develop an integrated reservoir description for stimulation design and predicting long-term well performance, identify geologic production controls, determine the in-situ stress profile, and develop Berea log interpretation models for gas porosity and stress. To satisfy these objectives, data were collected and analyzed from 146 ft of whole core, open-hole geophysical logs, including formation microscanner and digital sonic, in-situ stress measurements, and prefracture production and pressure transient tests. In addition, data from a minifracture, a fracture stimulation treatment, and postfracture performance tests were analyzed. The authors determined the integrated reservoir/hydraulic fracture descriptions from analyzing the data collected in the open- and cased-hole, in addition to the log interpretation models developed to accurately predict gas porosity and stress profiles. Results can be applied by operators to better understand the Berea reservoir in the study area, predict well performance, and design completion procedures and stimulation treatments. The methodology can also be applied to other tight-gas sand formations.

  2. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  3. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  4. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  5. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  6. NASA Office of Inspector General Office of Audits

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA Office of Inspector General Office of Audits Report No. IG-15-003 NASA'S LAUNCH SUPPORT Center October 23, 2014 NASA Office of Inspector General Office of Audits IG-15-003 (A-13 National Aeronautics and Space Administration #12;Office of Inspector General To report, fraud, waste

  7. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  8. Mathematics Business Office

    E-Print Network [OSTI]

    The Department Business Office will contact the University Purchasing Department with your name, address, phone number, and the company you wish to use.

  9. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  10. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  11. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  12. Site Office Manager, Princeton

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Princeton Site Office (PSO) Manager by providing overall executive leadership to the PSO.

  13. Office Buildings - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

  14. Office of the Chief Financial Officer Annual Report 2009

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2009-12-15T23:59:59.000Z

    Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

  15. Office of Sustainability Support

    Broader source: Energy.gov [DOE]

    The Office of Sustainability Support serves as AU’s organizational lead in partnering with the Department’s Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOE’s annual Strategic Sustainability Program Plan.

  16. Europaisches Patent Office

    E-Print Network [OSTI]

    Vertes, Akos

    (19) (12) Europaisches Patentamt European Patent Office Office europeen des brevets 11111~11111111111111111"11111111111111111"11""1111111111II~,,~1111 (11) EP 2 356 668 81 EUROPEAN PATENT SPECIFICATION (86) International application number: PCT/US2009/065891 (45) Date of publication and mention of the grant of the patent: 17.07.2013 Bulletin

  17. Office of Business Operations

    Broader source: Energy.gov [DOE]

    The Office of Business Operations manages financial and acquisition management programs throughout the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU), including the formulation and execution of the AU budget; funding control and accounting activities; preparation of management studies; and provision of acquisition management support.

  18. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  19. Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky

    SciTech Connect (OSTI)

    Last, G.V.; Gilmore, T.J.; Bronson, F.J.

    1998-01-01T23:59:59.000Z

    Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

  20. Appointment of Contracting Officers and Contracting Officer Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-21T23:59:59.000Z

    The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

  1. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth not negate your responsibility to follow all the Thesis Manual guidelines. If you have any questions about and paragraphs indented. The Thesis Office allows for text to be formatted either left aligned or justified

  2. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth not negate your responsibility to follow all the Thesis Manual guidelines. If you have any questions about. The abstract is formatted with text left aligned and paragraphs indented. The Thesis Office allows for text

  3. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth your responsibility to follow all the Thesis Manual guidelines. If you have any questions about. The abstract is formatted with text left aligned and paragraphs indented. The Thesis Office allows for text

  4. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Sargent, K A; Cook, J R; Fay, W M

    1982-02-01T23:59:59.000Z

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  5. Nature of petrographic variation in Taylor-Copland Coal of middle Pennsylvanian Breathitt Formation of eastern Kentucky

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.; Tully, D.G.; Helfrich, C.T.

    1984-12-01T23:59:59.000Z

    The Taylor-Copland Coal is petrographically distinctive in that it has lowest average vitrinite content (63%) and concomitant highest inertinite (25%) and exinite (12%) of all eastern Kentucky coals. Additionally, average total sulfur is 3.4%, or nearly twice the 1.8% figure determined for all eastern Kentucky samples. Deviations from the maceral averages are equally distinctive. Particularly interesting is an areally extensive, though discontinuous, sample sequence showing significantly lower vitrinites (commonly 40%), very high inertinites (40%), and high exinite content (15-20%). The high-inertinite and high total-sulfur trends and variations for each were presumed to be related to proximity to the coal of marine lithologic units of the overlying Magoffin Member. However, it was found that maceral and possible sulfur trends are probably unrelated to roof rock variation, but are related to existence or absence of a thick durain coal lithotype toward the middle of some coal beds. Palynology reveals that spores in the durain-rich samples are poorly preserved (micrinitized), but assemblages and relative percentages of genera forming the assemblages remained unchanged from those found in high-vitrinite (durain-free) samples. Unchanged spore assemblages possibly indicate that unchanging plant communities existed through the durain-forming episode of the Taylor-Copland swamp. Rather, the effect of the durain phase on the Taylor-Copland swamp was to accelerate degradation (oxidation) of peat deposits associated with the surrounding plant community.

  6. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect (OSTI)

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2008-11-15T23:59:59.000Z

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  7. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI.

  8. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

  9. LANSCE | Training Office | User Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header TA-53 Training Office User Specific Training LANL Training Services (Internal) LANL UTRAIN (Internal) LANL EXTRAIN (External) Training Office dotline User Training Below is...

  10. DEPARTMENT OF I Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY Science SLAC Site Office

  11. Offices | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOffice ofOffices Offices

  12. NASA Office of Inspector General Office of Audits

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA Office of Inspector General Office of Audits Report No. IG-15-002 AUDIT OF NASA'S PREMIUM AIR General Office of Audits IG-15-002 (A-14-010-00) With limited exceptions, the General Services TRAVEL October 21, 2014 National Aeronautics and Space Administration #12;Office of Inspector General

  13. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  14. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expiration Current Ponntt WavNumbor Submlttlld * Status 25. Office of New MeKico Slate Monitoring WeD Exhaust Shaft C-2803 02123101 None Active Engineer Exploratory Borehole...

  15. CSU Office of International

    E-Print Network [OSTI]

    CSU Office of International Programs - Education Abroad Program Types Currently 750 programs on the OIP Education Abroad website. CSU, through Division of Continuing Education/ Online Education Abroad website. Transfer Semester, year & possibly summer CSU tuition and fees (All other fees

  16. Mathematics Business Office

    E-Print Network [OSTI]

    On behalf of the entire Business Office staff of the Departments of Mathematics I would like to express how happy we are that you will be joining our faculty and ...

  17. Office of Information Security

    Broader source: Energy.gov [DOE]

    The Office of Information Security is responsible for implementation of the Classified Matter Protection and Control Program (CMPC), the Operations Security Program (OPSEC) and the Facility Clearance Program and the Survey Program for Headquarters

  18. Program Assistant (Office Automation)

    Broader source: Energy.gov [DOE]

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

  19. Office of Quality Assurance

    Broader source: Energy.gov [DOE]

    The Office of Quality Assurance establishes and maintains the quality assurance (QA) policies, requirements and guidance for the Department and serves as DOE's corporate resource to ensure that products and services meet or exceed the Department’s quality objectives.

  20. Supervisory Program Analysis Officer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for the program analysis and evaluation of all activities which fall within the purview of the Office. The incumbent directs a moderate...

  1. Office of Security Policy

    Broader source: Energy.gov [DOE]

    The Office of Security Policy is the central source within the Department of Energy for the development and analysis of safeguards and security policies and standards affecting facilities, nuclear materials, personnel, and classified information.

  2. Manager, Golden Field Office

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American leadership in the global transition to a clean energy...

  3. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the Portsmouth...

  4. Green Office Program: Innovation Credits

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Green Office Program: Innovation Credits There are plenty of sustainable practices that aren't on our Green Office Program checklist. In an effort to encourage such practices, and reward offices Green: 5 Think outside the box, but make sure your innovation credits are approved by your Green Office

  5. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13T23:59:59.000Z

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  6. The Hanford Site Richland Operations Office Office of River Protection Office of Science

    E-Print Network [OSTI]

    The Hanford Site Richland Operations Office Office of River Protection Office of Science Plateau Remediation Contractor Tank Operations Contractor Analytical Services Contractor Waste Treatment Plant (WTP;HANFORDSMALLBUSINESSCOUNCIL Richland Operations Office Sally A. Sieracki Small Business Program Manager E-mail: sally

  7. Office of Clinical Trials Research, Office of Sponsored Programs' Pre-Award Service Office

    E-Print Network [OSTI]

    Hayden, Nancy J.

    the effects on health outcomes. The NIH defines a clinical trial as · A prospective biomedical or behavioralOffice of Clinical Trials Research, Office of Sponsored Programs' Pre-Award Service Office and Research Protections Office University of Vermont/Fletcher Allen Health Care CLINICAL TRIALS REGISTRATION

  8. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4PDF Office

  9. Intra- and inter-unit variation in fly ash petrography: Examples from a western Kentucky power station

    SciTech Connect (OSTI)

    Hower, J.C.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Goodman, J. [Prestonburg High School, KY (United States)

    1998-12-31T23:59:59.000Z

    Fly ash was collected from eight mechanical and ten baghouse hoppers at each of twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of low-sulfur, high volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical units. The coarser mechanical fly ash showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbons and total coke; the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in ratios of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units.

  10. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  11. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  12. Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office of IndianOffice

  13. SSRL Safety Office Memo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4Safety Office SSO

  14. Office of Heath, Safety and Security Now Two New Offices

    Broader source: Energy.gov [DOE]

    To serve you better, DOE has structured the former HSS into to new organizations: the Office Independent Enterprise Assessment (IEA); and Office of Environment, Health, Safety and Security (EHSS).

  15. Appointment of Contracting Officers and Contracting Officer Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-04-30T23:59:59.000Z

    To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

  16. Workforce Management Office (WFMO) Functional Statements WORKFORCE MANAGEMENT OFFICE

    E-Print Network [OSTI]

    , and destruction. BMD oversees WFMO's personal property management, Freedom of Information Act responses, Entry, organizing, and administering comprehensive human resources management programs in collaboration wMay 2014 Workforce Management Office (WFMO) ­ Functional Statements WORKFORCE MANAGEMENT OFFICE

  17. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Livermore Field Office Livermore Field Office FY15 Semi Annual Report FY14 Year...

  18. Sandia Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Sandia Field Office Sandia Field Office FY15 Semi Annual Report FY14 Year End...

  19. Pantex Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Pantex Field Office Pantex Field Office FY12 Semi Annual Report FY11 Year End...

  20. Nevada Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Nevada Field Office Nevada Field Office FY15 Semi Annual Report FY14 Year End...

  1. OFFICE ERGONOMICS A Self-Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    OFFICE ERGONOMICS A Self-Assessment Guide Environmental Health and Safety Office safety, along with additional information on ergonomics, is also available through the Dalhousie Safety Office

  2. Independent Oversight Evaluation, Office of Secure Transportation...

    Office of Environmental Management (EM)

    Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office...

  3. Fuel Cell Technologies Office Accomplishments and Progress |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of...

  4. Influence of coal quality parameters on utilization of high-sulfur coals: Examples from Springfield (western Kentucky No. 9) coal bed

    SciTech Connect (OSTI)

    Griswold, T.B.; Hower, J.C.; Cobb, J.C. (Kentucky Energy Cabinet, Lexington (USA))

    1989-08-01T23:59:59.000Z

    The Springfield (Western Kentucky No. 9) coal bed is the most important energy resource in the Western Kentucky coalfield (Eastern Interior coalfield), accounting for over 30 million tons of annual production from remaining resources of over 9 billion tons. For many coal quality parameters, the quality of the coal bed is relatively consistent throughout the region. For example, the Springfield has about 80-85% vitrinite, 10% ash, and 3.5-4.5% total sulfur at most sites in the coalfield. However, coal quality variation is more than just the changes in ash and sulfur. As demonstrated by the Springfield coal bed, it is a complex interaction of related and unrelated variables many of which directly affect utilization of the coal. Significant, though generally predictable, changes are observed in other parameters. Comparison of data from the Millport (Muhlenberg and Hopkins Countries), Providence (Hopkins and Webster Counties), and Waverly (Union County) 7{1/2} Quadrangles illustrated such variations.

  5. Appointment of Contracting Officers and Contracting Officer's Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-27T23:59:59.000Z

    To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.

  6. NASA OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS SUITE 8U71, 300 E ST SW WASHINGTON, D.C. 20546 Directorate's Mission Extension Process (Report No. IG-15-001; Assignment No. A-13-014-00) Dear Associate Administrator Grunsfeld, The Office of Inspector General (OIG) examined the Science Mission Directorate's (SMD

  7. EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET

    E-Print Network [OSTI]

    EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D. C . 20503.C. 20515 Dear Mr. Speaker: Enclosed please find the Office ofManagement and Budget (OMB) Report to the Congress on the sequestration for fiscal year (FY) 2013 required by section 251A of the Balanced Budget

  8. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2008-12-22T23:59:59.000Z

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  9. Office Ergonomics An Overview

    E-Print Network [OSTI]

    Homes, Christopher C.

    Office Ergonomics An Overview Presented for the Physics Department 4/12/07 Room 2-160 Presented by N. Bernholc, CIH Safety and Health Services Division #12;Ergonomics... Definition What is Ergonomics relationships between workers and their work environments. #12;Ergonomics... Or More Simply said: Ergonomics

  10. Office Automation Document Preparation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    .2 Distinctions 1.3 Facilities 1.3.1 Document Preparation 1.3.2 Records Management 1.3.3 Communication 1 organizations contemplating the installation of document-preparation systems. * Administrative managersOffice Automation and Document Preparation for the v' University of North Carolina at Chapel Hill

  11. Chief Financial Officer Responsibilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-21T23:59:59.000Z

    The Order sets forth requirements for operating the Department of Energy in full compliance with the Chief Financial Officers Act of 1990 and sets standards for sound financial management policies and practices, effective internal controls, accurate and timely financial information, and well-qualified financial managers. Cancels DOE O 520.1.

  12. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  13. Office of Document Reviews

    Broader source: Energy.gov [DOE]

    The Office of Document Reviews ensures that all documents prepared at DOE Headquarters are properly marked to identify the level and category of protected information they contain (if any) and to ensure that all documents the Department prepares or is required to review under applicable statutes for public release contain no information requiring protection under law, regulations and Executive orders.

  14. Office of Quality Management

    Broader source: Energy.gov [DOE]

    The Office of Quality Management develops and interprets Government-wide policies and procedures and conducts training to ensure the accurate identification of information and documents that must be classified or controlled under statute or Executive order to protect the national security and controlled unclassified Official Use Only information for the effective operation of the Government.

  15. POLICY SECTIONS POLICY OFFICE

    E-Print Network [OSTI]

    Minnesota, University of

    POLICY SECTIONS POLICY OFFICE POLICIES FORMS PROCEDURES UNIVERSITY POLICY #12;guide to WRITING POLICIES Administrative policies align opera- tions, set behavior expectations across the University system and communicate policy roles and responsibilities. You, as the policy owner or writer, have the important task

  16. Office of Security Assistance

    Broader source: Energy.gov [DOE]

    The Office of Security Assistance manages the Technology Deployment Program to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness.

  17. U.S. Department of Energy Portsmouth/Paducah Project Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the DOE Portsmouth Gaseous Diffusion Plant (PORTS) at Piketon, Ohio and the Paducah Gaseous Diffusion Plant (PGDP) at Paducah, Kentucky. Number and Title of the Categorical...

  18. U.S. Department of Energy Portsmouth/Paducah Project Office

    Broader source: Energy.gov (indexed) [DOE]

    at the Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio and the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. Wastes will be disposed of in...

  19. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  20. Europaisches Patentamt European Patent Office

    E-Print Network [OSTI]

    Church, George M.

    Europaisches Patentamt European Patent Office Office europeen des brevets ź Publication number: o 303 459 A2 @ EUROPEAN PATENT APPLICATION ź Application number: 88307391.8 @ Int. C1.4: C 12 Q 1

  1. Energy efficiency in office technology

    E-Print Network [OSTI]

    Dandridge, Cyane Bemiss

    1994-01-01T23:59:59.000Z

    This thesis, directed toward a wide variety of persons interested in energy efficiency issues with office technology, explores several issues relating to reducing energy use and improving energy efficiency of office ...

  2. FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFEFACILITY1 - In the6FINDINGOF

  3. Finding Energy Efficiency and Savings on a Kentucky Farm | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations inCommittee |

  4. Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYearYear Jan

  5. Y-12 team garners efficiency best practices at Toyota's Kentucky plant |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupports neighbors in ... Y-12Y-12

  6. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePrice (Percent)

  7. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent) Decade

  8. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent)

  9. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6Thousand417 1,019 1,023

  10. Introduction Kobe University Overseas Offices

    E-Print Network [OSTI]

    Banbara, Mutsunori

    -10-6253-8664 E-Mailopie-chinaoffice@office.kobe-u.ac.jp http://www.office.kobe-u.ac.jp/opie 173 Boulvevard du Triomphe Brussel 1160 Bruxelles TEL+32-2-672-6460 FAX+32-2-672-0210 http://www.office.kobe-u.ac.jp/opie

  11. UNIVERSITY OF YORK COMMUNICATIONS OFFICE

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    UNIVERSITY OF YORK COMMUNICATIONS OFFICE WEB OFFICE Web Strategy Date 4 February, 2003 Version 4, Press and PR Officer William Mackintosh, Web Manager #12;Web Strategy 4.4 ©University of York Page 2............................................................................................... 6 3.2 Objectives of the Web Strategy

  12. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    SciTech Connect (OSTI)

    Vories, K.C. (ed.)

    2003-07-01T23:59:59.000Z

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal mine sites (K.C. Vories). The questions and answers are also included.

  13. Office of the Chief Information Officer DOERM@hq.doe.gov Office...

    Broader source: Energy.gov (indexed) [DOE]

    Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation: Completing HQ F 3293.1, Section...

  14. Business Opportunities Session Office of Environmental Management...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities Session Office of Environmental Management Business Opportunities Session Office of Environmental Management Environmental Clean up Business Opportunities...

  15. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  16. Welcome to The Office of Science

    ScienceCinema (OSTI)

    Brinkman, William

    2013-05-29T23:59:59.000Z

    The Director of the Department of Energy's Office of Science, Dr. William Brinkman, introduces the new Office of Science website.

  17. Bradshaw Construction New Office Building

    High Performance Buildings Database

    Eldersburg, MD The New Office Building is part of an effort by Bradshaw Construction Corporation to combine office, off-site shop buildings and off-site storage yards at one consolidated location. The new site, located off Maryland Route 26, shall provide space for an office building and parking; and secured shop building and storage yard. The New Office Building Project has achieved LEED Silver certification. The office building is designed as a free standing building of approximately 8,200 square feet in area, one story in height.

  18. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28T23:59:59.000Z

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  19. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30T23:59:59.000Z

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  20. Petrographic characterization of Kentucky coals. Final report. Part II. Depositional settings of the coal bearing, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone

    SciTech Connect (OSTI)

    Baynard, D.N.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Depositional settings were determined in the coal bearing, Middle Pennsylvanian, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone. The coals have been analyzed for maceral contents, lithotypes, dry sulfur/ash percentages, vitrinite reflectance values, pyrite/marcasite contents, and associated lithologies at different vertical and lateral scales. This study concludes that: (1) the thin coarsening - or fining upward sequences, under the Mannington (No. 4) coal zone are possibly shallow bayfill and channel-fill deposits that provided an environment that has slight differences in topography, (2) rapid vertical and lateral change in total vitrinite, dry sulfur/ash percentages and lithotypes at different scales in the Mannington (No. 4) coal zone are indicative of wideranging Eh and pH values and possibly result from slight changes in paleotopography, and (3) the Davis (No. 6) coal was deposited after a period of thick coarsening - or fining upward sequences, possibly providing a relatively flat-stable surface for peat development. The consistent total vitrinite, dry sulfur/ash values, and thickness trends indicate a more restricted environment (pH and Eh) in the Davis (No. 6) swamp. 41 references, 25 figures, 3 tables.

  1. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  2. Office of the Chief Financial Officer Annual Report 2010

    E-Print Network [OSTI]

    Fernandez, Jeffrey

    2011-01-01T23:59:59.000Z

    of Energy Efficiency and Renewable Energy (EERE) and non-DOEEnergy Efficiency and Renewable Energy (EERE) While OfficeEnergy Efficiency and Renewable Energy Assistant Secretary

  3. Office of Fossil Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29, 2009 |OfficeEnergy

  4. Office of Personnel Management

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office0 -

  5. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community --Education Office Housing

  6. News - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User andNew,About

  7. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA p r

  8. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA p

  9. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA

  10. Initiatives - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor manyInhibiting Individual

  11. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural Gas Usage

  12. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural Gas

  13. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural

  14. - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) - Energy Innovation Portal Advanced Materialsj o n p o J

  15. Ames Site Office Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office ofHome Ames

  16. Argonne Site Office Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office ofHomeHome

  17. OFFICE: NEPA REVIEWS:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) | DepartmentOE's3OFFICE:

  18. Office of Fossil Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEEEnergy Office ofExecutiveEnergy

  19. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  20. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  1. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  2. DOE NEPA Compliance Officers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste CleanupDesignationsResearch InitiativeNEPA

  3. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOffice of Science

  4. OFFICE OF ACCOUTNING SERVICES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMeals & Lodging:

  5. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMeals &

  6. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIA NATIONAL

  7. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIA

  8. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIATECHNOLOGY

  9. Vision Office Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The History of the University

  10. Vision Office Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The History of the

  11. Ca rlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831

  12. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl Wieman,OWaste

  13. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl

  14. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 Mr.

  15. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014

  16. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21

  17. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21W

  18. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21W.

  19. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014

  20. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 201410,

  1. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 201410,O.

  2. Fermilab | Directorate | Offices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothyOPMOScientific andOffices

  3. Office of Information Resources

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E DofitemsFallFederalOffice of

  4. Office of River Protection

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E DofitemsFallFederalOffice

  5. Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State Lands and Investments - Easementsfor

  6. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  7. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy ConsumptionPDF

  8. Events - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. - EmergencyEvents

  9. Geothermal Technologies Office: Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Printable Version Share this resource Send a link to Geothermal Technologies Office: Financial Opportunities to someone by E-mail Share Geothermal...

  10. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  11. Sustainable UMass Green Office Program: Certification Checklist Office: Eco Leader

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    or are programmed to shut off through a timer Waste & Recycling: Prerequisites WP1 We have a designated area in our, printers, A/V, office phones, etc.) to the Office of Waste Management for proper recycling W6 We have percent post-consumer recycled content K3 We only offer organic and/or f

  12. EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET

    E-Print Network [OSTI]

    Myers, Lawrence C.

    EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503 March 1 Balanced Budget and Emergency Deficit Control Act of 1985, as Amended This memorandum is to inform) in accordance with section 251A of the Balanced Budget and Emergency Deficit Control Act, as amended (BBEDCA), 2

  13. J. Douglas Streit, Information Security Officer Office of Computing and Communications Services

    E-Print Network [OSTI]

    J. Douglas Streit, Information Security Officer Office of Computing and Communications Services Last updated February 6, 2012 Old Dominion University Information Technology Security Program #12;J. Douglas Streit, Information Security Officer Office of Computing and Communications Services Last updated

  14. Y-12 Site Office Recognized For Contributions To Combined Federal...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Site Office Recognized For Contributions To ... Y-12 Site Office Recognized For...

  15. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    - Energy (ARPA-E) Office of Environmental Management (EM) Office of Energy Efficiency and Renewable Energy (EERE) Office of Fossil Energy (FE) Office of Nuclear Energy (NE)...

  16. OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE RESTRICTED TITLE IV FUND PAYMENT Valid through July 31st, return form to: Oklahoma State University Office of the Bursar 113 Student Union Building Stillwater, Oklahoma 74078 Your authorization may be rescinded at any time by sending a written cancellation request

  17. OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE RESTRICTED PLUS LOAN PAYMENT Valid through July 31st, return form to: Oklahoma State University Office of the Bursar 113 Student Union Building Stillwater, Oklahoma 74078 Your authorization may be rescinded at any time by sending a written cancellation request

  18. Richland Operations Office technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  19. Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

    1983-09-01T23:59:59.000Z

    The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

  20. Kentucky-Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 55 1060,941

  1. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  2. Curriculum Vita ROBIN G. BRUMFIELD

    E-Print Network [OSTI]

    Goodman, Robert M.

    by size of firm and market channel. Directed by Dr. P.V. Nelson. 1980 M.S. in Horticultural Science, North of marketing flowering potted plants in terms of size of firm, market channel, and market period. Directed, Kentucky Department of Energy, Lexington, KY. 8/82 1/78- Graduate Research Assistant in Floriculture, North

  3. Curriculum Vita ROBIN G. BRUMFIELD

    E-Print Network [OSTI]

    Goodman, Robert M.

    by size of firm and market channel. Directed by Dr. P.V. Nelson. 1980 M.S. in Horticultural Science, North of marketing flowering potted plants in terms of size of firm, market channel, and market period. Directed University, 12/82 Richmond, KY. 3/82- Principal Research Analyst, Kentucky Department of Energy, Lexington

  4. A new, community-based effort aims to transform hydrologic science by supporting new techniques to measure hydrologic processes at a wide range of time and space scales as well by

    E-Print Network [OSTI]

    , New Hampshire; WENDROTH--Department of Plant and Soil Sciences, University of Kentucky, Lexington.g., groundwater, hydrome- teorology, surface water, etc.). Timely and emerging suites of technologies with new and existing research efforts. Here we present the consistent vision that emerged through

  5. 740 / Molecular Plant-Microbe Interactions MPMI Vol. 20, No. 7, 2007, pp. 740750. doi:10.1094/MPMI-20-7-0740. 2007 The American Phytopathological Society

    E-Print Network [OSTI]

    Citovsky, Vitaly

    -20-7-0740. © 2007 The American Phytopathological Society TECHNICAL ADVANCE pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana, University of Kentucky, Lexington 40546, U.S.A.; 2 Department of Life Science, Dongguk University, South

  6. Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA

    E-Print Network [OSTI]

    Banner, Jay L.

    of Kentucky, Lexington, KY 40506-0053, USA b Department of Geological Sciences, The University of TexasControls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA Sunil Mehtaa, *, Alan E. Fryara , Jay L. Bannerb a Department of Geological Sciences, University

  7. Logic Programs with Abstract Constraint Atoms: The Role of Computations

    E-Print Network [OSTI]

    Tran, Cao Son

    of Kentucky, Lexington, KY 40506, USA, {lliu1,mirek}@cs.uky.edu 2 Department of Computer Science, New Mexico]. Another semantics has been proposed in [21]. Following the approach proposed in [11], and exploiting characterizations of answer sets, providing a reasoner with alternative ways to deter- mine them. The original

  8. Logic Programs with Abstract Constraint Atoms: The Role of Computations

    E-Print Network [OSTI]

    Truszczynski, Miroslaw

    of Kentucky, Lexington, KY 40506, USA, {lliu1,mirek}@cs.uky.edu 2 Department of Computer Science, New Mexico]. Another semantics has been proposed in [21]. Following the approach proposed in [11], and exploiting characterizations of answer sets, providing a reasoner with alternative ways to deter­ mine them. The original

  9. Nuclear Instruments and Methods in Physics Research A 426 (1999) 249}253 Precise momentum determination of the external COSY proton

    E-Print Network [OSTI]

    Magiera, Andrzej

    1999-01-01T23:59:59.000Z

    ( nster, Germany Institute of Nuclear Physics and Nuclear Energy, Soxa, Bulgaria Institute of Physics., Cairo, Egypt. Now at Department of Physics and Astronomy, University of Kentucky, Lexington, KY, USA. 0168-9002/99/$ } see front matter 1999 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 8 - 9 0

  10. DOL: Office of the Ombudsman for EEOICPA

    Broader source: Energy.gov [DOE]

    The Office of the Ombudsman for the Energy Employees Occupational Illness Compensation Program is an independent office within the Department of Labor that provides assistance and information to...

  11. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

  12. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Energy Savers [EERE]

    Vehicle Technologies Office Recognizes Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am...

  13. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  14. Office of Acquisition and Project Management

    Office of Environmental Management (EM)

    services to HQ managers. Office of Corporate Information Technology Mission The Office of Corporate Information Technology (EM-72) serves as the principal advisor for the EM...

  15. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  16. Sandia National Laboratories: Geothermal Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Office Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities,...

  17. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees December 11, 2013...

  18. Geothermal Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Technologies Office Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal...

  19. Geothermal Technologies Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position The...

  20. Independent Oversight Inspection, Office of Secure Transportation...

    Office of Environmental Management (EM)

    Office of Secure Transportation - March 2007 Independent Oversight Inspection, Office of Secure Transportation - March 2007 March 2007 Inspection of Emergency Management at the...

  1. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  2. Daniel Lee Cloyd named Counterintelligence Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FBI officer accepts LANL counterintelligence post November 10, 2010 Daniel Lee Cloyd named Counterintelligence Office leader LOS ALAMOS, New Mexico, November 10, 2010-Daniel Lee...

  3. ORISE Resources: Medical Office Preparedness Planner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership with CDC yields Medical Office Preparedness Planner for Primary Care Providers The Medical Office Preparedness Planner is a tool for primary care providers (PCPs) and...

  4. AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support the strategic mission of Northern Kentucky University by providing quality service through sound

    E-Print Network [OSTI]

    Boyce, Richard L.

    20132013 AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support within Administration and Finance are committed to the development, implementation, and continuous of Northern Kentucky University. Administration and Finance strives to provide a climate conducive

  5. 82 College of Agriculture and School of Human Environmental Sciences 2007-2008 University of Kentucky Bulletin M. Scott Smith, Ph.D., is Dean and Director of the

    E-Print Network [OSTI]

    MacAdam, Keith

    82 College of Agriculture and School of Human Environmental Sciences 2007-2008 University of Kentucky Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Linus R for Academic Programs. Theresearch,teaching,extension,andregu- latory functions of the College of Agriculture

  6. What level of Internet access does Paducah, Kentucky have? In order to answer this question, I ran a search of ISPs (Internet Service Providers) in the (502) area code

    E-Print Network [OSTI]

    Ehrman, Sheryl H.

    What level of Internet access does Paducah, Kentucky have? In order to answer this question, I ran a search of ISPs (Internet Service Providers) in the (502) area code (the area code which contains Paducah on these search results, I think that the level of Internet access availability in Paducah is equivalent

  7. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  8. Categorical Exclusion Determinations: Lawrence Livermore Site Office |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho CategoricalKentucky

  9. DOE - Office of Legacy Management -- Maxey

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map MonumentNebraskaIdahoKentucky

  10. Portsmouth Paducah Project Office People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPO People Photo Gallery To view a larger photo, click on the thumbnail photo. Photo will open in a new browser window. PortsmouthPaducah Project Office 1017 Majestic Drive,...

  11. MSU Enterprise Chief Information Officer

    E-Print Network [OSTI]

    Lawrence, Rick L.

    MSU Enterprise Chief Information Officer Dr. Dewitt Latimer User Support Services Associate CIO Martin Bourque Chuck Hatfield Mike Hall Mike Hitch Jeff Kimm Jacob Hahn Lisa Bogar Communications David

  12. Portsmouth/Paducah Project Office,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1, 2012 Robert.Smith@lex.doe.gov DOE Workshop Gauges Paducah Plant Interest PADUCAH, KY - The U.S. Department of Energy's PortsmouthPaducah Project Office (PPPO) is...

  13. Portsmouth/Paducah Project Office,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 22, 2012 Robert.Smith@lex.doe.gov DOE Plans Workshop to Assess Paducah Plant Interest PADUCAH, KY. - The U.S. Department of Energy's (DOE) PortsmouthPaducah Project Office is...

  14. Office of Departmental Personnel Security

    Broader source: Energy.gov [DOE]

    The Office of Departmental Personnel Security serves as the central leader and advocate vested with the authority to ensure consistent and effective implementation of personnel security programs Department-wide (including for the National Nuclear Security Administration (NNSA).

  15. Global Environment Facility Evaluation Office

    E-Print Network [OSTI]

    Pfaff, Alex

    Global Environment Facility Evaluation Office PROTECTED AREAS AND AVOIDED DEFORESTATION #12;Protected Areas and Avoided Deforestation: An Econometric Evaluation - i - TABLE OF CONTENTS 1................................................................................4 3.3 ESTIMATED EFFECTS OF PROTECTED AREAS ON DEFORESTATION

  16. DB-Netz AG Offices

    High Performance Buildings Database

    Hamm, Germany The new office building for DB Netz AG was designed by the collaborative team of Architrav Architects and the Buildings Physics and Technical Building Services group of the University of Karlsruhe. The team developed an energy efficient building concept for the 64,304 sqft office building, located in Hamm, Germany. The design concept of the building is dominated by architectural solutions for ventilation, cooling and lighting. Use of HVAC and electric lighting is minimized as much as possible.

  17. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  18. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31T23:59:59.000Z

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  19. Lexington County, South Carolina: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, search

  20. Lexington County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,

  1. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,Hills,

  2. Microsoft Word - CX-Ross-Lexington_access_road_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    Darin Bowman Project Manager - TELF-TPP-3 Proposed Action: Access road repair including reconstructing, grading, and shaping of roads, placing and compacting of rock surfacing,...

  3. City of Lexington, North Carolina (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCityCityCity of

  4. City of Lexington, Tennessee (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCityCityCity ofCity of

  5. City of Lexington, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, LouisianaLansing,Leland,

  6. City of Lexington, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, LouisianaLansing,Leland,City of

  7. City of Lexington, Texas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, LouisianaLansing,Leland,City ofCity of

  8. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-Print Network [OSTI]

    Standards Officer, EMC Corporation, Office of the CTO Steve Diamond has 30 years of management, marketing was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC Corporation, and Global Standards Officer in the Office of the CTO. Before EMC, he was responsible for cloud

  9. Research results from the Ashland Exploration, Inc. Ford Motor Company 78 (ed) well, Pike County, Kentucky. Topical report, April 1992-December 1993

    SciTech Connect (OSTI)

    Hopkins, C.W.; Frantz, J.H.; Lancaster, D.E.

    1995-06-01T23:59:59.000Z

    This report summarizes the work performed on the Ashland Exploration, Inc. Ford Motor Company 78 (Experimental Development (ED)) Well, in Pike County, KY. The ED well was the third well drilled in a research project conducted by GRI in eastern Kentucky targeting both the Devonian Shales and Berea Sandstone. Both the Shales and Berea were completed and tested in the ED well. The primary objective of the ED well was to apply what was learned from studying the Shalers in COOP 1 (first well drilled) and the Berea in COOP 2 (second well drilled) to both the Shales and the Berea in the ED well. Additionally, the ED well was used to evaluate the impact of different stimulation treatments on Shales production. Research in the ED well brings to a close GRI`s extensive field-based research program in the Appalachian Basin over the last ten years.

  10. Cornell University, Office of Sponsored Programs Awards Received in January 2005

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    AND FEDERATED DIGITIAL LIBRARY OF MARINE ANIMAL SOUNDS $131,314 GEA 45393 BRADY, JOHN W FOODSCI-S NREL PERFORM GERMPLASM EVALUATED FOR DISEASE RESISTANCE $5,000 KLH 44784 ANTCZAK, DOUGLAS F BAKER INST U OF KENTUCKY

  11. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  12. Office of the Chief Information Officer DOERM@hq.doe.gov

    Office of Environmental Management (EM)

    a Records Management Field Officer (RMFO) to represent each Field site or office to support their respective RM processes. RMFOs are officials at the Field level who provide...

  13. STIL2 Swedish Office Buildings Survey - Offices_Sweden_-20100409...

    Open Energy Info (EERE)

    OfficesSweden-20100409.xls URL: http:en.openei.orgdatasetsdatasete2c18a14-ee37-49d0-9820-68b1195fdcd2resource5cd10f28-0d85-4466-b1e7-61d37085584ddownload...

  14. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Miller, Peter T.; Starmer, R. John

    2003-02-27T23:59:59.000Z

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  15. ORO Office Safeguards and Security Clearance Tracking System...

    Energy Savers [EERE]

    Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System...

  16. NA GC - Office of General Counsel | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA GC - Office of General Counsel NA GC - Office of General Counsel...

  17. NA 1 - Immediate Office of the Administrator | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 1 - Immediate Office of the Administrator NA 1 - Immediate Office of the...

  18. Kansas City Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Kansas City Field Office Kansas City Field Office FY15 Semi Annual Report FY14...

  19. Los Alamos Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Los Alamos Field Office Los Alamos Field Office FY15 Semi Annual Report FY14 Year...

  20. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  1. 2013 Annual Workforce Analysis and Staffing Plan Report - Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Annual Workforce Analysis and Staffing Plan Report - Office of Science Chicago Office 2013 Annual Workforce Analysis and Staffing Plan Report - Office of Science Chicago...

  2. Office of Institutional Assurance - OIA Web Files OIA Web Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab mastheads Berkeley Lab US DOE A-Z Index Phone Book Careers Search Office of Institutional Assurance About the Office of Institutional Assurance (OIA) Office of...

  3. 2014 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    DOE Vehicle Technologies Office Annual Merit Review 2014 DOE Vehicle Technologies Office Annual Merit Review The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office...

  4. MARVIN S. FERTEL President and Chief Executive Officer

    Broader source: Energy.gov (indexed) [DOE]

    Energy The Honorable David Huizenga, Office of Environmental Management Mr. James Owendoff, Office of Environmental Management Mr. A. David Henderson, Office of Uranium...

  5. Fuel Cell Technologies Office Newsletter: May 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Newsletter: May 2015 Fuel Cell Technologies Office Newsletter: May 2015 The May 2015 issue of the Fuel Cell Technologies Office (FCTO) newsletter includes...

  6. Bryant university Office of Admission

    E-Print Network [OSTI]

    Blais, Brian

    Bryant university Office of Admission Transfer Commitment Deposit Form Student Name _____________________________________________________________________________________________ ____ I plan to enroll at Bryant University. My $800 non-refundable commitment deposit is enclosed. ____ I plan to reside on campus. ____ I do not plan to reside on campus. ____ I do not plan to attend Bryant

  7. Data Protection Office October 2010

    E-Print Network [OSTI]

    Mottram, Nigel

    Data Protection Office October 2010 AUTHORISATION FORM FOR DATA PROCESSING BY STUDENTS This form should be completed where students are processing personal data for research or study purposes. In order to meet the requirements of the Data Protection Act 1998 and ensure the personal data is being processed

  8. E. ALLAN LIND Office Address

    E-Print Network [OSTI]

    Reif, John H.

    E. ALLAN LIND Office Address Fuqua School of Business Box 90120 Duke University Durham, NC 27708 tel. +1-919-660-7849 or +1-919-724-1130; e-mail: Allan.Lind@duke.edu Personal Information: Born: April, Paris, France. Book: Lind, E. A., and Tyler, T. R. (1988). The social psychology of procedural justice

  9. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  10. commercializaTion office Agriculture

    E-Print Network [OSTI]

    Arnold, Jonathan

    Technology commercializaTion office Agriculture ·Biotechnology ·Blueberries ·Cotton ·Forages Utilization, Renewable Energy ·Algalbiofuels ·Biodiesel ·Biomassengineering ·Biomasspre,skincare,andwoundhealing ·Vaccines Information Technology ·Bioinformaticstools ·Imagerenderingandenhancement ·3

  11. Office: ITO PE/Project

    E-Print Network [OSTI]

    Mills, Kevin

    Mgr.: Mills/Swinson PAD No.: Smart Spaces Moving Through Smart Spaces "city-wide appliances" "in1 DARPA Office: ITO PE/Project: Pgm No.: Pgm Mgr.: Mills/Swinson PAD No.: Smart Spaces Personal Information Projection · Develop techniques for projecting personal information from cyberspace into smart

  12. Engineering Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;3 Columbia Engineering is believingColumbia Engineering Plus Office of Undergraduate Admissions Columbia University 212 Hamilton Hall 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-affiliated buildings highlighted

  13. Carbon Capture Pilots (Kentucky)

    Broader source: Energy.gov [DOE]

    Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

  14. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids58,8992009 2010

  15. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids58,8992009

  16. Kentucky Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease Condensate

  17. Kentucky Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) DecadeYear(Million

  18. Finance and Enterprises Office February 2014

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    Finance and Enterprises Office February 2014 Office Management Student matters Insurance HKU SPACE Planning & Management Associate Director of Finance ----------------------------------- Antony Hui Associate Director of Finance ----------------------------------- Edmund Li Assistant Director of Finance

  19. Director, Office of Standard Contract Management

    Broader source: Energy.gov [DOE]

    The Office of General Counsel is seeking a motivated and highly-qualified candidate for an exciting full-time permanent senior executive position of Director, Office of Standard Contract Management...

  20. Post Office Building, Rancho Mirage, California | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post Office in California The U.S. Postal Service (USPS) has been making an effort to add solar power to its offices as part of the Million Solar Roofs Initiative. They have been...

  1. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS by the Office of Residential Life. In these instances, candles and incense may never be left unattended and any

  2. BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BINGHAMTON UNIVERSITY OFFICE OF RESIDENTIAL LIFE PROCEDURES FOR THE USE OF HOLIDAY DECORATIONS in a location established by the Office of Residential Life. In these instances, candles and incense may never

  3. 4-H Club Officer Handbook - Parliamentarian

    E-Print Network [OSTI]

    Howard, Jeff W.

    2006-08-09T23:59:59.000Z

    This section from the 4-H Club Officer Handbook features the multi-faceted role of the Parliamentarian. It covers the officer's duties, including how to keep order at club meetings through making and amending motions. Highlights also include...

  4. Independent Activity Report, Hanford Operations Office - July...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Joint Assessment of the Effectiveness of Corrective Actions for the Building 336 Accident The U.S. Department of Energy, Office of Independent Oversight, within the Office of...

  5. Energy use in office buildings

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  6. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  7. Office of Acquisition and Project Management ...

    Energy Savers [EERE]

    ; Office of Acquisition and Project Management Certifications Program Updated 102012 Course Provider Date Complete CON 216 LEGAL...

  8. Office of Strategic Research and Analysis

    E-Print Network [OSTI]

    Hutcheon, James M.

    Project Request: Spring 2013 After-graduation Plans Survey Requested by: Dr. Vince Miller, Associate ViceOffice of Strategic Research and Analysis July 9, 2013 Office of Career Services Spring 2013 After-graduation University, Office of Strategic Research and Analysis 2 Spring 2013 After-graduation Plans Survey Spring 2013

  9. University Town Management Office Town Green Usage

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    University Town Management Office Town Green Usage Background The UTown Management Office (UTMO the sustainability of the Green as the Office of Estate & Development (OED) has highlighted that the landscape consultant has advised that it would require about one year period for the soil to settle to its final level

  10. Western Michigan University Office of Admissions

    E-Print Network [OSTI]

    de Doncker, Elise

    Western Michigan University Office of Admissions 1903 W Michigan Ave Kalamazoo MI 49008-5211 (269 Readmission Office of Admissions 1903 W Michigan Ave Kalamazoo MI 49008-5211 Returning Students (Good Standing __________________________________________________________________________ Date __________________________________ Please return to: Western Michigan University · Office

  11. AUXILIARY RATE CALCULATION The Budget Office

    E-Print Network [OSTI]

    Weston, Ken

    AUXILIARY RATE CALCULATION The Budget Office #12;AGENDA Guiding Principles Rate Proposal Building Office supplies for budget manager reconciliationOffice supplies for budget manager reconciliation: Equipment Compensated Leave #12;CALCULATING A RATE Budgeted Expenses Budgeted Usage BaseBudgeted Usage Base

  12. Fuel Cell Technologies Office Science and Technology Policy Fellowship...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

  13. Chicago Operations Office: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  14. Office of Headquarters Security Operations

    Broader source: Energy.gov [DOE]

    The Office of Headquarters Security Operations strengthens national security by protecting personnel, facilities, property, classified information, and sensitive unclassified information for DOE Headquarters facilities in the National Capital Area under normal and abnormal (i.e., emergency) conditions; managing access authorization functions for Headquarters; ensuring that executives and dignitaries are fully protected, and supporting efforts to ensure the continuity of government in all circumstances as mandated by Presidential Decision Directive.

  15. Office of Communication - Speakers' Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001Classification Office

  16. Office of Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 -EnergyHealthOffice

  17. Mailing Addresses and Information Numbers for Operations, Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 30030 Amarillo, TX 79120 806-477-3000 U.S. Department of Energy Portsmouth Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, KY 40513 859-219-4000 U.S....

  18. RSVP to Stacy Lackey at slackey@commercelexington.com. Non-member meeting fee is $35 and includes the luncheon for this event.

    E-Print Network [OSTI]

    Hayes, Jane E.

    designing games for 13 years. Kyle Lake--Prosper Media Group, Inc. Kyle Lake is the Chief Production Officer Director of FrogDice, Inc., a Lexington base online video gaming company. Pang has been professionally

  19. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  20. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2004-05-31T23:59:59.000Z

    This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.