National Library of Energy BETA

Sample records for levelized costs aeo

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, APRILCustomersTotal

  2. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, APRILCustomersTotalHost and

  3. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, APRILCustomersTotalHost andFAQs 1

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n pTotalEnergy1

  5. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n pTotalEnergy1

  6. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n pTotalEnergy1012

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n

  8. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 2015

  9. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 2015

  10. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 2015

  11. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 2015

  12. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 2015

  13. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April 20151

  14. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April

  15. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  16. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  17. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  18. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  19. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  20. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  2. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  3. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  5. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  6. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market4

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April

  8. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market

  9. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April Market3

  10. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April

  11. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5 1

  12. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5 1

  13. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5 1

  14. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5 1

  15. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5 1About

  16. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &* j o n5 1 April5

  17. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms Proposed

  18. Electricity Plant Cost Uncertainties (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

  19. World Oil Prices in AEO2006 (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    World oil prices in the Annual Energy Outlook 2006 (AEO) reference case are substantially higher than those in the AEO2005 reference case. In the AEO2006 reference case, world crude oil prices, in terms of the average price of imported low-sulfur, light crude oil to U.S. refiners, decline from current levels to about $47 per barrel (2004 dollars) in 2014, then rise to $54 per barrel in 2025 and $57 per barrel in 2030. The price in 2025 is approximately $21 per barrel higher than the corresponding price projection in the AEO2005 reference case.

  20. InnoPOL: an EMCCD imaging polarimeter and 85-element curvature AO system on the 3.6-m AEOS telescope for cost

    E-Print Network [OSTI]

    Berdyugina, Svetlana

    telescope for cost effective polarimetric speckle suppression David Harringtona,b,d, Svetlana Berdyuginab, 2680 Woodlawn Drive, Honolulu, HI, USA, 96822; bKiepenheuer Institute for Solar Physics, Schoneck str behavior of the modulators. These models are also verified by initial EMCCD scoring camera data at AEOS

  1. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  2. Overview of Levelized Cost of Energy in the AEO

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 20082008707

  3. World Oil Prices in AEO2007 (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Over the long term, the Annual Energy Outlook 2007 (AEO) projection for world oil prices -- defined as the average price of imported low-sulfur, light crude oil to U.S. refiners -- is similar to the AEO2006 projection. In the near term, however, AEO2007 projects prices that are $8 to $10 higher than those in AEO2006.

  4. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  5. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  6. Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

  7. Impacts of Uncertainty in Energy Project Costs (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    From the late 1970s through 2002, steel, cement, and concrete prices followed a general downward trend. Since then, however, iron and steel prices have increased by 8% in 2003, 10% in 2004, and 31% in 2005. Although iron and steel prices declined in 2006, early data for 2007 show another increase. Cement and concrete prices, as well as the composite cost index for all construction commodities, have shown similar trends but with smaller increases in 2004 and 2005.

  8. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  9. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    SciTech Connect (OSTI)

    Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214 GW when all limitations are removed. The figures in the upper end of these ranges are not intended to be viewed as reasonable projections, but their magnitude illustrates the importance of the parameters governing the growth of wind capacity and resource availability in forecasts using NEMS. In addition, many uncertainties exist regarding these assumptions that potentially affect the growth of wind power. We suggest several areas in which to focus future research in order to better model the potential development of this resource. Because many of the assumptions related to wind in the model are also used for other renewable technologies, these suggestions could be applied to other renewable resources as well.

  10. Energy Independence and Security Act of 2007: Summary of Provisions (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Energy Independence and Security Act of 2007 was signed into law on December 19, 2007, and became Public Law 110-140. Provisions in EISA2007 that require funding appropriations to be implemented, whose impact is highly uncertain, or that require further specification by federal agencies or Congress are not included in Annual Energy Outlook 2008 (AEO). For example, the Energy Information Administration (EIA) does not try to anticipate policy responses to the many studies required by EISA2007, nor to predict the impact of research and development (R&D) funding authorizations included in the bill. Moreover, AEO2008 does not include any provision that addresses a level of detail beyond that modeled in the National Energy Modeling System (NEMS), which was used to develop the AEO2008 projections. AEO2008 addresses only those provisions in EISA2007 that establish specific tax credits, incentives, or standards.

  11. Cost and Performance Baseline for Fossil Energy Plants; Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cases) X LIST OF ACRONYMS AND ABBREVIATIONS AACE Association for the Advancement of Cost Engineering acfm Actual cubic feet per minute AEO Annual Energy Outlook BACT Best...

  12. State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).

  13. AEO2015 BWG

    U.S. Energy Information Administration (EIA) Indexed Site

    Review - STEO * Usual annual updates - weather data and projections - distributed generation capacity - annual "look" at photovoltaic costs Discussion purposes only - do not...

  14. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  15. Estimating the Economic Cost of Sea-Level Rise

    E-Print Network [OSTI]

    Sugiyama, Masahiro.

    To improve the estimate of economic costs of future sea-level rise associated with global climate change,

  16. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . .versus AEO and Henry Hub Natural Gas Prices . . . . . .

  17. Energy Technologies on the Horizon (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    A key issue in mid-term forecasting is the representation of changing and developing technologies. How existing technologies will evolve, and what new technologies might emerge, cannot be known with certainty. The issue is of particular importance in Annual Energy Outlook 2006 (AEO), the first AEO with projections out to 2030.

  18. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  19. Estimating the economic cost of sea-level rise

    E-Print Network [OSTI]

    Sugiyama, Masahiro, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    (cont.) In the case of a classical linear sea-level rise of one meter per century, the use of DIVA generally decreases the protection fraction of the coastline, and results in a smaller protection cost because of high ...

  20. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  1. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  2. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  3. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  4. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Figure 2 for 5-year price projections), the EIA has, in AEOgenerators to the same price projections from AEO 2001-2006.Strip to AEO 2007 Gas Price Projection Picking the Correct

  5. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    market-based forward price projections argues for furtherAEO 2008 and NYMEX price projections. Nominal ˘/kWh (at 7000that exceed the AEO price projection) described above. If

  6. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOon the AEO 2005 natural gas price forecasts will likely onceComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  7. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from the AEO

  8. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    to electricity generators to the same price projections fromPrices Delivered to Electricity Generators, Nominal $/MMBtu Each AEO projection

  9. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    to electricity generators to the same price projections fromPrices Delivered to Electricity Generators, Nominal $/MMBtu Each AEO projection

  10. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  11. AEO2011: Energy Consumption by Sector and Source - Mountain ...

    Open Energy Info (EERE)

    comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference...

  12. A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS

    E-Print Network [OSTI]

    and market penetration on the U.S. Department of Energy's Annual Energy Outlook (AEO) forecast for wind technologies. The AEO's annual report of energy supply, demand, and prices through 2020 is based on resultsLBNL-44070 TP-28529 A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION

  13. EPACT2005: Status of Provisions (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Energy Policy Act 2005 (EPACT) was signed into law by President Bush on August 8, 2005, and became Public Law 109-058. A number of provisions from EPACT2005 were included in the Annual Energy Outlook 2006 (AEO) projections. Many others were not considered in AEO2006particularly, those that require funding appropriations or further specification by federal agencies or Congress before implementation.

  14. Levelized cost of coating (LCOC) for selective absorber materials.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei; Pacheco, James Edward

    2013-09-01

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

  15. Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

  16. California's Move Toward E10 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    In Annual Energy Outlook 2009, (AEO) E10–a gasoline blend containing 10% ethanol–is assumed to be the maximum ethanol blend allowed in California erformulated gasoline (RFG), as opposed to the 5.7% blend assumed in earlier AEOs. The 5.7% blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0% oxygen content under the Clean Air Act provisions in effect at that time.

  17. A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS Galenthe incremental cost of renewables portfolio standards (RPS)Washington DC have adopted renewables portfolio standards (

  18. NREL: Energy Analysis - Levelized Cost of Energy Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed generation data used within this calculator. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database...

  19. State Renewable Energy Requirements and Goals: Update Through 2007 (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    In recent years, the Annual Energy Outlook (AEO) has tracked the growing number of states that have adopted requirements or goals for renewable energy. While there is no federal renewable generation mandate, the states have been adopting such standards for some time. AEO2005 provided a summary of all existing programs in effect at that time, and subsequent AEOs have examined new policies or changes to existing ones. Since the publication of AEO2007, four states have enacted new renewable portfolio standards (RPS) legislation, and five others have strengthened their existing RPS programs. In total, 25 states and the District of Columbia.

  20. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    range of different plausible price projections, using eitherthat renewables can provide price certainty over even longerof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  1. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    range of different plausible price projections, using eitherreference-case fuel price projection from the EIA or someprices and the AEO gas price projections over the past two

  2. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  3. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    Comparison of AEO 2008 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  4. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  5. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  6. Analyzing the level of service and cost trade-offs in cold chain transportation

    E-Print Network [OSTI]

    Liu, Saiqi

    2009-01-01

    This thesis discusses the tradeoff between transportation cost and the level of service in cold chain transportation. Its purpose is to find the relationship between transportation cost and the level of service in cold ...

  7. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  8. Federal Fuels Taxes and Tax Credits (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Annual Energy Outlook 2008 (AEO) reference case incorporates current regulations that pertain to the energy industry. This section describes the handling of federal taxes and tax credits in AEO2008, focusing primarily on areas where regulations have changed or the handling of taxes or tax credits has been updated.

  9. Federal Fuels Taxes and Tax Credits (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 (AEO) reference case and alternative cases generally assume compliance with current laws and regulations affecting the energy sector. Some provisions of the U.S. Tax Code are scheduled to expire, or may be subject to adjustment, before the end of the projection period. In general, scheduled expirations and adjustments provided in legislation or regulations are assumed to occur, unless there is significant historical evidence to support an alternative assumption. This section examines the AEO2007 treatment of three provisions that could have significant impacts on U.S. energy markets: the gasoline excise tax, biofuel (ethanol and biodiesel) tax credits, and the production tax credit for electricity generation from certain renewable resources.

  10. Level of Repair Analysis and Minimum Cost Homomorphisms of Graphs

    E-Print Network [OSTI]

    Gutin, Gregory

    of Lillian Barros Abstract. Level of Repair Analysis (LORA) is a prescribed procedure for defence logistics, LORA seeks to determine an optimal provision of repair and maintenance facilities to minimize overall on bipartite graphs is polynomial time solvable. Keywords: Computational Logistics; Level of Repair Analysis

  11. A LOW COST WAFER-LEVEL MEMS PACKAGING TECHNOLOGY Pejman Monajemi, Paul J. Joseph*

    E-Print Network [OSTI]

    Ayazi, Farrokh

    A LOW COST WAFER-LEVEL MEMS PACKAGING TECHNOLOGY Pejman Monajemi, Paul J. Joseph* , Paul A. Kohl-cost low-temperature packaging technique for wafer-level encapsulation of MEMS devices fabricated on any arbitrary substrate. The packaging process presented here does not involve wafer bonding and can be applied

  12. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  13. levelized cost of energy | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data book Homefuelleasing Home Alevine'slevelized cost of

  14. Production Cost Modeling for High Levels of Photovoltaics Penetration

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Milford, J.

    2008-02-01

    The goal of this report is to evaluate the likely avoided generation, fuels, and emissions resulting from photovoltaics (PV) deployment in several U.S. locations and identify new tools, methods, and analysis to improve understanding of PV impacts at the grid level.

  15. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    1 1.1 History of Natural Gas8 4.1 U.S. Wellhead and AEO Natural Gas8 4.2 U.S. Wellhead and Henry Hub Natural Gas

  16. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  17. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  18. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    the AEO 2005 reference case oil price forecast and NYMEX oibasis-adjusted NYMEX crude oil futures con tracts fo r 2010more than the reference case oil price forecast for that

  19. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    E-Print Network [OSTI]

    Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Documentation Report: Wind Energy Submodule (WES). DOE/EIA-The Economic Value of Wind Energy at High Power SystemOF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS

  20. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Figure 9: Two Alternative Price Forecasts (denoted by openComparison of AEO 2007 Natural Gas Price Forecast toNYMEX Futures Prices Date: December 6, 2006 Introduction On

  1. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    range of different plausible price projections, using eitherreference-case fuel price projection from the EIA or someHenry Hub to the same price projections from AEO 2007-2008.

  2. Low-Cost Options for Moderate Levels of Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-02-09

    This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

  3. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    SciTech Connect (OSTI)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the cost of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.

  4. System level design enhancements for cost effective renewable power generation by reverse electrodialysis

    E-Print Network [OSTI]

    Weiner, Adam Michael

    2015-01-01

    Studies of the future competitiveness of reverse electrodialysis (RED) with other energy technologies show that the projected levelized cost of electricity realized through current stack designs is prohibitively high. ...

  5. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

  6. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore »of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less

  7. A Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    Broader source: Energy.gov [DOE]

    This report surveys and summarizes existing state-level RPS cost and benefit estimates and examines the various methods used to calculate such estimates. The report relies largely upon data or results reported directly by electric utilities and state regulators. As such, the estimated costs and benefits itemized in this document do not result from the application of a standardized approach or the use of a consistent set of underlying assumptions. Because the reported values may differ from those derived through a more consistent analytical treatment, we do not provide an aggregate national estimate of RPS costs and benefits, nor do we attempt to quantify net RPS benefits at national or state levels.

  8. Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.

    2014-05-01

    Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.

  9. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  10. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  11. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    in electricity sector generation costs. In addition, the5/MWh change in levelized generation costs. We find that thethe cost and potential of renewable generation technologies

  12. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.25˘/kWh (the levelized cost of gas-fired generation (assuming 7,000

  13. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.33˘/kWh (the levelized cost of gas-fired generation (assuming 7,000

  14. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  15. Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity

    E-Print Network [OSTI]

    Parsons, John E.

    We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

  16. Estimating the economic cost of sea-level rise Masahiro Sugiyama

    E-Print Network [OSTI]

    Estimating the economic cost of sea-level rise by Masahiro Sugiyama Bachelor of Science in Earth Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology February 2007 ©2007 Massachusetts Institute of Technology. All rights

  17. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  18. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  19. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect (OSTI)

    Chen, Le [Ames Laboratory; MacDonald, Erin [Ames Laboratory

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  20. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect (OSTI)

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  1. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    SciTech Connect (OSTI)

    Ramsden, T.; Steward, D.; Zuboy, J.

    2009-09-01

    Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

  2. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect (OSTI)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  3. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    or other forms of generation whose costs are not tied to thethe levelized costs of fixed-price renewable generation withthe cost of fixed-price renewable generation be compared to

  4. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect (OSTI)

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  5. Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    2009-04-01

    This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity criteria, is described in Shonder and Florita (2003) and Shonder and Hughes (2005). To address the first objective of the Level 2 analysis, we first assembled all the necessary information, and then repeated the ESCOs' calculations of reported annual cost savings. Only minor errors were encountered, the most common being the use of incorrect escalation rates to calculate utility prices or O&M savings. Altogether, our corrected calculations of the ESCO's reported cost savings were within 0.6% of the ESCOs' reported cost savings, and errors found were as likely to favor the government as they were the ESCO. To address the second objective, we gathered data on utility use and cost from central databases maintained by the Department of Defense and the General Services Administration, and directly from some of the sites, to determine the prices of natural gas and electricity actually paid at the sites during the periods addressed by the annual reports. We used these data to compare the actual utility costs at the sites to the contract utility prices. For natural gas, as expected, we found that prices had risen much faster than had been anticipated in the contracts. In 17 of the 18 projects for which the comparison was possible, contract gas prices were found to be lower than the average actual prices being paid. We conclude that overall in the program, the estimates of gas prices and gas price escalation rates used in the Super ESPC projects have been conservative. For electricity, it was possible to compare contract prices with the actual (estimated) marginal prices of electricity in 20 projects. In 14 of these projects, the overall contract electricity price was found to be lower than the marginal price of electricity paid to the serving utility. Thus it appears that conservative estimates of electricity prices and escalation rates have been used in the program as well. Finally we calculated the value of the reported energy savings using the prices of utilities actually paid by the sites instead of the contract prices. In 16 of the 22 projects (

  6. A COST-EFFECTIVE TWO-LEVEL ADAPTIVE BRANCH PREDICTOR STEVEN, G. B., EGAN, C., SHIM, W. VINTAN, L.

    E-Print Network [OSTI]

    Vintan, Lucian N.

    - 1 - A COST-EFFECTIVE TWO-LEVEL ADAPTIVE BRANCH PREDICTOR STEVEN, G. B., EGAN, C., SHIM, W. VINTAN.B.Steven@herts.ac.uk wonshim@duck.snut.ac.kr vintan@cs.sibiu.ro ABSTRACT During the 1990s Two-level Adaptive Branch Predictors processors. However, while two-level adaptive predictors achieve very high prediction rates, they tend

  7. World Oil Price Cases (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    World oil prices in Annual Energy Outlook 2005 are set in an environment where the members of OPEC (Organization of the Petroleum Exporting Countries) are assumed to act as the dominant producers, with lower production costs than other supply regions or countries. Non-OPEC oil producers are assumed to behave competitively, producing as much oil as they can profitability extract at the market price for oil. As a result, the OPEC member countries will be able effectively to set the price of oil when they can act in concert by varying their aggregate production. Alternatively, OPEC members could target a fixed level of production and let the world market determine the price.

  8. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    SciTech Connect (OSTI)

    McDonell, W R

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms.

  9. Cost of stockouts in the microprocessor business and its impact in determining the optimal service level/

    E-Print Network [OSTI]

    Sonnet, Maria Claudia

    2005-01-01

    In order to develop optimal inventory policies, it is essential to know the consequences of stockouts and the costs related to each kind of stockout; at Intel, however, such costs have not yet been quantified. The primary ...

  10. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  11. A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    Energy Efficiency and Renewable Energy (Solar TechnologiesRPS costs, per unit of renewable energy generation, rangedFlores-Espino National Renewable Energy Laboratory 15013

  12. Randomized min-max optimization: the exact risk of multiple cost levels Algo Car`e, Simone Garatti, Marco C. Campi

    E-Print Network [OSTI]

    Garatti, Simone

    . Our goal is to evaluate the risks associated to the various costs, where the risk associated to a cost. This evaluation characterizes completely the risks associated to the costs, and represents a full-fledged resultRandomized min-max optimization: the exact risk of multiple cost levels Algo Car`e, Simone Garatti

  13. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    projections of renewable technology cost, fossil fuel priceboth renewable technology costs and avoided fuel costs. Theof future renewable technology cost and performance would

  14. EPACT2005 Loan Guarantee Program (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Title XVII of the Energy Policy Act 2005 (EPACT) authorized the Department of Energy (DOE) to issue loan guarantees for projects involving new or improved technologies to avoid, reduce, or sequester greenhouse gases (GHGs). The law specified that the amount of the guarantee would be up to 80% of a project's cost. EPACT2005 also specified that DOE must receive funds equal to the subsidy cost either through the federal appropriations process or from the firm receiving the guarantee. As discussed in Annual Energy Outlook 2007, this program, by lowering borrowing costs, can have a major impact on the economics of capital-intensive technologies.

  15. Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings 

    E-Print Network [OSTI]

    Ackley, J.

    2010-01-01

    through installation of Bi-Level Lighting systems. The results of this report demonstrate that common areas that are currently not making use of Bi-Level lighting systems would achieve significant financial and environmental benefits from Bi-Level focused...

  16. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  17. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    factors: wind power capital costs and natural gas prices.key assumptions – wind capital cost and the duration of PTC47 7.3.2 Wind Capital Cost

  18. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    to RPS generation requirements, wind cost assumptions arethe sudden leap in wind costs over the past several years,especially if higher wind costs persist. However, most, if

  19. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    resource types and generation costs are estimated externallystudy reports cost and renewable generation results for thestudy reports cost and renewable generation results for the

  20. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  1. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  2. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  3. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    of Alternative Fossil Fuel Price and Carbon Regulationtechnology cost, fossil fuel price uncertainty, andtechnology cost, fossil fuel price uncertainty, and

  4. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  5. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    impacts We converted other cost metrics to ˘/kWh retail ratePower System Operating Costs: Summary and Perspective onA. Bibliography of RPS Cost Studies Studies listed in

  6. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    45 7.3 Renewable Energy Costand future renewable energy costs, while less volatile thanResource Data Renewable Energy Cost Characterization

  7. Tax Credits and Renewable Generation (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Tax incentives have been an important factor in the growth of renewable generation over the past decade, and they could continue to be important in the future. The Energy Tax Act of 1978 (Public Law 95-618) established ITCs for wind, and EPACT92 established the Renewable Electricity Production Credit (more commonly called the PTC) as an incentive to promote certain kinds of renewable generation beyond wind on the basis of production levels. Specifically, the PTC provided an inflation-adjusted tax credit of 1.5 cents per kilowatthour for generation sold from qualifying facilities during the first 10 years of operation. The credit was available initially to wind plants and facilities that used closed-loop biomass fuels and were placed in service after passage of the Act and before June 1999.

  8. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    or clean energy policies, unless RPS-specific costs areCost Impacts of a Vermont Renewable Energy Portfolio Standard Economics of a Washington Energy Portfolio Standard: Effects on Ratepayers The Washington Clean Energy

  9. Environmental benefits and cost savings through market-based instruments : an application using state-level data from India

    E-Print Network [OSTI]

    Gupta, Shreekant

    2002-01-01

    This paper develops a methodology for estimating potential cost savings from the use of market-based instruments (MBIs) when local emissions and abatement cost data are not available. The paper provides estimates of the ...

  10. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  11. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    on Average Retail Electricity Rates.. 14Projected RPS Electricity Rate Impacts by RPS CostRPS Targets and Retail Electricity Rate Impacts 16 Typical

  12. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    wholesale electricity price projections as a model output.in natural gas prices projections over the past severalprojections of renewable technology cost, fossil fuel price

  13. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    detailed wholesale electricity price projections as a modelelectricity bills, and renewable energy certificate (REC) prices. Developing a consistent set of metrics for comparing cost projections

  14. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  15. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    and future renewable energy costs, while less volatile thandifference between renewable energy costs and the cost ofto be the least-cost renewable energy source and, as noted

  16. This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published

    E-Print Network [OSTI]

    Papalambros, Panos

    ://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

  17. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    would stimulate wind technology cost reductions on theprojections of renewable technology costs, fossil fuel priceavailability. Renewable technology cost: Reflects changes to

  18. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    New Jersey “high technology cost” scenario, which exceedsthan-expected solar technology costs would probably causeAvailability Renew able Technology Cost Fossil Fuel Price

  19. Greenhouse Gas Concerns and Power Sector Planning (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Concerns about potential climate change driven by rising atmospheric concentrations of Greenhouse Gases (GHG) have grown over the past two decades, both domestically and abroad. In the United States, potential policies to limit or reduce GHG emissions are in various stages of development at the state, regional, and federal levels. In addition to ongoing uncertainty with respect to future growth in energy demand and the costs of fuel, labor, and new plant construction, U.S. electric power companies must consider the effects of potential policy changes to limit or reduce GHG emissions that would significantly alter their planning and operating decisions. The possibility of such changes may already be affecting planning decisions for new generating capacity.

  20. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    Cost Studies en al ty CO2 Reduction Cost in 1st Peak Targetdo not represent the average costs of CO2 abatement over theestimated CO2 reductions. Since these are single-year costs,

  1. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  2. Effects of protein and energy levels during the growing and laying periods on performance and egg production costs 

    E-Print Network [OSTI]

    Santana, Jose

    1968-01-01

    Ih O O I IA I O o 0' V V V V Al F! I nlI 0 o 0 0 a J2 nl 0 C4 H 0 I! I! IA O nl A u nl nl nl W A nl A nl nl I! Cl 4 W W 0 0 V 0 '0 cl nl u u V II nl Sl nl nl In n! nl m M nl g A CI CI nl ~ In 28... of diet to pullets from 8 to 21 weeks of age, combined with an all-mash and a mash plus unground milo free choice feeding system, in a factorial arrangement (3xZx2) had no effect on body weight, level of peak production or egg size during the laying...

  3. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    Notable is that current wind costs are in the $1600-2000/kWin place. As a result, the wind cost assumptions employed inespecially if higher wind costs persist. Natural Gas Price

  4. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    technology costs, fossil fuel price uncertainty, alternativeand performance assumptions. Fossil fuel price uncertainty:able Technology Cost Fossil Fuel Price Uncertainty Alternate

  5. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    E-Print Network [OSTI]

    Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    refers to the distance to tranmission lines. Existing 115 kVSTV SPP NWP RA CNV This tranmission extension cost is added

  6. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  7. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  8. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    clean_energy_policies/increase-wisconsin- rps.html Table 1. State RPS Policies as Modeled by RPS Cost

  9. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    cost studies project retail electricity rate increases of nochanges in retail electricity rates, and (2) monthlydeployment on retail electricity rates and bills. Direct

  10. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  11. Operating Costs Estimates Cost Indices

    E-Print Network [OSTI]

    Boisvert, Jeff

    cost projections · Chemical Engineering (CE) Plant Construction Cost Index ­ Base value = 100 in 1957.0 in 2Q 2001 · Engineering News Record (ENR) · Nelson Refinery (NR) Construction Cost Index Cost Indices available for estimation are based upon the past · These data must be updated using cost indexes . · Cost

  12. Technical and economic assessments of electrochemical energy storage systems: Topical report on the potential for savings in load-leveling battery and balance of plant costs

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.; Consiglio, J.A.

    1985-08-31

    The battery technologies considered in this study are zinc-bromide, lead-acid, zinc-chloride and sodium sulfur. Results of the study are presented in self contained sections in the following order: Balance of Plant, Zinc-Bromide, Lead-Acid, Zinc-chloride, and Sodium-Sulfur. The balance of plant cost estimates are examined first since the results of this section are utilized in the following battery sections to generate cost reductions in the battery plant costs for each of the battery technologies.

  13. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    renewables can provide price certainty over longer terms. In6 This additiona l level of price discovery in longer-datedreplicate the long-term price stability that renewables can

  14. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE...

    U.S. Energy Information Administration (EIA) Indexed Site

    for AEO 2016, but are interested in reviewing our learning methodology in the future. * Wind costs: An inquiry was made about making sure that wind costs from the AEO2015 and the...

  15. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  16. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  17. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  18. Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  19. State Renewable Energy Requirements and Goals: Update through 2008 (Update) (released in AEO2009)

    Reports and Publications (EIA)

    2010-01-01

    State renewable portfolio standards (RPS) programs continue to play an important role in Annual Energy Outlook 2009, growing in number while existing programs are modified with more stringent targets. In total, 28 states and the District of Columbia now have mandatory RPS programs, and at least 4 other states have voluntary renewable energy programs. In the absence of a federal renewable electricity standard, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. The growth in state renewable energy requirements has led to an expansion of renewable energy credit (REC) markets, which vary from state to state. Credit prices depend on the state renewable requirements and how easily they can be met.

  20. Federal and State Ethanol and Biodiesel Requirements (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Energy Policy Act 2005 requires that the use of renewable motor fuels be increased from the 2004 level of just over 4 billion gallons to a minimum of 7.5 billion gallons in 2012, after which the requirement grows at a rate equal to the growth of the gasoline pool. The law does not require that every gallon of gasoline or diesel fuel be blended with renewable fuels. Refiners are free to use renewable fuels, such as ethanol and biodiesel, in geographic regions and fuel formulations that make the most sense, as long as they meet the overall standard. Conventional gasoline and diesel can be blended with renewables without any change to the petroleum components, although fuels used in areas with air quality problems are likely to require adjustment to the base gasoline or diesel fuel if they are to be blended with renewables.

  1. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  2. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  3. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  4. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  5. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  6. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  7. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  8. AEO2014 Preliminary Results

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil and

  9. AEO2015 BWG

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil

  10. Contracting with reading costs and renegotiation costs

    E-Print Network [OSTI]

    Brennan, James R.

    2007-01-01

    Reading Costs, Competition, and ContractReading Costs . . . . . . . . . . . . . . . . C. EquilibriumUnconscionability A?ect Reading Costs . . . . . . . . . .

  11. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  12. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    Assumptions to the Annual Energy Outlook 2008. Washington,to produce the EIA’s Annual Energy Outlook. As shown in theby the EIA in its Annual Energy Outlook (AEO), as well as to

  13. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION in this paper. #12;ABSTRACT In this 2007 report of the cost of generation of electricity for California located technologies, California Energy Commission staff provides levelized costs, including the cost assumptions

  14. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  15. Microsoft Word - Levelized Cost of Energy Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. " 21 ran PPPO-03-1RESEARCH CALL

  16. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009 In reply refer June

  17. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009 In reply refer

  18. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  19. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  20. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  1. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  2. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  3. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  4. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  5. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    of Energy. (1999). Energy Outlook 2000 (No. DOE/EIA-0383(of Energy. (2010). Energy Outlook 2010 (No. DOE/EIA-0383(the most recent U.S. energy outlook for 2010 ([AEO], 2010)

  6. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  7. Cost Sharing What is Cost Sharing?

    E-Print Network [OSTI]

    California at San Diego, University of

    into COEUS x OPAFS establishes project related IFIS fund and index numbers x Department tracks cost sharing sharing using various data fields (bin, fund, PI, index, etc.) x Create a Bin Generate a bin where cost1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources

  8. Cost Sharing Basics Definitions

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Cost Sharing Basics Definitions Some funding agencies require the grantee institution the project costs. Cost sharing is defined as project costs not borne by the sponsor. Cost sharing funds may resources or facilities. If the award is federal, only acceptable non-federal costs qualify as cost sharing

  9. Renewable Portfolio Standards: Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Heeter, J.; Barbose, G.; Weaver, S.; Flores, F.; Kuskova-Burns, K.; Wiser, R.

    2014-10-01

    This report summarizes state-level RPS costs to date, and considers how those costs may evolve going forward given scheduled increases in RPS targets and cost containment mechanisms. The report also summarizes RPS benefits estimates, based on published studies for individual states and discusses key methodological considerations.

  10. THE COST OF REDUCING VOC EMMISSIONS

    E-Print Network [OSTI]

    Bateman, Ian J.

    THE COST OF REDUCING VOC EMMISSIONS FROM 21 INDUSTRIES BY JONATHAN FISHER CSERGE WORKING PAPER WM 97-03 #12;THE COST OF REDUCING VOC EMISSIONS FROM 21 INDUSTRIES by Jonathan Fisher ERM Economics 8 and Industry to estimate the costs of various levels of controls on emissions of Volatile Organic Compounds

  11. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01

    Samuel Schenker, “The Costs of Hir- u ing Skilled Workers”,Employee Replacement Costs Arindrajit Dube, Eric Freeman andof employee replacement costs, using a panel survey of

  12. Levelized cost and levelized avoiced cost of new generation resources in the Annual Energy Outlook 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubic Feet) Kenai, AK Liquefied Natural2009343 342 328 37056

  13. Levelized cost and levelized avoided cost of new generation resources in the Annual Energy Outlook 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubic Feet) Kenai, AK Liquefied Natural2009343 342 328 37056April 2014

  14. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009 In reply refer

  15. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009 In reply refer June 2015

  16. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  17. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems.S. Colton © GIT 2009 5 #12;LaborLabor Di t ti f ldi· Direct time of welding ­ time to produce a length of weld ­ labor rate ­ multiplication gives labor cost per length · Set-up time, etc. · Personal time

  18. PHENIX Work Breakdown Structure. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  19. PHENIX WBS notes. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  20. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    E-Print Network [OSTI]

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-01

    vitrification process is very costly (it is estimated that a canister of vitrified high level waste costs

  1. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  2. AEO2014 results and status updates for the AEO2015

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil andFOR:

  3. Utility Cost Analysis 

    E-Print Network [OSTI]

    Horn, S.

    1984-01-01

    One of the first steps in setting up an energy management program in a commercial building is determining operating costs per energy consuming system through a utility cost analysis. This paper illustrates utility cost analysis methods used...

  4. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  5. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  6. Sharing Supermodular Costs

    E-Print Network [OSTI]

    2010-06-23

    For a particular class of supermodular cost cooperative games that arises from a scheduling ... the costs collectively incurred by a group of cooperating agents.

  7. Cartel Pricing Dynamics with Cost Variability and Endogenous Buyer Detection

    E-Print Network [OSTI]

    Niebur, Ernst

    Cartel Pricing Dynamics with Cost Variability and Endogenous Buyer Detection Joseph E. Harrington to cost shocks. During the stationary phase, price responds to cost but is much less sensitive than under of cost shocks. It is also shown that the cartel price path may overshoot its long-run level so that price

  8. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

  9. Industrial Plans for AEO2014

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion CubicOctoberper Thousand CubicMay-15

  10. AEO2014: Preliminary Industrial Output

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil andFOR:

  11. AEO Early Release 2013 - oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms ProposedA

  12. AEO2012 Early Release Overview

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms ProposedARenewablesD

  13. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  14. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  15. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  16. Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010

    E-Print Network [OSTI]

    Darghouth, Naim

    2012-01-01

    Research. Bloomberg New Energy Finance. 2011. Levelized Cost2011, and Bloomberg New Energy Finance 42 specifies a cost

  17. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate

    E-Print Network [OSTI]

    2009-01-01

    , including 20% postconsumer waste #12;List of Acronyms AEO EIA Annual Energy Outlook BOP balance of plant CF Renewable Energy Laboratory 1617 Cole Boulevard · Golden, Colorado 80401-3393 303-275-3000 · www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

  18. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  19. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  20. Sixth Northwest Conservation and Electric Power Plan Appendix G: MCS Cost-effectiveness for

    E-Print Network [OSTI]

    , cost and savings assumptions used to establish the efficiency level that achieves all electricity.............................................................................................................. 1 Measure Cost Assumptions savings that are cost-effective to the region's power system. The second section describes the methodology

  1. Variability in the Initial Costs of Care and One-Year Outcomes of Observation Services

    E-Print Network [OSTI]

    Abbass, Ibrahim

    2015-01-01

    Variability in the initial costs of care across theVariability in the Initial Costs of Care and One-Yearis associated with lower costs and comparable level of care

  2. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  3. What is the Economic Cost of Climate Change?

    E-Print Network [OSTI]

    Hanemann, W. Michael

    2008-01-01

    Sea Level, California Climate Change Center, Report CEC-500-in the assessment of climate change damages: illustrationThe Economic Cost of Climate Change Impact on California

  4. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  5. APT cost scaling: Preliminary indications from a Parametric Costing Model (PCM)

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-02-03

    A Parametric Costing Model has been created and evaluate as a first step in quantitatively understanding important design options for the Accelerator Production of Tritium (APT) concept. This model couples key economic and technical elements of APT in a two-parameter search of beam energy and beam power that minimizes costs within a range of operating constraints. The costing and engineering depth of the Parametric Costing Model is minimal at the present {open_quotes}entry level{close_quotes}, and is intended only to demonstrate a potential for a more-detailed, cost-based integrating design tool. After describing the present basis of the Parametric Costing Model and giving an example of a single parametric scaling run derived therefrom, the impacts of choices related to resistive versus superconducting accelerator structures and cost of electricity versus plant availability ({open_quotes}load curve{close_quotes}) are reported. Areas of further development and application are suggested.

  6. Cost Model for Digital Curation: Cost of Digital Migration

    E-Print Network [OSTI]

    Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01

    Steece, B. 2000. Software cost estimation with COCOMO II.Developing a Framework of Cost Elements for PreservingAshley, K. 1999. Digital archive costs: Facts and fallacies.

  7. Cost-Informed Operational Process Support M. T. Wynn1

    E-Print Network [OSTI]

    van der Aalst, Wil

    Cost-Informed Operational Process Support M. T. Wynn1 , H. A. Reijers2,3 , M. Adams1 , C. Ouyang1 operations in alignment with the true origins of costs, and to be informed about this on a real-time basis, allows businesses to increase profitability. In most organisations however, high-level cost

  8. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ă?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  9. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    2011b). Development in LCOE for Wind Turbines in Denmark.levelized cost of energy (LCOE) analyses are shown in Tablethe levelized cost of energy (LCOE) for onshore wind energy.

  10. Environmental Cost Analysis 

    E-Print Network [OSTI]

    Edge, D.

    2000-01-01

    Analysis David Edge Texas Natural Resource Conservation Commission 131 ESL-IE-00-04-21 Proceedings from the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 Tuas Natural Resource Conservation Cor...DDliuion Environmental Cost Analysis Presented By David Edge Determine the Costs c> Input co Output c> Hidden c> Capital (non recurring) Envirormenlal Cost Analy.;is "There has to be a measurable result ofimprovement and it should be tied to dollars...

  11. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Modeling Advanced Li-ion Couples 13 Courtesy of Junbing Yang & K. Amine Graphite with LNMO and LMRNMC similar in cost and energy density LMRNMC shows synergy...

  12. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  13. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  14. Apportioning Climate Change Costs

    E-Print Network [OSTI]

    Farber, Daniel A.

    2008-01-01

    Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention

  15. AGRICULTURAL BMP PLACEMENT FOR COST-EFFECTIVE POLLUTION CONTROL

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    AGRICULTURAL BMP PLACEMENT FOR COST-EFFECTIVE POLLUTION CONTROL AT THE WATERSHED LEVEL Tamie Lynne-EFFECTIVE POLLUTION CONTROL AT THE WATERSHED LEVEL Tamie Lynne Veith Abstract The overall goal of this research was to increase, relative to targeting recommendations, the cost-effectiveness of pollution reduction measures

  16. Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009

    E-Print Network [OSTI]

    Barbose, Galen

    2011-01-01

    level cost data provided by the California Solar Initiative,data for 2010 indicate that the average cost of systems installed through the California Solar

  17. An Analysis of the Costs, Benefits, and Implications of Different Approaches to Capturing the Value of Renewable Energy Tax Incentives

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    levelized cost of energy (“LCOE”). Tax Equity Yield (after-power closer to achieving LCOE goals (and at no additionallevelized cost of energy (“LCOE”). 3. Model Descriptions and

  18. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  19. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    station and equipment costs Capital equipment costs Non-a function of capital cost and is therefore represented intechnology and therefore capital cost and maintenance cost

  20. Cost Transfer Procedures How And When To Make Cost Transfers

    E-Print Network [OSTI]

    Hammack, Richard

    Cost Transfer Procedures How And When To Make Cost Transfers Effective February 9, 2003, cost elsewhere. Federal regulations require additional documentation to support cost transfers to sponsored program indexes. Costs may not be shifted to other research projects or from one budget period to the next

  1. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  2. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  3. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  4. cost.f

    E-Print Network [OSTI]

    SUBROUTINE COST (N,X,WSAVE) IMPLICIT DOUBLE PRECISION (A-H, O-Z) DIMENSION X(1) ,WSAVE(1) NM1 = N-1 NP1 = N+1 NS2 = N/2 IF (N-2) ...

  5. Transparent Cost Database | Transparent Cost Database

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History View NewTransparent Cost

  6. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  7. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, Claire; Couture, Toby D.; Cory, Karlynn S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent policy used globally to reduce development risks, cut financing costs, and grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control. Using case studies and market-focused analysis, this report from the National Renewable Energy Laboratory (NREL) examines strengths and weaknesses of three cost-containment tools: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report provides useful insights on containing costs for policymakers and regulators in the United States and other areas where FIT policies are in development.

  8. Cost Model for Digital Curation: Cost of Digital Migration

    E-Print Network [OSTI]

    Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01

    Curation: Cost of Digital Migration Ulla Břgvad Kejser, Thefocus especially on costing digital migration activities. Inof the OAIS Model digital migration includes both transfer (

  9. Cost Model for Digital Curation: Cost of Digital Migration

    E-Print Network [OSTI]

    Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01

    and Monitor Technology functions each consists of two costinfluence, the fewer costs. Monitor Technology depends onCost Critical Activities Monitor community Report on monitoring Monitor technology

  10. QGESS: Capital Cost Scaling Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the tonnes of CO2 utilized. The costs of the process are to include infrastructure, raw materials, processing, byproduct disposal, and utilities costs, as well as any other costs....

  11. Cost-effective ecological restoration

    E-Print Network [OSTI]

    2015-01-01

    whether the cost-effectiveness index in the all seed mixesRestoration cost-effectiveness (index calculated as percentwith the highest cost-effectiveness index values were drill

  12. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  13. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  14. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  15. NREL-Levelized Cost of Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name:NREL's RenewableOpen

  16. Levelized Cost of Energy in US | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, United Kingdom: Energy ResourcesEnergyCoAfrica

  17. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting Host Site:ERDACarlo-integrated

  18. OpenEI Community - levelized cost of energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 enBigWater Power

  19. Optimization Online - Sharing Supermodular Costs

    E-Print Network [OSTI]

    Andreas S. Schulz

    2007-08-28

    Aug 28, 2007 ... Abstract: We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety of situations: in particular, ...

  20. Preemptive scheduling with position costs

    E-Print Network [OSTI]

    In most scheduling models presented in the literature [3, 10], the cost for ... Preemptive scheduling in order to minimize the total position costs also stems.

  1. OPTIONS - ALLOCATION FUNDS - TRANSACTION COSTS

    E-Print Network [OSTI]

    Admin

    2009-03-25

    One first problem to overcome is the impact of transaction costs. ... They entail a reduction of transaction costs and improve the investor's economic welfare.

  2. Cost Analysis of Mobility Management Entities of Md. Shohrab Hossain, Mohammed Atiquzzaman

    E-Print Network [OSTI]

    Atiquzzaman, Mohammed

    Cost Analysis of Mobility Management Entities of SINEMO Md. Shohrab Hossain, Mohammed Atiquzzaman results in higher level of signalling cost on the mobility agents in a mobility protocol. Previous cost analysis on mobility protocols have not considered all possible costs for mobility management, resulting

  3. Minimum-Cost Tolerance Allocation ADCATS Report No. 99-5

    E-Print Network [OSTI]

    Minimum-Cost Tolerance Allocation ADCATS Report No. 99-5 Kenneth W. Chase Department of Mechanical-all cost of production, while meeting target levels for quality. Using allocation tools, a designer may re and loosening tolerances on costly processes, for a net reduction in cost. Several algorithms are described

  4. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  5. Policy on Cost Sharing Policy on Cost Sharing

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Policy on Cost Sharing 12/26/2014 Policy on Cost Sharing I. Purpose and Scope Northeastern University does not encourage cost sharing commitments in sponsored research, and generally will not commit for approval for cost sharing arrangements, and explains the requirements for how any such arrangements

  6. Policy on Cost Transfer Policy on Cost Transfer

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Policy on Cost Transfer 12/22/2014 Policy on Cost Transfer I. Purpose and Scope The University has posting of a cost to the general ledger, initiated by payroll charges, purchase orders or check requests (and the purchasing card). Cost Transfer means any subsequent transfer of the original charge

  7. Cost Sharing -1 -Approved: 01/07/2013 Cost Sharing

    E-Print Network [OSTI]

    Hammack, Richard

    Cost Sharing - 1 - Approved: 01/07/2013 Cost Sharing Policy Type: Administrative Responsible Office and Purpose The purpose of this policy is to define VCU's cost-sharing policy for sponsored programs. The university will make a cost-sharing commitment only when required by the sponsor or by the competitive nature

  8. FACILITIES AND ADMINISTRATIVE (F&A) COST AND IDC RATES The cost of conducting research consists of two broad types of costs direct costs and facilities and

    E-Print Network [OSTI]

    Keinan, Alon

    FACILITIES AND ADMINISTRATIVE (F&A) COST AND IDC RATES The cost of conducting research consists of two broad types of costs ­ direct costs and facilities and administrative costs (F&A), also known as indirect costs. Direct

  9. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  10. Costs, Savings and Financing Bulk Tanks on Texas Dairy Farms. 

    E-Print Network [OSTI]

    Moore, Donald S.; Stelly, Randall; Parker, Cecil A.

    1958-01-01

    ,s - / cwdh\\@ Costs, Savi~gs;.itd Financing Bulk Tanks on Texas Dairy Farms . ?. I I 1 i I I ! ,:ravings in hauling - 10 cents I \\ \\ 1 \\ savings in hauling - 15 cents -----------____--- 'savings in hauling - 20 cents Annual production..., 1,000 pounds Estimated number of years required for savings from a bulk tank to equal additional costs at different levels of production and savings in hauling costs. TEXAS AGRICULTURAL EXPERIMEN'T STATION R. D. LEWIS. DIRECTOR. COLLEGE STATION...

  11. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development *

  12. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development

  13. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect (OSTI)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  14. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  15. Transition-cost issues for a restructuring US electricity industry

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    Utilities regulators can use a variety of approaches to calculate transition costs. We categorized these approaches along three dimensions. The first dimension is the use of administrative vs. market procedures to value the assets in question. Administrative approaches use analytical techniques to estimate transition costs. Market valuation relies on the purchase price of particular assets to determine their market values. The second dimension concerns when the valuation is done, either before or after the restructuring of the electricity industry. The third dimension concerns the level of detail involved in the valuation, what is often called top-down vs. bottom-up valuation. This paper discusses estimation approaches, criteria to assess estimation methods, specific approaches to estimating transition costs, factors that affect transition-cost estimates, strategies to address transition costs, who should pay transition costs, and the integration of cost recovery with competitive markets.

  16. MEMO OF UNDERSTANDING Service Cost

    E-Print Network [OSTI]

    Jacobs, Lucia

    MEMO OF UNDERSTANDING Service Cost July 2013 1/4 Thera Kalmijn Chief Operating Officer 1608 Fourth] [Division Name] Re: CSS Service Cost for Fiscal Year 2013 - 2015 Please find the service cost for [Division [Division Name] implements into CSS. The service cost for [Division Name] will remain fixed throughout

  17. Robust Cost Colorings Takuro Fukunaga

    E-Print Network [OSTI]

    Halldórsson, Magnús M.

    Robust Cost Colorings Takuro Fukunaga Magn´us M. Halld´orsson Hiroshi Nagamochi Abstract We consider graph coloring problems where the cost of a coloring is the sum of the costs of the colors, and the cost of a color is a monotone concave function of the total weight of the class. This models resource

  18. The Costs and Revenues of

    E-Print Network [OSTI]

    The Costs and Revenues of Transformation to Continuous Cover Forestry Owen Davies & Gary Kerr March 2011 #12;2 | Costs and Revenues of CCF | Owen Davies & Gary Kerr | March 2011 Costs and Revenues of CCF The costs and revenues of transformation to continuous cover forestry: Modelling silvicultural options

  19. Allocable costs What are they?

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    Allocable costs What are they? The A-21 circular definition: a. A cost is allocable to a particular cost objective (i.e., a specific function, project, sponsored agreement, department, or the like) if the goods or services involved are chargeable or assignable to such cost objective in accordance

  20. 2011 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  1. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  2. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  3. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Billingsley, Megan A.

    2014-01-01

    CSE DOE DSM EIA EERS HVAC LCOE MUSH WACC American Councillevelized cost of energy (LCOE), which represents the per-the levelized cost of energy (LCOE), often is applied to

  4. ORIGINAL PAPER Costly plastic morphological responses to predator

    E-Print Network [OSTI]

    Richner, Heinz

    ORIGINAL PAPER Costly plastic morphological responses to predator specific odour cues in three fixed anti-predator morphologies are favoured when predation level is consistently high, plastic plasticity. However, little is known about sticklebacks' plastic ability to react morpho- logically

  5. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    E. (2011). Development in LCOE for Wind Turbines in Denmark.to drive a historically low LCOE for current installations.the levelized cost of energy (LCOE) for onshore wind energy

  6. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  7. Controlling landfill closure costs

    SciTech Connect (OSTI)

    Millspaugh, M.P.; Ammerman, T.A. [Spectra Engineering, Latham, NY (United States)

    1995-05-01

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  8. Variable Speed Pumping for Level Control 

    E-Print Network [OSTI]

    Vasel, M.

    1982-01-01

    analysis, and a brief discussion of variable frequency drive design considerations. Energy savings figures are based upon actual electricity costs at the plant involved. Process duty cycle and energy requirement levels were verified by a wattmeter...

  9. Electric Demand Cost Versus Labor Cost: A Case Study 

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  10. Cover Sheet for Budget Item Predicted Cost Actual Cost Notes

    E-Print Network [OSTI]

    Cover Sheet for Budget Item Predicted Cost Actual Cost Notes Lodging $700.00 Three hotels: 1. $195, $154.00 was used for unintended transportations (taxi, train, bus, etc.) and lodging costs Meal Plan $1.70 10. Bus $1.70 11. Bus $2.83 12. Bus $4.53 13. Tram$3.28 = $96.11 These costs were paid

  11. The Outlook for CO2 Capture Costs

    E-Print Network [OSTI]

    Common Measures of CCS Cost · Capital cost · Increased cost of electricity · Cost of CO2 avoided · Cost of CO2 captured E.S. Rubin, Carnegie Mellon Elements of Capital Cost Note: · Nomenclature and cost items construction Total Capital Requirement (TCR) E.S. Rubin, Carnegie Mellon Cost of Electricity (COE) COE ($/MWh

  12. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01

    AS CAISO CCGT CSP CT DA EUE LCOE LOLP LOLE NERC NREL O&M PHSthe levelized cost of energy (LCOE) or the cost of a power

  13. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  14. User cost in oil production

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1990-01-01

    The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

  15. Machine Learning with Operational Costs

    E-Print Network [OSTI]

    Rudin, Cynthia

    This work proposes a way to align statistical modeling with decision making. We provide a method that propagates the uncertainty in predictive modeling to the uncertainty in operational cost, where operational cost is the ...

  16. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  17. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  18. Cost Effectiveness NW Energy Coalition

    E-Print Network [OSTI]

    1 Action 8 Cost Effectiveness Manual Kim Drury NW Energy Coalition Context · Inconsistent consistent understanding and application of how cost effectiveness is calculated and when and how to apply Action Plan for Energy Efficiency published a comprehensive guide on cost effectiveness: best practices

  19. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  20. Overlay Costs National Concrete Consortium

    E-Print Network [OSTI]

    Overlay Costs National Concrete Consortium TTCC April 6, 2010 Savannah, Georgia Gary Fick Representing The National Concrete Pavement Technology Center #12;Overlay Cost Tech Brief · Developed to address common questions we have received during our implementation efforts #12;Overlay Cost Tech Brief

  1. Hay Harvesting Costs $$$$$ in Texas. 

    E-Print Network [OSTI]

    Long, James T.; Taylor, Wayne D.

    1972-01-01

    would be approximately 34 cents. Labor cost was calculated at $1.50 per hour. Total operating cost, including labor and all equipmen! use, was 8.2 cents per bale and $5.73 per acre (a$ shown in Table 2). Assuming an average yieltl oi seventy 60.... averaged $5.73 per acre for each be 8.2 cents per bale. At a cost of 10 cents per baly cutting or $2.73 per ton. With an average of 70 for custom hauling, direct, out-of-pocket costs will be 18.2 cents per bale. I Table 3. Estimated Cost Per Ton and Per...

  2. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  3. Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

    2006-01-01

    Total Cost (CPUC) Module Cost Index (CEC, CPUC) CEC CPUC *an external index of worldwide module costs from Strategies

  4. Lower Cost Energy Options 

    E-Print Network [OSTI]

    Maze, M. E.

    1987-01-01

    , wh1ch means g01ng from 13.000 volts up to 39.000 volts and buy1ng the transformers, we can save nearly $180,000. The other th1ng I p01nted out before was the power factor penalty. By addIng capac1tors and ra1s1ng our power factor from 84% to 95...'s not as wIdely used, but revlta11zatlon rates are avaIlable. The last area 1s cogeneratIon. ThIs can be one of two thIngs. It can be an attractIve buy-back rate or av01ded cost rate, for cogenerated electrIcIty or 1t can be a r1der or rate where they w...

  5. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  6. CAFE Standards (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  7. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  8. State Appliance Standards (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

  9. Comparing Efficiency Projections (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.

  10. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  11. CONTINATIONSHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1 of 8 DOCUMENT

  12. CONTINATIONSHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1 of 8 DOCUMENTCOTNUTO

  13. Industrial Team Plans for AEO2015

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion CubicOctoberper Thousand CubicMay-1524, 2014

  14. AEO 2013 Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 2012 Attendance (In

  15. AEO2014 Renewables Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil andFOR: John

  16. AEO2015 Coal Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 OilPURPOSES. DO

  17. AEO2015 Transportation Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123

  18. AEO2016 Preliminary Industrial Output Results

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 201231: Preliminary

  19. Microsoft Word - macroeconomic_aeo2012.docx

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 20118)The Electricity

  20. Efficiency and Intensity in the AEO 2010

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,Why Report VoluntaryEffects of

  1. AEO Early Release 2013 - LNG exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms ProposedA Form88U.S.

  2. AEO Early Release 2013 - renewable generation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms ProposedARenewables

  3. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    The variable O&M cost of wind and solar is assumed to bethe relative levelized cost of wind and solar supply. OneJ. Swider and C. Weber. The costs of wind’s intermittency in

  4. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    CEMS CSP CT DA EIA EPA EUE LCOE LOLP LOLE NERC NREL O&M PHSlevelized cost of energy (LCOE)). A missing part of simplethe levelized cost of energy (LCOE) or the cost of a power

  5. Cost-Constrained Selection of Strand Wire and Number in a Litz-Wire Transformer Winding

    E-Print Network [OSTI]

    Cost-Constrained Selection of Strand Wire and Number in a Litz-Wire Transformer Winding C. R. Design of litz-wire windings subject to cost constraints is analyzed. An approximation of nor- malized winding, in terms of a cost function. At the second level, results that are less general but are more

  6. Investigation to Discover Most Effective Method of Teaching Target Costing to Construction-Minded Individuals 

    E-Print Network [OSTI]

    Hullum, Joshua James

    2012-07-16

    and an increased level of detail, while keeping costs lower than ever. Therefore, to meet such demands contractors must turn to an alternative approach of improving product and process with target costing. However, the adoption of target costing by the construction...

  7. Lyra: Password-Based Key Derivation with Tunable Memory and Processing Costs

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Lyra: Password-Based Key Derivation with Tunable Memory and Processing Costs Leonardo C. Almeida memory and processing costs according to the desired level of security against brute force pass- word that if we fix Lyra's total processing time t in a legitimate platform, the cost of a memory-free attack

  8. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  9. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  10. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01

    transportation ACRONYMS AEO CG CNG ETL FCV H 2 H 2 -FCV HEVvehicles, and less than 1% of CNG, electric vehicles, andof al- ternative fuel (H 2 and CNG) vehicles. High oil costs

  11. Supplement to the Annual Energy Outlook 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-17

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

  12. Low Cost Heliostat Development Phase II Final Report

    SciTech Connect (OSTI)

    Kusek, Stephen M.

    2014-04-21

    The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

  13. Audit Costs for the 1986 Texas Energy Cost Containment Program 

    E-Print Network [OSTI]

    Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

    1987-01-01

    Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

  14. Stochastic Optimisation Methods for Cost-E ective Quality

    E-Print Network [OSTI]

    Fouskakis, Dimitris

    is traditionally measured by using logistic regression of mortality within 30 days of admission on O(100) sickness are sharply better than SA in this problem for all values of p studied; and (iii) optimal subsets of variables that compromise between data collection costs and predictive accuracy have the potential to generate large cost

  15. Cost Type Examples Salary costs for staff working

    E-Print Network [OSTI]

    Rambaut, Andrew

    in animal house facility standard charge-out rates (excluding building depreciation) which we will pay, delivery and freight. Animal research costs Animal purchase and transportation costs. Animal maintenance employed on the grant. Training on specific skills relevant to the research project (e.g. animal handling

  16. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  17. JUMP DIFFUSION OPTION WITH TRANSACTION COSTS

    E-Print Network [OSTI]

    Mocioalca, Oana

    JUMP DIFFUSION OPTION WITH TRANSACTION COSTS "non-systematic" risk, inclusive of transaction costs. We compute the total transac- tion costs and the turnover for different options, transaction costs, and revision intervals

  18. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  19. An Explanation of F&A Costs What are F&A Costs?

    E-Print Network [OSTI]

    Tipple, Brett

    An Explanation of F&A Costs What are F&A Costs? Costs involved in conducting sponsored projects are categorized in two ways: direct costs or indirect costs. The federal government refers officially to indirect costs as facilities and administrative (F&A) costs, sometimes simply called "overhead" costs. Direct

  20. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities...

  1. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect (OSTI)

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  2. Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium

    SciTech Connect (OSTI)

    M Weimar

    1998-12-10

    This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

  3. Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2 3 J at the local (site) level. This paper questions whether12 CBA is relevant for evaluating groundwater management the cost of groundwater14 protection and remediation measures at the regional (water body) level. It also

  4. Cost Principles Policy Responsible Office: Cost Analysis Effective Date: November 1, 2013

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    Cost Principles Policy Responsible Office: Cost Analysis Effective Date: November 1, 2013 Last-21, Cost Principles for Educational Institutions and the Cost Accounting Standards Board (CASB)) identify cost accounting policies that must be followed to receive federal awards. These regulations

  5. Production Costing Models 1 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    at each hour, The load is specified; A unit commitment decision is made; A dispatch decision is made. An important characterizing feature of PCMs is how it makes the unit commitment (UC) and dispatch decisions) such that units with lowest average cost are committed first. Startup costs are added when a unit #12;5 is started

  6. Turfgrass: Maintenance Costs in Texas. 

    E-Print Network [OSTI]

    Holt, Ethan C.; Allen, W. Wayne; Ferguson, Marvin H.

    1964-01-01

    LAW FOR VARIOUS M-AINTENANCE ITEMS BASED ON O\\!'\\'S. ERSHIP AND TYPE OF GRASS WITHIN EACH REGION Maintenance items TY PC Percent Lot size, Region of oz;r- of lawns square Com~osty Fertilizer Chemicals Water Average grass in region feet cost cost...

  7. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  8. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, C.; Couture, T. D.; Cory, K. S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent renewable energy policy used globally to date, and there are many benefits to the certainty offered in the marketplace to reduce development risks and associated financing costs and to grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control in renewable energy policy design. In recent years, policy mechanisms for containing FIT costs have become more refined, allowing policymakers to exert greater control on policy outcomes and on the resulting costs to ratepayers. As policymakers and regulators in the United States begin to explore the use of FITs, careful consideration must be given to the ways in which policy design can be used to balance the policies' advantages while bounding its costs. This report explores mechanisms that policymakers have implemented to limit FIT policy costs. If designed clearly and transparently, such mechanisms can align policymaker and market expectations for project deployment. Three different policy tools are evaluated: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report employs case studies to explore the strengths and weaknesses of these three cost containment tools. These tools are then evaluated with a set of criteria including predictability for policymakers and the marketplace and the potential for unintended consequences.

  9. Geothermal Exploration Cost and Time

    SciTech Connect (OSTI)

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  10. Total Ownership Cost (TOC) Cost as an Independent Variable

    E-Print Network [OSTI]

    $ + procurement $ + operation $ + logistical support $ + disposal $ Linked - Indirect Direct Direct Cost Life with the research, development, procurement, operation, logistical support and disposal of an individual weapon, operation, logistical support and disposal of an individual weapon system including the total supporting

  11. Cost | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumer ConnectionCoralCorvalenceCosoCostCostCost

  12. Facilities & Administrative (F&A) Costs at NIU F&A costs at NIU

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Facilities & Administrative (F&A) Costs at NIU #12;F&A costs at NIU What are Facilities & Administrative (F&A) Costs? F&A Costs (aka "indirect costs" or "overhead") are real institutional costs project, instructional or public service activity. Such costs include utilities, buildings and facilities

  13. Low-cost interference lithography

    E-Print Network [OSTI]

    Fucetola, Corey P.

    The authors report demonstration of a low-cost ( ? 1000 USD) interference lithography system based on a Lloyd’s mirror interferometer that is capable of ? 300?nm pitch patterning. The components include only a 405?nm GaN ...

  14. Memory cost of quantum protocols

    E-Print Network [OSTI]

    Alessandro Bisio; Giacomo Mauro D'Ariano; Paolo Perinotti; Michal Sedlak

    2011-12-16

    In this paper we consider the problem of minimizing the ancillary systems required to realize an arbitrary strategy of a quantum protocol, with the assistance of classical memory. For this purpose we introduce the notion of memory cost of a strategy, which measures the resources required in terms of ancillary dimension. We provide a condition for the cost to be equal to a given value, and we use this result to evaluate the cost in some special cases. As an example we show that any covariant protocol for the cloning of a unitary transformation requires at most one ancillary qubit. We also prove that the memory cost has to be determined globally, and cannot be calculated by optimizing the resources independently at each step of the strategy.

  15. Maximum output at minimum cost

    E-Print Network [OSTI]

    Firestone, Jeremy

    Gamesa G90-2.0 MW #12;Maximum output at minimum cost per kWh for low wind sites ®® Class IIIA mast and the electrical substation. This innovative modular design based on TCP/IP architecture has

  16. Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

    2006-01-01

    THE SUN SHINE ON SOLAR COSTS: AN EMPIRICAL INVESTIGATION OFWe find that: (1) solar costs have declined substantially2004 $/W AC . 4. SOLAR COSTS HAVE DECLINED SUBSTANTIALLY In

  17. Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

    2006-01-01

    infrastructure. Though PV cost reductions in California areworldwide. Data on PV capacity and costs are expresseddepth statistical analysis of PV system costs in California.

  18. Costing Summaries for Selected Water Treatment

    E-Print Network [OSTI]

    · Engineering News-Record Construction Cost Index · Consumer Prices Index · Year Index = average of the monthly values of the year )( )( )()( yyearIndexCost xyearIndexCost yyearCostxyearCostUpdated ×= #12;Slow SandCosting Summaries for Selected Water Treatment Processes Alix Montel Ecole Centrale de Nantes M

  19. CAS Indirect Cost Recovery Practices "Facilities and Administration" (F&A) Costs or, "Indirect Cost Recovery (ICR)," are costs incurred by the

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    CAS Indirect Cost Recovery Practices "Facilities and Administration" (F&A) Costs or, "Indirect Cost Recovery (ICR)," are costs incurred by the University for common or joint projects and cannot be specifically attributed to an individual project. Some examples of indirect costs include accounting staff

  20. Wind power costs in Portugal Saleiro, Carla

    E-Print Network [OSTI]

    Wind power costs in Portugal Saleiro, Carla Department of Biological Engineering, University, following the European tendency. This analysis sets out to evaluate the total generating cost of wind power and CCGT in Portugal. A life cycle cost analysis was conducted, including investment costs, O&M costs, fuel

  1. Estimated Costs of Pasture and Hay Production

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Pasture and Hay Production This report summarizes estimated costs of improving pasture by five different systems. For each system, both the initial cost per acre and the annual maintenance cost per acre are presented. In addition, costs of establishing alfalfa or alfalfagrass hay

  2. Estimated Costs of Pasture and Hay Production

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Pasture and Hay Production This report summarizes estimated costs of improving pasture by five different systems. For each system, both the initial cost per acre and the annual maintenance cost per acre are presented. In addition, costs of establishing alfalfa or alfalfa-grass hay

  3. Optimal control of a large dam, taking into account the water costs [New Edition

    E-Print Network [OSTI]

    Abramov, Vyacheslav M

    2009-01-01

    This paper studies large dam models where the difference between lower and upper levels $L$ is assumed to be large. Passage across the levels leads to damage, and the damage costs of crossing the lower or upper level are proportional to the large parameter $L$. Input stream of water is described by compound Poisson process, and the water cost depends upon current level of water in the dam. The aim of the paper is to choose the parameters of output stream (specifically defined in the paper) minimizing the long-run expenses. The particular problem, where input stream is Poisson and water costs are not taken into account has been studied in [Abramov, \\emph{J. Appl. Prob.}, 44 (2007), 249-258]. The present paper partially answers the question \\textit{How does the structure of water costs affect the optimal solution?} In particular the case of linear costs is studied.

  4. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01

    include different energy efficiency resource savings levels,bidding strategy of energy efficiency resources and receiveResource Costs and Benefits of Alternative Energy Efficiency

  5. Low-level waste program technical strategy

    SciTech Connect (OSTI)

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  6. Information, Diversification, and Cost of Capital

    E-Print Network [OSTI]

    Hughes, John S; Liu, Jing; Liu, Jun

    2005-01-01

    insider trading and cost of capital. ” Working paper, UCLA,Information and the cost of capital. ” Journal of Finance,in Determining Cost of Equity Capital,” Review of Accounting

  7. Total cost model for making sourcing decisions

    E-Print Network [OSTI]

    Morita, Mark, M.B.A. Massachusetts Institute of Technology

    2007-01-01

    This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

  8. Arbitration Costs and Contingent Fee Contracts

    E-Print Network [OSTI]

    Drahozal, Christopher R.

    2005-08-03

    A common criticism of arbitration is that its upfront costs (arbitrators' fees and administrative costs) may preclude consumers and employees from asserting their claims. Some commentators have argued further that arbitration costs undercut...

  9. Plant Energy Cost Optimization Program (PECOP) 

    E-Print Network [OSTI]

    Robinson, A. M.

    1980-01-01

    The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

  10. USA oilgas production cost : recent changes

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1991-01-01

    During 1984-1989, oil development investment cost in the USA fell, but only because of lower activity. The whole cost curve shifted unfavorably (leftward). In contrast, natural gas cost substantially decreased, the curve ...

  11. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATIONCann Please use the following citation for this report: Klein, Joel. 2009. Comparative Costs of California............................................................................................................................1 Changes in the Cost of Generation Model

  12. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  13. Maintenance cost studies of present aircraft subsystems

    E-Print Network [OSTI]

    Pearlman, Chaim Herman Shalom

    1966-01-01

    This report describes two detailed studies of actual maintenance costs for present transport aircraft. The first part describes maintenance costs for jet transport aircraft broken down into subsystem costs according to an ...

  14. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  15. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  16. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  17. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  18. Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Mone, C.; Maples, B.; Hand, M.

    2014-04-01

    With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non?turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

  19. Cost Principles Directives & Procedures Responsible Office: Cost Analysis Effective Date: November 1, 2013

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    1 Cost Principles Directives & Procedures Responsible Office: Cost Analysis Effective Date....................................................................................................................... 2 2. Guiding Principles to Determine the Charge of a Cost to a Sponosred Agreement ................................................................................................. 5 5.1. Personnel Costs

  20. Statistical Inference for Costs and Incremental Cost-Effectiveness Ratios with Censored Data 

    E-Print Network [OSTI]

    Chen, Shuai

    2012-07-16

    Cost-effectiveness analysis is widely conducted in the economic evaluation of new treatment options. In many clinical and observational studies of costs, data are often censored. Censoring brings challenges to both medical cost estimation and cost...

  1. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  2. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  3. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

  4. Cost objective PLM and CE

    E-Print Network [OSTI]

    Nicolas Perry; Alain Bernard

    2010-11-26

    Concurrent engineering taking into account product life-cycle factors seems to be one of the industrial challenges of the next years. Cost estimation and management are two main strategic tasks that imply the possibility of managing costs at the earliest stages of product development. This is why it is indispensable to let people from economics and from industrial engineering collaborates in order to find the best solution for enterprise progress for economical factors mastering. The objective of this paper is to present who we try to adapt costing methods in a PLM and CE point of view to the new industrial context and configuration in order to give pertinent decision aid for product and process choices. A very important factor is related to cost management problems when developing new products. A case study is introduced that presents how product development actors have referenced elements to product life-cycle costs and impacts, how they have an idea bout economical indicators when taking decisions during the progression of the project of product development.

  5. Regulation, Unemployment, and Cost-Benefit Analysis

    E-Print Network [OSTI]

    Posner, Eric; Masur, Jonathan S.

    2011-01-01

    and Eric A. Posner, Regulation, Unemployment, and Cost-effects of environmental regulations for other industries.Paper Collection.   Regulation, Unemployment, and Cost-

  6. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  7. Multiperiod Portfolio Optimization with General Transaction Costs

    E-Print Network [OSTI]

    2013-07-17

    assets in the presence of general transaction costs such as proportional, market impact ... For proportional transaction costs, we find that a buy-and-hold policy is

  8. Lot Sizing with Piecewise Concave Production Costs

    E-Print Network [OSTI]

    2013-02-14

    Feb 14, 2013 ... procurement/shipment) and inventory holding costs, the aim of the ... is to propose a minimum cost production plan to satisfy the demand (see, ...

  9. Driltac (Drilling Time and Cost Evaluation)

    SciTech Connect (OSTI)

    None

    1986-08-01

    The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

  10. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is the...

  11. Modifications to Replacement Costs System

    SciTech Connect (OSTI)

    Godec, M. [ICF Resources, Inc., Fairfax, VA (United States)

    1989-05-18

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985.

  12. To: Research Cost Fund Fieldwork Cost Fund Both Graduate Program in

    E-Print Network [OSTI]

    To: Research Cost Fund Fieldwork Cost Fund Both From: Graduate Program in: Date: Subject: Research Cost Fund/Fieldwork Cost Fund I am submitting the applications for the students listed on the attached spreadsheet for the Research Cost Fund/Fieldwork Cost Fund Competition I confirm that all applications meet

  13. Frequently Asked Questions about Patient Care Costs And a Quick Guide to Patient Care Costs

    E-Print Network [OSTI]

    Janssen, Michel

    Frequently Asked Questions about Patient Care Costs And a Quick Guide to Patient Care Costs questions regarding human research patient care costs. Human research patient care costs are the costs. The costs of these services normally are assigned to specific research projects through the development

  14. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  15. Methodology for Prototyping Increased Levels of Automation

    E-Print Network [OSTI]

    Valasek, John

    Methodology for Prototyping Increased Levels of Automation for Spacecraft Rendezvous Functions of automation than previous NASA vehicles, due to program requirements for automation, including Automated Ren authority between humans and computers (i.e. automation) as a prime driver for cost, safety, and mission

  16. Entanglement cost in practical scenarios

    E-Print Network [OSTI]

    Francesco Buscemi; Nilanjana Datta

    2011-03-03

    We quantify the one-shot entanglement cost of an arbitrary bipartite state, that is the minimum number of singlets needed by two distant parties to create a single copy of the state up to a finite accuracy, using local operations and classical communication only. This analysis, in contrast to the traditional one, pertains to scenarios of practical relevance, in which resources are finite and transformations can only be achieved approximately. Moreover, it unveils a fundamental relation between two well-known entanglement measures, namely, the Schmidt number and the entanglement of formation. Using this relation, we are able to recover the usual expression of the entanglement cost as a special case.

  17. Quantum cost for sending entanglement

    E-Print Network [OSTI]

    Alexander Streltsov; Hermann Kampermann; Dagmar Bruß

    2012-03-07

    Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.

  18. Soft Costs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft Costs Soft Costs An

  19. A Second Opinion is Worth the Cost - 12479

    SciTech Connect (OSTI)

    Madsen, Drew [Project Time and Cost Inc. (United States)

    2012-07-01

    This paper, 'A Second Opinion is Worth the Cost', shows how a second opinion for a Department of Energy (DOE) Project helped prepare and pass a DOE Order 413.3A 'Program and Project Management for the acquisition of Capital Assets' Office of Engineering and Construction Management (OECM) required External Independent Review (EIR) in support of the approved baseline for Critical Decision (CD) 2. The DOE project personnel were informed that the project's Total Project Cost (TPC) was going to increase from $815 million to $1.1 billion due to unforeseen problems and unexplained reasons. The DOE Project Team determined that a second opinion was needed to review and validate the TPC. Project Time and Cost, Inc. (PT and C) was requested to evaluate the cost estimate, schedule, basis of estimate (BOE), and risk management plan of the Project and to give an independent assessment of the TPC that was presented to DOE. This paper will demonstrate how breaking down a project to the work breakdown structure (WBS) level allows a project to be analyzed for potential cost increases and/or decreases, thus providing a more accurate TPC. The review Team's cost analyses of Projects identified eight primary drivers resulting in cost increases. They included: - Overstatement of the effort required to develop drawings and specifications. - Cost allocation to 'Miscellaneous' without sufficient detail or documentation. - Cost for duplicated efforts. - Vendor estimates or quotations without sufficient detail. - The practice of using the highest price quoted then adding an additional 10% mark-up. - Application of Nuclear Quality Assurance (NQA) highest level quality requirements when not required. - Allocation of operational costs to the Project Costs instead of to the Operating Expenses (OPEX). OPEX costs come from a different funding source. - DOE had not approved the activities. By using a Team approach with professionals from cost, civil, mechanical, electrical, structural and nuclear disciplines and by performing a Line by Line, WBS element by WBS element review of the Projects' CD-2 baseline package helped the DOE Project Team experience success. The second opinion that PT and C provide by conducting a Pre-EIR review of the Project baseline package and the cost review of the TPC helped the DOE Team pass the CD-2 EIR and reduced the TPC. The Line-by-Line review of the DOE Project identified opportunities to reduce the TPC from $1.1 billion to $740.8 million, thus realizing a saving of approximately $359.2 million, or roughly 32% of the original TPC. This significant cost savings underscores the cost in obtaining the second opinion. This same Line by Line review can be applied to any DOE project in the Energy Management or Weapons complex. In the case of this DOE Project a second opinion was worth the cost. (authors)

  20. Smog Check II Evaluation Part IV: Smog Check Costs and

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part IV: Smog Check Costs and Cost Effectiveness Are the Overall Costs of Smog Check? __________________ 2 2.1. Vehicle Testing Costs____________________________________________ 3 2.2. Repair Costs ___________________________________________________ 5 2.3. Administrative Costs

  1. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  2. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  3. Regulatory cost-risk study

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study is intended to provide some quantitative perspective by selecting certain examples of criteria for which estimates of risks and costs can be obtained, and the balance of the various risks, (i.e., internal versus external risks), can be put into perspective. 35 refs., 39 tabs. (JDB)

  4. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  5. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

  6. U.S. Balance-of-Station Cost Drivers and Sensitivities (Presentation)

    SciTech Connect (OSTI)

    Maples, B.

    2012-10-01

    With balance-of-system (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non?turbine costs has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from U.S. offshore wind plants.

  7. Novel, Low-Cost Nanoparticle Production

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing a modular hybrid plasma reactor and process to manufacture low-cost nanoparticles

  8. Optimal Average Cost Manufacturing Flow Controllers

    E-Print Network [OSTI]

    Veatch, Michael H.

    policy the differ- ential cost is C1 on attractive control switching boundaries. Index Terms Average costOptimal Average Cost Manufacturing Flow Controllers: Convexity and Differentiability Michael H and differentiability of the differential cost function are investigated. It is proven that under an optimal control

  9. COST 227/08 1 European Cooperation

    E-Print Network [OSTI]

    Henderson, Gideon

    COST 227/08 1 DG C II EN European Cooperation in the field of Scientific and Technical Research - COST - -------------------- Secretariat ------- Brussels, 2 July 2008 COST 227/08 MEMORANDUM Action designated as COST Action ES0801: The ocean chemistry of bioactive trace elements and paleoclimate

  10. CPRIT Cost Matching Endorsement Investigator Name

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    CPRIT Cost Matching Endorsement Investigator Name: Department: Project Title: Proposal Deadline regarding demonstration of available funding. To satisfy this cost matching requirement, the university is able to claim unrecovered indirect costs (i.e. the difference between the 5.263% of direct costs

  11. On production costs in vertical differentiation models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EA 4272 On production costs in vertical differentiation models Dorothée BRECARD(*) 2009,version1-1Oct2009 #12;1 On production costs in vertical differentiation models Dorothée Brécard production cost beside a fixed cost of quality improvement in a duopoly model of vertical product

  12. FLORIDA STATE UNIVERSITY Participant Support Costs

    E-Print Network [OSTI]

    Weston, Ken

    FLORIDA STATE UNIVERSITY Policy on Participant Support Costs Effective: May 15, 2006 Purpose costs are separately accounted for, and expended for appropriate and intended objectives. Background in the conference, workshop or training activity. Participant supports costs are defined as direct costs for items

  13. SPONSORSHIP LEVELS GOLF PARTICIPATION

    E-Print Network [OSTI]

    Salvaggio, Carl

    as exemplary and regards RIT as a role model for other organizations. Can you putt? WIN your 2016 entry fee so eld , New York GOLF REGISTRATION SPONSOR REGISTRATION Registration Deadline: September 3, 2015 Standard Cost: Student Cost: $95.00 per person $75.00 per person

  14. The Minimal Work Cost of Information Processing

    E-Print Network [OSTI]

    Philippe Faist; Frédéric Dupuis; Jonathan Oppenheim; Renato Renner

    2015-07-07

    Irreversible information processing cannot be carried out without some inevitable thermodynamical work cost. This fundamental restriction, known as Landauer's principle, is increasingly relevant today, as the energy dissipation of computing devices impedes the development of their performance. Here we determine the minimal work required to carry out any logical process, for instance a computation. It is given by the entropy of the discarded information conditional to the output of the computation. Our formula takes precisely into account the statistically fluctuating work requirement of the logical process. It enables the explicit calculation of practical scenarios, such as computational circuits or quantum measurements. On the conceptual level, our result gives a precise and operationally justified connection between thermodynamic and information entropy, and explains the emergence of the entropy state function in macroscopic thermodynamics.

  15. Hydroblasting permits safe, cost-effective dam rehabilitation

    SciTech Connect (OSTI)

    Lever, G. [Cavi-Tech Inc., Kennesaw, GA (United States)

    1996-04-01

    The cost of using traditional methods to remove lead-based paint from structures subject to strict environmental regulations can be prohibitive, leaving many rehabilitation projects undone. However, alternative methods, including hydroblasting, can reduce debris containment and disposal costs to a tolerable level. This article describes a project which involved the removal of old lead paint and the repainting of a dam situated in a populated recreational area. It details the budgetary, environmental, and public health issues that led to strict specifications and oversight requirements, which saved money and protected the area from lead contamination.

  16. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  17. Measuring Cost Variability in Provision of Transit Service

    E-Print Network [OSTI]

    Taylor, Brian D.; Garrett, Mark; Iseki, Hiroyuki

    2010-01-01

    include both operating costs and capital costs, though mostof semi?xed operating and capital-cost allocation generallyresearch, both operating and capital costs are combined, and

  18. GM-Ford-Chrysler: ATV Proposed Product Costs | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATV Proposed Product Costs GM-Ford-Chrysler: ATV Proposed Product Costs "Proposed Product Cost for Advanced Technology Vehicles" GM-Ford-Chrysler: ATV Proposed Product Costs More...

  19. The cost of silicon nitride powder: What must it be to compete?

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  20. The cost of silicon nitride powder: What must it be to compete

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  1. ECONOMIC AND FINANCIAL ANALYSIS OF INCREASING COSTS IN THE GULF SHRIMP FLEETI,2

    E-Print Network [OSTI]

    of construction, length ofkeel, and index ofeffort. In 1973, class II vessels were the only vessels ableECONOMIC AND FINANCIAL ANALYSIS OF INCREASING COSTS IN THE GULF SHRIMP FLEETI,2 WADE L. GRi flow for 1974. Increasing input cost another 10% above the 1974 level, and assuming normal production

  2. A Novel Low Cost Solar Central Inverters Topology With 99.2 % Efficiency Heiko Preckwinkel and

    E-Print Network [OSTI]

    Noé, Reinhold

    A Novel Low Cost Solar Central Inverters Topology With 99.2 % Efficiency Heiko Preckwinkel IGBT-based 3-level modules are limited to about 300- 600 A nominal current. A Novel Low Cost Solar)», «Transformer», Abstract For solar central inverters, high efficiency is still a very important issue

  3. COST ACCOUNTING IN US CITIES: TRANSACTION COSTS AND GOVERNANCE FACTORS AFFECTING COST ACCOUNTING DEVELOPMENT AND USE

    E-Print Network [OSTI]

    Mohr, Zachary Thomas

    2013-05-31

    Cost accounting in government is a topic that has an oddly uncertain place in public financial management. Many people know what it is as an ideal construct but do not know what it is in practice. This uncertainty of practice and strong expectations...

  4. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  5. Supplemental report on cost estimates'

    SciTech Connect (OSTI)

    NONE

    1992-04-29

    The Office of Management and Budget (OMB) and the U.S. Army Corps of Engineers have completed an analysis of the Department of Energy's (DOE) Fiscal Year (FY) 1993 budget request for its Environmental Restoration and Waste Management (ERWM) program. The results were presented to an interagency review group (IAG) of senior-Administration officials for their consideration in the budget process. This analysis included evaluations of the underlying legal requirements and cost estimates on which the ERWM budget request was based. The major conclusions are contained in a separate report entitled, ''Interagency Review of the Department of Energy Environmental Restoration and Waste Management Program.'' This Corps supplemental report provides greater detail on the cost analysis.

  6. Entanglement Cost of Nonlocal Measurements

    E-Print Network [OSTI]

    Somshubhro Bandyopadhyay; Gilles Brassard; Shelby Kimmel; William K. Wootters

    2009-03-30

    For certain joint measurements on a pair of spatially separated particles, we ask how much entanglement is needed to carry out the measurement exactly. For a class of orthogonal measurements on two qubits with partially entangled eigenstates, we present upper and lower bounds on the entanglement cost. The upper bound is based on a recent result by D. Berry [Phys. Rev. A 75, 032349 (2007)]. The lower bound, based on the entanglement production capacity of the measurement, implies that for almost all measurements in the class we consider, the entanglement required to perform the measurement is strictly greater than the average entanglement of its eigenstates. On the other hand, we show that for any complete measurement in d x d dimensions that is invariant under all local Pauli operations, the cost of the measurement is exactly equal to the average entanglement of the states associated with the outcomes.

  7. Entanglement Cost of Quantum Channels

    E-Print Network [OSTI]

    Mario Berta; Fernando Brandao; Matthias Christandl; Stephanie Wehner

    2012-03-23

    The entanglement cost of a quantum channel is the minimal rate at which entanglement (between sender and receiver) is needed in order to simulate many copies of a quantum channel in the presence of free classical communication. In this paper we show how to express this quantity as a regularized optimization of the entanglement formation over states that can be generated between sender and receiver. Our formula is the channel analog of a well-known formula for the entanglement cost of quantum states in terms of the entanglement of formation; and shares a similar relation to the recently shattered hope for additivity. The entanglement cost of a quantum channel can be seen as the analog of the quantum reverse Shannon theorem in the case where free classical communication is allowed. The techniques used in the proof of our result are then also inspired by a recent proof of the quantum reverse Shannon theorem and feature the one-shot formalism for quantum information theory, the post-selection technique for quantum channels as well as von Neumann's minimax theorem. We discuss two applications of our result. First, we are able to link the security in the noisy-storage model to a problem of sending quantum rather than classical information through the adversary's storage device. This not only improves the range of parameters where security can be shown, but also allows us to prove security for storage devices for which no results were known before. Second, our result has consequences for the study of the strong converse quantum capacity. Here, we show that any coding scheme that sends quantum information through a quantum channel at a rate larger than the entanglement cost of the channel has an exponentially small fidelity.

  8. Entanglement Cost of Quantum Channels

    E-Print Network [OSTI]

    Mario Berta; Fernando Brandao; Matthias Christandl; Stephanie Wehner

    2015-11-02

    The entanglement cost of a quantum channel is the minimal rate at which entanglement (between sender and receiver) is needed in order to simulate many copies of a quantum channel in the presence of free classical communication. In this paper we show how to express this quantity as a regularised optimisation of the entanglement formation over states that can be generated between sender and receiver. Our formula is the channel analog of a well-known formula for the entanglement cost of quantum states in terms of the entanglement of formation; and shares a similar relation to the recently shattered hope for additivity. The entanglement cost of a quantum channel can be seen as the analog of the quantum reverse Shannon theorem in the case where free classical communication is allowed. The techniques used in the proof of our result are then also inspired by a recent proof of the quantum reverse Shannon theorem and feature the one-shot formalism for quantum information theory, the post-selection technique for quantum channels as well as Sion's minimax theorem. We discuss two applications of our result. First, we are able to link the security in the noisy-storage model to a problem of sending quantum rather than classical information through the adversary's storage device. This not only improves the range of parameters where security can be shown, but also allows us to prove security for storage devices for which no results were known before. Second, our result has consequences for the study of the strong converse quantum capacity. Here, we show that any coding scheme that sends quantum information through a quantum channel at a rate larger than the entanglement cost of the channel has an exponentially small fidelity.

  9. 5. ESTIMATING THE COSTS OF DIGITAL PRESERVATION 5.1 Isolating a `preservation cost'

    E-Print Network [OSTI]

    Carr, Leslie

    44 5. ESTIMATING THE COSTS OF DIGITAL PRESERVATION 5.1 Isolating a `preservation cost' Deciding preservation is--how much will it cost? One of the problems encountered in trying to answer this question costs do relate specifically to preservation, but this does not mean that those are the only costs

  10. INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

  11. Federal Indirect Costs Program Definition of the indirect costs of research

    E-Print Network [OSTI]

    Doedel, Eusebius

    Federal Indirect Costs Program Definition of the indirect costs of research Concordia University defines "Indirect Costs" as costs which cannot be associated specifically with a particular research program or other activity. Indirect costs include the provision and maintenance of physical space

  12. Pre-Award Costs Pre-award costs are incurred at the risk of the University.

    E-Print Network [OSTI]

    Hammack, Richard

    Pre-Award Costs Pre-award costs are incurred at the risk of the University. The principal supply an alternate index number to charge in the event the project is not funded. Note: Pre-award costs are costs incurred prior to the beginning date of a budget period. Pre-award cost incurred more than 90 days

  13. Biodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison

    E-Print Network [OSTI]

    and reactant comparison 2 Questions and Hypotheses Question 1 Can we make biodiesel at a lower cost than at a lower cost than buying fuel at a gas station. ii. Alternative hypothesis: Buying fuel at the pump costsBiodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison Burke Anderson

  14. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect (OSTI)

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the scope and magnitude of the cost-overrun problem, the benefits are likely to be significant.

  15. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics

    Broader source: Energy.gov [DOE]

    Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy harvesting efficiency. In this project, researchers will address both the high costs of III-V epitaxy and single crystal substrates. Hydride vapor phase epitaxy (HVPE) is the most promising inexpensive, rapid-growth technique for high efficiency, III-V materials. The continued development of high-throughput HVPE, will be coupled with novel epitaxial liftoff strategies to enable III-V solar cells that are cost-competitive under one-sun conditions.

  16. CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions

    E-Print Network [OSTI]

    Webster, Tom; Benedek, Corinne; Bauman, Fred

    2008-01-01

    Building Maintenance and Repair Cost Reference. ” WhitestoneJ. Wallis and H. Lin. 2008. “CBE UFAD Cost Analysis Tool:UFAD First Cost Model, Issues and Assumptions. ” Center for

  17. NWEC Comments: Environmental Costs and Benefits 1 Methodology for Determining Quantifiable Environmental Costs

    E-Print Network [OSTI]

    NWEC Comments: Environmental Costs and Benefits 1 Methodology for Determining Quantifiable Environmental Costs and Benefits Comments of the NW Energy Coalition October 31, 2014 Introduction: Applying (Council) to include a methodology for determining quantifiable environmental costs and benefits in its

  18. Melanoma costs: A dynamic model comparing estimated overall costs of various clinical stages

    E-Print Network [OSTI]

    Alexandrescu, Doru Traian

    2009-01-01

    AL. Trends in treatment costs for localized prostate cancer:R, Elkin EP, et al. Cumulative cost pattern comparison ofAn estimate of the annual direct cost of treating cutaneous

  19. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01

    calculation include the installed consumer cost (purchase price plus installation cost), operating expenses (energy and

  20. Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Deftitions and Long-Run Cost Dynamics

    E-Print Network [OSTI]

    Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Deftitions and Long. There are alternative definitions of cost and the evolution of technologies and preferences is a complex and highly, some are more useful." To be more useful, The Energy Journal, Vol. 24, No. 1. CopyrightQ2003

  1. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect (OSTI)

    Greene, D.L.

    2005-03-08

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  2. Private trucking costs and records 

    E-Print Network [OSTI]

    Haning, Charles R

    1959-01-01

    ?asc Oys?etiss? Ceeyetieoa af Iatot?tets asd Xettset?C? Laweaeato Xatsooity Ve?oo? Leeel Racy? Oecm?ehly of geeek ylsotjt Releties Deyeeteaas ?I INRRaale llsasycaeat CmykaQae R?DC?dfaO Coif y?cseided Remeyoc~iaa kdsoateyae ead Dkssdreac?D?o ef Osa... Xtaeho so Cited c?LCLc RL?sd Rteeeyoxtetise Oeb~tf?? Valse? of Self ycoefd?4 Teeaeyettetisa ieelyeie of Coif ytooidod geeeeyeetstisa Costs ead Ops?eti?O Itetietfso Netj?4 ?f Rceetdiat Reae fet da?LIai? yatyee? Ceeye?4?ea of Xatcgoity sad Losel R...

  3. Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

    2006-01-01

    incentives have impacted pre-rebate installed costs, andMost prominent are capital cost rebates offered to PV systemtwo most significant current rebate programs are overseen by

  4. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs

    E-Print Network [OSTI]

    Parker, Nathan

    2004-01-01

    higher demand push US natural gas construction plans. ”Using Natural Gas Transmission Pipeline Costs to Estimatethe construction costs of natural gas, oil, and petroleum

  5. A Manager's Approach to Energy Cost Management 

    E-Print Network [OSTI]

    Spencer, R. J.

    1985-01-01

    A major responsibility of management is the control and containment of operating costs. Energy costs are a major portion of the industrial budget. GM has developed a 3 phase approach to energy conservation. Phase I -Administrative Controls...

  6. Updating MIT's cost estimation model for shipbuilding

    E-Print Network [OSTI]

    Smith, Matthew B., Lieutenant, junior grade

    2008-01-01

    This thesis project will update the MIT ship cost estimation model by combining the two existing models (the Basic Military Training School (BMTS) Cost Model and the MIT Math Model) in order to develop a program that can ...

  7. JOHNS HOPKINS UNIVERSITY COST ACCOUNTING STANDARDS BOARD

    E-Print Network [OSTI]

    JOHNS HOPKINS UNIVERSITY COST ACCOUNTING STANDARDS BOARD DISCLOSURE STATEMENT FOR EDUCATIONAL INSTITUTIONS CASB DS-2 March 23, 2010 #12;COST ACCOUNTING STANDARDS BOARD DISCLOSURE STATEMENT REQUIRED BY PUBLIC LAW 100-679 EDUCATIONAL INSTITUTIONS INDEX JOHNS HOPKINS UNIVERISTY GENERAL INSTRUCTIONS

  8. Sunk Costs and Real Options in Antitrust

    E-Print Network [OSTI]

    Pindyck, Robert S.

    2005-07-29

    Sunk costs play a central role in antitrust economics, but are often misunderstood and mismeasured. I will try to clarify some of the conceptual and empirical issues related to sunk costs, and explain their implications ...

  9. How Much Does That Incinerator Cost

    E-Print Network [OSTI]

    Mukhtar, Saqib; Nash, Catherine; Harman, Wyatte; Padia, Reema

    2008-07-25

    Biosecurity on poultry farms includes proper disposal of dead carcasses. In many cases, that means using an incinerator. Calculating the cost of an incinerator means considering long and short-term expenses and the cost of fuel. This publication...

  10. DOE Challenge Home Savings & Cost Estimate Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost data sources and maintains a methodology consistent with a similar study for ENERGY STAR Homes V3. In actual projects the cost impacts for various upgrades will vary....

  11. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  12. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  13. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  14. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  15. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  16. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  17. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Updated Cost Analysis of Photobiological Hydrogen...

  18. Evolving Utility Cost-Effectiveness Test Criteria

    Broader source: Energy.gov [DOE]

    Presents an overview of tests done to evaluate the cost-effectiveness of energy efficiency program benefits.

  19. An algorithm for minimization of quantum cost

    E-Print Network [OSTI]

    Anindita Banerjee; Anirban Pathak

    2010-04-09

    A new algorithm for minimization of quantum cost of quantum circuits has been designed. The quantum cost of different quantum circuits of particular interest (eg. circuits for EPR, quantum teleportation, shor code and different quantum arithmetic operations) are computed by using the proposed algorithm. The quantum costs obtained using the proposed algorithm is compared with the existing results and it is found that the algorithm has produced minimum quantum cost in all cases.

  20. Optimal Transportation Theory with Repulsive Costs

    E-Print Network [OSTI]

    Simone Di Marino; Augusto Gerolin; Luca Nenna

    2015-06-15

    This paper intents to present the state of art and recent developments of the optimal transportation theory with many marginals for a class of repulsive cost functions. We introduce some aspects of the Density Functional Theory (DFT) from a mathematical point of view, and revisit the theory of optimal transport from its perspective. Moreover, in the last three sections, we describe some recent and new theoretical and numerical results obtained for the Coulomb cost, the repulsive harmonic cost and the determinant cost.

  1. Cost Efficient Datacenter Selection for Cloud Services

    E-Print Network [OSTI]

    Li, Baochun

    Cost Efficient Datacenter Selection for Cloud Services Hong Xu, Baochun Li henryxu, bli and performance. They need an effective way to direct the user requests to a suitable datacenter, in a cost efficient manner. Previ- ous work focused mostly on the electricity cost of datacenters. The approaches

  2. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE dollars. Costs for a pioneer plant [a 1st plant with a capacity of 500 dry ton per day (dtpd) biomass

  3. Electric Vehicle Lifecycle Cost Assessment for Hawaii

    E-Print Network [OSTI]

    to residential solar photovoltaic (PV) power to reducing EV ownership costs. In this work, extensions are made substantially brings down the cost of EV ownership, even considering the capital expenditure for PV panelsElectric Vehicle Lifecycle Cost Assessment for Hawaii Dr. Makena Coffman Dr. Paul Bernstein

  4. What does a negawatt really cost?

    E-Print Network [OSTI]

    Joskow, Paul L.

    1991-01-01

    We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

  5. Mathematical Properties of the Deep Coalescence Cost

    E-Print Network [OSTI]

    Rosenberg, Noah

    the maximum cost. We also study corresponding problems for a fixed gene tree. Index Terms--Deep coalescenceMathematical Properties of the Deep Coalescence Cost Cuong V. Than and Noah A. Rosenberg Abstract coalescence cost for reconciling a collection of gene trees is taken as an estimate of the species tree

  6. Indirect Cost Recovery (ICR) Sharing Policy Introduction

    E-Print Network [OSTI]

    Indiana University

    Indirect Cost Recovery (ICR) Sharing Policy Introduction The school receives the majority (~95 to have annual gross research expenditures (direct + indirect costs) greater than $500,000. The percentage explanation. ICR Return to Large Centers with Additional Operational Costs (NEW 7/1/2013) Once research

  7. Cost-Cautious Designs for Confirmatory Bioassay

    E-Print Network [OSTI]

    Sidorov, Nikita

    Cost-Cautious Designs for Confirmatory Bioassay A. N. Donev, R. Tobias & F. Monadjemi First version, The University of Manchester #12;Cost-Cautious Designs for Confirmatory Bioassay Alexander N. Donev School process when a small number of compounds have to be compared with respect to their properties. As the cost

  8. LOGISMOS Cost Functions Surface set feasibility

    E-Print Network [OSTI]

    Boykov, Yuri

    9/14/2014 1 LOGISMOS ­ Cost Functions 9/14/2014 1 Surface set feasibility A surface set { f1(x constraints Each pair of surfaces satisfies surface interaction constraints. #12;9/14/2014 2 Cost Function ­ Surface Costs One-to-one correspondence between each feasible surface set and each closed set

  9. Update on the Cost of Nuclear Power

    E-Print Network [OSTI]

    Parsons, John E.

    2009-01-01

    We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

  10. ...offers early cost-effectiveness check

    E-Print Network [OSTI]

    Oakley, Jeremy

    that an innovation is a `must' ­ offering lower costs for enhanced health outcomes. Or it might turn outMATCH Tool ...offers early cost- effectiveness check on innovations ® Medical Device Evaluation and costs persuade the NHS to buy the innovation? In just three hours, the company was able to check out its

  11. Prevalence-Dependent Costs of Parasite Virulence

    E-Print Network [OSTI]

    Prevalence-Dependent Costs of Parasite Virulence Stephanie Bedhomme1 , Philip Agnew2 , Yuri Vital2, Canada, 2 Ge´ne´tique et Evolution des Maladies Infectieuses, Montpellier, France Costs of parasitism control groups. This measure potentially underestimates the cost of parasitism because it ignores indirect

  12. Hidden Costs of Energy Chris Field

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Hidden Costs of Energy NRC: 2010 Chris Field Carnegie Institution: Department of Global Ecology www.global-ecology.org #12;What are the real costs of energy? · Health · Environment · Conflict and security · Infrastructure #12;What are the real costs of energy? · Unpriced components · Production · Distribution · Consumption

  13. Memorial University of Newfoundland Indirect Costs Report

    E-Print Network [OSTI]

    deYoung, Brad

    Memorial University of Newfoundland Indirect Costs Report 2012-13 The grant provided through the Government of Canada Indirect Costs Program (ICP) is essential to Memorial's research success. Funding and impact can be found in the following section. Total 2013 Indirect Costs Grant: $4,318,814 Management

  14. Support Vector Machines with Example Dependent Costs

    E-Print Network [OSTI]

    Brefeld, Ulf

    Support Vector Machines with Example Dependent Costs Ulf Brefeld, Peter Geibel, and Fritz Wysotzki neu- ral networks and machine learning, typically, do not take any costs into account or allow only costs depending on the classes of the examples that are used for learning. As an extension of class

  15. Financial Policy Manual 2111 UNALLOWABLE COSTS

    E-Print Network [OSTI]

    George, Edward I.

    Financial Policy Manual Page 1 2111 UNALLOWABLE COSTS Effective: August 1998 Last Revision PURPOSE: To establish policy for the accounting of costs which are unallowable charges against federally sponsored projects. POLICY: 1. The following costs are unallowable charges to sponsored projects as either

  16. Arbitration Costs and Forum Accessibility: Empirical Evidence

    E-Print Network [OSTI]

    Drahozal, Christopher R.

    2008-01-01

    evidence suggests the following tentative conclusions on those two questions. First, the upfront costs of arbitration will in many cases be higher than, and at best be the same as, the upfront costs in litigation. Whether arbitration is less costly than...

  17. 2014-2015 Projected Aviation Program Costs

    E-Print Network [OSTI]

    Delene, David J.

    2014-2015 Projected Aviation Program Costs UND Aerospace offers two aviation degree programs with a total of seven academic majors. Each has its own flight course requirements, which affect the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey of Flight

  18. Costs and business models in scientific

    E-Print Network [OSTI]

    Rambaut, Andrew

    Costs and business models in scientific research publishing A report commissioned by the Wellcome Trust DP-3114.p/100/04-2004/JM #12;Costs and business models in scientific research publishing A report, Cambridgeshire CB4 9ZR, UK Tel: +44 (0)1223 209400 Web: www.sqw.co.uk #12;Costs and business models in scientific

  19. TRANSACTION COSTS AND NONMARKOVIAN DELTA HEDGING

    E-Print Network [OSTI]

    TRANSACTION COSTS AND NON­MARKOVIAN DELTA HEDGING Claudio Albanese and Stathis Tompaidis. The underlying security is a stock whose trading involves a small relative transaction cost k . If k = 0 find an optimal trading strategy that minimizes total transaction costs for a given degree of risk

  20. Network With Costs: Timing and Flow Decomposition

    E-Print Network [OSTI]

    Ho, Tracey

    Network With Costs: Timing and Flow Decomposition Shreeshankar Bodas, Jared Grubb, Sriram Sridharan-- This paper analyzes a capacitated network with costs from an information theoretic point of view. Determines a flow decomposition for a network with costs starting from an information theoretic point of view