National Library of Energy BETA

Sample records for levelized cost shown

  1. levelized costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levelized costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  3. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  4. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  5. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  6. Levelized Cost of Energy in US | OpenEI Community

    Open Energy Info (EERE)

    Levelized Cost of Energy in US Home I'd like to pull a cost comparison for the levelized cost of energy in the US. How do I do this on this site? Does the LCOE interactive table...

  7. levelized cost of energy | OpenEI Community

    Open Energy Info (EERE)

    levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of...

  8. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Report," collects the cost and quality of fossil fuel purchases made by electric ... a reduction of approximately 9 percent of natural gas purchases, cost, and quality data. ...

  9. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Notes: The approximate break between historical and forecast values is shown with ... EIA does not estimate or project end-use consumption of non-marketed renewable energy. (d) ...

  10. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in 2016. On January 16, economic sanctions on Iran related to its nuclear program were lifted, officially allowing Iran to increase its crude oil production and export levels. ...

  11. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even if all other variables are held constant, the annual energy yield (kWhkW p ) will vary among module technologies because of differences in response to low-light levels and ...

  12. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Prices and Uncertainty Report Crude Oil Prices: After reaching a four-month low in the beginning of August, crude oil prices rebounded close to the highest levels of the year. The front-month Brent crude oil price increased $3.31 per barrel (b) since August 1, settling at $45.45/b on September 1 (Figure 1). The West Texas Intermediate (WTI) front-month crude oil price settled at $43.16/b, an increase of $3.10/b over the same period. Price volatility in global equity markets declined in

  13. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: After an upward move in mid-June, crude oil prices retreated close to previous levels. The North Sea Brent front month futures price settled at $111/barrel on July 3, an increase of $2.17/barrel from June 2 (Figure 1). The front month West Texas Intermediate (WTI) contract also rose, settling at $104.06/barrel on July 3, $1.59/barrel higher than on June 2. Tensions in Iraq were the primary driver of the crude oil price increase in mid-June.

  14. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil futures prices rebounded in April and approached the top of their recent trading range. The North Sea Brent front month futures price settled at $107.76 per barrel (bbl) on May 1, an increase of $2.14/bbl from April 1 (Figure 1). West Texas Intermediate (WTI) prices at the start of May were near the same levels as the beginning of April. The front month WTI contract settled at $99.42/bbl on May 1, a slight decrease

  15. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect (OSTI)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  16. Levelized Cost of Coating (LCOC) for selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annualmore » thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.« less

  17. Levelized Cost of Coating (LCOC) for selective absorber materials

    SciTech Connect (OSTI)

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

  18. Overview of Levelized Cost of Energy in the AEO

    U.S. Energy Information Administration (EIA) Indexed Site

    Presented to the EIA Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when

  19. Lighting system replacement brings energy costs down, light levels up

    SciTech Connect (OSTI)

    Radmer, D.J.

    1984-11-08

    The R.J. Frisby Mfg. Co. operates on three shifts and produces precision screw machine products for a variety of industries, including automotive, marine, machine tool, hydraulics and pneumatics, business machines, electrical and electronics, photography, and precision instruments. The required degree of manufacturing precision demands high light levels in manufacturing areas. When the 100,000 sq ft plant was built in 1973, mercury vapor lighting was installed consistent with the current state of the art for lighting such facilities. In the ensuing years, it became apparent that the soaring electric bills that came in the wake of the Arab oil embargo of 1973-74 would have to be controlled. Estimates by the U.S. Department of Energy indicated that electric energy costs were likely to rise by 160 percent over the next 10 yr. Based on this estimate, and the fact that lighting accounted for $70,000, or half of the annual electric bill, it was estimated that $900,000 to $1,000,000 would be spent for lighting energy over the next decade. The concern over the probability of rapidly escalating electrical costs was soon justified when, in three steps over one 12 mo period, the electric energy rate increased from $0.0305/kwh to $0.0416/kwh -more than a 36 percent increase. During that same period, the demand charge was raised in two steps from $3.75/kw to $4.85/kw --more than a 29 percent increase.

  20. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  1. Transparent Cost Database for Generation at Regional Level? ...

    Open Energy Info (EERE)

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  2. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  3. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    SciTech Connect (OSTI)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the cost of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.

  4. Interim report: Waste management facilities cost information for mixed low-level waste

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.

    1994-03-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

  5. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  6. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore » of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less

  7. A Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report surveys and summarizes existing state-level RPS cost and benefit estimates and examines the various methods used to calculate such estimates. The report relies largely upon data or results reported directly by electric utilities and state regulators. As such, the estimated costs and benefits itemized in this document do not result from the application of a standardized approach or the use of a consistent set of underlying assumptions. Because the reported values may differ from those derived through a more consistent analytical treatment, we do not provide an aggregate national estimate of RPS costs and benefits, nor do we attempt to quantify net RPS benefits at national or state levels.

  8. Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.

    2014-05-01

    Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.

  9. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  10. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less

  11. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect (OSTI)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOEup to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  12. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect (OSTI)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  13. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect (OSTI)

    Chen, Le [Ames Laboratory; MacDonald, Erin [Ames Laboratory

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  14. Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2009-04-01

    This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity

  15. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect (OSTI)

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  16. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect (OSTI)

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  17. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    SciTech Connect (OSTI)

    Ramsden, T.; Steward, D.; Zuboy, J.

    2009-09-01

    Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

  18. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect (OSTI)

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  19. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Russell, E.W.; Clarke, W.; Domian, H.A.; Madson, A.A.

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  20. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  1. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  2. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models Preprint D. S. Jenne and Y.-H. Yu National Renewable Energy Laboratory V. Neary Sandia National Laboratories To be presented at the 3 rd Marine Energy Technology Symposium (METS 2015) Washington, D.C. April 27-29, 2015 Conference Paper NREL/CP-5000-64013 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  3. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    SciTech Connect (OSTI)

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  4. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    SciTech Connect (OSTI)

    McDonell, W R

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms.

  5. A Survey of State-Level Cost and Benefit Estimates of Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... have used different methods to estimate RPS ... to the cost of a new coal-fired facility, determined by ... potential future federal regulation of coal plants. ...

  6. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

  7. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    267 September 2009 Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 T. Ramsden and D. Steward National Renewable Energy Laboratory J. Zuboy Independent Contractor National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for

  8. Weighing the Costs and Benefits of Renewables Portfolio Standards:A Comparative Analysis of State-Level Policy Impact Projections

    SciTech Connect (OSTI)

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-16

    State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. Collectively, these policies now apply to roughly 40% of U.S. electricity load, and may have substantial impacts on electricity markets, ratepayers, and local economies. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on projecting cost impacts, but sometimes also estimating macroeconomic and environmental effects. This report synthesizes and analyzes the results and methodologies of 28 distinct state or utility-level RPS cost impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 18 different states. We highlight the key findings of these studies on the costs and benefits of RPS policies, examine the sensitivity of projected costs to model assumptions, assess the attributes of different modeling approaches, and suggest possible areas of improvement for future RPS analysis.

  9. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  10. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  11. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  12. PHENIX WBS notes. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  13. PHENIX Work Breakdown Structure. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  14. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  15. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  16. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  17. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    SciTech Connect (OSTI)

    Chen, Cliff; Wiser, Ryan; Mills, Andrew; Bolinger, Mark

    2008-01-07

    State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on cost impacts, but sometimes also estimating macroeconomic, risk reduction, and environmental effects. This article synthesizes and analyzes the results and methodologies of 31 distinct state or utility-level RPS cost-impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 20 different states. We highlight the key findings of these studies on the projected costs of state RPS policies, examine the sensitivity of projected costs to model assumptions, evaluate the reasonableness of key input assumptions, and suggest possible areas of improvement for future RPS analyses. We conclude that while there is considerable uncertainty in the study results, the majority of the studies project modest cost impacts. Seventy percent of the state RPS cost studies project retail electricity rate increases of no greater than one percent. Nonetheless, there is considerable room for improving the analytic methods, and therefore accuracy, of these estimates.

  18. Final Rulemaking, 10 CFR Part 1021, with Amendments Shown In Tracked Changes

    Broader source: Energy.gov [DOE]

    This document presents the final rule as issued September 27, 2011, amendments shown with changes tracked (additions in blue, deletions in red). Categorical exclusions are listed in Appendices A...

  19. Residential Energy-Efficiency Equipment Shown to be a Good Investment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Residential Energy-Efficiency Equipment Shown to be a Good ...

  20. DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring

  1. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  2. Levelized cost and levelized avoiced cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies Wind 34 56.6 13.3 0.0 3.2 73.1 Wind - Offshore 37 141.7 22.8 0.0 5.7 170.3 Solar PV 2 25 95.3 11.4 0.0 4.0 110.8 -9.5 101.3 Solar Thermal 20 156.2 42.1 0.0 5.9 204.3...

  3. Levelized Cost of Electricity and Levelized Avoided Cost of Electricit...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... are the number of hours in a year that the plant is assumed to operate. For dispatchable generation such as coal, nuclear, or gas-fired plants, EIA calculates this based on an ...

  4. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  5. Technical and economic assessments of electrochemical energy storage systems: Topical report on the potential for savings in load-leveling battery and balance of plant costs

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.; Consiglio, J.A.

    1985-08-31

    The battery technologies considered in this study are zinc-bromide, lead-acid, zinc-chloride and sodium sulfur. Results of the study are presented in self contained sections in the following order: Balance of Plant, Zinc-Bromide, Lead-Acid, Zinc-chloride, and Sodium-Sulfur. The balance of plant cost estimates are examined first since the results of this section are utilized in the following battery sections to generate cost reductions in the battery plant costs for each of the battery technologies.

  6. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  7. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  8. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  9. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  10. 499px-Aquatint_of_a_Doctor_in_divinity_at_the_University_of_Oxford,_shown_wearing_convocation_dress.jpg

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information 499px-Aquatint_of_a_Doctor_in_divinity_at_the_University_of_Oxford,_shown_wearing_convocation_dress

  11. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  12. Residential Energy-Efficiency Equipment Shown to be a Good Investment for U.S. Navy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    A two-year project between the National Renewable Energy Laboratory (NREL) and the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) to demonstrate energy efficiency technologies at bases in Hawaii and Guam resulted in the identification of several promising options for reducing energy use and costs, including whole-house energy efficiency retrofits.

  13. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  14. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  15. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  16. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Energy Consumption Survey (RECS) End-Use Models FAQs 1 February 2013 Residential Energy Consumption Survey (RECS) End-Use Models FAQs What is an end-use model? An end-use model is a set of equations designed to disaggregate a RECS sample household's total annual fuel consumption into end uses such as space heating, air conditioning, water heating, refrigeration, and so on. These disaggregated values are then weighted up to produce population estimates of total and average energy end

  17. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Table 7d), electricity generation fuel consumption (Table 7e), and renewable energy (Table 8). ... industrial sectors into a single "end use" sector. 1 Table 7a will now ...

  18. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The number of operational oil rigs in the United States dropped each week in September and the latest Petroleum ... Fall seasonal maintenance at U.S. refineries typically does not ...

  19. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    when global demand for petroleum products is weakening, ... into the United States were relatively constant from September to October, and with U.S. refineries currently ...

  20. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Key members of The Organization of Petroleum Exporting ... straight weeks in the United States through November 27 and ... 3), gross inputs to refineries rose 0.21 million ...

  1. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    At a time of seasonally increasing demand and higher petroleum product consumption in the United States and ... Over time, refineries can adjust petroleum product yields in order ...

  2. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    supply reductions and better economic data in the United States. ... leading Organization of Petroleum Exporting Countries ... Gross inputs to refineries in PADD 3 rose 0.1 million bd ...

  3. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent manufacturing data for the United States and China were above expectations, supporting demand for petroleum ... by the ability of refineries in the U.S. to absorb ...

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Those schedules include; * Schedule 2, General Information and Energy Sources and ... EIA-861. These schedules include Schedule 2C Green Pricing and Schedule 2D Net Metering. ...

  5. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recent actions by the People's Bank of China (PBoC) and worse-than-expected economic data from China and Japan have increased uncertainty about global economic growth, particularly ...

  6. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing activity in China continued to contract and volatility in Chinese financial ... purchasing managers' index: The Caixin China General Manufacturing Purchasing Managers' ...

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Outlook September 2014 3 Brent and the U.S. dollar: The divergence of growth expectations between the United States and the rest of the world is also reflected in currency markets. ...

  8. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... curves further suggests that the recent tightness in the crude oil markets reflects high refinery runs in the United States and the rest of the world as well as supply issues. ...

  9. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Although the U.S. economic data was strong, economic data in the rest of the world was generally below expectations and was met with declining equity prices and higher bond yields ...

  10. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    On the consumption side, the demand response to lower oil prices may be higher than anticipated, particularly in the United States and Europe, and could tighten markets during peak ...

  11. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Reliability and Performance Model Jennifer E. Granata, Steven Miller, and Joshua S. Stein PO Box 5800, Sandia National Laboratories, Albuquerque, NM 87185-1033 Contact info: 505 844 8813, jegrana@sandia.gov INTRODUCTION Accurately predicting the performance of photovoltaic systems can be a challenging undertaking, but a necessary one to assess the financial viability of a PV system and to accelerate the wide scale deployment of PV. PV system energy production can be affected by

  12. Microsoft Word - Levelized Cost of Energy Analysis

    Broader source: Energy.gov (indexed) [DOE]

    ... between OK and TN) Assumptions on alternatives Plains & Eastern line o Electric losses - 5% o Transmission charge - 8.00 kW-mo Oklahoma wind o Utilization rate - see OK ...

  13. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    liquid fuels Fuels (other than alcohol) derived from biological materials (biofuels such as soy diesel fuel) Electricity (including electricity from solar energy) ...

  14. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2014 Alabama 80,590 5,139 7,044 Alabama Onshore Alabama 31,116 2,620 3,323 Alabama Offshore Alabama 49,474 2,519 3,721 Alaska 2,735,783 15,724 18,434 Alaska Onshore 2,735,783 15,724 18,434 Alaska Offshore 0 0 0 Arkansas 8,058 457 582 Arkansas 8,058 457 582 California 162,794 9,605 13,201 California Onshore California 162,413 9,597 13,192 California Offshore California 381 8 9 Federal Offshore

  15. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    5 1 April 2015 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: After increasing in February, global crude oil prices declined in March. The North Sea Brent front month futures price settled at $54.95/bbl on April 2, a decline of $4.59/bbl since the close on March 2 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined by $0.45/bbl over the same period to settle at $49.14/bbl on April 2. The average Brent price for March was 3.2% lower

  16. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Outlook Market Prices and Uncertainty Report Crude Oil Prices: After increasing at the start of March, crude oil prices stabilized and traded within a relatively narrow range through the first week of April. The North Sea Brent front month futures price rose $2.62 per barrel (b) from March 1 to settle at $39.43/b on April 7 (Figure 1). The West Texas Intermediate (WTI) front month futures price rose $2.86/b and settled at $37.26 over the same period. The increase in crude oil prices alongside

  17. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices moved lower through much of July and early August. The North Sea Brent front month futures price declined $12.49 per barrel (b) since July 1 to settle at $49.52/b on August 6 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined $12.30/b over the same time, settling at $44.66/b on August 6. Both benchmarks recorded their largest month-over-month decline since January 2015. One of the factors that

  18. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    1 December 2014 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices continued to move lower in November and recorded their fifth consecutive month of declines. The North Sea Brent front month futures price settled at $69.64/bbl on December 4, a decline of $15.14/bbl from November 3 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $66.81/bbl on December 4, decreasing by $11.97/bbl since the start of November. The

  19. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices moved higher toward the end of January and into the first week of February. The North Sea Brent front month futures price settled at $56.57/bbl on February 5, an increase of $0.15/bbl from January 2 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $50.48/bbl on February 5, $2.21/bbl lower than at the start of January. These changes were relatively small compared to an average

  20. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Global and domestic crude oil prices traded in a narrow range in June. The North Sea Brent front month futures price declined $2.87 per barrel (b) since June 1 to settle at $62.01/b on July 1 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined $3.24/b over the month, settling at $56.96/b on July 1. As global crude oil supply remains robust, demand-side factors are likely contributing to renewed price stability

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil prices declined in May and in the first week of June while domestic crude oil prices stayed relatively stable. The North Sea Brent front month futures declined $4.43 per barrel (b) since May 1 to settle at $62.03/b on June 4 (Figure 1). The West Texas Intermediate (WTI) front month futures price decreased $1.15/b over the same period to settle at $58/b on June 4. Elevated crude oil production from members of The

  2. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil futures prices rose over the previous month but remained within the recent, and relatively narrow, trading range. The North Sea Brent front month futures price settled at $108.10 per barrel (bbl) on March 6, an increase of $2.06/bbl from February 3 (Figure 1). Over the same period, the West Texas Intermediate (WTI) front month futures contract rose $5.13/bbl, settling at $101.56/bbl on March 6. The brief uptick in

  3. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: North Sea Brent and West Texas Intermediate (WTI) front month futures contracts continued their recent decline in October and the first week of November as a larger-than-normal seasonal decrease in global refinery runs from August through October lessened demand for crude oil. The Brent contract settled at $103.46 per barrel on November 7, a decline of $4.48 per barrel compared to October 1 (Figure 1). The decreases in WTI futures prices

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    4 1 November 2014 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Both international and domestic crude oil prices moved sharply lower over the previous five weeks. The North Sea Brent front month futures price settled at $82.86/bbl on November 6, a decline of $11.30/bbl from October 1 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $77.91/bbl on November 6, decreasing by $12.82/bbl since the start of October. November marked

  5. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Front month futures prices for the Brent and West Texas Intermediate (WTI) crude oil benchmarks fell in September. The Brent contract settled at $109.00 per barrel on October 3, a decline of $6.68 per barrel since September 3, and WTI settled at $103.31 per barrel on October 3, falling by $5.23 per barrel over the same period (Figure 1). These changes marked the first month-over-month declines in

  6. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The decline was largely due to U.S. Gulf Coast (PADD 3) crude oil prices strengthening against international benchmarks. The Brent-Light Louisiana Sweet (LLS) price spread settled ...

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The Brent-Louisiana Light Sweet (LLS) spread settled at -0.34bbl on October 2, a decline of 4.30bbl since September 2 (Figure 3). A small differential between Brent and LLS, ...

  8. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | Short-Term Energy Outlook May 2016 2 Louisiana Light Sweet (LLS) crude oil prices rose more than other crude oils and is trading at a premium to Brent. ...

  9. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The differential is composed of a relatively stable Louisiana Light Sweet (LLS)-WTI ... on the discount needed to incentivize PADD 3 refineries to run light sweet crude oil. ...

  10. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    International crude oil prices increased compared with domestic ones in June. The Brent-Light Louisiana Sweet (LLS) differential increased 50 centsb since June 1, settling at -54 ...

  11. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Decreased demand for crude oil from refineries on the U.S. Gulf Coast closed the import window for light sweet crude oil into the U.S. Gulf Coast, as can been by the LLS-Brent ...

  12. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Increases in both the Brent-Louisiana Light Sweet (LLS) and LLS-WTI contributed to the wider Brent-WTI differential. These spread movements should encourage incremental movements ...

  13. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... The buyer must return the propane portion to the seller either through physical delivery or a separate payment at the propane market price. Propane prices were high enough that ...

  14. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Confidentiality of information The information contained on Form EIA-877 will be kept confidential and not disclosed to the public to the extent that it satisfies the criteria for ...

  15. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    From a market perspective, commodity buyers do not typically care about the source of a product as long as its chemical composition meets specifications. We are proposing to rework ...

  16. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    202-586-6419 Vishakh Mantri, Ph.D, P.E. Chemical Engineer, Energy Information ... tcapehart@ers.usda.gov 202-694-5313 Chemical Production in the AEO Peter Gross Energy ...

  17. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... as well as a general loosening of international balances, impacted the Brent curve. ... Oil company integration: Most energy companies recently released full-year financial ...

  18. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oklahoma, inventories for the week ending August 1. Crude production in the Permian Basin, the largest crude oil producing region in the United States, increased 0.23 million ...

  19. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... prices and future policies may cause plant owners or investors who finance plants to ... when evaluating investments in new coal-fired power plants, new coal-to-liquids (CTL) ...

  20. Attack optimization at moderate force levels

    SciTech Connect (OSTI)

    Canavan, G.H.

    1997-04-01

    Optimal offensive missile allocations for moderate offensive and defensive forces are derived and used to study their sensitivity to force structure parameters levels. It is shown that the first strike cost is a product of the number of missiles and a function of the optimum allocation. Thus, the conditions under which the number of missiles should increase or decrease in time is also determined by this allocation.

  1. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  2. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  3. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  4. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  5. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  6. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  7. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the

  8. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  9. Factory Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-12-17

    The Factory Cost Model (FCM) is an economic analysis tool intended to provide flat panel display (FPD) and other similar discrete component manufacturers with the ability to make first-order estimates of the cost of unit production. This software has several intended uses. Primary among these is the ability to provide first-order economic analysis for future factories. Consequently, the model requires a minimal level of input detail, and accomodates situations where actual production data are notmore » available. This software is designed to be activity based such that most of the calculated direct costs are associated with the steps of a manufacturibg process. The FCM architecture has the ability to accomodate the analysis of existing manufacturing facilities. The FCM can provide assistance with strategic economic decisions surrounding production related matters. For instance, the program can project the effect on costs and resources of a new product''s introduction, or it can assess the potential cost reduction produced by step yield improvements in the manufacturing process.« less

  10. Cost Study Manual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a

  11. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  12. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  13. SunShot Summit: Soft Costs

    Broader source: Energy.gov [DOE]

    This video on the soft costs of installing solar technologies was shown during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012.

  14. Energy Cost Calculator for Electric and Gas Water Heaters | Department...

    Office of Environmental Management (EM)

    Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT ...

  15. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 16, 2014, Research Highlights Pathways to Low-Cost Electrochemical Energy Storage: A ... First comprehensive determination of materials to system level performance and cost ...

  16. 2013 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, C.; Smith, A.; Maples, B.; Hand, M.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  17. PAFC Cost Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell® 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ® FUEL CELL SYSTEM First cost 2010 cost reduction is being accomplished by incremental changes in technology & low cost sourcing Technology advances are required to reduce further cost and attain UTC Power's commercialization targets 2010 First unit 2010 Last unit Commercialization target Powerplant cost 4

  18. SF6432-CR (02-01-12) Cost Reimbursement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... prior to any attempts to enter a government site as shown ... premises are subject to search. (e) Contractor will ... SF 6432-CR Title: Standard Terms & Conditions for Cost ...

  19. Energy Technology Cost and Performance Data | Open Energy Information

    Open Energy Info (EERE)

    Performance Data This data indicates the range of recent cost estimates for renewable energy and other technologies. The estimates are shown in dollars per installed kilowatts of...

  20. Renewable Portfolio Standards: Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Heeter, J.; Barbose, G.; Weaver, S.; Flores, F.; Kuskova-Burns, K.; Wiser, R.

    2014-10-01

    This report summarizes state-level RPS costs to date, and considers how those costs may evolve going forward given scheduled increases in RPS targets and cost containment mechanisms. The report also summarizes RPS benefits estimates, based on published studies for individual states and discusses key methodological considerations.

  1. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    system leads to higher thermal-to-electric conversion efficiency. However, in a CSP system, higher operating temperature also leads to greater thermal losses. These two effects combine to give an optimal system-level operating temperature that may be less than the upper operating temperature limit of system components. The overall efficiency may be improved by developing materials, power cycles, and system-integration strategies that enable operation at elevated temperature while limiting thermal losses. This is particularly true for the TES system and its components. Meeting the SunShot cost target will require cost and performance improvements in all systems and components within a CSP plant. Solar collector field hardware will need to decrease significantly in cost with no loss in performance and possibly with performance improvements. As higher temperatures are considered for the power block, new working fluids, heat-transfer fluids (HTFs), and storage fluids will all need to be identified to meet these new operating conditions. Figure 1 shows thermodynamic conversion efficiency as a function of temperature for the ideal Carnot cycle and 75% Carnot, which is considered to be the practical efficiency attainable by current power cycles. Current conversion efficiencies for the parabolic trough steam cycle, power tower steam cycle, parabolic dish/Stirling, Ericsson, and air-Brayton/steam Rankine combined cycles are shown at their corresponding operating temperatures. Efficiencies for supercritical steam and carbon dioxide (CO{sub 2}) are also shown for their operating temperature ranges.

  2. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  3. Electric power substation capital costs

    SciTech Connect (OSTI)

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  4. Cost Analysis: Technology, Competitiveness, Market Uncertainty | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology to Market » Cost Analysis: Technology, Competitiveness, Market Uncertainty Cost Analysis: Technology, Competitiveness, Market Uncertainty As a basis for strategic planning, competitiveness analysis, funding metrics and targets, SunShot supports analysis teams at national laboratories to assess technology costs, location-specific competitive advantages, policy impacts on system financing, and to perform detailed levelized cost of energy (LCOE) analyses. This shows the

  5. Workplace Charging Equipment and Installation Costs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  6. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  7. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  8. Concentrating Solar Power: Concentrating Optics for Lower Levelized...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs ...

  9. Development of surface mine cost estimating equations

    SciTech Connect (OSTI)

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  10. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  11. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  12. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  13. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  14. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  15. 2014 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, Christopher; Stehly, Tyler; Maples, Ben; Settle, Edward

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  16. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  17. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  18. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  19. ASPEN costing manual

    SciTech Connect (OSTI)

    Schwint, K.J.

    1986-07-25

    The ASPEN program contains within it a Cost Estimation System (CES) which estimates the purchase cost and utility consumption rates for major pieces of equipment in a process flowsheet as well as installed equipment costs. These estimates are ''preliminary-study grade'' with an accuracy of plus or minus 30%. The ASPEN program also contains within it an Economic Evaluation System (EES) which estimates overall capital investment costs, annual operating expenses and profitability indices for a chemical plant. This ASPEN costing manual has been written as a guide for those inexperienced in the use of ASPEN and unfamiliar with standard cost estimating techniques who want to use the ASPEN CES and EES. The ASPEN Costing Manual is comprised of the following sections: (1) Introduction, (2) ASPEN Input Language, (3) ASPEN Cost Estimation System (CES), (4) ASPEN Cost Blocks; and (5) ASPEN Economic Evaluation System (EES).

  20. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  1. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  2. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  3. Process Equipment Cost Estimation, Final Report

    SciTech Connect (OSTI)

    H.P. Loh; Jennifer Lyons; Charles W. White, III

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  4. MHK Cost Breakdown Structure Draft | OpenEI Community

    Open Energy Info (EERE)

    MHK Cost Breakdown Structure Draft Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 CBS current energy GMREC LCOE levelized cost of...

  5. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

  6. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of

  7. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  8. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  9. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  10. Low Cost, Durable Seal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * ...

  11. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  12. Energy Department Awards $3.5 Million to Develop Cost-Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    project aimed at accelerating the development of sustainable, affordable algal biofuels. ... toward reducing the cost of algal biofuels to cost-competitive levels of 5,000 ...

  13. Computerized operating cost model for industrial steam generation

    SciTech Connect (OSTI)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  14. Simple Modular LED Cost Model

    Broader source: Energy.gov [DOE]

    The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost...

  15. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  16. Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs (CSP: COLLECTS) | Department of Energy Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) The Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) funding program aims to further accelerate progress toward

  17. Soft Costs Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    Energy SunShot Initiative is a collaborative national effort to make solar energy technologies cost-competitive with conventional forms of energy by the end of the decade. ...

  18. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  19. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel ...

  20. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  1. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The objective of this Guide is to improve the quality of cost estimates and further strengthen the DOE program/project management system. The original 25 separate chapters and three appendices have been combined to create a single document.

  2. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  3. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  4. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  5. Power Plant Cycling Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Intertek APTECH has organized the cycling cost data in consultation with NREL and WECC by the following eight generator plant types: 1. Small coal-fired sub-critical steam (35-299 ...

  6. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  7. Independent Cost Estimate (ICE)

    Broader source: Energy.gov [DOE]

    Independent Cost Estimate (ICE). On August 8-12, the Office of Project Management Oversight and Assessments (PM) will conduct an ICE on the NNSA Albuquerque Complex Project (NACP) at Albuquerque, NM. This estimate will support the Critical Decision (CD) for establishing the performance baseline and approval to start construction (CD-2/3). This project is at CD-1, with a total project cost range of $183M to $251M.

  8. Cost Competitive Electricity from Photovoltaic Concentrators Called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Imminent' - News Releases | NREL Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National

  9. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs » Soft Costs Soft Costs The U.S. Department of Energy (DOE) SunShot Initiative's soft costs program works to lower the non-hardware costs of solar and accelerate the adoption of solar energy technologies throughout the United States. In support of the SunShot Initiative goals, the soft costs program works in the following strategic areas: networking and technical assistance, data analysis, business innovation, and training. Soft Costs Activity Areas, Business Innovation, Networking

  10. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  11. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect (OSTI)

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  12. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  13. Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    costs program works to lower the non-hardware costs of ... data analysis, business innovation, and training. ... for as much as 64% of the total cost of a new solar system. ...

  14. QGESS: Capital Cost Scaling Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the tonnes of CO2 utilized. The costs of the process are to include infrastructure, raw materials, processing, byproduct disposal, and utilities costs, as well as any other costs....

  15. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  16. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  17. NREL-Levelized Cost of Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Focus Area: Non-renewable Energy, Biomass, Geothermal, Hydrogen, Solar, Water Power, Wind Phase: Determine Baseline, Evaluate Options, Develop...

  18. Turbine Cost Systems Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2012-09-30

    turb_costSE is a set of models that link wind turbine component masses (and a few other key variables) to component costs.

  19. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David; Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  20. New developments in capital cost estimating

    SciTech Connect (OSTI)

    Stutz, R.A.; Zocher, M.A.

    1988-01-01

    The new developments in cost engineering revolve around the ability to capture information that in the past could not be automated. The purpose of automation is not to eliminate the expert cost engineer. The goal is to use available technology to have more information available to the professionals in the cost engineering field. In that sense, the demand for expertise increases in order to produce the highest quality estimate and project possible from all levels of cost engineers. We cannot overemphasize the importance of using a good source of expert information in building these types of programs. ''Garbage in, garbage out'' still applies in this form of programming. Expert systems technology will become commonplace in many vertical markets; it is important to undersand what can and cannot be accomplished in our field, and where this technology will lead us in the future.

  1. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  2. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  3. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  4. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  5. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, Claire; Couture, Toby D.; Cory, Karlynn S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent policy used globally to reduce development risks, cut financing costs, and grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control. Using case studies and market-focused analysis, this report from the National Renewable Energy Laboratory (NREL) examines strengths and weaknesses of three cost-containment tools: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report provides useful insights on containing costs for policymakers and regulators in the United States and other areas where FIT policies are in development.

  6. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  7. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  8. Service Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Levels Service Levels NERSC Supported Services Model NERSC supports various services at various levels of support. This document outlines the different levels of support that can be expected for a given service. Production Services All production services at NERSC have the following characteristics: Monitored by NERSC Operations with automated tools (Nagios). Outages are announced on the MOTD and must follow the rules defined in System Outages document. User facing documentation

  9. FY 1995 cost savings report

    SciTech Connect (OSTI)

    Andrews-Smith, K.L., Westinghouse Hanford

    1996-06-21

    Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue

  10. Cost Study Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Study Manual Cost Study Manual Update 62912. PDF icon Memo regarding Cost Study Manual PDF icon Cost Study Manual More Documents & Publications Contractor Human Resources ...

  11. 2011 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  12. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect (OSTI)

    Horowitz, Kelsey A.; Woodhouse, Michael

    2015-06-14

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  13. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  14. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect (OSTI)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  15. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  16. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Applications Only | Department of Energy Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable

  17. Cost | OpenEI Community

    Open Energy Info (EERE)

    Cost Home Ocop's picture Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To...

  18. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  19. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  20. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  1. PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of...

    Broader source: Energy.gov (indexed) [DOE]

    SunShot Award Amount: 125,000 Low-cost III-V cells will result in a breakthrough in photovoltaic (PV) market by enabling a lower levelized cost of energy. The project will develop ...

  2. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  3. On the Path to SunShot - Deployment and Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment and Costs On the Path to SunShot - Deployment and Costs On the Path to SunShot - Deployment and Costs In the On the Path to SunShot report series, the Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs report highlights how the cost of solar panels has decreased with technological improvements, which has resulted in higher levels of solar deployment

  4. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect (OSTI)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  5. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  6. Prospects for reducing the processing cost of lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  7. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  8. Forage Harvest and Transport Costs

    SciTech Connect (OSTI)

    Butler, J.; Downing, M.; Turhollow, A.

    1998-12-01

    An engineering-economic approach is used to calculate harvest, in-field transport, and over-the-road transport costs for hay as bales and modules, silage, and crop residues as bales and modules. Costs included are equipment depreciation interest; fuel, lube, and oil; repairs; insurance, housing, and taxes; and labor. Field preparation, pest control, fertilizer, land, and overhead are excluded from the costs calculated Equipment is constrained by power available, throughput or carrying capacity, and field speed.

  9. PHEV Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    es_02_barnett.pdf (615.99 KB) More Documents & Publications PHEV Battery Cost Assessment PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment

  10. Project Cost Profile Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet File Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template ...

  11. Hydrogen Pathway Cost Distributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Hydrogen Pathway Cost Distributions Presentation on hydrogen pathway cost distributions presented January 25, 2006. PDF icon wkshpstorageuihlein.pdf...

  12. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  13. Factors Affecting PMU Installation Costs

    Broader source: Energy.gov (indexed) [DOE]

    ... information to improve the modeling, forecasting and controls of the grid Standards ... Department of Energy |September 2014 Factors Affecting PMU Installation Costs | Page 3 ...

  14. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  15. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect (OSTI)

    Badger, P.C.

    2002-11-20

    years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

  16. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  17. Renewable Energy Cost Optimization Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  18. The cost of wetland creation and restoration. Final report

    SciTech Connect (OSTI)

    King, D.; Bohlen, C.

    1995-08-01

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  19. Wind energy`s declining costs

    SciTech Connect (OSTI)

    Gipe, P.

    1995-11-01

    Wind energy is competitive with traditional energy sources for the first time since European windmills graced the landscapes of the Old World. This article explores the current economics of wind power. Topics discussed include the following: standardizing cost of energy reporting and the cost of wind energy; wind power plant price; maintenance costs; effect of installed cost on the cost of energy; future costs; decommissioning; modularity; social or environmental costs; cost of capital; bidding and price.

  20. Unreasonable Cost Waivers | Department of Energy

    Office of Environmental Management (EM)

    Unreasonable Cost Waivers Unreasonable Cost Waivers unreasonablecost10-03-2012.pdf cnmidecision.pdf eaglepassdecision.pdf...

  1. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  2. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  3. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  4. Geothermal Exploration Cost and Time

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  5. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  6. Low Cost Heliostat Development Phase II Final Report

    SciTech Connect (OSTI)

    Kusek, Stephen M.

    2014-04-21

    The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

  7. Resources at the State and Regional Level for Manufacturers ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources at the State and Regional Level for Manufacturers Manufacturers can use resources delivered by industrial energy efficiency programs in their area. AMO's cost-shared ...

  8. Trends in U.S. Oil and Natural Gas Upstream Costs

    Reports and Publications (EIA)

    2016-01-01

    Average 2015 well drilling and completion costs in five onshore areas decline 25% and 30% below their level in 2012 The U.S. Energy Information Administration (EIA) commissioned IHS Global Inc. (IHS) to perform a study of upstream drilling and production costs. The IHS report assesses capital and operating costs associated with drilling, completing, and operating wells and facilities.

  9. Cost Effective Water Heating Solutions

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question"Are high-efficiency hot water heating systems worth the cost?"

  10. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  11. Sustainable Alternative Fuels Cost Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Tuesday, November 27, 2012 9:00 a.m. - 4:00 p.m. National Renewable Energy Lab Offices - Suite 930 901 D Street, SW, Washington, DC 20585 AGENDA ...

  12. Cost and Impacts of Policies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Impacts of Policies David L. Greene Paul N. Leiby ORNL David C. Bowman Econotech 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure January 31, 2007 Washington, D.C. Plan of presentation: Brief review of HyTrans Calibration of FCV learning, scale, technological change Scenarios and Policies RESULTS 2010-2025 and long-run impacts 2010-2025 Government/Industry Costs Hydrogen production, infrastructure & cost HyTrans merges the early transition scenarios with

  13. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis: Hydrogen Cost Optimization Genevieve Saur and Todd Ramsden Technical Report NREL/TP-5600-50408 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd

  14. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared: 10/28/09 Low Cost Non-Reactive Coating for Refractory Metals A non-reactive coating for refractory metals has been developed at The Ames Laboratory. Contamination of rare earth and reactive metals and their alloys has been a chronic problem that results from their interaction with the crucibles or other vessels used in high temperature processing or during other applications. As a consequence, processing and other costs are high due to the need to replace equipment or containers, or

  15. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  16. Costs of Building Waste Facilities; Price Per Shipment to Recoup Costs

    Energy Science and Technology Software Center (OSTI)

    1993-05-14

    The Automated Pricing Schedule is a computer model for evaluating the economics of developing, operating, and closing a low-level radioactive waste disposal site. It provides pricing for individual shipments based on the characteristics of the shipment, and calculates a disposal fee to be charged for each shipment to recover the costs of the facility. It includes a sensitivity analysis module to evaluate the effect of varying the parameters of the model.

  17. Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium

    SciTech Connect (OSTI)

    M Weimar

    1998-12-10

    This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

  18. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect (OSTI)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  19. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, C.; Couture, T. D.; Cory, K. S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent renewable energy policy used globally to date, and there are many benefits to the certainty offered in the marketplace to reduce development risks and associated financing costs and to grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control in renewable energy policy design. In recent years, policy mechanisms for containing FIT costs have become more refined, allowing policymakers to exert greater control on policy outcomes and on the resulting costs to ratepayers. As policymakers and regulators in the United States begin to explore the use of FITs, careful consideration must be given to the ways in which policy design can be used to balance the policies' advantages while bounding its costs. This report explores mechanisms that policymakers have implemented to limit FIT policy costs. If designed clearly and transparently, such mechanisms can align policymaker and market expectations for project deployment. Three different policy tools are evaluated: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report employs case studies to explore the strengths and weaknesses of these three cost containment tools. These tools are then evaluated with a set of criteria including predictability for policymakers and the marketplace and the potential for unintended consequences.

  20. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund

  1. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic

  2. Modifications to Replacement Costs System

    SciTech Connect (OSTI)

    Godec, M. [ICF Resources, Inc., Fairfax, VA (United States)

    1989-05-18

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985.

  3. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  4. Hydrogen Threshold Cost Calculation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost. 11007_h2_threshold_costs.pdf (443.22 KB) More Documents & Publications DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies

  5. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect (OSTI)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  6. Electric power substation capital costs (Technical Report) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS Word Cloud More Like This ...

  7. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  8. Property:Cost | Open Energy Information

    Open Energy Info (EERE)

    Cost Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:Cost&oldid285418...

  9. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  10. Benchmark the Fuel Cost of Steam Generation

    Broader source: Energy.gov [DOE]

    This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect (OSTI)

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  12. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  13. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to 1,000, the utility must provide the comparison at no cost. If the...

  14. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  15. Regulatory cost-risk study

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study is intended to provide some quantitative perspective by selecting certain examples of criteria for which estimates of risks and costs can be obtained, and the balance of the various risks, (i.e., internal versus external risks), can be put into perspective. 35 refs., 39 tabs. (JDB)

  16. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.

    2013-09-01

    This report compares hydrogen station cost estimates conveyed by expert stakeholders through the Hydrogen Station Cost Calculation (HSCC) to a select number of other cost estimates. These other cost estimates include projections based upon cost models and costs associated with recently funded stations.

  17. A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

  18. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  19. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    SciTech Connect (OSTI)

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  20. Millimeter-Wave Measurements of High Level and Low Level Activity Glass Melts

    SciTech Connect (OSTI)

    Woskov, Paul P.; Sundaram, S.K.; Daniel, William E., Jr.

    2006-06-01

    The primary objectives of the current research is to develop on-line sensors for characterizing molten glass in high-level and low-activity waste glass melters using millimeter-wave (MMW) technology and to use this technology to do novel research of melt dynamics. Existing and planned waste glass melters lack sophisticated diagnostics due to the hot, corrosive, and radioactive melter environments. Without process control diagnostics, the Defense Waste Processing Facility (DWPF) and the Waste Treatment Plant (WTP) under construction at Hanford operate by a feed forward process control scheme that relies on predictive models with large uncertainties. This scheme severely limits production throughput and waste loading. Also operations at DWPF have shown susceptibility to anomalies such as pouring, foaming, and combustion gas build up, which can seriously disrupt operations. Future waste chemistries will be even more challenging. The scientific goals of this project are to develop new reliable on-line monitoring capability for important glass process parameters such as temperature profiles, emissivity, density, viscosity, and other characteristics using the unique advantages of millimeter wave electromagnetic radiation that can be eventually implemented in the operating melters. Once successfully developed and implemented, significant cost savings would be realized in melter operations by increasing production through put, reduced storage volumes (through higher waste loading), and reduced risks (prevention or mitigation of anomalies).

  1. Novel, Low-Cost Nanoparticle Production

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing a modular hybrid plasma reactor and process to manufacture low-cost nanoparticles

  2. Section L Attachment G - Management Team Cost Sheet.xlsx

    National Nuclear Security Administration (NNSA)

    G Management Team Cost Sheet Definitions of items to be included in the worksheet Name Title Reimbursable* Annual Base Salary Reimbursable* Incentive Pay and bonuses Reimbursable* Deferred compensation Reimbursable* Employer contributions to Employee Stock Ownership Plans (ESOPs) Reimbursable* Employer Contributions to Defined Contribution Pension Plans Total Reimbursable* Annual Compensation Current Annual Base Salary Current Total Annual Compensation Benchmark job title/level Median Annual

  3. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  4. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  5. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  6. Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Availability, Cost, and Use - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Support for Cost Analyses on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35 Hartwell Ave Lexington, MA 02421 Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles Final Report to: Department of Energy Order DE-DT0000951 Report prepared by TIAX LLC Reference D0535 February 22, 2011 Matt Kromer (Principal Investigator) Kurt Roth Rosalind Takata Paul Chin Copyright 2011, TIAX LLC Notice: This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government

  8. A Second Opinion is Worth the Cost - 12479

    SciTech Connect (OSTI)

    Madsen, Drew

    2012-07-01

    This paper, 'A Second Opinion is Worth the Cost', shows how a second opinion for a Department of Energy (DOE) Project helped prepare and pass a DOE Order 413.3A 'Program and Project Management for the acquisition of Capital Assets' Office of Engineering and Construction Management (OECM) required External Independent Review (EIR) in support of the approved baseline for Critical Decision (CD) 2. The DOE project personnel were informed that the project's Total Project Cost (TPC) was going to increase from $815 million to $1.1 billion due to unforeseen problems and unexplained reasons. The DOE Project Team determined that a second opinion was needed to review and validate the TPC. Project Time and Cost, Inc. (PT and C) was requested to evaluate the cost estimate, schedule, basis of estimate (BOE), and risk management plan of the Project and to give an independent assessment of the TPC that was presented to DOE. This paper will demonstrate how breaking down a project to the work breakdown structure (WBS) level allows a project to be analyzed for potential cost increases and/or decreases, thus providing a more accurate TPC. The review Team's cost analyses of Projects identified eight primary drivers resulting in cost increases. They included: - Overstatement of the effort required to develop drawings and specifications. - Cost allocation to 'Miscellaneous' without sufficient detail or documentation. - Cost for duplicated efforts. - Vendor estimates or quotations without sufficient detail. - The practice of using the highest price quoted then adding an additional 10% mark-up. - Application of Nuclear Quality Assurance (NQA) highest level quality requirements when not required. - Allocation of operational costs to the Project Costs instead of to the Operating Expenses (OPEX). OPEX costs come from a different funding source. - DOE had not approved the activities. By using a Team approach with professionals from cost, civil, mechanical, electrical, structural and nuclear

  9. Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Mone, C.; Maples, B.; Hand, M.

    2014-04-01

    With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non‐turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

  10. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  11. Energy Cost Calculator for Faucets and Showerheads | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use gal Annual Water Cost Lifetime Water Cost WITH ELECTRIC WATER HEATING Annual Energy Use kWh Annual Energy Cost Lifetime Energy Cost ...

  12. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  13. Cycling fossil-fired units proves costly business

    SciTech Connect (OSTI)

    Lefton, S.; Grimsrud, P.; Besuner, P.

    1997-07-01

    Competition in the electric utility business is having a far-reaching impact. Cost-cutting measures have in major downsizing efforts in virtually every utility in the country. After several cost-cutting rounds to reduce the low hanging fruit of inefficiency, utilities are still challenged to become leaner and meaner in order to compete in a deregulated environment. The problem for many power utilities, however, is they have not precisely determined their costs in every aspect of the plant`s operation. Naturally, obtaining an accurate understanding of expenditures is the starting point for utilities that wish to develop strategic plans to better manage assets, minimize costs and maximize return on investment better understand plant O&M costs and take measures to use this knowledge to their advantage. Cycling is a major reason for the increase in O&M costs of many fossil units. Cycling, in this context, refers to the operation of generating units at varying load levels in response to changes in system-load requirements.

  14. Assessing the Costs and Benefits of the Superior Energy Performance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy Technical Assistance » Superior Energy Performance » Assessing the Costs and Benefits of the Superior Energy Performance Program Presentation Assessing the Costs and Benefits of the Superior Energy Performance Program Presentation Superior Energy Performance logo Nine companies certified under the U.S. Department of Energy (DOE) Superior Energy Performance® (SEP(tm)) program have shown an average energy performance improvement of 10% in the first 18

  15. Incorporating psychological influences in probabilistic cost analysis

    SciTech Connect (OSTI)

    Kujawski, Edouard; Alvaro, Mariana; Edwards, William

    2004-01-08

    Today's typical probabilistic cost analysis assumes an ''ideal'' project that is devoid of the human and organizational considerations that heavily influence the success and cost of real-world projects. In the real world ''Money Allocated Is Money Spent'' (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties and dependencies among cost elements and risks are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three-parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as {at}Risk and Crystal Ball{reg_sign}. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the

  16. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable of producing cost competitive ethanol from biomass by the year 2012. 2 Quad Chart Overview 3 Start Date Oct 1, 2006 End Date Sept 30, 2012 % Complete 100% Timeline for Mixed Alcohols Year Total [Gasification/Pyrolysis] FY12 $860k [$700k/$160k] FY13 $1,000k [$250k/$750k] FY14 $1,050k [$350k/$700k] projected Years 10 (FY04 to

  17. Demand response compensation, net Benefits and cost allocation: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-11-15

    FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

  18. Estimated Costing of an EUV Mask Inspection Microscope

    SciTech Connect (OSTI)

    Barty, A; Taylor, J S

    2002-08-20

    This document is the fourth sub-report of the EUV AIM design study being conducted at LLNL on behalf of International SEMATECH (ISMT) and addresses the issue of preliminary system costing. The purpose of the LLNL study, as identified in section 1.2 of the statement of work, is to research the basic user requirements of an actinic defect characterization tool, potential design configurations and top-level specifications. The objectives of this design study specifically identified in section 1.3 of the statement of work were to: (1) Determine the user requirements of an actinic defect characterization tool; (2) Determine if an EUV AIM tool is an appropriate platform for actinic defect characterization; (3) Determine possible design configurations and top-level performance specifications; (4) Identify potential technical issues and risks of different technical approaches; (5) Provide estimates of cost relating to different technical approaches; and (6) Provide simulated performance for key subsystems and the entire system. The sub-sections of the study to be addressed were accordingly defined in the statement of work as being: (1) Formulation of top-level specifications; (2) Identification of system configurations suitable for meeting the top-level specifications; (3) Preliminary design of imaging systems; (4) Preliminary design of illumination systems; (5) Prediction and comparison of performance through aerial image calculation; (6) Identification of sub-system requirements; (7) Identification of potential vendors; (8) Estimation of system cost; (9) Identification of technical issues; and (10) Definition of technology transfer or development required. Points 1 to 7 and 9 to 10 are addressed in separate reports to ISMT. This report addresses item 8, system costing, and is provided as a separate report so that its content can be kept confidential at the discretion of ISMT. In this analysis we cost two systems--one based on normal-incidence multilayer-coated optics and

  19. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  20. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

  1. U.S. Balance-of-Station Cost Drivers and Sensitivities (Presentation)

    SciTech Connect (OSTI)

    Maples, B.

    2012-10-01

    With balance-of-system (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non‐turbine costs has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from U.S. offshore wind plants.

  2. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  3. The cost of silicon nitride powder: What must it be to compete?

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  4. The cost of silicon nitride powder: What must it be to compete

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  5. Cost Participation in Research and Development Contracting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 988 also provides guidance, in addition to the applicable cost principles, for determining allowable costs. 2.1.1 Authority to Exclude Research and Development of a Basic ...

  6. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  7. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  8. Low Cost Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Durable Seal Low Cost Durable Seal Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 4utc.pdf More Documents & Publications ...

  9. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  10. Biotrans: Cost Optimization Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  11. Low Cost, Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, Durable Seal Low Cost, Durable Seal This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects. new_fc_roberts_utc.pdf (823.45 KB) More Documents & Publications Improved AST's Based on Real World FCV Data Low Cost Durable Seal Breakout Group 3: Water Management

  12. Soft Costs Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Team Soft Costs Team Elaine Ulrich Headshot Elaine-Ulrich.jpg Dr. Elaine Ulrich is a program manager at the Department of Energy where she leads the SunShot balance of systems/soft costs team. Her team works to reduce the non-hardware (soft costs) of solar, lower barriers to solar adoption, and foster market growth through: support for state and local development and technical assistance programs; information & data assets; finance & business model development; workforce &

  13. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es111_gallagher_2012_o.pdf (1.1 MB) More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  14. Cost Participation in Research and Development Contracting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35.2 June 2016 ______________________________________________________________________________ 1 Cost Participation in Research and Development Contracting [References: Public Law 109-58, Energy Policy Act of 2005, FAR 35.003(b), DEAR 917.70] 1.0 Summary of Latest Changes This update: (1) combines Acquisition Guide Chapters 17.2, Cost Participation, and 35.2, Cost Sharing in Research and Development Contracting, (2) updates delegations of authority, (3) updates sample cost sharing language for

  15. Evolving Utility Cost-Effectiveness Test Criteria

    Broader source: Energy.gov [DOE]

    Presents an overview of tests done to evaluate the cost-effectiveness of energy efficiency program benefits.

  16. High Energy Cost Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Cost Grants High Energy Cost Grants The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and distribution facilities servicing eligible rural communities with home energy costs that are over 275% of the national average. Grants under this program may be used for the acquisition, construction, installation, repair, replacement, or improvement of energy generation, transmission, or distribution facilities in

  17. Microsoft Word - CR-091 Primary Basis of Cost Savings and Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Cost Savings and Cost Savings Amount. The new configurations will only apply to acquisition document types, specifically: BPA Calls, Contracts, Delivery OrderTask Order,...

  18. Low-level waste program technical strategy

    SciTech Connect (OSTI)

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  19. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  20. High efficiency, low cost scrubber upgrades

    SciTech Connect (OSTI)

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  1. Unbundling power products, modifying rate design, and fixed cost coverage

    SciTech Connect (OSTI)

    Procter, R.J.

    1996-03-01

    In this paper, the author provides an overview of efforts currently underway at the Bonneville Power Administration (BPA) to respond to these various challenges to how BPA has traditionally managed the marketing of power at the wholesale level in the Pacific Northwest and to areas outside this region along the West Cast in general. The paper begins with an overview of the role of the BPA in the region, and trends in costs and revenues. The paper provides a general outline of BPA`s efforts to separate its business into three separate product lines (power, energy services, and transmission) as well as providing an overview of how BPA is unbundling power products. In addition, the paper provides an overview of some of the major changes BPA has proposed in its rate design. This is followed by an overview of the approach to the issue of stranded cost. You will see that it is their desire to as much as possible avoid a legislative solution to this issue and rely on marketing and working with customers as a way of dealing with this very contentious issue. The paper wraps up with an assessment of the potential for power product unbundling to significantly reduce potential stranded costs. You will see that at the present time, unbundling power products offers BPA little in the way of substantial reductions in potential stranded costs. Whereas, margins on the delivery of energy and capacity offer the greatest potential for covering fixed costs.

  2. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect (OSTI)

    Greene, D.L.

    2005-03-08

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  3. Benefit cost estimation and cooperation in greenhouse gas abatement

    SciTech Connect (OSTI)

    Hamaide, B.

    1997-12-31

    The world is divided in five players: the USA, the other OECD countries, the former Soviet Union, China and the Rest of the World. The damage equation is formulated around the benchmark damage (at twice the CO{sub 2} level) and the change of temperature in time due to past concentration and current emissions. For having damage cost data (or benefit data) with respect to emissions reduction, damages must be computed at each level of restriction, summed from 2000 to 2100 and discounted back at a predetermined two percent rate of time preference. Abatement costs have been estimated by various authors, some of which believe in no-regrets and some of which only believe in low-regrets policy, some of which are aggregate and some of which are disaggregate. Both theories are taken into account to find abatement cost data between the lower bound of some studies and the upper bound of others. Finally, all exercise is undertaken for getting a curve through the disaggregated benefit and cost data and the best regional fit, represented by a mathematical expression is chosen.

  4. 2006 Update of Business Downtime Costs

    SciTech Connect (OSTI)

    Hinrichs, Mr. Doug; Goggin, Mr. Michael

    2007-01-01

    The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrial subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.

  5. Low-cost inertial measurement unit.

    SciTech Connect (OSTI)

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  6. Wind energy systems have low operating expenses because they have no fuel cost.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy systems have low operating expenses because they have no fuel cost. Photo by Jenny Hager Photography, NREL 15990. 1. Wind energy is cost competitive with other fuel sources. The average levelized price of wind power purchase agree- ments signed in 2013 was approximately 2.5 cents per kilowatt-hour, a price that is not only cost competitive with new gas-fired power plants but also compares favorably to a range of fuel cost projections of gas-fired generation extending out through 2040. 1

  7. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,000,000 Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy

  8. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect (OSTI)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  9. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  10. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  11. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  12. Generation cost unbundling: Untangling the gordian knot

    SciTech Connect (OSTI)

    Conkling, R.L.

    1997-03-01

    One useful byproduct of California`s efforts to restructure its electricity industry comes in the form of Southern California Edison`s proposal to facilitate unbundling by adopting a superior cost allocation method. Utilities and regulators elsewhere should take notice. Clearing the deck for generating competition is the urgent order of the day in electric restructuring. The critical question is: What are the generation costs to be unbundled? Schemes for restructuring, both in California and elsewhere, have called for the stranded component of utility generating costs to be recovered through customer payments of a non-bypassable competition transition charge (CTC). The stranded cost component of generation is the difference between total costs and the revenues received from future market-based prices. This makes a total cost determination for the calculation of the CTC essential, not optional.

  13. Costing and pricing electricity in developing countries

    SciTech Connect (OSTI)

    Munasinghe, M.; Rungta, S.

    1984-01-01

    This book compiles the papers presented at a conference on costing and pricing electricity in developing countries. The topics discussed include: Power tariffs, an overview; electricity tariff policy; estimating and using marginal cost pricing concepts; power tariff policy of Philippines, India, Papua New Guinea, Burma, Bangladesh, Indonesia, Korea, Pakistan; Inter-American Development Bank-Electricity tariffs, policies and practices; and costs of supplying electricity and tariff policy in some other countries.

  14. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Reducing Photovoltaic Costs Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. The development of more efficient, affordable photovoltaics (PV) and concentrating solar power (CSP) technologies are crucial to the U.S. Department of Energy (DOE) SunShot Initiative, and making solar cost-competitive with other sources of energy. DOE is fueling innovative solar technology solutions with focused project funding and partnerships with

  15. WIPP - Cost of a FOIA request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost of a Freedom of Information Act (FOIA) request The FOIA generally requires that requestors pay fees for processing their requests. If costs associated with the processing of a FOIA request are $15.00 or less, no fees are charged. Each FOIA request is reviewed for the purpose of placing a requestor in one of four fee categories described below: Commercial use requestor: Responsible for all direct costs; i.e. search for responsive documents, review of documents located for responsiveness; 16%

  16. Effects of differential compaction fracturing shown in four reservoirs

    SciTech Connect (OSTI)

    Thomas, G.E. )

    1992-02-03

    With the advent of horizontal drilling in the U.S., fractured reservoirs have become a major target in the ongoing search for hydrocarbons. This paper will examine four fractured-reservoir fields in the U.S.: Silo (Niobrara), Wyoming; Elkhorn Ranch (Bakken), North Dakota; Pearsal (Austin chalk), Texas; and the Syndicated Options Ltd. 9372 Ferguson Brothers well (Ordovician carbonates), Kentucky. The paper will show that differential compaction fracturing is more of a major factor in long-term, sustainable production in a fractured reservoir than is tectonic fracturing. In this paper, a general discussion of the two types of fracturing and how they affect reservoir production is provided.

  17. Toward Cost-Effective Polymer Electrolyte Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Cost-Effective Polymer Electrolyte Fuel Cells Toward Cost-Effective Polymer Electrolyte Fuel ... finding the next generation of fuel cell technology that is low cost, long ...

  18. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  19. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  20. Cost Effectiveness of Electricity Energy Efficiency Programs...

    Open Energy Info (EERE)

    Effectiveness of Electricity Energy Efficiency Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost Effectiveness of Electricity Energy Efficiency Programs...

  1. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  2. Benchmarking for Cost Improvement. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The US Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management (EM) conducted the Benchmarking for Cost Improvement initiative with three objectives: Pilot test benchmarking as an EM cost improvement tool; identify areas for cost improvement and recommend actions to address these areas; provide a framework for future cost improvement. The benchmarking initiative featured the use of four principal methods (program classification, nationwide cost improvement survey, paired cost comparison and component benchmarking). Interested parties contributed during both the design and execution phases. The benchmarking initiative was conducted on an accelerated basis. Of necessity, it considered only a limited set of data that may not be fully representative of the diverse and complex conditions found at the many DOE installations. The initiative generated preliminary data about cost differences and it found a high degree of convergence on several issues. Based on this convergence, the report recommends cost improvement strategies and actions. This report describes the steps taken as part of the benchmarking initiative and discusses the findings and recommended actions for achieving cost improvement. The results and summary recommendations, reported below, are organized by the study objectives.

  3. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  4. Cost Mechanisms | OpenEI Community

    Open Energy Info (EERE)

    Cost Mechanisms Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  5. Aerogel commercialization: Technology, markets and costs

    SciTech Connect (OSTI)

    Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

    1994-10-07

    Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

  6. Modified Accelerated Cost-Recovery System (MACRS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  7. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional feedback on the worksop received via a request for information issued in ...

  8. Controller (Cost Compliance and Financial Reporting) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAAP, Cost Accounting Standards and internal controls required. Excellent analytical and problem solving skills Knowledge of DOE reporting requirements and prior Laboratory or...

  9. Soft Costs Competitive Awards | Department of Energy

    Energy Savers [EERE]

    Soft Costs Competitive Awards Current Awards Funding Program ... America by Recognizing Communities (SPARC) 2015 13M ... 2015 24M Catalyst Energy Innovation Prize 2014 1M ...

  10. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Savers [EERE]

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  11. Watt Does It Cost To Use It?

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students learn how electrical usage is counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items.

  12. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  13. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  14. Level: National Data;

    U.S. Energy Information Administration (EIA) Indexed Site

    (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ... (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ...

  15. Indonesian fuel consumers shouldering development costs

    SciTech Connect (OSTI)

    Not Available

    1984-08-22

    A graph shows how Indonesia's prices for regular and premium leaded gasolines and diesel fuel compare to the world average price, in US dollars per gallon: USA $0.28 lower for regular leaded gasoline, $0.30 lower for premium leaded, and $0.48 lower for diesel. Such proximity to world averages is of note in the context that Indonesia, a developing country with pressing needs for industrial and social development, does not internally provide the deep consumer subsidies that have long persisted in many such oil-producing countries. Although the other three countries shown on the graph have recently moved to cut internal fuel price subsidies, they still price these three important fuels more deeply below the world average than does Indonesia. A table details Indonesia's internal market price changes over time, by petroleum product. A chart tracks Indonesia's oil exports since 1966. The year of the first world oil price shock, 1973, shows a dramatic increase in exports, but that near-doubling was not repeated during the period of the second price shock, 1978-1979. As of 182, exports (by now including condensates) had fallen to pre-Arab Oil Embargo levels. This issue contains the fuel price/tax series and the principal industrial fuel prices for August 1984 for countries of the Western Hemisphere. Also, beginning with this issue, Energy Detente will appear only in English rather than both English and Spanish, as heretofore.

  16. Forestry mitigation potential and costs in developing countries - Preface

    SciTech Connect (OSTI)

    Sathaye, Jayant A.; Makundi, Willy; Andrasko, Kenneth

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  17. Cost Estimating Handbook for Environmental Restoration

    SciTech Connect (OSTI)

    1990-09-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals.

  18. Systematic Approach to Better Understanding Integration Costs

    SciTech Connect (OSTI)

    Stark, Gregory B.

    2015-09-01

    This research presents a systematic approach to evaluating the costs of integrating new generation and operational procedures into an existing power system, and the methodology is independent of the type of change or nature of the generation. The work was commissioned by the U.S. Department of Energy and performed by the National Renewable Energy Laboratory to investigate three integration cost-related questions: (1) How does the addition of new generation affect a system's operational costs, (2) How do generation mix and operating parameters and procedures affect costs, and (3) How does the amount of variable generation (non-dispatchable wind and solar) impact the accuracy of natural gas orders? A detailed operational analysis was performed for seven sets of experiments: variable generation, large conventional generation, generation mix, gas prices, fast-start generation, self-scheduling, and gas supply constraints. For each experiment, four components of integration costs were examined: cycling costs, non-cycling VO&M costs, fuel costs, and reserves provisioning costs. The investigation was conducted with PLEXOS production cost modeling software utilizing an updated version of the Institute of Electrical and Electronics Engineers 118-bus test system overlaid with projected operating loads from the Western Electricity Coordinating Council for the Sacramento Municipal Utility District, Puget Sound Energy, and Public Service Colorado in the year 2020. The test system was selected in consultation with an industry-based technical review committee to be a reasonable approximation of an interconnection yet small enough to allow the research team to investigate a large number of scenarios and sensitivity combinations. The research should prove useful to market designers, regulators, utilities, and others who want to better understand how system changes can affect production costs.

  19. GHG Mitigation potential and cost in tropical forestry - Relative role for agroforestry

    SciTech Connect (OSTI)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  20. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    SciTech Connect (OSTI)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  1. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  2. Factors Affecting PMU Installation Costs (October 2014)

    Broader source: Energy.gov [DOE]

    The Department of Energy investigated the major cost factors that affected PMU installation costs for the synchrophasor projects funded through the Recovery Act Smart Grid Programs. The data was compiled through interviews with the nine projects that deployed production grade synchrophasor systems.

  3. Standardized Cost Savings Definitions and Reporting Template

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Office of Management and Budget (OMB) Acquisition Savings Initiative and the DOE Strategic Sourcing Program, a key challenge has been to address the requirements of reporting cost savings and cost avoidance data. In order for DOE to fully comply with reporting requirements, we are directing that the attached template be utilized for reporting Fiscal Year (FY) 2012 data.

  4. PAFC Cost Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Challenges PAFC Cost Challenges Presentation at the MCFC and PAFC R&D Workshop held Nov. 16, 2009, in Palm Springs, CA mcfc_pafc_workshop_kanuri.pdf (1.5 MB) More Documents & Publications MCFC and PAFC R&D Workshop Summary Report High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D PAFC History and Successes

  5. Draft Submission; Social Cost of Energy Generation

    SciTech Connect (OSTI)

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  6. Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

  7. Parametric Analysis of the Factors Controlling the Costs of Sedimentar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Drilling costs have a significant impact on overall project costs. The default drilling cost curves in GETEM were used to estimate well costs. The table below shows the casing ...

  8. ''Measuring the Costs of Climate Change Policies''

    SciTech Connect (OSTI)

    Montgomery, W. D.; Smith, A. E.; Biggar, S. L.; Bernstein, P.M.

    2003-05-09

    Studies of the costs of climate change policies have utilized a variety of measures or metrics for summarizing costs. The leading economic models have utilized GNP, GDP, the ''area under a marginal cost curve,'' the discounted present value of consumption, and a welfare measure taken directly from the utility function of the model's representative agent (the ''Equivalent Variation''). Even when calculated using a single model, these metrics do not necessarily give similar magnitudes of costs or even rank policies consistently. This paper discusses in non-technical terms the economic concepts lying behind each concept, the theoretical basis for expecting each measure to provide a consistent ranking of policies, and the reasons why different measures provide different rankings. It identifies a method of calculating the ''Equivalent Variation'' as theoretically superior to the other cost metrics in ranking policies. When regulators put forward new economic or regulatory policies, there is a need to compare the costs and benefits of these new policies to existing policies and other alternatives to determine which policy is most cost-effective. For command and control policies, it is quite difficult to compute costs, but for more market-based policies, economists have had a great deal of success employing general equilibrium models to assess a policy's costs. Not all cost measures, however, arrive at the same ranking. Furthermore, cost measures can produce contradictory results for a specific policy. These problems make it difficult for a policy-maker to determine the best policy. For a cost measures to be of value, one would like to be confident of two things. First one wants to be sure whether the policy is a winner or loser. Second, one wants to be confident that a measure produces the correct policy ranking. That is, one wants to have confidence in a policy measure's ability to correctly rank policies from most beneficial to most harmful. This paper analyzes

  9. Residential retrofit specification/cost data base

    SciTech Connect (OSTI)

    Carlisle, N.; Potter, T.; Bircher, T.

    1982-06-01

    To aid state agencies, utilities, and contractors participating in the Residential Conservation Service (RCS) program in determining contractor-installed and do-it-yourself costs for active, passive, and wind retrofit measures in their locality, the Solar Energy Research Institute (SERI) has developed a residential retrofit specification/cost data base. The document consists of technical specifications for 17 renewable resource systems. The specifications were used as the basis for costing the systems in 56 cities. This paper describes the specifications, highlighting the passive systems, discusses the costs for the system, and describes how the costs were used with performance predictions to develop an applicability matrix that served as the basis for determining eligible passive measures in 146 regions under the RCS rule.

  10. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  11. The Laboratory Microfusion Facility standardized costing methodology

    SciTech Connect (OSTI)

    Harris, D.B.; Dudziak, D.J.

    1988-01-01

    The DOE-organized Laboratory Microfusion Facility (LMF) has a goal of generation 1000 MJ of fusion yield in order to perform weapons physics experiments, simulate weapons effects, and develop high-gain inertial confinement fusion (ICF) targets for military and civil applications. There are currently three options seriously being considered for the driver of this facility: KrF lasers, Nd:glass lasers, and light-ion accelerators. In order to provide a basis for comparison of the cost estimated for each of the different driver technologies, a standardized costing methodology has been devised. This methodology defines the driver-independent costs and indirect cost multipliers for the LMF to aid in the comparison of the LMF proposal cost estimates. 10 refs., 4 tabs.

  12. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  13. The cost of wetland creation and restoration. Final report, [February 12, 1992--April 30, 1994]- Draft

    SciTech Connect (OSTI)

    King, D.; Costanza, R.

    1994-07-11

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  14. Dissecting the Cost of the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Equivalent URI: cleanenergysolutions.orgcontentdissecting-cost-smart-grid Language: English Policies: Regulations Regulations: "Resource Integration Planning,Cost...

  15. Microsoft PowerPoint - Cost Escalation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydroelectric Design Center Hydroelectric Design Center " " Cost Trends for Cost Trends for Hydropower Capital Hydropower Capital Replacements" Replacements" Presentation Outline ...

  16. Cost and Performance Assumptions for Modeling Electricity Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 16 Figure 6. Overnight capital costs-coal ......22 Figure 8. Overnight capital costs-combustion turbine ......

  17. Gasification Plant Cost and Performance Optimization

    SciTech Connect (OSTI)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power

  18. UV/oxidation providers shed technical problems, fight cost perceptions

    SciTech Connect (OSTI)

    Rapaport, D. )

    1993-05-01

    Systems combining ultraviolet light and oxidation (UV/oxidation) to remove contaminants from water were introduced in the early 1980s. Since then, improvements in the technology, a wide array of applications, educational efforts by companies offering the systems and changes in environmental regulations have accelerated acceptance of UV/oxidation technology. From the standpoint of regulatory officials, the major advantage of UV/oxidation is that it creates no secondary pollutants to treat or haul away. It is a self-contained, in situ treatment technology. This benefit has gained importance as regulations have become more stringent regarding disposal of secondary pollutants, such as saturated carbon, and concentration levels of air emissions created by air stripping. Such regulations have increased the costs of monitoring and disposal, while the costs of using UV/oxidation were decreasing.

  19. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  20. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, M.; Laffen, M.; Timbario, T. A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  1. Hydrogen Pathways. Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, Mark; Laffen, Melissa; Timbario, Thomas A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  2. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Fuel Cell Technologies Publication and Product Library (EERE)

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  3. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of levelized cost in 2005 US dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  4. High-Level Waste Melter Study Report

    SciTech Connect (OSTI)

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  5. High-Level Waste Melter Review

    SciTech Connect (OSTI)

    Ahearne, J.; Gentilucci, J.; Pye, L. D.; Weber, T.; Woolley, F.; Machara, N. P.; Gerdes, K.; Cooley, C.

    2002-02-26

    The U.S. Department of Energy (DOE) is faced with a massive cleanup task in resolving the legacy of environmental problems from years of manufacturing nuclear weapons. One of the major activities within this task is the treatment and disposal of the extremely large amount of high-level radioactive (HLW) waste stored at the Hanford Site in Richland, Washington. The current planning for the method of choice for accomplishing this task is to vitrify (glassify) this waste for disposal in a geologic repository. This paper describes the results of the DOE-chartered independent review of alternatives for solidification of Hanford HLW that could achieve major cost reductions with reasonable long-term risks, including recommendations on a path forward for advanced melter and waste form material research and development. The potential for improved cost performance was considered to depend largely on increased waste loading (fewer high-level waste canisters for disposal), higher throughput, or decreased vitrification facility size.

  6. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect (OSTI)

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  7. Renewable Energy Planning: Multiparametric Cost Optimization

    SciTech Connect (OSTI)

    Walker, A.

    2008-01-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  8. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect (OSTI)

    Walker, A.

    2008-05-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  9. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  10. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  11. Tables of Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Levels The Image Map below will direct you to the table of energy levels PDF format only for that particular nuclide from the most recent publication found within...

  12. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  13. Cost and code study of underground buildings

    SciTech Connect (OSTI)

    Sterling, R.L.

    1981-01-01

    Various regulatory and financial implications for earth-sheltered houses and buildings are discussed. Earth-sheltered houses are covered in the most detail including discussions of building-code restrictions, HUD Minimum Property Standards, legal aspects, zoning restrictions, taxation, insurance, and home financing. Examples of the initial-cost elements in earth-sheltered houses together with projected life-cycle costs are given and compared to more-conventional energy-conserving houses. For larger-scale underground buildings, further information is given on building code, fire protection, and insurance provisions. Initial-cost information for five large underground buildings is presented together with energy-use information where available.

  14. How three smart managers control steam costs

    SciTech Connect (OSTI)

    Kendall, R.

    1982-11-01

    Three steam-intensive companies report innovative ways to reduce steam-production costs. Goodyear Tire and Rubber Co. concentrated on regular maintenance, process modifications, and heat recovery, but also has an on-going policy of seeking further cost savings. Future efforts will explore computer-based boiler controls. Zenith Radio Corporation's color picture tube-making process uses 12% less steam after 700 mechanical steam traps were replaced with fixed-orifice traps. Petro-Tex Chemical Corp. reduced steam costs by monitoring and optimizing process units and by making capital investments to improve steam management. (DCK)

  15. Fact Sheet: Soft Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Fact Sheet: Soft Costs Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to

  16. EXPERT ELICITATION OF ACROSS-TECHNOLOGY CORRELATIONS FOR REACTOR CAPITAL COSTS

    SciTech Connect (OSTI)

    Brent Dixon; Various

    2014-06-01

    Calculations of the uncertainty in the Levelized Cost at Equilibrium (LCAE) of generating nuclear electricity typically assume that the costs of the system component, notably reactors, are uncorrelated. Partial cancellation of independent errors thus gives rise to unrealistically small cost uncertainties for fuel cycles that incorporate multiple reactor technologies. This summary describes an expert elicitation of correlations between overnight reactor construction costs. It also defines a method for combining the elicitations into a single, consistent correlation matrix suitable for use in Monte Carlo LCAE calculations. Both the elicitation and uncertainty propagation methods are demonstrated through a pilot study where cost correlations between eight reactor technologies were elicited from experts in the US DOE Fuel Cycle Research

  17. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  18. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    SciTech Connect (OSTI)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-15

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  19. Sea level changes

    SciTech Connect (OSTI)

    Buddemeier, R.W.

    1987-08-21

    The paper develops an approach to the issues relating to sea level change that will assist the non-scientist and the applied scientist in making the most effective use of our existing and developing knowledge. The human perception of ''sea level'' and how that changes as societies change and develop are discussed. After some practical perspectives on the relationships between societies and sea levels are developed, an approach to developing the best available local prediction of sea level changes is outlined, and finally present knowledge and uncertainties about the future course of events that will influence ''sea level'' as defined in the practical sense is discussed.

  20. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  1. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  2. Renewable Energy Cost Recovery Incentive Payment

    Broader source: Energy.gov [DOE]

    Note: Some utilities have reached their cap for incentive allocations under the Renewable Energy Cost Recovery Incentive Payment program. Some of these utilities have reduced per-customer incentive...

  3. Extreme Balance of System Hardware Cost Reduction

    Broader source: Energy.gov [DOE]

    On September 1, 2011, DOE announced $42.4 million in funding over three years for the Extreme Balance of System Hardware Cost Reduction (BOS-X) funding opportunity. Part of the SunShot Systems...

  4. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    potential of Hydrogen Production Cost Estimate Using Biomass Gasification The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via ...

  5. USDA High Energy Cost Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) is accepting applications for the improvement of energy generation, transmission, and distribution facilities serving rural communities with home energy costs that are over 275% of the national average.

  6. Least cost options for life extension

    SciTech Connect (OSTI)

    Davis, F.; Bradaric, M.

    1995-12-01

    Rehabilitation of existing electric generating capacity offers one of the most cost-effective ways of meeting near-term power needs in many Eastern and Central European countries. In particular, the uncertainty associated with other supply sources and severe capital constraints tends to favor investments which maximize the utilization of existing fossil-fired equipment. However, it is critical that least-cost planning principles, including the consideration of environmental impacts, be applied to the economic analysis of rehabilitation options. This paper draws on Bechtel`s experience in applying least-cost planning to plant rehabilitation studies in Bulgaria, Romania and Slovakia. The examples provided illustrate the importance of least-cost planning and the effect of the value placed on environmental emissions.

  7. Cost of Energy | Open Energy Information

    Open Energy Info (EERE)

    as well as projections for the future. Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P. (March 2013). 2011 Cost of Wind Energy Review. National Renewable...

  8. Durable, Low Cost, Improved Fuel Cell Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80C at low relative humidity (25-50%). z To develop a ...

  9. Optimization of life cycle management costs

    SciTech Connect (OSTI)

    Banerjee, A.K.

    1994-12-31

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These {open_quotes}discoveries{close_quotes} result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered.

  10. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  11. Solar at the cost of coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost of coal 1 Domestic shale gas 2 US shale gas enables solar g SunShot: towards 1 Watt SunShot: towards 1 Watt Silicon PV can reach coal parity p y *LCOE calculated ...

  12. Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs

    SciTech Connect (OSTI)

    Stettenheim, Joel; McBride, Troy O.; Brambles, Oliver J.; Cashin, Emil A.

    2013-12-31

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  13. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity, and Retail Availability for Low-Carbon Scenarios | Department of Energy Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel

  14. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With low projected manufacturing costs, high ion conductivities, reduced cross-over, chemical and thermal stability in both acidic and alkaline environments, the Sandia membrane technology is positioned to lower the cost of many energy-water systems. Poly (phenylene)-based Hydrocarbon Membrane Separators With a larger component of our electricity generation coming from intermittent and variable sources, stationary energy storage and local power generation will be essential for continued growth

  15. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. wkshp_market_readiness_joseck.pdf (659.13 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California

  16. Watt Does It Cost To Use It?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watt Does It Cost to Use It? Grades: 5-8, 9-12 Topic: Energy Efficiency and Conservation Author: Mark Ziesmer Owner: Alliance to Save Energy This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. WATT DOES IT COST TO USE IT? By Mark Ziesmer, Sultana High School Hesperia Unified School District, California Overview: Familiarize students with how electrical usage is counted, electrical pricing, and measure and evaluate

  17. Certificate of Current Cost and Pricing Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF CURRENT COST AND PRICING DATA (OCT 1997) This is to certify that, to the best of my knowledge and belief, the cost or pricing data (as defined in section 15.401 of the Federal Acquisition Regulation (FAR) and required under FAR subsection 15.403-4) submitted, either actually or by specific identification in writing, to the Contracting Officer or to the Contracting Officer's representative in support of * are accurate, complete, and current as of **. This certification includes the

  18. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect (OSTI)

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  19. Cost Compliance Manager | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Compliance Manager Department: Business Operations Supervisor(s): Kristen Fischer Staff: AM 6 Requisition Number: 1600452 The Cost Compliance Manager (CCM) is responsible for monitoring compliance with Laboratory policies primarily in support of procurement operations. The position will maintain analytical tools, procedures, and reports to drive compliance and best practices with Laboratory policies and applicable laws and regulations. The CCM will oversee staff responsible for analyzing

  20. Costs | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  1. Energy Department Awards $3.5 Million to Develop Cost-Competitive Algal Biofuels

    Broader source: Energy.gov [DOE]

    The Energy Department announced today $3.5 million for an algae project aimed at accelerating the development of sustainable, affordable algal biofuels. This research project supports the Department’s goal of producing 2,500 gallons of algal biofuel feedstock per acre per year by 2018, an important milestone toward reducing the cost of algal biofuels to cost-competitive levels of 5,000 gallons per acre per year by 2022.

  2. Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charger Installations | Department of Energy 0: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations Fact #910: February 1, 2016 Study Shows Average Cost of Electric Vehicle Charger Installations SUBSCRIBE to the Fact of the Week The EV Project and the ChargePoint America project were conducted for the Department of Energy by Idaho National Laboratory (INL). From 2011-2013 the project installed nearly 17,000 alternating current (AC) Level 2 charging stations

  3. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  4. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  5. Spoil handling and reclamation costs at a contour surface mine in steep slope Appalachian topography

    SciTech Connect (OSTI)

    Zipper, C.E.; Hall, A.T.; Daniels, W.L.

    1985-12-09

    Accurate overburden handling cost estimation methods are essential to effective pre-mining planning for post-mining landforms and land uses. With the aim of developing such methods, the authors have been monitoring costs at a contour surface mine in Wise County, Virginia since January 1, 1984. Early in the monitoring period, the land was being returned to its Approximate Original Contour (AOC) in a manner common to the Appalachian region since implementation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA). More recently, mining has been conducted under an experimental variance from the AOC provisions of SMCRA which allowed a near-level bench to be constructed across the upper surface of two mined points and an intervening filled hollow. All mining operations are being recorded by location. The cost of spoil movement is calculated for each block of coal mined between January 1, 1984, and August 1, 1985. Per cubic yard spoil handling and reclamation costs are compared by mining block. The average cost of spoil handling was $1.90 per bank cubic yard; however, these costs varied widely between blocks. The reasons for those variations included the landscape positions of the mining blocks and spoil handling practices. The average reclamation cost was $0.08 per bank cubic yard of spoil placed in the near level bench on the mined point to $0.20 for spoil placed in the hollow fill. 2 references, 4 figures.

  6. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    SciTech Connect (OSTI)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs.

  7. Assessing strategies to address transition costs in a restructuring electricity industry

    SciTech Connect (OSTI)

    Baxter, L.; Hadley, S.; Hirst, E.

    1996-08-01

    Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

  8. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record # 12024 (448.95 KB) More Documents & Publications Distributed

  9. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  10. Optimizing High Level Waste Disposal

    SciTech Connect (OSTI)

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  11. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine; Dalton, Luke; Roemer, Andy; Carter, Blake; Niedzwiecki, Mike; Manco, Judith; Anderson, Everett; Capuano, Chris; Wang, Chao-Yang; Zhao, Wei

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  12. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  13. Impacts of Uncertainty in Energy Project Costs (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    From the late 1970s through 2002, steel, cement, and concrete prices followed a general downward trend. Since then, however, iron and steel prices have increased by 8% in 2003, 10% in 2004, and 31% in 2005. Although iron and steel prices declined in 2006, early data for 2007 show another increase. Cement and concrete prices, as well as the composite cost index for all construction commodities, have shown similar trends but with smaller increases in 2004 and 2005.

  14. Level: National Data; Row: NAICS Codes; Column: Levels of Price...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ... Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ...

  15. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Broader source: Energy.gov (indexed) [DOE]

    handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. ...

  16. Tiltmeter leveling mechanism

    DOE Patents [OSTI]

    Hunter, Steven L.; Boro, Carl O.; Farris, Alvis

    2002-01-01

    A tiltmeter device having a pair of orthogonally disposed tilt sensors that are levelable within an inner housing containing the sensors. An outer housing can be rotated to level at least one of the sensor pair while the inner housing can be rotated to level the other sensor of the pair. The sensors are typically rotated up to about plus or minus 100 degrees. The device is effective for measuring tilts in a wide range of angles of inclination of wells and can be employed to level a platform containing a third sensor.

  17. " Level: National Data;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: ... barrels." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,..." " ...

  18. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  19. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  20. Landed Costs of Imported Crude by Area

    Gasoline and Diesel Fuel Update (EIA)

    Values shown for the current two months are preliminary. Values shown for the previous two months may be revised to account for late submissions and corrections. Final revisions to monthly and annual values are available upon publication of the June Petroleum Marketing Monthly. Annual averages that precede the release of the June Petroleum Marketing Monthly are calculated from monthly data. Data through 2015 are final.

  1. Costs and impacts of transporting nuclear waste to candidate repository sites

    SciTech Connect (OSTI)

    McSweeney, T.I.; Peterson, R.W.; Gupta, R.

    1983-12-31

    In this paper, a status report on the current estimated costs and impacts of transporting high-level nuclear wastes to candidate disposal sites is given. Impacts in this analysis are measured in terms of risk to public health and safety. Since it is difficult to project the status of the nuclear industry to the time of repository operation - 20 to 50 years in the future - particular emphasis in the paper is placed on the evaluation of uncertainties. The first part of this paper briefly describes the characteristics of the waste that must be transported to a high-level waste disposal site. This discussion is followed by a section describing the characteristics of the waste transport system. Subsequent sections describe the costs and risk assessments of waste transport. Finally, in a concluding section, the effect of the uncertainties in the definition of the waste disposal system on cost and risk levels is evaluated. This last section also provides some perspectives on the magnitude of the cost and risk levels relative to other comparable costs and risks generally encountered. 13 references, 2 figures, 16 tables.

  2. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  3. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  4. COST OF ADDRESSING TARGETS OF UNEQUAL VALUE

    SciTech Connect (OSTI)

    G.H. CANAVAN

    2001-08-01

    The formalism for evaluating first strike costs and incentives for military targeting generalize to include higher value targets. That introduces two new allocations to the usual allocation between missiles and military targets, but they can be performed analytically. As the number of weapons on each side decreases, the optimal fraction of second strike weapons allocated to military values falls. The shift to high value targets is more pronounced below about 1,000 weapons for nominal parameters. Below 500 weapons the first striker's cost of action drops below its cost of inaction. A strike would induce a second strike of about 250 weapons on high value targets. An increase in the first striker's preference for damage to the other's high value targets increases or a decrease in its preference for preventing damage to its own high value targets decreases first strike costs and stability margins. Including defenses complicates allocations slightly. The main effect is increased attrition of second strikes, particularly at larger defenses, which makes it possible to significantly reduce damage to high value targets. At 1,000 weapons, by 300 to 400 interceptors the first striker's costs are reduced to 30% below that of inaction and the number of weapons delivered on the first striker's high value targets is reduced to about 100.

  5. Low-Cost Spectral Sensor Development Description.

    SciTech Connect (OSTI)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  6. Cost estimate of initial SSC experimental equipment

    SciTech Connect (OSTI)

    1986-06-01

    The cost of the initial detector complement at recently constructed colliding beam facilities (or at those under construction) has been a significant fraction of the cost of the accelerator complex. Because of the complexity of large modern-day detectors, the time-scale for their design and construction is comparable to the time-scale needed for accelerator design and construction. For these reasons it is appropriate to estimate the cost of the anticipated detector complement in parallel with the cost estimates of the collider itself. The fundamental difficulty with this procedure is that, whereas a firm conceptual design of the collider does exist, comparable information is unavailable for the detectors. Traditionally, these have been built by the high energy physics user community according to their perception of the key scientific problems that need to be addressed. The role of the accelerator laboratory in that process has involved technical and managerial coordination and the allocation of running time and local facilities among the proposed experiments. It seems proper that the basic spirit of experimentation reflecting the scientific judgment of the community should be preserved at the SSC. Furthermore, the formal process of initiation of detector proposals can only start once the SSC has been approved as a construction project and a formal laboratory administration put in place. Thus an ad hoc mechanism had to be created to estimate the range of potential detector needs, potential detector costs, and associated computing equipment.

  7. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    SciTech Connect (OSTI)

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  8. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  9. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  10. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstratemore » the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (<5000 m3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.« less

  11. Natural gas industry's response to transaction costs

    SciTech Connect (OSTI)

    Mulherin, J.H.

    1985-07-25

    Legislators and regulators have historically viewed the organizational features in the natural gas industry as noncompetitive. Challenging recent suggestions that the contractual arrangements in the industry are in violation of antitrust statutes, the author states that the methods of organization such as long-term contracts, take-or-pay provisions, and most-favored nation clauses are competitive responses to the costs of transacting in the natural gas industry. These arrangements lower transaction costs by mitigating the opportunistic behavior that can potentially arise in long-term relations involving specialized assets. If policymakers want to enable cost reductions in the industry to reduce the price burden felt by users of gas, an accompaniment of price decontrol by overall deregulation is in order.

  12. Shifting the cost curve for subsea developments

    SciTech Connect (OSTI)

    Solheim, B.J.; Hestad, E.

    1995-12-31

    A steadily increasing challenge in offshore oil and gas field developments in the Norwegian part of the North Sea is to design, construct, and install offshore installations that give an acceptable return of investment Deeper water, limited reservoirs and a low, fluctuating oil price make the task even more demanding. Saga Petroleum has recently faced this challenge with its last field development project. Attention in this paper is focused on the Vigdis subsea production system. However, the considerations and cost reduction elements are valid for offshore field developments in general. The main cost reductions are obtained by: Maximum use of industry capability; Application of new organization principles; Focus on functional requirements; Shortened project execution time; Technological development. In addition this paper presents thoughts on further cost reduction possibilities for future subsea field developments.

  13. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  14. PROJECT PROFILE: Promotion of PV Soft Cost Reductions in the Southeastern United States (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project creates a replicable model for solar photovoltaic (PV) soft cost reduction in South Carolina through human capacity-building at the local level and direct efforts to harmonize policy at the inter-county or regional level. This effort will close the gap between South Carolina installed costs of residential rooftop solar and national averages and develop a portable and replicable model that can be applied to other jurisdictions in the future.

  15. Low-Cost MHTES Systems for CSP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost Metal Hydride TES Systems - FY13 Q1 Low-Cost Metal Hydride TES Systems - FY13 Q3 Low-Cost Metal Hydride Thermal Energy Storage System - FY13 ...

  16. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  17. DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Joseph Hezir, Chief Financial Officer, DOE presented on the topic DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives. The presentation focuses on FFRDCs, National Lab funding and cost accounting, ICR, and overhead costs.

  18. The New Science of Soft Costs Breakout Session Flier | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New Science of Soft Costs Breakout Session Flier The New Science of Soft Costs Breakout Session Flier Flier promoting The New Science of Soft Costs breakout session at the May...

  19. EV Everywhere: Saving on Fuel and Vehicle Costs | Department...

    Energy Savers [EERE]

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the ...

  20. INFOGRAPHIC: Let's Get to Work on Solar Soft Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs December 2, 2013 - 1:00pm Addthis Learn how soft costs are contributing to the price of ...

  1. Property:GeothermalArraAwardeeCostShare | Open Energy Information

    Open Energy Info (EERE)

    GeothermalArraAwardeeCostShare Property Type Number Description Geothermal ARRA Awardee Cost Share Pages using the property "GeothermalArraAwardeeCostShare" Showing 25 pages using...

  2. DOE Zero Energy Ready Home Savings and Cost Estimate Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate ...

  3. Microsoft PowerPoint - 15.1615_Cost Estimating Panel

    Energy Savers [EERE]

    Cost Estimate (ICE) - Same Basis as Project Cost Estimate (PCE) Sa e as s as ojec Cos s a e ( C ) - Reconcilable with PCE to Facilitate Validation * Independent Cost Review...

  4. Lower Cost, Higher Performance Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C. David (Dave) Warren Field Technical Manager Transportation Materials Research Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV Lower Cost, Higher Performance Carbon Fiber 14 February 2011 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Questions for Today Materials How can the cost of carbon fiber suitable for higher performance applications (H 2 Storage) be

  5. 2013 Cost of Wind Energy Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Cost of Wind Energy Review C. Moné, A. Smith, B. Maples, and M. Hand National Renewable Energy Laboratory Technical Report NREL/TP-5000-63267 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  6. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips November 26, 2013 - 9:23am Addthis Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Jason

  7. Costs of Storing and Transporting Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs of Storing and Transporting Hydrogen Costs of Storing and Transporting Hydrogen An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. 25106.pdf (1.34 MB) More Documents & Publications Survey of the Economics of Hydrogen Technologies H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results -

  8. Cost Principles Webinar for DOE Grant Recipients | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Principles Webinar for DOE Grant Recipients Cost Principles Webinar for DOE Grant Recipients The Office of Management and Budget (OMB) Cost Principles in the Code of Federal Regulations (CFR) define, by organization type, what kinds of costs are allowable or unallowable for reimbursement in Federal financial assistance awards. This Cost Principles webinar was developed to help DOE award recipients understand the costing and invoicing requirements for their awards funded by the American

  9. GAO Cost Estimating and Assessment Guide | Department of Energy

    Energy Savers [EERE]

    Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide: Twelve Steps of a High-Quality Cost Estimating Process, from the first step of defining the estimate's purpose to the last step of updating the estimate to reflect actual costs and changes. Twelve Steps of a High-Quality Cost Estimating Process (75.75 KB) Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents & Publications

  10. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  11. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details In-Document Search Title: Low Cost Injection Mold Creation via Hybrid Additive ...

  12. Cost-Effective Modeling and Savings Projections for Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective Modeling and Savings Projections for Multifamily Projects Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Eff...

  13. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  14. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  15. Manufacturing R&D Initiative Lowers Costs and Boosts Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality PDF icon mfg-initiativefactsheetjun2015.pdf More ...

  16. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  17. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  18. Energy Cost Calculator for Commercial Ice Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a detailed life cycle cost analysis, the Federal Energy Management Program has developed a tool called Building Life Cycle Cost (BLCC). This downloadable tool allows the user ...

  19. Energy Cost Calculator for Urinals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a detailed life cycle cost analysis, The Federal Energy Management Program developed a tool called Building Life Cycle Cost (BLCC). This downloadable tool allows the user to ...

  20. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas > Publications > Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September ...

  1. Innovative Approach Reduces Costs of Removing Contaminated Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Approach Reduces Costs of Removing Contaminated Oil from Paducah Site Innovative Approach Reduces Costs of Removing Contaminated Oil from Paducah Site January 27, 2016 - ...

  2. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  3. High Performance Home Cost Performance Trade-Offs: Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders - ...

  4. Manufacturing R&D Initiative Lowers Costs and Boosts Quality...

    Energy Savers [EERE]

    Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality PDF icon mfg-initiativefactsheetjun2015.pdf More...

  5. A Review of Cost Estimation in New Technologies - Implications...

    Energy Savers [EERE]

    A Review of Cost Estimation in New Technologies - Implications for Energy Process Plants A Review of Cost Estimation in New Technologies - Implications for Energy Process Plants ...

  6. Understanding Cost Growth and Performance Shortfalls in Pioneer...

    Office of Environmental Management (EM)

    Cost Growth and Performance Shortfalls in Pioneer Process Plants Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants This report presents an empirical ...

  7. Low-cost Electromagnetic Heating Technology for Polymer Extrusion...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing Citation Details In-Document Search Title: Low-cost Electromagnetic ...

  8. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  9. Energy and Cost Savings Calculators for Energy-Efficient Products...

    Open Energy Info (EERE)

    Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for...

  10. SEP Voluntary Cost/Benefit Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Voluntary CostBenefit Form SEP Voluntary CostBenefit Form seplogoborderless.jpg DOE maintains documentation of Superior Energy Performance (SEP(tm)) certifications as the ...

  11. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  12. Financial and Cost Assessment Model (FICAM) | Open Energy Information

    Open Energy Info (EERE)

    and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) AgencyCompany Organization: UNEP-Risoe...

  13. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs ...

  14. Chicago Solar Express Reduces Costs, Wait Times | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Solar Express Reduces Costs, Wait Times Chicago Solar Express Reduces Costs, Wait Times October 28, 2014 - 10:48am Addthis The Solar Express program in Chicago, ...

  15. Process Equipment Cost Estimation, Final Report (Technical Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Equipment Cost Estimation, Final Report Citation Details In-Document Search Title: Process Equipment Cost Estimation, Final Report You are accessing a document from the ...

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  17. Five and Dime: Revisiting Strategies for Lowering the Costs of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy Efficiency (101) Five and Dime: Revisiting Strategies for Lowering the Costs of Delivering Energy ...

  18. Energy Department Invests Over $7 Million to Commercialize Cost...

    Office of Environmental Management (EM)

    Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell ...

  19. Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltai...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems This ...

  20. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...