Powered by Deep Web Technologies
Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Energy Analysis - Levelized Cost of Energy Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Levelized Cost of Energy Calculator Levelized Cost of Energy Calculator Transparent Cost Database Button The levelized cost of energy (LCOE) calculator provides a simple calculator for both utility-scale and distributed generation (DG) renewable energy technologies that compares the combination of capital costs, operations and maintenance (O&M), performance, and fuel costs. Note that this does not include financing issues, discount issues, future replacement, or degradation costs. Each of these would need to be included for a thorough analysis. To estimate simple cost of energy, use the slider controls or enter values directly to adjust the values. The calculator will return the LCOE expressed in cents per kilowatt-hour (kWh). The U.S. Department of Energy (DOE) Federal Energy Management Program

2

NREL-Levelized Cost of Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

NREL-Levelized Cost of Energy Calculator NREL-Levelized Cost of Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Cost of Energy Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Non-renewable Energy, Biomass, Geothermal, Hydrogen, Solar, Water Power, Wind Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Create Early Successes, Evaluate Effectiveness and Revise as Needed Topics: Finance, Market analysis, Technology characterizations Resource Type: Software/modeling tools User Interface: Website Website: www.nrel.gov/analysis/tech_lcoe.html Web Application Link: www.nrel.gov/analysis/tech_lcoe.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools

3

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

4

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

5

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

6

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

Interruption Cost Estimate Calculator Interruption Cost Estimate Calculator Jump to: navigation, search Tool Summary Name: Interruption Cost Estimate (ICE) Calculator Agency/Company /Organization: Freeman, Sullivan & Co. Sector: Energy Focus Area: Grid Assessment and Integration, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: icecalculator.com/ Country: United States Cost: Free Northern America References: [1] Logo: Interruption Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. About The Interruption Cost Estimate (ICE) Calculator is an electric reliability

7

Computerized Energy and Treatment Cost Calculations  

E-Print Network (OSTI)

A computer program has been developed that quickly calculates blowdown heat loss as a function of makeup water, boiler water chemistry, and blowdown recovery equipment. By inputting water analysis, basic system parameters, and type of fuel, the cost of heat loss in the blowdown can be quickly and accurately determined. Present operating systems can quickly be evaluated as to potential cost savings on the addition of a blowdown flash tank and/or a recovery heat exchanger. Proposed systems can be engineered from the start with an eye to decreasing energy loss and saving money. In addition, the proper internal treatment is recommended along with appropriate products. Cost of energy lost in the blowdown is calculated based on different levels of blowdown heat recovery. Accurate calculations are readily available to make more intelligent decisions on the purchase of recovery equipment, rather than depending on very tedious, potentially inaccurate determinations by long hand.

Trace, W. L.

1981-01-01T23:59:59.000Z

8

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urinals Vary water cost, frequency of operation, and or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with...

9

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

10

Foodborne Illness Cost Calculator | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Foodborne Illness Cost Calculator Foodborne Illness Cost Calculator Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Foodborne Illness Cost Calculator Dataset Summary Description The calculator provides information on the assumptions behind foodborne illness cost estimates and gives you a chance to make your own assumptions and calculate your own cost estimates. This interactive web-based tool allows users to estimate the cost of illness due to specific foodborne pathogens. The updated ERS cost estimate for Shiga-toxin producing E. coli O157 (STEC O157) was added to the Calculator in spring, 2008. Calculator users can now review and change the assumptions behind the ERS cost estimates for either STEC O157 or Salmonella. The assumptions that can be modified include the annual number of cases, the distribution of cases by severity, the use or costs of medical care, the amount or value of time lost from work, the costs of premature death, and the disutility costs for nonfatal cases. Users can also update the cost estimate for inflation for any year from 1997 to 2007.

11

Users enlist consultants to calculate costs, savings  

SciTech Connect

Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)

1982-05-24T23:59:59.000Z

12

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faucets and Showerheads Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads October 8, 2013 - 2:35pm Addthis Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06 $/kWh 0.06 $/kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days per Year of Operation days 260 days 365 days Quantity to be Purchased unit(s) 1 unit 1 unit Calculate Reset

13

Energy Cost Calculator for Urinals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urinals Urinals Energy Cost Calculator for Urinals October 8, 2013 - 2:38pm Addthis Vary water cost, frequency of operation, and /or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with 10 years of life remaining for existing fixture. Input the following data (if any parameter is missing, calculator will set to default value). Defaults Water Saving Product Urinal Urinal Gallons per Flush gpf 1.0 gpf Quantity to be Purchased 1 Water Cost (including waste water charges) $/1000 gal $4/1000 gal Flushes per Day flushes 30 flushes Days per Year days 260 days Calculate Reset OUTPUT SECTION Performance per Your Choice Typical Existing Unit Recommended Level (New Unit) Best Available

14

Energy Department Report Calculates Emissions and Costs of Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power...

15

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on AddThis.com...

16

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ice Machines Ice Machines Energy Cost Calculator for Commercial Ice Machines October 8, 2013 - 2:25pm Addthis Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy Consumption (per 100 lbs. of ice) kWh 5.5 kWh Quantity of ice machines to be purchased 1 Energy Cost $/kWh 0.06 $/kWh Annual Hours of Operation hrs. 3000 hrs. Calculate Reset OUTPUT SECTION Performance per Ice Cube Machine Your

17

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Urinals to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Urinals on Facebook Tweet about Federal Energy Management Program: Energy Cost...

18

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Calculator for Air-Cooled Electric Chillers to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Air-Cooled Electric Chillers on...

19

Federal Energy Management Program: Energy Cost Calculator for Electric and  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

20

Calculating Cycling Wear and Tear Costs: Methodology and Data Requirements  

Science Conference Proceedings (OSTI)

This interim report describes development of a methodology and database that utilities can use to calculate unit-specific incremental costs for cycling operation of fossil-fueled power plants. The three-level approach will allow users to choose an easy-to-use solution based on a pure "top-down" approach of peer-unit average values, a modified top-down approach, or a detailed "bottom-up" approach based on equipment condition assessment and engineering analysis.

1997-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

22

Federal Energy Management Program: Energy Cost Calculator for Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Digg Find More places to share Federal Energy Management Program: Energy

23

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

2018 Levelized Costs AEO 2013 1 2018 Levelized Costs AEO 2013 1 January 2013 Levelized Cost of New Generation Resources in the Annual Energy Outlook 2013 This paper presents average levelized costs for generating technologies that are brought on line in 2018 1 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2013 (AEO2013) Early Release Reference case. 2 Both national values and the minimum and maximum values across the 22 U.S. regions of the NEMS electricity market module are presented. Levelized cost is often cited as a convenient summary measure of the overall competiveness of different generating technologies. It represents the per-kilowatthour cost (in real dollars) of building and operating a generating plant over an assumed financial life and duty cycle. Key

24

Energy and Cost Savings Calculators for Energy-Efficient Products  

Energy.gov (U.S. Department of Energy (DOE))

The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products....

25

Federal Energy Management Program: Energy Cost Calculator for Compact  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Fluorescent Lamps to someone by E-mail Compact Fluorescent Lamps to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

26

Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts  

DOE Green Energy (OSTI)

Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

Milligan, M.; Kirby, B.

2009-07-01T23:59:59.000Z

27

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Unitary Air Conditioner (Rooftops) to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Commercial Unitary Air Conditioner (Rooftops)...

28

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Faucets and Showerheads to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Faucets and Showerheads on Facebook Tweet about Federal Energy...

29

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

(RTUs). Learn more about the High Performance Rooftop Unit Challenge. To calculate the energy and money you could save with an efficient commercial air conditioner, use the cost...

30

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

31

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

Flexible Fuel vehicle cost calculator Flexible Fuel vehicle cost calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Flexible Fuel Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/progs/cost_anal.php?0/E85 Calculate the cost to drive a flex-fueled vehicle (one that can run on either E85 Ethanol or gasoline) on each fuel type.

32

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT SECTION Input the following data (if any parameter is missing,...

33

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compact Fluorescent Lamps Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps October 8, 2013 - 2:18pm Addthis This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 $/kWh Relamper labor costs $/hr Time taken to retrofit all lamps in this project min Time taken to relamp one lamp min Type of Relamping Practiced: Group Relamping: Calculate Simple Payback Period months

34

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

35

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

36

Federal Energy Management Program: Energy and Cost Savings Calculators for  

NLE Websites -- All DOE Office Websites (Extended Search)

and Cost Savings Calculators for Energy-Efficient Products and Cost Savings Calculators for Energy-Efficient Products The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download. Lighting Compact Fluorescent Lamps Exit Signs Commercial and Industrial Equipment Commercial Unitary Air Conditioners Air-Cooled Chillers Commercial Heat Pumps Boilers Food Service Equipment Dishwashers Freezers Fryers Griddles Hot Food Holding Cabinets Ovens Refrigerators Steam Cookers Ice Machines Office Equipment Computers, Monitors, and Imaging Equipment Appliances Dishwashers Clothes Washers Residential Equipment Central Air Conditioners

37

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

38

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

39

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

E-Print Network (OSTI)

hybrid incremental cost estimates were developed based onsizing . Final incremental cost estimates ranged from $1,786Energy Savings Estimates and Cost Benefit Calculations for

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

2003-01-01T23:59:59.000Z

40

Levelized Cost of New Generation Resources in the Annual Energy ...  

U.S. Energy Information Administration (EIA)

costs, the levelized cost ... 4 These results do not include targeted tax credits such as the production or investment tax credit available for some technologies.

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

1 1 July 2012 Short-Term Energy Outlook Highlights * EIA projects the West Texas Intermediate (WTI) crude oil spot price to average about $88 per barrel over the second half of 2012 and the U.S. refiner acquisition cost (RAC) of crude oil to average $93 per barrel, both about $7 per barrel lower than last month's Outlook. EIA expects WTI and RAC crude oil prices to remain roughly at these second half levels in 2013. Beginning in this month's Outlook, EIA is also providing a forecast of Brent crude oil spot prices (see Brent Crude Oil Spot Price Added to Forecast), which are expected to average $106 per barrel for 2012 and $98 per barrel in 2013. These price forecasts assume that world oil-consumption-weighted real gross domestic product

42

Estimating the Economic Cost of Sea-Level Rise  

E-Print Network (OSTI)

To improve the estimate of economic costs of future sea-level rise associated with global climate change,

Sugiyama, Masahiro.

43

Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006  

SciTech Connect

This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

George, K.; Schweizer, T.

2008-01-01T23:59:59.000Z

44

levelized cost of energy | OpenEI Community  

Open Energy Info (EERE)

levelized cost of energy levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

45

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

46

Figure 38. Levelized costs of nuclear electricity generation in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 38. Levelized costs of nuclear electricity generation in two cases, 2025 (2011 dollars per megawatthour) Reference Small Modular Reactor

47

EIA - Levelized Cost of New Generation Resources in the Annual ...  

U.S. Energy Information Administration (EIA)

Levelized Cost of New Generation Resources in the Annual Energy Outlook 2011. ... such as investment or production tax credits for specified generation sources, ...

48

Preliminary estimates of cost savings for defense high level waste vitrification options  

SciTech Connect

The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion.

Merrill, R.A.; Chapman, C.C.

1993-09-01T23:59:59.000Z

49

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 kWh Relamper labor costs hr Time taken to retrofit all lamps...

50

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-923 Frame Reduction Impact 1 Form EIA-923 Frame Reduction Impact 1 August 30, 2012 Form EIA-923 Frame Reduction Impact Schedule 2 of the Form EIA-923, "Power Plant Operations Report," collects the cost and quality of fossil fuel purchases made by electric power plants with at least 50 megawatts (MW) of nameplate capacity primarily fueled by fossil fuels. The proposal is to raise the threshold to 200 megawatts of nameplate capacity primarily fueled by natural gas, petroleum coke, distillate fuel oil, and residual fuel oil. This would result in reducing the Form EIA-923 overall annual burden by 2.2 percent. The threshold for coal plants will remain at 50 megawatts. Natural gas data collection on Schedule 2 will be reduced from approximately 970 to 603 plants

51

Recent Developments in the Levelized Cost of Energy from  

E-Print Network (OSTI)

1 Recent Developments in the Levelized Cost of Energy from U.S. Wind Power Projects Ryan Wiser This analysis was funded by the Wind & Water Power Program, Office of Energy Efficiency and Renewable Energy factor trends fails to convey recent improvements in the levelized cost of energy (LCOE) from wind

52

Cost calculation algorithm for stand-alone photovoltaic systems  

Science Conference Proceedings (OSTI)

Photovoltaics are the technology that generates direct current (DC) electrical power measured in watts or kilowatts from semiconductors when they are illuminated by photons. Photovoltaics are the technological symbol for a future sustainable energy supply ... Keywords: PV system design, life cycle cost, photovoltaic cell, present worth, software, unit energy cost

Irfan Gney; Nevzat Onat; Gkhan Koyi?it

2009-07-01T23:59:59.000Z

53

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

41000 gal 41000 gal Gas Cost therm 0.60 therm 0.60 therm Electricity Cost kWh 0.06 kWh 0.06 kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days...

54

Vehicle Cost Calculator Helps You Add Up the Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Cost Calculator Helps You Add Up the Savings Vehicle Cost Calculator Helps You Add Up the Savings Vehicle Cost Calculator Helps You Add Up the Savings October 27, 2011 - 11:01am Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis Shannon Brescher Shea Communications Manager, Clean Cities Program When most people go to the car dealership, they take a hard look at the vehicle's window sticker. But that initial price doesn't tell the whole story. By showing only the up-front cost, the sticker price leaves out

55

Vehicle Cost Calculator Helps You Add Up the Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Cost Calculator Helps You Add Up the Savings Vehicle Cost Calculator Helps You Add Up the Savings Vehicle Cost Calculator Helps You Add Up the Savings October 27, 2011 - 11:01am Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis Shannon Brescher Shea Communications Manager, Clean Cities Program When most people go to the car dealership, they take a hard look at the vehicle's window sticker. But that initial price doesn't tell the whole story. By showing only the up-front cost, the sticker price leaves out

56

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Energy Consumption Survey (RECS) End-Use Models FAQs 1 Residential Energy Consumption Survey (RECS) End-Use Models FAQs 1 February 2013 Residential Energy Consumption Survey (RECS) End-Use Models FAQs What is an end-use model? An end-use model is a set of equations designed to disaggregate a RECS sample household's total annual fuel consumption into end uses such as space heating, air conditioning, water heating, refrigeration, and so on. These disaggregated values are then weighted up to produce population estimates of total and average energy end uses at various levels of geography, by housing unit type, or other tabulations of interest. Why are end-use models needed? Information regarding how total energy is distributed across various end uses is critical to meeting future energy demand and improving efficiency and building design. Using submeters

57

Estimating the economic cost of sea-level rise  

E-Print Network (OSTI)

(cont.) In the case of a classical linear sea-level rise of one meter per century, the use of DIVA generally decreases the protection fraction of the coastline, and results in a smaller protection cost because of high ...

Sugiyama, Masahiro, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

58

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

59

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario  

SciTech Connect

In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

2004-10-06T23:59:59.000Z

60

Energy and Cost Savings Calculators for Energy-Efficient Products | Open  

Open Energy Info (EERE)

Energy and Cost Savings Calculators for Energy-Efficient Products Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for Energy-Efficient Products Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Evaluate Effectiveness and Revise as Needed Topics: Resource assessment Resource Type: Online calculator User Interface: Website Website: www1.eere.energy.gov/femp/technologies/eep_eccalculators.html Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Equivalent URI: cleanenergysolutions.org/content/energy-and-cost-savings-calculators-e Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The levelized cost of energy for distributed PV : a parametric study.  

Science Conference Proceedings (OSTI)

The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.

Goodrich, Alan C. (National Renewable Energy Laboratory); Cameron, Christopher P.

2010-06-01T23:59:59.000Z

62

Levelized cost of coating (LCOC) for selective absorber materials.  

SciTech Connect

A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

Ho, Clifford Kuofei; Pacheco, James Edward

2013-09-01T23:59:59.000Z

63

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

64

GEOCITY: a computer code for calculating costs of district heating using geothermal resources  

DOE Green Energy (OSTI)

GEOCITY is a computer simulation model developed to study the economics of district heating using geothermal energy. GEOCITY calculates the cost of district heating based on climate, population, resource characteristics, and financing conditions. The principal input variables are minimum temperature, heating degree days, population size and density, resource temperature and distance from load center, and the interest rate. From this input data the model designs the transmission and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system, including the production and disposal of the geothermal water. GEOCITY consists of two major submodels: the geothermal reservoir model and the distribution system model. The distribution system model calculates the cost of heat by simulating the design and the operation of the district heating system. The reservoir model calculates the cost of energy by simulating the discovery, development and operation of a geothermal resource and the transmission of this energy to a distribution center.

McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1977-02-01T23:59:59.000Z

65

A methodology framework for calculating the cost of e-government services  

Science Conference Proceedings (OSTI)

This paper proposes a structured framework for calculating the cost of e-Government services, based on the complementary application of the IDEF0 modelling tool and the Activity-Based Costing technique. The motivation for this research effort was derived ...

Elias A. Hadzilias

2005-03-01T23:59:59.000Z

66

Overview of Levelized Cost of Energy in the AEO  

U.S. Energy Information Administration (EIA) Indexed Site

Presented to the EIA Energy Conference Presented to the EIA Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering "unconventional" resources like wind and solar * EIA is developing a new framework to address the major weaknesses of LCOE analysis

67

Water-saving Measures: Energy and Cost Savings Calculator | Open Energy  

Open Energy Info (EERE)

Water-saving Measures: Energy and Cost Savings Calculator Water-saving Measures: Energy and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Water Focus Area: Energy Efficiency, Water Conservation Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.doe2.com/download/Water-Energy/ Country: United States Locality: California Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

ESS 2012 Peer Review - Estimation of Capital and Levelized Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost for 1 MW systems with various EP ratios Validated PNNL model using PNNL 1 kW, 1 kWh stack performance data Provided a roadmap for cost effective redox flow battery systems...

69

The Social-Cost Calculator (SCC): Documentation of Methods and Data, and Case Study of Sacramento  

E-Print Network (OSTI)

N. I. Tishchcishyna, Costs of Oil Dependence: A 2000 Update,costs Climate change costs Oil use costs Fuel costs sections on climate-change costs, oil-use external costs,

Delucchi, Mark

2005-01-01T23:59:59.000Z

70

THE SOCIAL-COST CALCULATOR (SCC): DOCUMENTATION OF METHODS AND DATA, AND CASE STUDY OF SACRAMENTO  

E-Print Network (OSTI)

N. I. Tishchcishyna, Costs of Oil Dependence: A 2000 Update,costs Climate change costs Oil use costs Fuel costs sections on climate-change costs, oil-use external costs,

Delucchi, Mark

2005-01-01T23:59:59.000Z

71

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

DOE Green Energy (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

72

PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION  

Science Conference Proceedings (OSTI)

In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

D.C. Richardson

2003-03-19T23:59:59.000Z

73

Analyzing the level of service and cost trade-offs in cold chain transportation  

E-Print Network (OSTI)

This thesis discusses the tradeoff between transportation cost and the level of service in cold chain transportation. Its purpose is to find the relationship between transportation cost and the level of service in cold ...

Liu, Saiqi

2009-01-01T23:59:59.000Z

74

Recent Developments in the Levelized Cost of Energy from U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Developments in the Levelized Cost of Energy from U.S. Wind Power Projects Title Recent Developments in the Levelized Cost of Energy from U.S. Wind Power Projects...

75

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

DOE Green Energy (OSTI)

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

76

Free energy calculations using dual-level Born-Oppenheimer molecular dynamics  

Science Conference Proceedings (OSTI)

We describe an efficient and accurate method to compute free energy changes in complex chemical systems that cannot be described through classical molecular dynamics simulations, examples of which are chemical and photochemical reactions in solution, enzymes, interfaces, etc. It is based on the use of dual-level Born-Oppenheimer molecular dynamics simulations. A low-level quantum mechanical method is employed to calculate the potential of mean force through the umbrella sampling technique. Then, a high-level quantum mechanical method is used to estimate a free energy correction on selected points of the reaction coordinate using perturbation theory. The precision of the results is comparable to that of ab initio molecular dynamics methods such as the Car-Parrinello approach but the computational cost is much lower, roughly by two to three orders of magnitude. The method is illustrated by discussing the association free energy of simple organometallic compounds, although the field of application is very broad.

Retegan, Marius; Martins-Costa, Marilia; Ruiz-Lopez, Manuel F. [Theoretical Chemistry and Biochemistry Group, SRSMC, CNRS, Nancy-University, BP 70239, 54506 Vandoeuvre-les-Nancy (France)

2010-08-14T23:59:59.000Z

77

The Social-Cost Calculator (SCC): Documentation of Methods and Data, and Case Study of Sacramento  

E-Print Network (OSTI)

social costs and external costs for different transportationestimating social and external costs of transportation, thetransportation plans, I have developed an Excel Workbook, called the Social Cost

Delucchi, Mark

2005-01-01T23:59:59.000Z

78

THE SOCIAL-COST CALCULATOR (SCC): DOCUMENTATION OF METHODS AND DATA, AND CASE STUDY OF SACRAMENTO  

E-Print Network (OSTI)

social costs and external costs for different transportationestimating social and external costs of transportation, thetransportation plans, I have developed an Excel Workbook, called the Social Cost

Delucchi, Mark

2005-01-01T23:59:59.000Z

79

Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings  

SciTech Connect

This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity criteria, is described in Shonder and Florita (2003) and Shonder and Hughes (2005). To address the first objective of the Level 2 analysis, we first assembled all the necessary information, and then repeated the ESCOs' calculations of reported annual cost savings. Only minor errors were encountered, the most common being the use of incorrect escalation rates to calculate utility prices or O&M savings. Altogether, our corrected calculations of the ESCO's reported cost savings were within 0.6% of the ESCOs' reported cost savings, and errors found were as likely to favor the government as they were the ESCO. To address the second objective, we gathered data on utility use and cost from central databases maintained by the Department of Defense and the General Services Administration, and directly from some of the sites, to determine the prices of natural gas and electricity actually paid at the sites during the periods addressed by the annual reports. We used these data to compare the actual utility costs at the sites to the contract utility prices. For natural gas, as expected, we found that prices had risen much faster than had been anticipated in the contracts. In 17 of the 18 projects for which the comparison was possible, contract gas prices were found to be lower than the average actual prices being paid. We conclude that overall in the program, the estimates of gas prices and gas price escalation rates used in the Super ESPC projects have been conservative. For electricity, it was possible to compare contract prices with the actual (estimated) marginal prices of electricity in 20 projects. In 14 of these projects, the overall contract electricity price was found to be lower than the marginal price of electricity paid to the serving utility. Thus it appears that conservative estimates of electricity prices and escalation rates have been used in the program as well. Finally we calculated the value of the reported energy savings using the prices of utilities actually paid by the sites instead of the contract

Shonder, John A [ORNL; Hughes, Patrick [ORNL

2009-04-01T23:59:59.000Z

80

Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings  

SciTech Connect

This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity criteria, is described in Shonder and Florita (2003) and Shonder and Hughes (2005). To address the first objective of the Level 2 analysis, we first assembled all the necessary information, and then repeated the ESCOs' calculations of reported annual cost savings. Only minor errors were encountered, the most common being the use of incorrect escalation rates to calculate utility prices or O&M savings. Altogether, our corrected calculations of the ESCO's reported cost savings were within 0.6% of the ESCOs' reported cost savings, and errors found were as likely to favor the government as they were the ESCO. To address the second objective, we gathered data on utility use and cost from central databases maintained by the Department of Defense and the General Services Administration, and directly from some of the sites, to determine the prices of natural gas and electricity actually paid at the sites during the periods addressed by the annual reports. We used these data to compare the actual utility costs at the sites to the contract utility prices. For natural gas, as expected, we found that prices had risen much faster than had been anticipated in the contracts. In 17 of the 18 projects for which the comparison was possible, contract gas prices were found to be lower than the average actual prices being paid. We conclude that overall in the program, the estimates of gas prices and gas price escalation rates used in the Super ESPC projects have been conservative. For electricity, it was possible to compare contract prices with the actual (estimated) marginal prices of electricity in 20 projects. In 14 of these projects, the overall contract electricity price was found to be lower than the marginal price of electricity paid to the serving utility. Thus it appears that conservative estimates of electricity prices and escalation rates have been used in the program as well. Finally we calculated the value of the reported energy savings using the prices of utilities actually paid by the sites instead of the contract prices. In 16 of the 22 projects (

Shonder, John A [ORNL; Hughes, Patrick [ORNL

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atomic Level Calculations of Spall and Phase Transformations  

Science Conference Proceedings (OSTI)

Age Hardening and It's Effects on the Shock Response of Materials Alpha/ Omega Orientation Relationships and Habit Planes in Shocked Zr Atomic Level ...

82

Facilities and Administration (F&A) cost is another term used for indirect cost. F&A/Indirect cost are calculated based on the direct expenditures of sponsored projects.  

E-Print Network (OSTI)

are calculated based on the direct expenditures of sponsored projects. F&A/Indirect cost can not be readily. These costs are "real" though they can not be associated with a specific project. Examples of F and departmental administration. Penn will apply the appropriate F&A rate to the direct cost of the project based

Bushman, Frederic

83

Recent Developments in the Levelized Cost of Energy from U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Developments in the Levelized Cost of Energy from U.S. Wind Power Projects Ryan Wiser, Lawrence Berkeley National Laboratory Eric Lantz, National Renewable Energy Laboratory...

84

NREL: News - NREL Calculates Emissions and Costs of Power Plant Cycling  

NLE Websites -- All DOE Office Websites (Extended Search)

013 013 NREL Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 New research from the Energy Department's National Renewable Energy Laboratory (NREL) quantifies the potential impacts of increasing wind and solar power generation on the operators of fossil-fueled power plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. The study finds that the carbon emissions induced by more frequent cycling are negligible (<0.2%) compared with the carbon reductions achieved through the wind and solar power generation evaluated in the study. Sulfur dioxide

85

Comparative analysis of energy costing methodologies. Appendix: report on levelized busbar-costing workshop held at MITRE/Metrek, June 29-30, 1978  

DOE Green Energy (OSTI)

The proceedings of a workshop on levelized busbar costing methodologies which was held at MITRE/Metrek on June 29 and 30, 1978 are described. Particular emphasis was placed on consideration of geothermal energy sources. The objective of the workshop was to determine whether a consensus could be developed regarding the most appropriate methodologies and assumptions for levelized energy costing. The workshop was attended by representatives from energy resource, utility and engineering design companies, and by representatives of the Division of Geothermal Energy and R and D contractors for this Division. It was found that year-by-year calculations in current dollars were generally preferred, using either Discounted Cash Flow or Revenue Requirements methods. No consensus emerged on choice of discount rate or financial parameters such as debt/equity ratio, and tax credit carry forward/carry back provisions. It was felt that engineering aspects deserve close attention.

Leigh, J.G.

1979-02-01T23:59:59.000Z

86

THE SOCIAL-COST CALCULATOR (SCC): DOCUMENTATION OF METHODS AND DATA, AND CASE STUDY OF SACRAMENTO  

E-Print Network (OSTI)

and ICEV energy-use and lifecycle-cost model (8 pp. ) (M. A.and N. I. Tishchcishyna, Costs of Oil Dependence: A 2000An Assessment of Benefits and Costs, ORNL-6851, Oak Ridge

Delucchi, Mark

2005-01-01T23:59:59.000Z

87

The Social-Cost Calculator (SCC): Documentation of Methods and Data, and Case Study of Sacramento  

E-Print Network (OSTI)

and ICEV energy-use and lifecycle-cost model (8 pp. ) (M. A.and N. I. Tishchcishyna, Costs of Oil Dependence: A 2000An Assessment of Benefits and Costs, ORNL-6851, Oak Ridge

Delucchi, Mark

2005-01-01T23:59:59.000Z

88

High Speed Trains for California (Volume II: Detailed Segment Descriptions, Cost Estimates, and Travel Time Calculations)  

E-Print Network (OSTI)

~ o~ CalSpeed:Capital Cost Estimates OAKLAND-RICHMOND (SP r/minutes). CalSpeed:Capital Cost Estimates HERCULES-FAIRFIELDCalSpeed:Capital Cost Estimates GRAPEVINE:5.0% ALTERNATIVE

Hall, Peter; Leavitt, Dan; Vaca, Erin

1992-01-01T23:59:59.000Z

89

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

Science Conference Proceedings (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

90

Production Cost Modeling for High Levels of Photovoltaics Penetration  

DOE Green Energy (OSTI)

The goal of this report is to evaluate the likely avoided generation, fuels, and emissions resulting from photovoltaics (PV) deployment in several U.S. locations and identify new tools, methods, and analysis to improve understanding of PV impacts at the grid level.

Denholm, P.; Margolis, R.; Milford, J.

2008-02-01T23:59:59.000Z

91

Download Data | Transparent Cost Database  

Open Energy Info (EERE)

in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a...

92

Low-Cost Options for Moderate Levels of Mercury Control  

Science Conference Proceedings (OSTI)

This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

Sharon Sjostrom

2008-02-09T23:59:59.000Z

93

Pros, cons of techniques used to calculate oil, gas finding costs  

SciTech Connect

A major problem facing the U.S. petroleum industry is the higher average finding costs that now exist within the U.S. compared with the average finding costs outside the U.S. It has been argued that federal lands and offshore areas need to be open for drilling in order to reduce average finding costs in the U.S. This article analyzes the strengths and weaknesses of conventional techniques for determining finding costs. Our goal is a finding costs measure that is a reliable indicator of future profitability.

Gaddis, D.; Brock, H.; Boynton, C. (Inst. of Petroleum Accounting, Denton, TX (US))

1992-06-01T23:59:59.000Z

94

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

95

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

96

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

97

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

98

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

99

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU TA

2009-10-26T23:59:59.000Z

100

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU, T.A.

2005-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU, T.A.

2004-10-27T23:59:59.000Z

102

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network (OSTI)

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied. Because there is a lack of empirical evidence documenting the performance of these systems, this paper uses electric consumption data collected from buildings before and after retrofits were performed, and analyzes the cost and consumption savings achieved through installation of Bi-Level Lighting systems. The results of this report demonstrate that common areas that are currently not making use of Bi-Level lighting systems would achieve significant financial and environmental benefits from Bi-Level focused retrofits. This project concludes that building codes should be updated to reflect improvements in Bi-Level Lighting technologies, and that government-sponsored energy efficiency programs should explicitly encourage or mandate Bi-Level Lighting installation components of subsidized retrofit projects.

Ackley, J.

2010-01-01T23:59:59.000Z

103

Fission Cross Section Calculation Using TALYS Based on Two Different Level Density Models  

Science Conference Proceedings (OSTI)

Fission cross sections in statistical model of fission are calculated using one of important parameter such as transmission coefficients. This parameter calculated using optical model parameter and level density. There are several models of level density that can be used to predict fission cross section. They are Constant Temperature Model, Fermi Gas Model, Back-Shifted Fermi Gas Model, and Generalized Superfluid Model. In this work, fission cross section would be calculated using two different model of level density, such as Constant Temperature Model Plus Fermi Gas and Generalized Superfluid Model on Th-232 (n,f) fission reaction. Calculation result from two different model then would be compared with experimental data from ENDF B/VI. Analysis of result would lead to the conclusion of spesific characteristic for each model in every fission cases. This work has became a preliminary study to calculate fission cross section using different set of level density models. Further work will be implemented to calculate similar fission cross section using level density parameter that approximated by Thermal wavelength [see 21].

Kurniadi, R.; Basar, K.; Waris, A. [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Perkasa, Yudha S. [Department of Physics, Jl. Ganesa 10 Bandung 40132 (Indonesia); Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

2010-06-22T23:59:59.000Z

104

Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity  

E-Print Network (OSTI)

We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

Parsons, John E.

105

Calculation of wake power losses in a two-level array: a simple case study  

DOE Green Energy (OSTI)

One method of adding capacity is to install another array of turbines whose hub height is above the existing array. This report estimates the wake interference that could be expected in a two-level array. Interference is estimated for a typical situation that may be encountered by a wind farm developer. A modified Lissaman array model is used to make the wake interference calculations. The model calculations show that the wake interference between the two levels is small for the turbine characteristics and turbine layouts considered. (The windwise spacings are about 5.4 and 10.8D for the lower and upper levels of turbines, respectively.) Power losses are about 5% or less at rated speed. Thus, two-level arrays may be a viable way of increasing the generating capacity of existing wind farms.

Barnard, J.C.

1985-12-01T23:59:59.000Z

106

Pulse superimposition calculational methodology for estimating the subcritcality level of nuclear fuel assemblies.  

Science Conference Proceedings (OSTI)

One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.

Talamo, A.; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. (Nuclear Engineering Division); (INL); (Joint Institute for Power and Nuclear Research-Sosny)

2009-05-01T23:59:59.000Z

107

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

SciTech Connect

This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 California climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, Wlliam J.

2003-12-01T23:59:59.000Z

108

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. Hydrogen generation rate was calculated for 177 tanks using rate equation model. Ammonia liquid/vapor equilibrium model is incorporated into the methodology for ammonia analysis.

HU, T.A.

2001-02-23T23:59:59.000Z

109

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

DOE Green Energy (OSTI)

This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

HU, T.A.

2000-04-27T23:59:59.000Z

110

Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels  

SciTech Connect

This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

1994-11-01T23:59:59.000Z

111

SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS  

Science Conference Proceedings (OSTI)

An opacity model (OPAS) combining detailed configuration and level accounting treatments has been developed to calculate radiative opacity of plasmas in local thermodynamic equilibrium. The model is presented and used to compute spectral opacities of a solar mixture. Various density-temperature couples have been considered from the solar center up to the vicinity of the radiative/convective zone interface. For a given solar thermodynamic path, OPAS calculations are compared to Opacity Project (OP) and OPAL data. Rosseland mean opacity values are in very good agreement over all the considered solar thermodynamic path, while OPAS and OP spectral opacities of each element may vary considerably. Main sources of discrepancy are discussed.

Blancard, Christophe; Cosse, Philippe; Faussurier, Gerald [CEA, DAM, DIF, F-91297 Arpajon (France)

2012-01-20T23:59:59.000Z

112

Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 October 2009 Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables Karlynn Cory and Paul Schwabe National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46671 October 2009 Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables Karlynn Cory and Paul Schwabe Prepared under Task No. WER9.3550 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

113

Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2  

DOE Green Energy (OSTI)

Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

Ramsden, T.; Steward, D.; Zuboy, J.

2009-09-01T23:59:59.000Z

114

Cost-effectiveness of recommended nurse staffing levels for short-stay skilled nursing facility patients  

E-Print Network (OSTI)

Anonymous: Employer Costs for Employee Compensation--BioMed Central Open Access Cost-effectiveness of recommendeddiagnoses. However, the cost-effectiveness of increasing

Ganz, David A; Simmons, Sandra F; Schnelle, John F

2005-01-01T23:59:59.000Z

115

Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables  

DOE Green Energy (OSTI)

The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

Cory, K.; Schwabe, P.

2009-10-01T23:59:59.000Z

116

S-matrix Calculations of Energy Levels of the Lithium Isoelectronic Sequence  

Science Conference Proceedings (OSTI)

A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p{sub 1/2} and 2p{sub 3/2} energy levels as well as the 2s - 2p{sub 1/2} and 2s - 2p{sub 3/2} transition energies for Z = 10 - 100 is presented.

sapirstein, J; Cheng, K T

2010-11-02T23:59:59.000Z

117

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

118

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

119

ESS 2012 Peer Review - Estimation of Capital and Levelized Cost for Redox Flow Batteries - Vilayanur Viswanathan, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimation of Capital and Levelized Estimation of Capital and Levelized Cost for Redox Flow Batteries V. Viswanathan, A. Crawford, L. Thaller 1 , D. Stephenson, S. Kim, W. Wang, G. Coffey, P. Balducci, Z. Gary Yang 2 , Liyu Li 2 , M. Kintner-Meyer, V. Sprenkle 1 Consultant 2 UniEnergy Technology September 28, 2012 USDOE-OE ESS Peer Review Washington, DC Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability 1 What are we trying to accomplish? PNNL grid analytics team has established ESS cost targets for various applications PNNL cost/performance model estimates cost for redox flow battery systems of various chemistries drives research internally to focus on most important components/parameters/metrics for cost reduction and performance improvement

120

Cost of stockouts in the microprocessor business and its impact in determining the optimal service level/  

E-Print Network (OSTI)

In order to develop optimal inventory policies, it is essential to know the consequences of stockouts and the costs related to each kind of stockout; at Intel, however, such costs have not yet been quantified. The primary ...

Sonnet, Maria Claudia

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Steady State Flammable Gas Release Rate Calculation & Lower Flammability Level Evaluation for Hanford Tank Waste [SEC 1 & 2  

DOE Green Energy (OSTI)

Assess the steady state level at normal & off-normal ventilation conditions. Hydrogen generation rate calculated for 177 tanks using rate equation model. Flammability calc. based on hydrogen, ammonia, & methane proformed for tanks at various scenarios.

HU, T.A.

2002-06-20T23:59:59.000Z

122

Methods of calculating the post-closure performance of high-level waste repositories  

Science Conference Proceedings (OSTI)

This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

Ross, B. (ed.)

1989-02-01T23:59:59.000Z

123

Cost estimating method of industrial product implemented in WinCOST software system  

Science Conference Proceedings (OSTI)

The paper presents a method for estimating the cost of industrial products and its implementation into a software system named WinCOST. The software is used for calculating the manufacturing time and cost evaluation of industrial products with high level ... Keywords: chip removing process, cold forming processes, cost estimation, cost per hour, software system

Gheorghe Oancea; Lucia Antoneta Chicos; Camil Lancea

2010-07-01T23:59:59.000Z

124

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

Science Conference Proceedings (OSTI)

This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

MEACHAM JE

2009-10-26T23:59:59.000Z

125

Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM  

Science Conference Proceedings (OSTI)

This paper examines the tradeoffs between computational cost and accuracy for two new state-of-the-art codes for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel implementation of the Spherical ...

Robert Pincus; K. Franklin Evans

2009-10-01T23:59:59.000Z

126

Use of the Inertial Dissipation Method for Calculating Turbulent Fluxes from Low-Level Airborne Measurements  

Science Conference Proceedings (OSTI)

Airborne measurements are currently used for computing turbulence fluxes of heat and momentum. The method generally used is the eddy correlation technique, which requires sophisticated equipments to calculate the absolute velocities of the air. ...

Pierre Durand; Leonardo De Sa; Aim Druilhet; Frdrique Said

1991-02-01T23:59:59.000Z

127

STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

HU TA

2007-10-26T23:59:59.000Z

128

Chapter 3 Appendices 1 Appendix 3A: Levelized Cost of Electricity and  

E-Print Network (OSTI)

on the costs of coal, capital, and labor in Table 3A.1, natural gas with CCS becomes economic at the prices of higher than 100$/ tCO2 for a range $2­6$/MMBtu natural gas prices. At the higher natural gas prices, coal-Cost Generation Technology Zones for Coal and Natural Gas with and without CCS for Different Natural Gas Prices

Reuter, Martin

129

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

130

A Scalable Methodology for Cost Estimation in a Transformational High-Level Design Space Exploration Environment  

E-Print Network (OSTI)

Objective of the methodology presented in this paper is to perform design space exploration on a high level of abstraction by applying high-level transformations. To realize a design loop which is close and settled on upper design levels, a high-level estimation step is integrated. In this paper, several estimation methodologies fixed on different states of the high-level synthesis process are examined with respect to their aptitude on controlling the transformational design space exploration process.

Gerlach

1998-01-01T23:59:59.000Z

131

Apples and oranges: don't compare levelized cost of renewables: Joskow  

SciTech Connect

MIT Prof. Paul Joskow points out that the levelized metric is inappropriate for comparing intermittent generating technologies like wind and solar with dispatchable generating technologies like nuclear, gas combined cycle, and coal. The levelized comparison fails to take into account differences in the production profiles of intermittent and dispatchable generating technologies and the associated large variations in the market value of the electricity they supply. When the electricity is produced by an intermittent generating technology, the level of output and the value of the electricity at the times when the output is produced are key variables that should be taken into account.

NONE

2010-12-15T23:59:59.000Z

132

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

penetration (Giebel 2005). Wind integration costs represent2005. Large Scale Integration of Wind Energy in the Europeanincreases in wind costs; Transmission and integration costs

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

133

Cost-Effective Methods for Accurate Determination of Sea Level Rise Vulnerability: A Solomon Islands Example  

Science Conference Proceedings (OSTI)

For millions of people living along the coastal fringe, sea level rise is perhaps the greatest threat to livelihoods over the coming century. With the refinement and downscaling of global climate models and increasing availability of airborne-...

Simon Albert; Kirsten Abernethy; Badin Gibbes; Alistair Grinham; Nixon Tooler; Shankar Aswani

2013-10-01T23:59:59.000Z

134

Cost-Effective Methods for Accurate Determination of Sea Level Rise Vulnerability: A Solomon Islands Example  

Science Conference Proceedings (OSTI)

For millions of people living along the coastal fringe, sea level rise is perhaps the greatest threat to livelihoods over the coming century. With the refinement and downscaling of global climate models and increasing availability of airborne ...

Simon Albert; Kirsten Abernethy; Badin Gibbes; Alistair Grinham; Nixon Tooler; Shankar Aswani

135

Coal-fired power-plant-capital-cost estimates. Final report. [Mid-1978 price level; 13 different sites  

Science Conference Proceedings (OSTI)

Conceptual designs and order-of-magnitude capital cost estimates have been prepared for typical 1000-MW coal-fired power plants. These subcritical plants will provide high efficiency in base load operation without excessive efficiency loss in cycling operation. In addition, an alternative supercritical design and a cost estimate were developed for each of the plants for maximum efficiency at 80 to 100% of design capacity. The power plants will be located in 13 representative regions of the United States and will be fueled by coal typically available in each region. In two locations, alternate coals are available and plants have been designed and estimated for both coals resulting in a total of 15 power plants. The capital cost estimates are at mid-1978 price level with no escalation and are based on the contractor's current construction projects. Conservative estimating parameters have been used to ensure their suitability as planning tools for utility companies. A flue gas desulfurization (FGD) system has been included for each plant to reflect the requirements of the promulgated New Source Performance Standards (NSPS) for sulfur dioxide (SO/sub 2/) emissions. The estimated costs of the FGD facilities range from 74 to 169 $/kW depending on the coal characteristics and the location of the plant. The estimated total capital requirements for twin 500-MW units vary from 8088 $/kW for a southeastern plant burning bituminous Kentucky coal to 990 $/kW for a remote western plant burning subbituminous Wyoming coal.

Holstein, R.A.

1981-05-01T23:59:59.000Z

136

Weighing the Costs and Benefits of Renewables Portfolio Standards:A Comparative Analysis of State-Level Policy Impact Projections  

SciTech Connect

State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. Collectively, these policies now apply to roughly 40% of U.S. electricity load, and may have substantial impacts on electricity markets, ratepayers, and local economies. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on projecting cost impacts, but sometimes also estimating macroeconomic and environmental effects. This report synthesizes and analyzes the results and methodologies of 28 distinct state or utility-level RPS cost impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 18 different states. We highlight the key findings of these studies on the costs and benefits of RPS policies, examine the sensitivity of projected costs to model assumptions, assess the attributes of different modeling approaches, and suggest possible areas of improvement for future RPS analysis.

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-16T23:59:59.000Z

137

LIFE Cost of Electricity, Capital and Operating Costs  

Science Conference Proceedings (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

138

Electronic structure and the local electroneutrality level of SiC polytypes from quasiparticle calculations within the GW approximation  

SciTech Connect

The most important interband transitions and the local charge neutrality level (CNL) in silicon carbide polytypes 3C-SiC and nH-SiC (n = 2-8) are calculated using the GW approximation for the self energy of quasiparticles. The calculated values of band gap E{sub g} for various polytypes fall in the range 2.38 eV (3C-SiC)-3.33 eV (2H-SiC) and are very close to the experimental data (2.42-3.33 eV). The quasiparticle corrections to E{sub g} determined by DFT-LDA calculations (about 1.1 eV) are almost independent of the crystal structure of a polytype. The positions of CNL in various polytypes are found to be almost the same, and the change in CNL correlates weakly with the change in E{sub g}, which increases with the hexagonality of SiC. The calculated value of CNL varies from 1.74 eV in polytype 3C-SiC to 1.81 eV in 4H-SiC.

Brudnyi, V. N., E-mail: brudnyi@mail.tsu.ru [Tomsk State University (Russian Federation); Kosobutsky, A. V. [Kemerovo State University (Russian Federation)

2012-06-15T23:59:59.000Z

139

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2  

DOE Green Energy (OSTI)

Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

HU, T.A.

2003-09-30T23:59:59.000Z

140

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

45 7.3 Renewable Energy Costand future renewable energy costs, while less volatile thanResource Data Renewable Energy Cost Characterization

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

Energy Busbar Cost Data 47 Windanalysis. energy (wind, in particular), as well as the costwind capital cost estimates from EPRI/DOE Renewable Energy

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

142

My Trip Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator Trip Calculator Benefits Why is fuel economy important? Climate Change Oil Dependence Costs Sustainability Save Money Vehicles produce about half of the...

143

Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity .  

E-Print Network (OSTI)

??The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to (more)

Kang, Moon Hee

2013-01-01T23:59:59.000Z

144

Environmental benefits and cost savings through market-based instruments : an application using state-level data from India  

E-Print Network (OSTI)

This paper develops a methodology for estimating potential cost savings from the use of market-based instruments (MBIs) when local emissions and abatement cost data are not available. The paper provides estimates of the ...

Gupta, Shreekant

2002-01-01T23:59:59.000Z

145

Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}  

SciTech Connect

Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

2011-08-15T23:59:59.000Z

146

Level  

E-Print Network (OSTI)

7 at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip Advanced Computer Science 120 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) Credit

Programme Csad

2007-01-01T23:59:59.000Z

147

Level  

E-Print Network (OSTI)

7 at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip Computer Science 120 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) Credit

unknown authors

2006-01-01T23:59:59.000Z

148

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26T23:59:59.000Z

149

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

on Average Retail Electricity Rates.. 14Projected RPS Electricity Rate Impacts by RPS CostRPS Targets and Retail Electricity Rate Impacts 16 Typical

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

150

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

An Overview of Alternative Fossil Fuel Price and Carbonof renewable technology cost, fossil fuel price uncertainty,energy, including the fossil fuel hedge value of renewable

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

151

Levelized life-cycle costs for four residue-collection systems and four gas-production systems  

DOE Green Energy (OSTI)

Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

1983-01-01T23:59:59.000Z

152

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

153

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

versus out-of-state renewable energy project development andbarriers to renewable energy in many states, but these costsPV technology or renewable energy generated in-state. For an

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

154

Level  

E-Print Network (OSTI)

7 180 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip in Advanced Computer Science with

Programme Csci

2010-01-01T23:59:59.000Z

155

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

and future renewable energy costs, while less volatile thandifference between renewable energy costs and the cost ofto be the least-cost renewable energy source and, as noted

Chen, Cliff

2009-01-01T23:59:59.000Z

156

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

Science Conference Proceedings (OSTI)

State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on cost impacts, but sometimes also estimating macroeconomic, risk reduction, and environmental effects. This article synthesizes and analyzes the results and methodologies of 31 distinct state or utility-level RPS cost-impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 20 different states. We highlight the key findings of these studies on the projected costs of state RPS policies, examine the sensitivity of projected costs to model assumptions, evaluate the reasonableness of key input assumptions, and suggest possible areas of improvement for future RPS analyses. We conclude that while there is considerable uncertainty in the study results, the majority of the studies project modest cost impacts. Seventy percent of the state RPS cost studies project retail electricity rate increases of no greater than one percent. Nonetheless, there is considerable room for improving the analytic methods, and therefore accuracy, of these estimates.

Chen, Cliff; Wiser, Ryan; Mills, Andrew; Bolinger, Mark

2008-01-07T23:59:59.000Z

157

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

estimates that electricity rates in the state could increaseelectricity consumption data and retail rates for each state,state in 2003 Average retail rate in EMM region in 2003 Specific calculation steps to arrive at percentage changes in electricity

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

158

Federal Energy Management Program: Energy Savings Calculator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only) This cost calculator is a screening tool that estimates a product's lifetime energy cost...

159

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

160

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Report on Waste Burial Charges Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities  

E-Print Network (OSTI)

was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for any third partys use or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the U.S. Nuclear Regulatory Commission. NUREG-1307, Revision 13, is not a substitute for NRC regulations, and compliance is not required. The approaches and/or methods described in this NUREG are provided for information only. Publication of this report does not necessarily A requirement placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is that licensees must annually adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is revised periodically, explains the formula that is acceptable to the NRC for determining the minimum decommissioning fund requirements for nuclear power plants. The sources of information used in the formula are identified, and the values developed for the estimation of radioactive waste burial/disposition costs, by site and by year, are given. Licensees may use the formula, coefficients, and burial/disposition adjustment factors from this report in their cost analyses,

unknown authors

2008-01-01T23:59:59.000Z

162

A method for calculation of margins to voltage instability applied on the Norwegian system for maintaining required security level  

SciTech Connect

The paper describes a method for calculating margins to voltage instability. The method is based on sensitivity techniques. The measure to voltage instability can be given in terms of MW, MVAr or MVA depending on the components in the increase in load. The extensions to earlier publications of the method are the ability to increase the load and generation simultaneously on several buses without increasing the computation time. A single forward and backward substitution is sufficient to find the required sensitivities when the load is increased. The productions of the plant can be increased either by a specified profile or by using the turbine droop characteristics. A method for identification of contingencies needing an explicit reserve evaluation is briefly described.

Flataboe, N.; Fosso, O.B.; Ognedal, R.; Carlsen, T.; Heggland, K.R.

1993-08-01T23:59:59.000Z

163

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

164

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

2005. Large Scale Integration of Wind Energy in the Europeanincreases in wind costs; Transmission and integration costs

Chen, Cliff

2009-01-01T23:59:59.000Z

165

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

Cost Study Report II. Albany, New York: New York DepartmentOrder Cost Analysis. Albany, New York: New York Public

Chen, Cliff

2009-01-01T23:59:59.000Z

166

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

167

Refinement of the experimental energy levels of higher {sup 2}D Rydberg states of the lithium atom with very accurate quantum mechanical calculations  

SciTech Connect

Very accurate variational non-relativistic calculations are performed for four higher Rydberg {sup 2}D states (1s{sup 2}nd{sup 1}, n= 8, ..., 11) of the lithium atom ({sup 7}Li). The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions and finite nuclear mass is used. The exponential parameters of the Gaussians are optimized using the variational method with the aid of the analytical energy gradient determined with respect to those parameters. The results of the calculations allow for refining the experimental energy levels determined with respect to the {sup 2}S 1s{sup 2}2s{sup 1} ground state.

Sharkey, Keeper L. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Bubin, Sergiy [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Adamowicz, Ludwik [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States)

2011-05-21T23:59:59.000Z

168

Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

PM Daling; SB Ross; BM Biwer

1999-12-17T23:59:59.000Z

169

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

Cost Assumptions Wind power is often found to be the least-cost renewable energycost studies. The capacity value of renewable energy (wind,wind costs persist. Natural Gas Price Forecasts The difference between renewable energy

Chen, Cliff

2009-01-01T23:59:59.000Z

170

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

171

Prediction and prevention of silica scaling at low levels of oversaturation: Case studies, and calculations for Uenotai Geothermal Field, Akita Prefecture, Japan  

DOE Green Energy (OSTI)

Production system design studies often include site-specific silica scaling field experiments, conducted because the onset and rate of scaling are believed difficult to predict, particularly at relatively low levels of oversaturation such as may exist in separators, flowlines, and injection wells. However, observed scaling occurrences (Cerro Prieto, Dixie Valley, Svartsengi, Otake, Hatchobaru, Milos, experimental work) actually conform fairly well to existing theory and rate equations. It should be possible to predict low level scaling with sufficient confidence for production and injection system design and, in cases where oversaturation is allowed, to design systems with foresight to suppress or manage the scale which develops. A promising suppression technology is fluid pH reduction by mixing with non-condensible gases and/or condensate. Calculations for injection lines at Uenotai geothermal field indicate molecular deposition at rates of 0.1 to 1 mm/yr, and some potential for particle deposition at points of turbulence, which can be suppressed by an order of magnitude with about 500 ppm CO{sub 2}. Further improvements of predictive technique will benefit from more uniformity in designing experiments, reporting results, and reporting measurements of scaling in actual production systems.

Klein, Christopher W.; Iwata, Shun; Takeuchi, Rituo; Naka, Tohsaku

1991-01-01T23:59:59.000Z

172

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

173

A Modeling Study of Atmospheric Transport and Photochemistry in the Mixed Layer during Anticyclonic Episodes in Europe. Part II. Calculations of Photo-Oxidant Levels along Air Trajectories  

Science Conference Proceedings (OSTI)

A computer model for photochemical oxidant formation in the atmospheric boundary layer has been used to calculate trends in ozone formation in air masses traveling across Europe. Ozone calculations were made for some actual summertime ...

K. Selby

1987-10-01T23:59:59.000Z

174

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

cost studies project retail electricity rate increases of nochanges in retail electricity rates, and (2) monthlydeployment on retail electricity rates and bills. Direct

Chen, Cliff

2009-01-01T23:59:59.000Z

175

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

rates, and (2) monthly electricity bill impacts for a typical residentialElectricity Rate Impacts by RPS Cost Study Study - Incremental RPS Target % Figure 6. Typical Residential

Chen, Cliff

2009-01-01T23:59:59.000Z

176

Transition-cost issues for a restructuring US electricity industry  

Science Conference Proceedings (OSTI)

Utilities regulators can use a variety of approaches to calculate transition costs. We categorized these approaches along three dimensions. The first dimension is the use of administrative vs. market procedures to value the assets in question. Administrative approaches use analytical techniques to estimate transition costs. Market valuation relies on the purchase price of particular assets to determine their market values. The second dimension concerns when the valuation is done, either before or after the restructuring of the electricity industry. The third dimension concerns the level of detail involved in the valuation, what is often called top-down vs. bottom-up valuation. This paper discusses estimation approaches, criteria to assess estimation methods, specific approaches to estimating transition costs, factors that affect transition-cost estimates, strategies to address transition costs, who should pay transition costs, and the integration of cost recovery with competitive markets.

NONE

1997-03-01T23:59:59.000Z

177

Costs in the Norwegian Payment System  

E-Print Network (OSTI)

We calculate social and private cost for the use and production of payment services in Norway for 2007. The calculations include banks, merchants and households cost for cash, cards and giro payments. The social cost is calculated to be 0.49 % of GDP, or NOK 11.16 billion. Costs are also calculated on a per-service basis. The results are compared with data from earlier cost surveys by Norges Bank. The unit costs of the most popular services have decreased over the years. Efficiency and productivity of banks payment service operations has improved. We also make comparisons between frameworks, methodologies, and results from cost surveys in five European countries.

Olaf Gresvik; Harald Haare; Norges Bank; Sigbjrn Atle Berg; Gunnvald Grnvik; Asbjrn Enge

2009-01-01T23:59:59.000Z

178

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

estimates that electricity rates in the state could increasethe state RPS cost studies project retail electricity rateelectricity rate impacts in percentage and /kWh terms, for each individual state

Chen, Cliff

2009-01-01T23:59:59.000Z

179

2011 Cost of Wind Energy Review  

SciTech Connect

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

180

2011 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium  

Science Conference Proceedings (OSTI)

This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

M Weimar

1998-12-10T23:59:59.000Z

182

BTRIC - Tools & Calculators - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculators Calculators Attic Radiant Barrier Calculator Low-Slope Roof Calculator for Commercial Buildings (6/05) - estimates annual energy cost savings Moisture Control for Low-Slope Roofing (5/04) - determine if a roof design needs a vapor retarder or if the roofing system can be modified to enhance its tolerance for small leaks Modified Zone Method Roof Savings Calculator (12/12) - for commerical and residential buildings using whole-building energy simulations Solar Reflectance Index (SRI) Calculator (6/06) Steep-Slope Roof Calculator on Residential Buildings (6/05) - estimate annual energy cost savings Whole-Wall R-Value Calculator 2.0 (10/06) ZIP-Code R-Value Recommendation Calculator (1/08) Roofs/Attics Attic Radiant Barrier Fact Sheet (Jan 2011) Cool Roofs Will Revolutionize the Building Industry Fact Sheet

183

SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION  

DOE Green Energy (OSTI)

The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

Eric J. Carlson; Yong Yang; Chandler Fulton

2004-04-20T23:59:59.000Z

184

Estimating decommissioning costs: The 1994 YNPS decommissioning cost study  

Science Conference Proceedings (OSTI)

Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

Szymczak, W.J.

1994-12-31T23:59:59.000Z

185

Mitigation Efforts Calculator (MEC)  

Science Conference Proceedings (OSTI)

The Mitigation Efforts Calculator (MEC) has been developed by the International Institute for Applied Systems Analysis (IIASA) as an online tool to compare greenhouse gas (GHG) mitigation proposals by various countries for the year 2020. In this paper, ... Keywords: Business intelligence, Cost curves, Decision model, Interactive system, Optimisation

Thanh Binh Nguyen; Lena Hoeglund-Isaksson; Fabian Wagner; Wolfgang Schoepp

2013-04-01T23:59:59.000Z

186

Transmission line capital costs  

Science Conference Proceedings (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

187

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

188

Optimal basis set for ab-initio calculations of energy levels in tunneling structures, using the covariance matrix of the wave functions  

E-Print Network (OSTI)

The paper proposes a method to obtain the optimal basis set for solving the self consistent field (SCF) equations for large atomic systems in order to calculate the energy barriers in tunneling structures, with higher accuracy and speed. Taking into account the stochastic-like nature of the samples of all the involved wave functions for many body problems, a statistical optimization is made by considering the covariance matrix of these samples. An eigenvalues system is obtained and solved for the optimal basis set and by inspecting the rapidly decreasing eigenvalues one may seriously reduce the necessary number of vectors that insures an imposed precision. This leads to a potentially significant improvement in the speed of the SCF calculations and accuracy, as the statistical properties of a large number of wave functions in an large spatial domain may be considered. The eigenvalue problem has to be solved only few times, so that the amount of time added may be much smaller that the overall iterating SCF calculations. A simple implementation of the method is presented for a situation where the analytical solution is known, and the results are encouraging.

Sever Spanulescu

2009-12-15T23:59:59.000Z

189

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

190

Footprint Calculator?  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

191

Argonne CNM Highlight: Deciphering Uncertainties in the Cost of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Deciphering Uncertainties in the Cost of Solar Energy Deciphering Uncertainties in the Cost of Solar Energy Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a major role in global energy production. The cost of solar-generated electricity is typically compared with electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation. Generally, LCOE is treated as a definite number, and the assumptions lying beneath that result are rarely reported or even understood. We shed light on some of the key assumptions and offer a new approach to calculating LCOE for photovoltaics based on input parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals becomes clear.

192

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

193

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

194

How Much Does That Incinerator Cost?  

E-Print Network (OSTI)

Biosecurity on poultry farms includes proper disposal of dead carcasses. In many cases, that means using an incinerator. Calculating the cost of an incinerator means considering long and short-term expenses and the cost of fuel. This publication explains how to select the right size incinerator and calculate all associated costs.

Mukhtar, Saqib; Nash, Catherine; Harman, Wyatte; Padia, Reema

2008-07-25T23:59:59.000Z

195

Wind Integration Cost and Cost-Causation: Preprint  

DOE Green Energy (OSTI)

The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

2013-10-01T23:59:59.000Z

196

FIRM PRODUCTIVITY AND SUNK COSTS  

E-Print Network (OSTI)

The main objective of this paper is to explore whether or not sunk costs are systematically related to productivity dierences at the rm level, as suggested by models of industry dynamics (Hopenhayn, 1992).The comparisons of productivity distributions for groups of rms with dierent levels of sunk costs are performed by non-parametric procedures and for a large scale rm-level panel data set of Spanish manufacturing rms. We nd that sunk costs are an important source of heterogeneity across rm productivity. The evidence we nd is consistent with models of industry dynamics predicting lower productivity for rms with a higher level of sunk costs.

Jose C. Farias; Sonia Ruano

2004-01-01T23:59:59.000Z

197

EUVL reticle factory model and reticle cost analysis  

SciTech Connect

The key issues in reticle manufacturing are cost and delivery time, both of which are dependent upon the yield of the process line. To estimate the cost and delivery time for EUVL reticles in commercial manufacturing, we have developed the first model for an EUV reticle factory which includes all the tools required for a presumed EUVL reticle fabrication process. This model includes the building, support tools and sufficient ``in-line`` process tools for the manufacture of (more than) 2500 reticles per year. Industry specifications for the tool performance are used to determine the number of tools required per process step and the average number of reticles fabricated per year. Building and capital equipment depreciation costs, tool installation costs, tool maintenance costs, labor, clean room costs, process times and process yields are estimated and used to calculate the yearly operating cost of the reticle factory and the average reticle fabrication cost. We estimate the sales price of an EUV reticle to be $60K for non-critical levels and $120K for ``leading-edge.`` The average reticle fabrication time is calculated for three different process-line yields.

Hawryluk, A.M. [Lawrence Livermore National Lab., CA (United States); Shelden, G. [SEMATECH, Austin, TX (United States); Troccolo, P. [Intel Corp., Santa Clara, CA (United States)

1996-05-22T23:59:59.000Z

198

Estimating the Opportunity Cost of REDD+: A Training Manual | Open Energy  

Open Energy Info (EERE)

Estimating the Opportunity Cost of REDD+: A Training Manual Estimating the Opportunity Cost of REDD+: A Training Manual Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating the Opportunity Cost of REDD+: A Training Manual Agency/Company /Organization: World Bank Institute Sector: Land, Climate Focus Area: Forestry Resource Type: Guide/manual Website: wbi.worldbank.org/wbi/Data/wbi/wbicms/files/drupal-acquia/wbi/OppCosts Estimating the Opportunity Cost of REDD+: A Training Manual Screenshot References: Estimating the Opportunity Cost of REDD+: A Training Manual[1] "The manual shares hands-on experiences from field programs and presents the essential practical and theoretical steps, methods and tools to estimate the opportunity costs of REDD+ at the national level. The manual addresses the calculation of costs and benefits of the various land use

199

Building Technologies Office: 179D DOE Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information. What is the 179D DOE Calculator? The...

200

Building Technologies Office: Qualified Software for Calculating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit...

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

202

Fatigue reliability of wind turbine fleets: The effect of uncertainty of projected costs  

DOE Green Energy (OSTI)

The cost of repairing or replacing failed components depends on the number and timing of failures. Although the total probability of individual component failure is sometimes interpreted as the percentage of components likely to fail, this perception is often far from correct. Different amounts of common versus independent uncertainty can cause different numbers of components to be at risk of failure. The FAROW tool for fatigue and reliability analysis of wind turbines makes it possible for the first time to conduct a detailed economic analysis of the effects of uncertainty on fleet costs. By dividing the uncertainty into common and independent parts, the percentage of components expected to fail in each year of operation is estimated. Costs are assigned to the failures and the yearly costs and present values are computed. If replacement cost is simply a constant multiple of the number of failures, the average, or expected cost is the same as would be calculated by multiplying by the probability of individual component failure. However, more complicated cost models require a break down of how many components are likely to fail. This break down enables the calculation of costs associated with various probability of occurrence levels, illustrating the variability in projected costs. Estimating how the numbers of components expected to fail evolves over time is also useful in calculating the present value of projected costs and in understanding the nature of the financial risk.

Veers, P.S.

1995-12-31T23:59:59.000Z

203

Introduction to the Cash Flow Opportunity Calculator Spreadsheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculator is an interactive calculator that helps quantify the cost of delaying investment in upgrades by addressing three critical questions: How much new energy efficiency...

204

Evaluating Utility Costs from Cogeneration Facilities  

E-Print Network (OSTI)

This paper describes the method of calculation of incremental costs of steam, condensate, feedwater and electricity produced by the industrial cogeneration plant. (This method can also be applied to other energy production plants.) It also shows how to evaluate the energy consumption by the process facility using the costs determined by the method. The paper gives practical examples of calculation of the incremental costs of various utilities and emphasizes the importance of the calculation accuracy.

Polsky, M. P.

1983-01-01T23:59:59.000Z

205

A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS  

E-Print Network (OSTI)

in calculating the unit cost of wind energy transmissionimpacts of the cost of transmission for wind energy. Only inj = Transmission cost per unit of wind energy weighted by

Mills, Andrew; Wiser, Ryan; Porter, Kevin

2007-01-01T23:59:59.000Z

206

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculate: Power Law Cost Scaling Actual Single Unit Capital Cost Estimate 500 unityear production costs with progress ratios Estimate Cost Using Power Law Cost Scaling 7 The H 2...

207

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

208

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

209

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

210

Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications  

DOE Patents (OSTI)

A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

1998-01-01T23:59:59.000Z

211

Improved supplier selection and cost management for globalized automotive production  

E-Print Network (OSTI)

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

212

Update on the Cost of Nuclear Power  

E-Print Network (OSTI)

We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

Parsons, John E.

2009-01-01T23:59:59.000Z

213

What does a negawatt really cost?  

E-Print Network (OSTI)

We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

Joskow, Paul L.

1991-01-01T23:59:59.000Z

214

Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements  

SciTech Connect

This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

Custer, W.R. Jr.; Messick, C.D.

1996-03-31T23:59:59.000Z

215

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2008-03-01T23:59:59.000Z

216

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

2007-04-01T23:59:59.000Z

217

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2009-12-01T23:59:59.000Z

218

Energy Savings Calculator for Air-Cooled Electric Chillers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savings Calculator for Air-Cooled Electric Chillers Energy Savings Calculator for Air-Cooled Electric Chillers Energy Savings Calculator for Air-Cooled Electric Chillers January 16, 2014 - 4:19pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the calculator assumptions and definitions. Project Type Is this a new installation or a replacement? New Replacement How many chillers will you purchase? Performance Factors Existing What is the existing design condition? Full Load Partial Load What is the cooling capacity of the existing chiller? tons What is the full-load efficiency of the existing chiller? EER What is the partial-load efficiency of the existing chiller? EER New What is the new design condition? Full Load Partial Load

219

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

February 23, 2012 February 23, 2012 Form EIA-861 and the New Form EIA-861S Proposal: Modify the frame of the Form EIA-861, "Annual Electric Power Industry Report," from a census to a sample, and use sampling methods to estimate the sales revenues and customer counts by sector and state for the remaining industry. Use random sampling, if needed, to estimate for changes in advanced metering infrastructure (AMI) and time-based tariff programs. Proposal: Create a new Form EIA-861S, "Annual Electric Power Industry Report (Short Form), for the respondents that have been removed from the Form EIA-861 frame. The form would ask them for contact information and would contain a series of yes/no questions to query their status. In addition, it would collect limited data for use in estimating. Once every five years, the

220

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

Market Prices and Uncertainty Report Crude Oil Prices: International crude oil benchmarks moved higher in November, showing their first month-over-month increase since August, while U.S. crude oil prices moved higher during the first week of December. The North Sea Brent front month futures price settled at $110.98 per barrel on December 5, an increase of $5.07 per barrel since its close on November 1 (Figure 1). The West Texas Intermediate (WTI) front month futures contract rose $2.77 per barrel compared to November 1, settling at $97.38 per barrel on December 5. A combination of better-than-expected economic data and a continuation of supply outages buoyed international crude oil prices in November. Recent manufacturing data for the United States and China were above expectations, supporting demand for

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Office of Energy Markets and Financial Analysis 1 Office of Energy Markets and Financial Analysis 1 October 2012 Implications of changing correlations between WTI and other commodities, asset classes, and implied volatility Summary * Correlations among changes in the prices of commodities, and between the prices of commodities and other asset classes, generally increased from 2007 until 2012. One reason often cited for the increase in the correlation of commodity and asset price movements has been increasing economic growth in emerging market economies. * When correlations of crude oil prices with prices of multiple commodities decline, it usually implies that a supply side issue is affecting the crude oil market. When the correlation of crude oil price movements with the price movements for a specific

222

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Addendum to Potential Impacts of Reductions in Refinery Activity on Addendum to Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets 1 May 11, 2012 ADDENDUM Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets Additional Information on Jones Act Vessels' Potential Role in Northeast Refinery Closures The U.S. Energy Information Administration's (EIA) recent report exploring the potential impacts of reductions in refinery activity in the Northeast on petroleum product markets in that region pointed out that, if Sunoco's Philadelphia refinery shuts down, waterborne movements from the Gulf Coast could be an important route for alternative supplies to help replace lost volumes in the short term, particularly for ultra-low sulfur diesel (ULSD). Because this route would involve

223

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Market Prices and Uncertainty Report Crude Oil Prices: The front month futures price for Brent, the world waterborne crude benchmark, increased by $5.72 per barrel to settle at $115.26 per barrel on September 5 (Figure 1). Front month futures prices for West Texas Intermediate (WTI) crude oil also increased over the same time period but by a lesser amount, to settle at $108.37 per barrel on September 5. The primary drivers of higher crude oil prices over the past five weeks included an uptick in unplanned crude oil production outages and increased tensions in the Middle East. Continued disputes between local governments in the eastern oil producing regions of Libya and the central government in Tripoli combined with worker strikes at

224

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Host and Presentor Contact Information 1 Host and Presentor Contact Information 1 March 2013 Workshop on Biofuels Projections in AEO Host and Presentor Contact Information Hosts: Mindi Farber-DeAnda Team Lead, Energy Information Administration, Biofuels and Emerging Technologies Mindi.Farber-DeAnda@eia.gov 202-586-6419 Vishakh Mantri, Ph.D, P.E. Chemical Engineer, Energy Information Administration, Biofuels and Emerging Technologies Team Vishakh.Mantri@eia.gov 202-586-4815 Presenters: Biofuels in the United States: Context and Outlook Howard Gruenspecht Deputy Administrator, Energy Information Administration Howard.gruenspecht@eia.gov 202-586-6351 Modeling of Biofuels in the AEO, Michael Cole Operations Research Analyst, Energy Information Administration, Liquid Fuels Market Team

225

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

3 1 3 1 October 2013 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Front month futures prices for the Brent and West Texas Intermediate (WTI) crude oil benchmarks fell in September. The Brent contract settled at $109.00 per barrel on October 3, a decline of $6.68 per barrel since September 3, and WTI settled at $103.31 per barrel on October 3, falling by $5.23 per barrel over the same period (Figure 1). These changes marked the first month-over-month declines in crude oil prices since May 2013. The return of some Libyan production and declining refinery runs during September helped put downward pressure on crude oil prices. This is a regular monthly companion to the EIA Short-Term Energy Outlook

226

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

highest since March of 2012. Although there was no single major disruption in oil production over the last month, lower exports from South Sudan, Iraq, and Libya and a...

227

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2012 (EIA)

About the Oil and Gas Field Code Master List 1 April 30, 2012 About the Oil and Gas Field Code Master List The U.S. Energy Information Administration's (EIA) Oil and Gas Field Code...

228

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

Preciado (james.preciado@eia.gov) U.S. Energy Information Administration | Short-Term Energy Outlook December 2013 2 Crude oils of both medium and light API gravity on the U.S....

229

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Administration (EIA) has changed the format of the Short-Term Energy Outlook tables for electricity industry overview (Table 7a), electricity generation (Table 7d), electricity...

230

2010 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

231

HTGR Cost Model Users' Manual  

Science Conference Proceedings (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

232

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

233

Manufacturing cost of flame heated thermionic converters. Topical report  

DOE Green Energy (OSTI)

The cost of thermionic converters has been estimated in support of the cost calculations for thermionic topping of central station powerplants. These calculations supersede the previous calculations made in 1975 and use a design concept similar to the current configuration of flame-heated converters. The cost of converters was estimated by obtaining quotations from manufactureres whenever possible. The selling cost was found to be $110 per kilowatt.

LaRue, G.; Miskolczy, G.

1979-04-01T23:59:59.000Z

234

Cost-Causation and Integration Cost Analysis for Variable Generation  

Science Conference Proceedings (OSTI)

This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

2011-06-01T23:59:59.000Z

235

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

236

Electricity Generation Cost Simulation Model (GenSim)  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

DRENNEN, THOMAS E.; KAMERY, WILLIAM

2002-11-01T23:59:59.000Z

237

Electricity Generation Cost Simulation Model (GenSim).  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercuty. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

Kamery, William (Hobart and William Smith Colleges, Geneva, NY); Baker, Arnold Barry; Drennen, Thomas E.

2003-07-01T23:59:59.000Z

238

LHC Civil Engineering Construction Contracts Cost Monitoring and Budget Forecasting  

E-Print Network (OSTI)

The Civil Engineering project for the LHC is estimated at 350 MCHF, of which about 316 MCHF is for the construction contracts. These contracts are based on a system of remeasurement whereby the consultant estimates the quantities required for the construction of each structure and the contractor commits himself to the unit price, which define the initial tender price. There are many factors that affect the final price for these contracts, from increases or decreases in quantities of the estimated amounts in the original bill of quantities to variations to the contract. This paper will look at how these factors change costs at the individual level of a structure to the overall costs of the contract. It will look at how the Civil Engineering Group monitors these changes to calculate cash flows and final costs and how this information is used as a basis for budget forecasts.

Skelton, K

2000-01-01T23:59:59.000Z

239

Minimum Changeover Cost Arborescence  

E-Print Network (OSTI)

having minimum changeover cost, a cost that we now describe. ... We define the changeover cost at j, denoted by d(j), as the sum of the costs at j paid for each of ...

240

Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual  

Science Conference Proceedings (OSTI)

This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

Matysiak, L.M.; Burns, M.L.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Incorporating psychological influences in probabilistic cost analysis  

E-Print Network (OSTI)

Press, New York, 1981. MIL-HDBK-881, Handbook Work BreakdownWBS level-3 cost elements [MIL- HDBK-881, 1998]. In general,

Kujawski, Edouard; Alvaro, Mariana; Edwards, William

2004-01-01T23:59:59.000Z

242

Cost | OpenEI Community  

Open Energy Info (EERE)

Cost Cost Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This standardization framework is only the first version in what is anticipated to be an iterative process that involves industry and the broader DOE stakeholder community. Multiple files are attached here for review and comment.Upload Files: application/vnd.openxmlformats-officedocument.wordprocessingml.document icon device_performance_validation_data_request.docx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon

243

Unit costs of waste management operations  

SciTech Connect

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

244

The cost of agriculturally based greenhouse gas offsets in the Texas High Plains  

E-Print Network (OSTI)

The broad objective of this thesis involves investigation of the role agriculture might play in a society wide greenhouse gas emissions reduction effort. Specifically, the breakeven price for carbon emission offsets is calculated for agriculturally based emission reducing practices. The practices investigated in the Texas High Plains involve reduced tillage use, reduced fallow use, reduced crop fertilization, cropland conversion to grassland, feedlot enteric fermentation management and digester based dairy manure handling. Costs of emission reductions were calculated at the producer level. The calculated offset prices are classified into four cost categories. They are: negative cost, low cost (less than $20 per ton of carbon saved), moderate cost ($20 through $100 per ton of carbon saved), and high cost (over $100 for tons of carbon saved). Negative cost implies that farmers could make money and reduce emissions by moving to alternative practices even without any carbon payments. Alternatives in the positive cost categories need compensation to induce farmers to switch to practices that sequester more carbon. All fallow dryland crop practices, dryland and irrigated cotton zero tillage, dryland and irrigated wheat zero tillage, irrigated corn zero tillage, cotton irrigated nitrogen use reduction under minimum tillage and dryland pasture for all systems, and anaerobic lagoon complete mix and plug flow systems fall in the negative cost category. Dryland and irrigated wheat under minimum tillage are found to be in the low cost category. Cotton dryland under minimum tillage and cotton irrigated with nitrogen use reduction under zero tillage fell into the moderate cost class. Both corn and cotton irrigated minimum tillage are found to be in the high cost category. This study only considers the producer foregone net income less fixed costs as the only cost incurred in switching to an alternative sequestering practice. More costs such as learning and risk should probably be included. This limitation along with other constraints such as use of short run budget data, lack of availability and reliability of local budgets, overlooking any market effects, and lack of treatment of costs incurred in selling carbon offsets to buyers are limitations and portend future work.

Chandrasena, Rajapakshage Inoka Ilmi

2003-12-01T23:59:59.000Z

245

Federal Energy Management Program: Energy Cost Calculator for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per...

246

Electric power substation capital costs  

SciTech Connect

The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

Dagle, J.E.; Brown, D.R.

1997-12-01T23:59:59.000Z

247

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

248

Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects (Double-Gatefold Brochure)  

Wind Powering America (EERE)

How Does WEF Work? How Does WEF Work? Inputs The user enters data about the project, including: * General assumptions * Capital costs * Operating expenses * Financing assumptions * Tax assumptions * Economic assumptions * Financial constraining assumptions. Extensive help notes describe each input and provide reasonable default values. Outputs * Minimum energy payment to meet financial criteria * Levelized cost of energy * Payback period * Net present value * Internal rate of return * Summary and detailed cash flows. As an alternative option, if the user enters a first-year energy payment, the program will calculate the rate of return, coverage ratios, etc. Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects The National Renewable Energy Laboratory created

249

Consumer Winter Natural Gas Costs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Household Gas Heating Costs. Since ... percent more by our calculations for a typical ... coming season they spent less for it due to much lower resid ...

250

Cost Study Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

251

PRISM 2.0: Regional Energy and Economic Model Development and Initial Application: Phase 2: Electric Sector CO2 Reduction Options to 2050: Dimensions of Technology, Energy Costs, and Environmental Scenarios  

Science Conference Proceedings (OSTI)

EPRI conducted an analysis of electric sector CO2 reduction options to 2050 across a range of scenarios covering dimensions of technology costs and availability, energy costs, and CO2 constraints. Using its U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) model, EPRI calculated the impact of changes in generation portfolio, generation capacity, expenditures, and electricity prices on power sector costs. This analysis estimates different levels of ...

2013-11-06T23:59:59.000Z

252

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

253

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Kwh/mile) d Total Battery Capacity (Kwh) Cost per Battery (this study. in Total battery capacity was calculated as:calculated as total battery capacity multiplied by per-unit-

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

254

COST-EFFECTIVE VISIBILITY-BASED DESIGN PROCEDURES FOR GENERAL OFFICE LIGHTING  

E-Print Network (OSTI)

were calculated at the stated cost per Kwh by assuming 30to the work surface. The costs per Kwh essentially span themostly dependent upon the cost per Kwh divided by the area

Clear, Robert

2013-01-01T23:59:59.000Z

255

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

256

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

257

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

258

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

259

GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process Step Description Associated task 1 Define estimate's purpose Determine estimate's purpose, required level of detail, and overall scope; Determine who will receive the estimate 2 Develop estimating plan Determine the cost estimating team and develop its master schedule; Determine who will do the independent cost estimate; Outline the cost estimating approach; Develop the estimate timeline 3 Define program characteristics In a technical baseline description document, identify the program's

260

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Framework and Review of Customer Outage Costs: Integration and Analysis of  

E-Print Network (OSTI)

by Region, Season, Day of Week, and Year 36 Table 5-2. Average Outage Costs by Duration 36 Table 5, if a calculation of the average outage cost for a given year is calculated it would be heavily influenced and Day of Week and Year of Study This problem surfaces for many of the calculations of outage costs

262

Chalmers Climate Calculator | Open Energy Information  

Open Energy Info (EERE)

Chalmers Climate Calculator Chalmers Climate Calculator Jump to: navigation, search Tool Summary Name: Chalmers Climate Calculator Agency/Company /Organization: Chalmers University of Technology Sector: Energy, Land Topics: Baseline projection, Co-benefits assessment, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Website: dhcp2-pc011134.fy.chalmers.se Cost: Free Chalmers Climate Calculator Screenshot References: Chalmers Climate Calculator[1] Logo: Chalmers Climate Calculator " In the Chalmers Climate Calculator the user can decide on when and how fast emissions of CO2 are reduced and what this emissions scenario implies in terms of CO2 concentration and global average surface temperature change. The climate sensitivity and the net aerosol forcing in year 2005

263

PHENIX Work Breakdown Structure. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

264

PHENIX WBS notes. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

265

Defense waste transportation: cost and logistics studies  

SciTech Connect

Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport.

Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

1982-08-01T23:59:59.000Z

266

Full Economic Costing:-Updated guidance notes for peer reviewers  

E-Print Network (OSTI)

the level of resources required to undertake the project and not their unit cost. In particular, peer are as follows: 1) Directly Incurred costs: These are costs which are specific to a project and will be charged to the project on the basis of actual costs incurred. They must be supported by an audit record, which

267

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

268

Minimum Cost Arborescences ?  

E-Print Network (OSTI)

In this paper, we analyze the cost allocation problem when a group of agents or nodes have to be connected to a source, and where the cost matrix describing the cost of connecting each pair of agents is not necessarily symmetric, thus extending the well-studied problem of minimum cost spanning tree games, where the costs are assumed to be symmetric. The focus is on rules which satisfy axioms representing incentive and fairness properties. We show that while some results are similar, there are also significant differences between the frameworks corresponding to symmetric and asymmetric cost matrices.

Bhaskar Dutta; Debasis Mishra; We Thank Daniel Granot; Anirban Kar; Herve Moulin For Comments

2011-01-01T23:59:59.000Z

269

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

270

Documents: Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Search Documents: Search PDF Documents View a list of all documents Cost Analysis PDF Icon Summary of the Cost Analysis Report for the Long-term Management of Depleted UF6...

271

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

272

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

273

R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

274

Cost Estimation Recommendations  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

275

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

276

Automatic monitoring helps reduce lighting costs  

SciTech Connect

A Benton, Arkansas utility is using a dimmable ballast system to curb high-intensity-discharge (HID) lighting costs. The system also incorpoates a monitoring control system. This control automatically maintains minimum illumination levels.

1978-11-01T23:59:59.000Z

277

Analytic framework for TRL-based cost and schedule models  

E-Print Network (OSTI)

Many government agencies have adopted the Technology Readiness Level (TRL) scale to help improve technology development management under ever increasing cost, schedule, and complexity constraints. Many TRL-based cost and ...

El-Khoury, Bernard

2012-01-01T23:59:59.000Z

278

Parameter inference of cost-sensitive boosting algorithms  

Science Conference Proceedings (OSTI)

Several cost-sensitive boosting algorithms have been reported as effective methods in dealing with class imbalance problem. Misclassification costs, which reflect the different level of class identification importance, are integrated into the weight ...

Yanmin Sun; A. K. C. Wong; Yang Wang

2005-07-01T23:59:59.000Z

279

Marginal Abatement Cost Tool (MACTool) | Open Energy Information  

Open Energy Info (EERE)

Marginal Abatement Cost Tool (MACTool) Marginal Abatement Cost Tool (MACTool) Jump to: navigation, search Tool Summary Name: Marginal Abatement Cost Tool (MACTool) Agency/Company /Organization: World Bank Climate Smart Planning Platform Sector: Climate, Energy Topics: Analysis Tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: climatesmartplanning.org/node/33 Cost: Free Related Tools Global Relationship Assessment to Protect the Environment (GRAPE) Global Trade and Analysis Project (GTAP) Model MIT Emissions Prediction and Policy Analysis (EPPA) Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A spreadsheet tool for building marginal abatement cost curves, and for calculating break-even carbon prices. Supports comparison of costs and

280

The Full Cost of Intercity Highway Transportation  

E-Print Network (OSTI)

Introduction There has been a great deal of recent interest in identifying and measuring the full costs of transportation, particularly highways (see for instance: Keeler et al. 1974, Fuller et al. 1983, Quinet 1990, Mackenzie et al. 1992, INRETS 1993, Miller and Moffet 1993, IWW/INFRAS 1995, IBI 1995, Levinson et al. 1996, Delucchi 1996). This debate questions whether various modes of transportation are implicitly subsidized and to what extent this biases investment and usage decisions. While environmental impacts are used to stop new infrastructure, the full costs to society of transportation are not generally calculated for financing projects or charging for their use. In this paper we review the theoretical and empirical literature on the cost structure of the provision of intercity highway transportation and specify and estimate our own cost functions . In defining this framework we distinguish between internal (private) and external (social) costs, long and short run cos

David Gillen; David Levinson; David M. Levinson

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

282

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

283

Seismic Performance Assessment and Probabilistic Repair Cost Analysis of Precast Concrete Cladding Systems for Multistory Buildings  

E-Print Network (OSTI)

Costs (2009). The cost per square foot was determined fromcost for basement levels is given at $36.40 per square foot

Hunt, Jeffrey Patrick

2010-01-01T23:59:59.000Z

284

For appliances, choosing the most cost-effective option depends on ...  

U.S. Energy Information Administration (EIA)

Consumers in the market for new appliances have a wide range of choices that likely vary by cost, options, and efficiency level. If energy cost effectiveness is a ...

285

DYNASTORE operating cost analysis of energy storage for a midwest utility  

DOE Green Energy (OSTI)

The objective of this project was to determine the savings in utility operating costs that could be obtained by installing a Battery Energy Storage System (BESS). The target utility was Kansas City Power and Light (KCPL), a typical Midwestern utility with a mix of generating plants and many interconnections. The following applications of battery energy storage were modeled using an Electric Power Research Institute (EPRI) developed and supported program called DYNASTORE: (1) Spinning Reserve Only (2) Load Leveling with Spinning Reserve (3) Load Leveling Only (4) Frequency Control DYNASTORE commits energy storage units along with generating units and calculates operating costs with and without energy storage, so that savings can be estimated. Typical weeks of hourly load data are used to make up a yearly load profile. For this study, the BESS power ranged from ``small`` to 300 MW (greater than the spinning reserve requirement). BESS storage time ranged from 1 to 8 hours duration (to cover the time-width of most peaks). Savings in operating costs were calculated for each of many sizes of MW capacity and duration. Graphs were plotted to enable the reader to readily see what size of BESS affords the greatest savings in operating costs.

Anderson, M.D. [Missouri Univ., Rolla, MO (United States). Dept. of Electrical Engineering; Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1996-10-01T23:59:59.000Z

286

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

287

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

288

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

289

What solar heating costs  

SciTech Connect

Few people know why solar energy systems cost what they do. Designers and installers know what whole packages cost, but rarely how much goes to piping, how much for labor and how much for the collectors. Yet one stands a better chance of controlling costs if one can compare where the money is going against where it should be going. A detailed Tennessee Valley Authority study of large solar projects shows how much each component contributes to the total bill.

Adams, J.A.

1985-05-01T23:59:59.000Z

290

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

291

Target Cost Management Strategy  

E-Print Network (OSTI)

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

292

Cost Affordable Titanium IV  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Enhancing the Cost Effectiveness of High Performance Titanium Alloy Component Production by Powder Metallurgy Evolution of Texture in...

293

Cost Effective Single Crystals  

Science Conference Proceedings (OSTI)

three relevant technologies, namely casting, alloy development and orientation measurement, developed by Rolls-Royce to enable the cost effective production.

294

Sharing Supermodular Costs  

E-Print Network (OSTI)

the costs collectively incurred by a group of cooperating agents. ..... Mixed integer programming formulations for production planning and scheduling prob- lems.

295

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia?s petroleum producing basins, both onshore and offshore. I analyse a substantial (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

296

COST REVIEW and ESTIMATING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programming Guide. OMB Circular A-94, Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, dated October 29, 1992 Page | 41 APPENDIX A ICRICE...

297

The Cost of Debt ?  

E-Print Network (OSTI)

We estimate firm-specific marginal cost of debt functions for a large panel of companies between 1980 and 2007. The marginal cost curves are identified by exogenous variation in the marginal tax benefits of debt. The location of a given companys cost of debt function varies with characteristics such as asset collateral, size, book-to-market, asset tangibility, cash flows, and whether the firm pays dividends. By integrating the area between benefit and cost functions we estimate that the equilibrium net benefit of debt is 3.5 % of asset value, resulting from an estimated gross benefit of debt of 10.4 % of asset value and an estimated cost of debt of 6.9%. We find that the cost of being overlevered is asymmetrically higher than the cost of being underlevered and that expected default costs constitute approximately half of the total ex ante cost of debt. We thank Rick Green (the Acting Editor), and an anonymous referee, Heitor Almeida, Ravi Bansal,

Jules H. Van Binsbergen; John R. Graham; Jie Yang

2010-01-01T23:59:59.000Z

298

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

299

Reducing Energy Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy expense is becoming increasingly dominant in the operating costs of high-performance computing (HPC) systems. At the same time, electricity prices vary significantly at...

300

Standardized Cost Structure for the Environmental Industry  

Science Conference Proceedings (OSTI)

The underlying key to developing successful estimates, tracking project costs, and utilizing historical project cost information is the development of standardized and well-defined hierarchical listing of cost categories. Committees within the U.S. Federal agencies have pioneered efforts toward developing the Environmental Cost Element Structure (ECES), which is key in achieving these goals. The ECES was developed using an iterative process with input from federal agencies and industry. Experts from several disciplines participated including engineers, cost estimators, project/program managers, and contract personnel. The ECES benefits from an intense analytical effort, the knowledge gained from the maturation of the environmental industry, and incorporation of past user's experiences. Building upon this foundation, the E06 committee of the ASTM International has now fully developed and published a standard (ASTM 2150-04) that provides standardized cost categories with complete cost category definitions. This standard affords environmental and nuclear D and D project managers the opportunity to have a well defined hierarchical listing of their estimates and actual costs, readily adapted to performing summations and roll-ups, supported by a multi-level dictionary specifically defining the content of the cost elements as well as the summations. Owing to the dynamic nature of the environmental technologies, efforts need to be made to continue to update this standard by adding new technologies and methods as they are developed and employed in the field. Lastly, the Environmental Cost Element Structure that is embodied in this standard also presents opportunities to develop historical cost databases and comprehensive life cycle cost estimates and standardized cost estimating tools. (authors)

Skokan, B.; Melamed, D.; Guevara, K. [US DOE, Office of Project Planning and Controls, EM-32, 1000 Independence Ave. SW, Washington, DC 20585 (United States); Mallick, P. [US DOE, Office of Performance Assessment, EM-43, 1000 Independence Ave. SW, Washington, DC 20585 (United States); Bierman, G. [Legin Group, Inc., P.O. Box 3788, Gaithersburg, MD 20885-3788 (United States); Marshall, H.E. [Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8603, Gaithersburg, MD 20899-8603 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

APT cost scaling: Preliminary indications from a Parametric Costing Model (PCM)  

Science Conference Proceedings (OSTI)

A Parametric Costing Model has been created and evaluate as a first step in quantitatively understanding important design options for the Accelerator Production of Tritium (APT) concept. This model couples key economic and technical elements of APT in a two-parameter search of beam energy and beam power that minimizes costs within a range of operating constraints. The costing and engineering depth of the Parametric Costing Model is minimal at the present {open_quotes}entry level{close_quotes}, and is intended only to demonstrate a potential for a more-detailed, cost-based integrating design tool. After describing the present basis of the Parametric Costing Model and giving an example of a single parametric scaling run derived therefrom, the impacts of choices related to resistive versus superconducting accelerator structures and cost of electricity versus plant availability ({open_quotes}load curve{close_quotes}) are reported. Areas of further development and application are suggested.

Krakowski, R.A.

1995-02-03T23:59:59.000Z

302

Prime movers reduce energy costs  

SciTech Connect

Many industrial plants have found that reciprocating engines used to power generator sets and chiller systems are effective in reducing energy costs as part of a load management strategy, while meeting other plant energy needs. As the trend towards high electric utility costs continues, familiarity with basic analyses used to determine the economic viability of engine-driven systems is essential. A basic method to determine the economic viability of genset or chiller systems is to review the supplying utility`s rate structure, determine approximate costs to install and operate an engine-driven system, and calculate a simple equipment payback period. If the initial analysis shows that significant savings are possible and a quick payback is likely, a thorough analysis should be conducted to analyze a plant`s actual electric load profile. A load profile analysis takes into consideration average loads, peak loads, and peak duration. A detailed study should cover myriad considerations, including local air quality regulations and permitting, space availability, auxiliary system components, and financing options. A basic analysis takes relatively little time and can rule out the need for a detailed study.

Swanson, J.E. [Caterpillar, Inc., Mossville, IL (United States)

1996-01-01T23:59:59.000Z

303

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

304

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full recipe that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

305

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

306

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

307

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... The first calculation will take the longest because the program has to download ... will take a few seconds as the database of isotopes is downloaded ...

308

Marginal cost of electricity 1980-1995: an approximation based on the cost of new coal and nuclear generating plants  

SciTech Connect

This report presents estimates of the costs of new coal and nuclear base-load generating capacity which is either currently under construction or planned by utilities to meet their load-growth expectations during the period from 1980 to 1995. These capacity cost estimates are used in conjunction with announced plant capacities and commercial-operation dates to develop state-level estimates of busbar costs of electricity. From these projected busbar costs, aggregated estimates of electricity costs at the retail level are developed for DOE Regions. The introductory chapter explains the rationale for using the cost of electricity from base-load plants to approximate the marginal cost of electricity. The next major section of the report outlines the methodology and major assumptions used. This is followed by a detailed description of the empirical analysis, including the equations used for each of the cost components. The fourth section presents the resultant marginal cost estimates.

Nieves, L.A.; Patton, W.P.; Harrer, B.J.; Emery, J.C.

1980-07-01T23:59:59.000Z

309

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

310

Cost-Affordable Titanium III  

Science Conference Proceedings (OSTI)

Cost-Effective Production and Thermomechanical Consolidation of Titanium Alloy Powders Cost Affordable Developments in Titanium Technology and...

311

Software Cost Estimation  

E-Print Network (OSTI)

Software cost estimation is the process of predicting the effort required to develop a software system. Many estimation models have been proposed over the last 30 years. This paper provides a general overview of software cost estimation methods including the recent advances in the field. As a number of these models rely on a software size estimate as input, we first provide an overview of common size metrics. We then highlight the cost estimation models that have been proposed and used successfully. Models may be classified into 2 major categories: algorithmic and non-algorithmic. Each has its own strengths and weaknesses. A key factor in selecting a cost estimation model is the accuracy of its estimates. Unfortunately, despite the large body of experience with estimation models, the accuracy of these models is not satisfactory. The paper includes comment on the performance of the estimation models and description of several newer approaches to cost estimation.

Hareton Leung Zhang; Zhang Fan

2002-01-01T23:59:59.000Z

312

Minimum cost model energy code envelope requirements  

SciTech Connect

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

313

User manual for PACTOLUS: a code for computing power costs.  

SciTech Connect

PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results. (RWR)

Huber, H.D.; Bloomster, C.H.

1979-02-01T23:59:59.000Z

314

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

315

Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation  

E-Print Network (OSTI)

Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through a step-by-step process. A special section deals with selecting PVC pipe.

Fipps, Guy

1995-09-05T23:59:59.000Z

316

Lookin g for data personnel costs, indirect costs, equipment costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Negotiating Group Question/Answer Sessions November 19, 2009 Q: What happens now? A: The negotiation process starts tomorrow [November 20, 2009], when DOE will be sending the Awardees an e-mail with information about which website to go to for clarification and direction, information from the Office of Civil Rights, and answers to some of the questions that came up in the meeting. DOE will be gathering information about the questions concerning cyber requirements, metrics, and reporting requirements and will be getting back to the awardees about those issues the week after Thanksgiving. We have done a review of the budgets, and emails will be sent giving opportunities to address any issues. We will also re-review technical and cost proposals.

317

Simple cost model for EV traction motors  

DOE Green Energy (OSTI)

A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

Cuenca, R.M.

1995-02-01T23:59:59.000Z

318

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

319

Bringing Energy Efficiency and Cost of Ownership to Online Shopping  

NLE Websites -- All DOE Office Websites (Extended Search)

no easy way to calculate how much it will cost to operate a product based on one's local electricity rate (there are over 3,000 different US utilities) and personalized usage...

320

Reduce generating costs and eliminate brownouts  

Science Conference Proceedings (OSTI)

Improving the manoeuverability of a coal-fired plant to allow it to participate in primary frequency support will reduce generation cost and minimize brownouts. The challenge is to do so without compromising efficiency or emissions. This article describes an approach - activation of stored energy - that is cost-effective and applicable to both greenfield and brownfield installations. It requires a new control philosophy, plus the correct application of new level and flow measurement 'best practices'. 4 refs., 1 tab.

Nogaja, R.; Menezes, M. [Emerson Process Management (United States)

2007-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE NUCLEAR FUEL CYCLE: PROSPECTS FOR REDUCING ITS COST  

SciTech Connect

Nuclear fuel cost of 1.25 mills/kwh would make nuclear power competitive with conventional power in lowcost coal areas if capital and operating costs can be brought to within about 10 percent of those of coal-fired plants. Substantial decreases in fuel fabrication cost are anticipated by 1970: other costs in the fuel cycle are expccted to remain about the same as at present. Unit costs and irradiation levels that would be needed to give a fuel cost of 1.25 mills/kwh are believed to be attainable by 1970. (auth)

Albrecht, W.L.

1959-02-20T23:59:59.000Z

322

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

323

Waste management facilities cost information: System cost model product description. Revision 2  

SciTech Connect

In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities.

Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

1996-02-01T23:59:59.000Z

324

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

325

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

326

MHK Cost Breakdown Structure Draft | OpenEI Community  

Open Energy Info (EERE)

MHK Cost Breakdown Structure Draft MHK Cost Breakdown Structure Draft Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.

327

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

328

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

329

Incremental cost analysis of advanced concept CAES systems  

SciTech Connect

The costs of compressed air energy storage (CAES) systems using thermal energy storage (TES) are compared to the costs of CAES systems without TES and simple cycle gas turbine systems. Comparisons are made in terms of the system energy costs levelized over the operating life of the systems. These are in 1985 price levels which is the assumed first year of operation for the systems.

Knutsen, C.A.

1979-09-01T23:59:59.000Z

330

Optimal absorption pressure for CO/sub 2/ recovery from flue gas calculated  

SciTech Connect

This paper calculates the cost of separating carbon dioxide from flue gas for enhanced oil recovery (EOR). It diagrams a carbon dioxide recovery plant and presents tables with costs of carbon dioxide recovery at various absorption pressures, and cost in various EOR project. It shows that the utility cost is a dominant factor and that a gas compressor does not reduce the equipment cost effectively at low pressure and concludes that 70 psig is the optimal operating pressure.

Fang, C.S.; Fan, S.K.

1982-11-22T23:59:59.000Z

331

TVDG LET Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

To The B N L Tandem Van de Graaff Accelerator To The B N L Tandem Van de Graaff Accelerator TVDG LET Calculator This program calculates the Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target. Select the Target Material from the dropdown list. Select the Ion Specie from the dropdown list. Enter the Total Ion Energy in the text box. This is equal to the Atomic Mass times the Energy/Nucleon. Click the 'Calculate' button or press the 'Enter' key. The Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target will be returned. Select your Target from the list Air Aluminum Oxide Carbon Copper Gallium Arsenide Gold Polyester Polyethylene Silicon Silicon Dioxide Skin Soda Lime Glass Sodium Iodide Water Select your Ion from the list

332

Solar Reflectance Index Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

333

Estimating production and cost for clamshell mechanical dredges  

E-Print Network (OSTI)

Clamshell dredges are used around the United States for both navigational and environmental dredging projects. Clamshell dredges are extremely mobile and can excavate sediment over a wide range of depths. The object of this thesis is to develop a methodology for production and cost estimation for clamshell dredge projects. There are current methods of predicting clamshell dredge production which rely on production curves and constant cycle times. This thesis calculates production estimation by predicting cycle time which is the time required to complete one dredge cycle. By varying the cycle time according to site characteristics production can be predicted. A second important component to predicting clamshell dredge production is bucket fill factor. This is the percent of the bucket that will fill with sediment depending on the type of soil being excavated. Using cycle time as the basis for production calculation a spreadsheet has been created to simplify the calculation of production and project cost. The production calculation also factors in soil type and region of the United States. The spreadsheet is capable of operating with basic site characteristics, or with details about the dredge, bucket size, and region. Once the production is calculated the project cost can be determined. First the project length is found by dividing the total amount of sediment that is to be excavated by the production rate. Once the project length is calculated the remainder of the project cost can be found. The methods discussed in this thesis were used to calculate project cost for 5 different projects. The results were then compared to estimates by the government and the actual cost of the project. The government estimates were an average of 39% higher than the actual project cost. The method discussed in this thesis was only 6% higher than the actual cost.

Adair, Robert Fletcher

2004-12-01T23:59:59.000Z

334

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

CostCalculator"[fordishwashers] Excelworksheet. index.cfm? c=dishwash.pr_dishwashers>. File isdishwasher; clotheswasher

Al-Beaini, S.

2010-01-01T23:59:59.000Z

335

Spin resonance strength calculations  

SciTech Connect

In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

Courant,E.D.

2008-10-06T23:59:59.000Z

336

Roadway Improvement Project Cost Allocation  

E-Print Network (OSTI)

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

337

Wind Electrolysis: Hydrogen Cost Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

which needs to be 44% or better along with relatively high wind speeds. Along with low production costs, however, delivery and storage costs will also factor into the final cost...

338

Rocky Flats Closure Unit Cost Data  

SciTech Connect

The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

Sanford, P.C. [1129 Business Parkway South, Westminister, MD (United States); Skokan, B. [United States Department of Energy, Washington, DC (United States)

2007-07-01T23:59:59.000Z

339

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

340

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

342

Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues  

DOE Green Energy (OSTI)

This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

2009-12-01T23:59:59.000Z

343

Federal Energy Management Program: Life Cycle Cost Analysis for Sustainable  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Cost Analysis for Sustainable Buildings Life Cycle Cost Analysis for Sustainable Buildings To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments. Federal Requirements Life cycle cost (LCC) rules are promulgated in 10 CFR 436 A, Life Cycle Cost Methodology and Procedures and conforms to requirements in the National Energy Conservation Policy Act and subsequent energy conservation legislation as well as Executive Order 13423. The LCC guidance and materials provided here assume discount rates and energy price projections (TXT 17 KB) determined annually by FEMP and the Energy Information Administration. Building Life Cycle Cost Software FEMP's Building Life Cycle Cost (BLCC) software can help you calculate life cycle costs, net savings, savings-to-investment ratio, internal rate of return, and payback period for Federal energy and water conservation projects funded by agencies or alternatively financed. BLCC also estimates emissions and emission reductions. An energy escalation rate calculator (EERC) computes an average escalation rate for energy savings performance contracts when payments are based on energy cost savings.

344

Estimation of the social costs of natural gas  

SciTech Connect

This study determines the extent to which it is possible to develop monetary estimates of the marginal social cost of fuels, using natural gas to test a methodology that could be applied to other fuels. This requires review of previous estimates of both market and nonmarket costs to the extent that such are available. For some components of social cost, calculation of estimates from secondary data is required. The feasibility of using these estimates to develop marginal social-cost estimates for the country and for states or regions must then be evaluated. In order to develop estimates of marginal social cost for use in determining minimum life-cycle costs of building space conditioning, economic theory is used to develop a conceptual model of the market cost of fuel extraction and conversion. Then, estimation methodologies for each component of nonmarket costs are examined to assess the applicability and validity of each methodology. On the basis of this analysis, empirical estimates of both market and nonmarket components of social cost are aggregated to calculate a social-cost estimate for natural gas. 38 references.

Nieves, L.A.; Lemon, J.R.

1979-12-01T23:59:59.000Z

345

GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs  

DOE Green Energy (OSTI)

GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

Fassbender, L.L.; Bloomster, C.H.

1981-06-01T23:59:59.000Z

346

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

347

Development of the household sample for furnace and boilerlife-cycle cost analysis  

Science Conference Proceedings (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

348

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

349

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

350

Tunnel closure calculations  

SciTech Connect

When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

Moran, B.; Attia, A.

1995-07-01T23:59:59.000Z

351

QCD on GPUs: cost effective supercomputing  

E-Print Network (OSTI)

The exponential growth of floating point power in graphics processing units (GPUs), together with their low cost, has given rise to an attractive platform upon which to deploy lattice QCD calculations. GPUs are essentially many (O(100)) core chips, that are programmed using a massively threaded environment, and so are representative of the future of high performance computing (HPC). The large ratio of raw floating point operations per second to memory bandwidth that is characteristic of GPUs necessitates that unique algorithmic design choices are made to harness their full potential. We review the progress to date in using GPUs for large scale calculations, and contrast GPUs against more traditional HPC architectures

M. A. Clark

2009-12-11T23:59:59.000Z

352

Emission control cost-effectiveness of alternative-fuel vehicles  

DOE Green Energy (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

353

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

354

Building Technologies Office: 179D DOE Calculator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

179D DOE Calculator 179D DOE Calculator EERE » Building Technologies Office » 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the Federal Tax Code provides a tax deduction for energy efficiency improvements to commercial buildings. A building may qualify for a tax deduction under Section 179D not to exceed $1.80/ft² for whole building performance or $0.60/ft² for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify with a reduced installed lighting power under the interim lighting rule. Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information.

355

Healthcare Energy Impact Calculator | Open Energy Information  

Open Energy Info (EERE)

Healthcare Energy Impact Calculator Healthcare Energy Impact Calculator Jump to: navigation, search Tool Summary Name: Healthcare Energy Impact Calculator Agency/Company /Organization: Practice Greenhealth Sector: Climate User Interface: Website Complexity/Ease of Use: Simple Website: www.eichealth.org/ Cost: Free Related Tools UNEP-Bioenergy Decision Support Tool Global Relationship Assessment to Protect the Environment (GRAPE) World Induced Technical Change Hybrid (WITCH) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An online tool based on U.S. Environmental Protection Agency (EPA) analysis of health impacts of power plant emissions of sulfur dioxide, nitrogen oxides, and mercury, this tool estimates premature deaths, chronic bronchitis, asthma attacks, emergency room visits, and more, by kWh/year.

356

Evidence of cost growth under cost-plus and fixed-price contracting  

SciTech Connect

As defined by the US Department of Energy (DOE), privatization refers to a shifting of responsibilities for the completion of projects from a cost-plus Management and Operations (M and O) contract, to incentive-based contracts with the private sector. DOE`s new vision is to arrange cleanup work around incentives-based contracts, which are won via competitive bidding. Competition in awarding cleanup contracts can make use of market incentives to lower project costs and reduce slippage time. Fixed-price contracts encourage contractors to minimize schedule delays and cost overruns once the scope of a project has been negotiated. Conversely, cost-plus contracting offers weak incentives for contractors to select cost-minimizing production and management approaches. Because privatization explicitly allocates more risk to the contractor, it forces the government to better define its goals and methods. This study summarizes actual cost experiences with government contracts performed under cost-plus and fixed-price incentive structures at all levels of government. The first section provides some background on the problem of making contractor activity more cost-efficient. Following this are sections on the measurement of performance and the costs of projects, limitations on measurement, and findings of similar studies. The study concludes with appendices discussing the details of the performance measurement methodology and the project data sets used in the study.

Scott, M.J.; Paananaen, O.H.; Redgate, T.E.; Ulibarri, C.A.; Jaksch, J.A.

1998-09-01T23:59:59.000Z

357

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

358

Service Provider Competition: Delay Cost Structure, Segmentation, and Cost Advantage  

Science Conference Proceedings (OSTI)

We model competition between two providers who serve delay-sensitive customers. We compare a generalized delay cost structure, where a customer's delay cost depends on her service valuation, with the traditional additive delay cost structure, where the ... Keywords: delay cost structure, service competition, value-based market segmentation

Maxim Afanasyev; Haim Mendelson

2010-04-01T23:59:59.000Z

359

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

360

Heliostat cost reduction study.  

DOE Green Energy (OSTI)

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Long-run incremental costs and the pricing of electricity. Part II. [Comparative evaluation of marginal cost pricing and average cost pricing  

SciTech Connect

Total costs have essentially the same cost components whether long-run average costs or long-run incremental costs are used. The variable components, chiefly fuel, may be somewhat different in the new incremental plant compared to the old average plant; where the difference is between nuclear fuel and fossil fuel, its size is substantial. However, given the same kind of plant, the current prices of materials and labor will be essentially the same whether used in the new or the old plant with long-run incremental costs (LRIC) or long-run average costs (LRAC). The lower cost of electricity produced in nuclear plants constructed today, as compared to fossil fuel plants constructed at the same time, is not to be confused with the relation between LRIC and LRAC. LRAC is the average cost of electricity from all existing plants priced at their historical costs, which were generally lower than current costs. These average historical costs per kilowatt are still likely to be lower than the current incremental cost per kilowatt of the newest nuclear plant built at present price levels. LRAC is, therefore, still likely to be lower than LRIC for either fossil or nuclear. Data from the Wisconsin Power and Light Company, the Madison Gas and Electric Company, and Tuscon Gas and Electric Company are examined to study some comparisons. Some pricing principles that vary seasonally for resort hotels are reviewed. (MCW)

Morton, W.A.

1976-03-25T23:59:59.000Z

362

Building Energy Software Tools Directory: Room Air Conditioner Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioner Cost Estimator Room Air Conditioner Cost Estimator Screen capture of Room Air Conditioner Cost Estimator The cost estimator compares high-efficiency room air conditioners to standard equipment in terms of life cycle cost. It provides an alternative to complicated building simulation models, while offering more precision than simplified estimating tools that are commonly available. The cost estimator assists decision-making regarding the purchase or replacement of room air conditioning equipment, by estimating a product�s lifetime energy cost savings at various efficiency levels. Screen Shots Keywords air conditioner, life-cycle cost, energy performance, residential buildings, energy savings Validation/Testing Internal reviews at Pacific Northwest National Laboratory.

363

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

364

Percent of 2010 Luminaire Cost LED Luminaire Cost  

E-Print Network (OSTI)

LEDs promise to change the world, and few doubt that they will, but a key limiter to more rapid adoption is the cost of the LED themselves. The cost breakdown of LED luminaires vary, but it is safe to put the cost of the LED at around 25% to 40 % of the total luminaire cost. It is projected to remain a significant cost of the total luminaire for many years.

unknown authors

2012-01-01T23:59:59.000Z

365

Steep Slope Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Steep Slope Calculator Steep Slope Calculator Estimates Cooling and Heating Savings for Residential Roofs with Non-Black Surfaces Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Click to see Data for All 243 Locations Roof Inputs: R-value(Btu-in/(hr ft2 oF):

366

Question: What is the cost threshold for providing cost detail for subrecipient  

NLE Websites -- All DOE Office Websites (Extended Search)

Question: What is the cost threshold for providing cost detail for subrecipients or consultant Question: What is the cost threshold for providing cost detail for subrecipients or consultant information? Is there a cost threshold set for third parties? Answer: Each subawardee/subrecipient/subcontractor whose work is expected to exceed $650,000 or 50% of the total work effort (whichever is less) should complete a Budget Justification package to include the SF 424A budget form, Budget Justification Guideline Excel document, and a narrative supporting the Budget Justification Guidelines. This information may be saved as a separate file or included with the Prime Applicant's Budget.pdf file. Summary level information for subawardees is not sufficient. Detailed explanations and supporting

367

Review of storage battery system cost estimates  

DOE Green Energy (OSTI)

Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

Brown, D.R.; Russell, J.A.

1986-04-01T23:59:59.000Z

368

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

369

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network (OSTI)

The feasibility and success of petroleum development projects depend to a large degree on well construction costs. Well construction cost estimates often contain high levels of uncertainty. In many cases, these costs have been estimated using deterministic methods that do not reliably account for uncertainty, leading to biased estimates. The primary objective of this work was to improve the reliability of deterministic well construction cost estimates by incorporating probabilistic methods into the estimation process. The method uses historical well cost estimates and actual well costs to develop probabilistic correction factors that can be applied to future well cost estimates. These factors can be applied to the entire well cost or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated well cost using this methodology was significantly more accurate than average estimated well cost using deterministic methods. Systematic use of this methodology can provide for more accurate and efficient allocation of capital for drilling campaigns, which should have significant impacts on reservoir development and profitability.

Valdes Machado, Alejandro

2013-08-01T23:59:59.000Z

370

Cost and Performance Tradeoff Analysis of Cell Planning Levels.  

E-Print Network (OSTI)

?? In wireless communication systems, optimal placement of base station locations, i.e.,cell planning, has been considered one of major tools for performance improvement.However, the cell (more)

Gao, Jun

2013-01-01T23:59:59.000Z

371

Figure 80. Levelized electricity costs for new power plants, 2020 ...  

U.S. Energy Information Administration (EIA)

Gas combined cycle Wind Nuclear Coal Capital O&M Fuel Transmission 2040.00 2020.00 1.35 5.88 5.98 6.61 1.71 6.98 7.73 8.32 0.20 1.31 1.16 0.68 0.20 1.31 1.16 0.68 6 ...

372

Agricultural greenhouse gas emissions : costs associated with farm level mitigation.  

E-Print Network (OSTI)

??Agricultural greenhouse gas emissions within New Zealand account for 48 percent of all national greenhouse gas emissions. With the introduction of the emissions trading scheme (more)

Wolken, Antony Raymond

2009-01-01T23:59:59.000Z

373

costs | OpenEI  

Open Energy Info (EERE)

7 7 Varnish cache server costs Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

374

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

375

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

376

Cost Study Manual | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Study Manual Cost Study Manual Update 62912. Memo regarding Cost Study Manual Cost Study Manual More Documents & Publications Technical Standards, Newsletter-June 1999 Build...

377

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

E. Hydrogen Supply: Cost Estimate for Hydrogen Pathways -costs are compared with cost estimates of similar stationsHydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

378

Parallel fault backtracing for calculation of fault coverage  

Science Conference Proceedings (OSTI)

A new improved method for calculation of fault coverage with parallel fault backtracing in combinational circuits is proposed. The method is based on structurally synthesized BDDs (SSBDD) which represent gate-level circuits at higher, macro level where ...

Raimund Ubar; Sergei Devadze; Jaan Raik; Artur Jutman

2008-01-01T23:59:59.000Z

379

Benchmarking Variable Cost Performance in an Industrial Power Plant  

E-Print Network (OSTI)

One of the most perplexing problems for industrial power plants committed to improving competitiveness is measuring variable cost performance over time. Because variable costs like fuel and electricity represent the overwhelming majority of power plant expenses, it is imperative to develop and deploy a tool that can help plants benchmark operating performance. This paper introduces a benchmarking methodology designed to meet this need. The "Energy Conversion Index" (ECI) ratios the "value" of utilities exported from the power plant to the actual cost of the fuel and electricity required to produce them, generating a single number or "index." Variable cost performance is benchmarked by comparing the index from one period of time to the index of another comparable period of time. Savings (or costs) attributable to excellent (or poor) performance can easily be calculated by using the former period's index to project the current period's cost.

Kane, J. F.; Bailey, W. F.

1998-04-01T23:59:59.000Z

380

Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

382

FY 1995 cost savings report  

SciTech Connect

Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

Andrews-Smith, K.L., Westinghouse Hanford

1996-06-21T23:59:59.000Z

383

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

384

FLAG-SGH Sedov calculations  

SciTech Connect

We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).

Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

385

Pennsylvania life cycle costing manual  

SciTech Connect

Until the 1970s, it was commonplace for institutions and governments to purchase equipment based on lowest initial (first) costs. Recurring costs such as operational, maintenance, and energy costs often were not considered in the purchase decision. If an agency wanted to buy something, it published specifications and requested bids from several manufacturers. Often, the lowest bidder who met the specifications won the job, with no consideration given to the economic life of the equipment or yearly recurring costs such as energy and maintenance costs. The practice of purchasing based on lowest initial costs probably did not make good economic sense prior to 1970, and it certainly does not make good sense now. The wise person will consider all costs and benefits associated with a purchase, both initial and post-purchase, in order to make procurement decisions that are valid for the life of the equipment. This describes a method of financial analysis that considers all pertinent costs: life cycle costing (LCC).

1996-02-01T23:59:59.000Z

386

Optimal Incentive/Disincentive Determination Between Cost and Benefit  

E-Print Network (OSTI)

In an effort to motivate contractors to complete construction projects early on high-impact highway pavement construction projects, state transportation agencies (STAs) including TxDOT have often used incentive/disincentive (I/D) contracts. However, determining I/D rates is extremely difficult due largely to the lack of systematic methods for helping STAs determine effective I/D rates. The primary goal of this project is to develop a novel framework for determining the most realistic and economical I/D dollar amounts for high-impact highway improvement projects. To achieve its goal, this project proposes an integration analysis including project schedule and the lower and upper bounds of the I/D contract. The lower bound is the contractors additional cost of acceleration, and the upper is the total savings to road users and to the agency. The study data were gathered using Construction Analysis for Pavement Rehabilitation Strategies (CA4PRS) software. These data were then grouped by four different types of pavements, namely Joint Plain Concrete Pavement (JPCP), Continuously Reinforced Concrete Pavement (CRCP), Hot Mix Asphalt (HMA), and Milling and Asphalt Concrete Overlay (MACO). With these data, a series of regression analyses were carried out to develop predictive models for the validation of time-cost tradeoff to determine I/D lower bound. Road user cost and agency cost savings were quantified using CA4PRS to develop lookup tables to determine I/D upper bound. Adjustment of contractors additional cost of acceleration with Level of Service (LOS) and total savings adjustment using Net Present Value (NPV) were incorporated in the research study to calculate point based estimates of I/D for lower and upper bound, respectively. Lastly, case studies on real world projects were conducted to evaluate robustness of the model. The research results reveal that the predictive models give appropriate results for the case studies in determining the I/D dollar amount for the lower and upper bound. This study will provide the research community with the first view and systematic estimation method that STAs can use to determine the most economical and realistic I/D dollar amount for a given projectan optimal value that allows the agency to stay within budget while effectively motivating contractors to complete projects ahead of schedule. It will also significantly reduce the agencys expenses in the time and effort required for determining I/D dollar amounts.

Sharma, Piyush

2013-08-01T23:59:59.000Z

387

Examinations of electron temperature calculation methods in Thomson scattering diagnostics  

Science Conference Proceedings (OSTI)

Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. {chi}-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the {chi}-square test are examined and scale factor test is proposed as an alternative method.

Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin [National Fusion Research Institute, 113 Gwahangno, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

2012-10-15T23:59:59.000Z

388

Comparative analysis of energy costing methodologies  

SciTech Connect

The methodologies used for computing levelized busbar costs of electricity from geothermal (hydrothermal) resources used by 16 organizations active in the geothermal area are discussed. The methodologies are compared by (a) comparing the results obtained by using two standard data sets, (b) a theoretical analysis of the mathematical formulation of the embedded models, and (c) an examination of differences in data and assumptions. The objective is to attempt to resolve differences in estimates of geothermal (and conventional) electric power costs, upon which policies may be formulated and research, development and demonstration activities designed and implemented.

El-Sawy, A.H.; Leigh, J.G.; Trehan, R.K.

1979-02-01T23:59:59.000Z

389

Cost-sensitive classifier evaluation using cost curves  

Science Conference Proceedings (OSTI)

The evaluation of classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2008-05-01T23:59:59.000Z

390

Renewable Energy Technology Costs and Drivers | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Technology Costs and Drivers Renewable Energy Technology Costs and Drivers Jump to: navigation, search Tool Summary Name: Renewable Energy Technology Costs and Drivers Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Topics: Finance, Market analysis, Technology characterizations Resource Type: Publications Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com//w/images/6/63/RE_C Renewable Energy Technology Costs and Drivers Screenshot References: Renewable Energy Technology Costs and Drivers[1] Summary "Provided herein is a preliminary, high-level summary of future and projected cost estimates for 1) Biofuels, 2) Solar (PV & CSP), and 3) Vehicle Batteries. Cost estimates are dependent on various assumptions and

391

Energy Technology Cost and Performance Data | OpenEI  

Open Energy Info (EERE)

Technology Cost and Performance Data Technology Cost and Performance Data Dataset Summary Description This data indicates the range of recent cost estimates for renewable energy and other technologies. The estimates are shown in dollars per installed kilowatts of generating capacity. This data provides a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. All costs are in 2006 dollars per installed kilowatts in the United States. Source NREL Date Released August 06th, 2009 (5 years ago) Date Updated August 06th, 2009 (5 years ago) Keywords analysis Department of Energy DOE National Renewable Energy Laboratory Data application/vnd.ms-excel icon Energy Technology Cost and Performance Data (xls, 107.5 KiB) text/csv icon Capacity Factor (csv, 1.8 KiB)

392

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Science Conference Proceedings (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

393

Cost Sensitive Conditional Planning  

E-Print Network (OSTI)

While POMDPs provide a general platform for conditional planning under a wide range of quality metrics they have limited scalability. On the other hand, uniform probability conditional planners scale very well, but many lack the ability to optimize plan quality metrics. We present an innovation to planning graph based heuristics that helps uniform probability conditional planners both scale and generate high quality plans when using actions with non uniform costs. We make empirical comparisons with two state of the art planners to show the benefit of our techniques.

Daniel Bryce; Subbarao Kambhampati

2005-01-01T23:59:59.000Z

394

Utility Scale Solar PV Cost Steven SimmonsSteven Simmons  

E-Print Network (OSTI)

, permitting) Early construction (procurement, site prep) Construction Month % of TTL Cost 12 month ­ 1% 12 month ­ 14 % 12 month ­ 85 % Month % of TTL Cost 12 month ­ 1% 12 month ­ 14 % 12 month ­ 85 % Financing.69 113.43 96.66 TTL 213.94 189.08 156.97 137.12 0 debt term 25 years 200 250 $/MWh 2012$ Levelized Cost

395

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

396

Reducing the Manufacturing Cost of Tubular SOFC Technology  

SciTech Connect

In recent years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop a `MWe Class` (1-3 MWe) pressurized SOFC (PSOFC) gas turbine (GT) combined cycle power system for distributed power applications because of its: (1) ultra high efficiency (approx. 63% net AC/LHV CH{sub 4}), (2) its compatibility with a factory packaged, minimum site work philosophy, and (3) its cost effectiveness. Since then two cost studies on this market entry product performed by consultants to the U.S. Department of Energy have confirmed Westinghouse cost studies that fully installed costs of under $1300/kWe can be achieved in the early commercialization years for such small PSOFC/GT power systems. The paper will present the results of these cost studies in the areas of cell manufacturing cost, PSOFC generator manufacturing cost, balance-of-plant (BOP) cost, and system installation cost. In addition, cost of electricity calculations will be presented.

George, R.A.; Bessette, N.F.

1997-12-31T23:59:59.000Z

397

Development of a right-of-way cost estimation and cost estimate management process framework for highway projects  

E-Print Network (OSTI)

Escalation of right-of-way (ROW) costs have been shown to be a prime contributor to project cost escalation in the highway industry. Two problems contribute to ROW cost escalation: 1) the ROW cost estimation and cost estimate management process generally lacks structure and definition as compared to other areas of cost estimation; and 2) there is a lack of integration and communication between those responsible for ROW cost estimating and those responsible for general project cost estimating. The research for this thesis was preceded by a literature review to establish the basis for the study. Data collection was completed through interviews of seven state highway agencies (SHAs) and two local public agencies (LPAs). The findings of the research are presented in a set of ROW flowcharts which document the steps, inputs, and outputs of the ROW cost estimation and cost estimate management process. Three ROW cost estimates and a cost management process take place throughout project development. An effort was made from the onset of the research to relate the ROW cost estimating and cost estimate management process to the first four project development phases (planning, programming. preliminary design, and final design). There are five flowcharts produced as a result of this research: 1) an agency-level flowchart showing all cost estimates and the interaction of ROW with the project development process; 2) a conceptual ROW cost estimating flowchart which depicts the required steps during planning; 3) a baseline ROW cost estimating flowchart which depicts the required steps during programming; 4) an update ROW cost estimating flowchart which depicts the required steps during preliminary design to include a cost estimate management loop; and 5) a ROW cost management flowchart which depicts the required steps during final design. Although selected SHA contacts provided input following the development of the flowcharts, the flowcharts were only validated to a limited extent due to time and budget constraints. These flowcharts attempt to address the two contributing problems to ROW cost escalation by providing structure to the ROW cost estimation process and by developing the ROW process flowcharts linked to the project development process. Based on the input provided by SHA contacts, the flowcharts appear to have the potential to provide guidance to SHAs in improving the accuracy of ROW cost estimates through addressing these two problems.

Lucas, Matthew Allen

2007-12-01T23:59:59.000Z

398

An Examination of Avoided Costs in Utah  

DOE Green Energy (OSTI)

The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

Bolinger, Mark; Wiser, Ryan

2005-01-07T23:59:59.000Z

399

Cost effective multimedia courseware development  

Science Conference Proceedings (OSTI)

Multimedia technology offers considerable potential for education though the costs of production of courseware are prohibitive especially in a rapidly changing discipline such as computer science. This paper proposes a cost-effective technique which ...

C. J. Pilgrim; Y. K. Leung; D. D. Grant

1997-06-01T23:59:59.000Z

400

Overview and Low Cost Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The major reason that there is not more widespread use of titanium and its alloys is the high cost. Developments in reducing the cost of titanium...

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cost and Impacts of Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Policies RESULTS 2010-2025 and long-run impacts 2010-2025 GovernmentIndustry Costs Hydrogen production, infrastructure & cost HyTrans merges the early transition...

402

User cost in oil production  

E-Print Network (OSTI)

The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

Adelman, Morris Albert

1990-01-01T23:59:59.000Z

403

Cost-sensitive classifier evaluation  

Science Conference Proceedings (OSTI)

Evaluating classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2005-08-01T23:59:59.000Z

404

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

405

Comparison of Life Cycle Costs for LLRW Management in Texas  

Science Conference Proceedings (OSTI)

This report documents a comparison of life-cycle costs of an assured isolation facility in Texas versus the life-cycle costs for a traditional belowground low-level radioactive waste disposal facility designed for the proposed site near Sierra Blanca, Texas.

Baird, R. D.; Rogers, B. C.; Chau, N.; Kerr, Thomas A

1999-08-01T23:59:59.000Z

406

Development of a Low-Cost Tide Gauge  

Science Conference Proceedings (OSTI)

A low-cost tide gauge was developed and field tested to demonstrate a technology that would enable more cost-effective and greater sampling of spatially variable water levels and ocean surface waves. The gauge was designed to be adaptable to ...

Mark F. Giardina; Marshall D. Earle; John C. Cranford; Daniel A. Osiecki

2000-04-01T23:59:59.000Z

407

3800 Green Series Cost Elements  

Energy.gov (U.S. Department of Energy (DOE))

Stoller - Legacy ManagementSustainable Acquisition (formerly EPP) Program 3800 Series Cost Elements01/30/2012 (Rev. 4)

408

Empirical Methods of Cost Estimation  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

409

Bifacial Efficiency at Monofacial Cost  

solar cells; photovoltaics; PV; bifacial efficiency; Monofacial Cost, Bifacial Cells; bifacial Modules; industry growth forum; gamma solar Created ...

410

COST SHARING ON SPONSORED PROJECTS  

E-Print Network (OSTI)

COST SHARING ON SPONSORED PROJECTS 1 California Institute of Technology Issuing Authority: Office is that portion of the total cost of an externally funded project that is not funded by the sponsor. Depending as a demonstration of its commitment to the project. When voluntary cost sharing is included in the proposal budget

Tai, Yu-Chong

411

Methodology for Costing Ancillary Services from Hydro Resources  

Science Conference Proceedings (OSTI)

Due to the unique flexibility of Hydro resources, Hydro resource owners perceive a unique opportunity to profit from emerging markets for Ancillary Services (A/S) service products. Effective pricing and profitability measurement tools, however, are not widely available. This report creates a framework for defining A/S products and develops a methodology for calculating total incremental costs of providing A/S in terms of five cost elements.

2000-11-29T23:59:59.000Z

412

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

NREL: PVWatts - PVWatts Grid Data Calculator (Version 2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Data Calculator (Version 2) Grid Data Calculator (Version 2) PVWattsTM Grid Data calculator allows users to select a photovoltaic (PV) system location in the United States from an interactive map. The Grid Data calculator uses hourly typical meteorological year weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. It allows users to create estimated performance data for any location in the United States or its territories by selecting a site on a 40-km gridded map. The 40-km Grid Data calculator considers data from a climatologically similar typical meteorological year data station and site-specific solar resource and maximum temperature information to provide PV performance estimation. In this version, performance is first calculated for the the nearest TMY2

414

Life cycle cost and risk estimation of environmental management options  

SciTech Connect

The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically.

Shropshire, D.; Sherick, M.

1996-04-01T23:59:59.000Z

415

Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing  

E-Print Network (OSTI)

Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

El-Magboub, Sadek Abdulhafid.

416

17.2 - Cost Participation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17.2 (June 2004) 17.2 (June 2004) 1 Cost Participation [Reference: FAR 35.003(b), DEAR 917.70] Overview This section discusses DOE treatment of cost participation by organizations performing research, development, and demonstration projects under DOE prime contracts. This section does not cover efforts and projects performed for DOE by other Federal agencies. Background Cost participation is a generic term denoting any situation where the Government does not fully reimburse the contractor for all allowable costs necessary to accomplish the project or effort under the contract. The term includes, but is not limited to: * Cost Sharing * Cost Matching * Cost Limitation, which may be direct or indirect * Participation in-kind

417

Cost reduction possibilities for a heavy-ion accelerator for inertial confinement fusion  

SciTech Connect

A design was produced for a single module in a cost-optimized accelerator appropriate for a commercial heavy-ion power plant. The goal of the study was to determine if the cost of the accelerator module could be reduced through design options, selection of materials, and manufacturing techniques. Independent cost estimates were obtained for the three main components of the module, and cost reductions of 20% from the cost calculated by the heavy-ion accelerator design/cost-minimization computer code LIACEP were identified. 3 refs., 23 figs.

Thayer, G.R.; Sims, J.R.; Henke, M.D.; Harris, D.B.; Dudziak, D.J.; Phillips, N.R.

1987-10-01T23:59:59.000Z

418

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

419

Integration of Variable Generation and Cost-Causation (Fact Sheet)  

DOE Green Energy (OSTI)

Variable renewable energy generation sources, such as wind and solar energy, provide benefits such as reduced environmental impact, zero fuel consumption, and low and stable costs. Advances in both technologies can reduce capital costs and provide significant control capabilities. However, their variability and uncertainty - which change with weather conditions, time of day, and season - can cause an increase in power system operating costs compared to a fully controllable power plant. Although a number of studies have assessed integration costs, calculating them correctly is challenging because it is difficult to accurately develop a baseline scenario without variable generation that properly accounts for the energy value. It is also difficult to appropriately allocate costs given the complex, nonlinear interactions between resources and loads.

Not Available

2012-09-01T23:59:59.000Z

420

Batteries on the battlefield developing a methodology to estimate the fully burdened cost of batteries in the Department of Defense .  

E-Print Network (OSTI)

??L), have developed methodologies to calculate the fully burdened cost of fuel as delivered energy in defense systems. Whereas these previous studies did not consider (more)

Hughley, Anthony E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National and Regional Water and Wastewater Rates For Use in Cost-Benefit Models and Evaluations of Water Efficiency Programs  

E-Print Network (OSTI)

2006 California Water Rate Survey. 2006. Black & VeatchRegional Water and Wastewater Rates For Use in Cost-Benefit5 Calculated Marginal Rates for

Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

2008-01-01T23:59:59.000Z

422

Cost Analysis of Proposed National Regulation of Coal Combustion Residuals from the Electric Generating Industry  

Science Conference Proceedings (OSTI)

This analysis quantifies the potential cost to the coal-fired electric generation industry from EPA's proposed rule on the disposal of coal combustion residuals. It includes an assessment of the incremental compliance costs of the Subtitle C proposed regulatory option. Costs for this analysis were developed at the individual generating unit and plant level and aggregated to develop a national industry cost estimate. The analytical model used to estimate the costs utilizes a Monte Carlo framework to accou...

2010-11-17T23:59:59.000Z

423

Properties of low cost, high volume glasses  

DOE Green Energy (OSTI)

The properties of new and weathered samples of low cost, high volume glasses have been studied to determine their usefulness for solar energy applications. Glasses of varying compositions produced by float, drawn, rolled fusion, and twin ground techniques were examined. Spectral transmittance and reflectance were measured and solar weighted values calculated. Laser raytrace techniques were used to evaluate surface parallelism and bulk homogeneity. Compositional changes were examined with scanning electron microscopy, x-ray fluorescence, and Auger electron spectroscopy. These techniques were used in conjunction with ellipsometry to study the surface effects associated with weathering.

Lind, M. A.; Hartman, J. S.; Buckwalter, C. Q.

1979-01-01T23:59:59.000Z

424

GUIDE TO NUCLEAR POWER COST EVALUATION. VOLUME 4. FUEL CYCLE COSTS  

SciTech Connect

Information on fuel cycle cost is presented. Topics covered include: nuclear fuel, fuel management, fuel cost, fissionable material cost, use charge, conversion and fabrication costs, processing cost, and shipping cost. (M.C.G.)

1962-03-15T23:59:59.000Z

425

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

DOE Green Energy (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

426

Numerical calculation of the moments of the population balance equation  

Science Conference Proceedings (OSTI)

The combined CFD-PBM (population balance models) are computationally intensive, so a possibility is to calculate only a few moments of the probability density function (PDF) of the PBM minimizing the computational costs. However, this formulation results ... Keywords: least squares method, population balance equation, quadrature approximation

C. A. Dorao; H. A. Jakobsen

2006-11-01T23:59:59.000Z

427

Total capital cost data base: 10MWe Solar Thermal Central Receiver Pilot Plant  

DOE Green Energy (OSTI)

This report describes the total capital cost data base of the 10 MWe Solar Thermal Central Receiver Pilot Plant. This Solar One cost data base was created using the computer code ''Cost Data Management System (CDMS)''. The cost data base format was developed to be used as a common method of presentation of capital costs for power plants. The basic format is a plant system cost breakdown structure. Major accounts are land; structures and improvements; collector, receiver, thermal transport, thermal storage, and stream generation systems; turbine plant; electrical plant; miscellaneous plant systems and equipment; and plant-level indirect costs. Each major account includes subaccounts to as many as nine level of detail. The data base can be accessed to provide elements-of-work costs at any subaccount level or at the plant level. The elements-of-work include sitework/earthwork; concrete work; metal work; architectural; process equipment; piping; electrical; and miscellaneous work. Each of these elements-of-work can be or are broken into finer detail and costs can be accumulated to identify more specific needs, e.g., pipe insulation or heat exchangers. The cost data base can be accessed and various reports can be generated. These vary from a single page summary to detailed listings of costs and notes. Reported costs can be stated in dollars, dollars per kilowatt or percentage of the total plant cost. Reports or samples of reports for the pilot plant capital cost are included.

Norris, H.F. Jr.

1986-05-01T23:59:59.000Z

428

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network (OSTI)

Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost. For small plants, it is quite possible that a decrease in labor could result in an increase in electric demand and cost or vice versa. In this paper two cases are presented which highlight the dependence of one on other.

Agrawal, S.; Jensen, R.

1998-04-01T23:59:59.000Z

429

Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011  

Science Conference Proceedings (OSTI)

This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

2011-05-01T23:59:59.000Z

430

User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants  

DOE Green Energy (OSTI)

DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

Dellin, T.A.; Fish, M.J.; Yang, C.L.

1981-08-01T23:59:59.000Z

431

Today in Energy - High airline jet fuel costs prompt cost ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... and idling time. ... Delta stated that it anticipates cost savings of $300 million per year as a result of this ...

432

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

433

2050 Calculator | Open Energy Information  

Open Energy Info (EERE)

0 Calculator 0 Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2050 Calculator Agency/Company /Organization: United Kingdom Department of Energy and Climate Change (DECC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, Buildings - Commercial, Buildings - Residential, Economic Development, Geothermal, Greenhouse Gas, Multi-model Integration, Multi-sector Impact Evaluation, Solar, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Online calculator User Interface: Spreadsheet, Website Complexity/Ease of Use: Not Available Website: www.gov.uk/2050-pathways-analysis Country: United Kingdom Web Application Link: 2050-calculator-tool.decc.gov.uk/pathways/1111111111111111111111111111

434

An Explanation of F&A Costs What are F&A Costs?  

E-Print Network (OSTI)

An Explanation of F&A Costs What are F&A Costs? Costs involved in conducting sponsored projects costs and F&A costs together are the actual cost of a sponsored project. Direct costs are "those costs, indirect costs cannot be specifically attributed to an individual project. For example, it is difficult

435

Regional comparison of nuclear and fossil electric power generation costs  

SciTech Connect

Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures.

Bowers, H.I.

1984-01-01T23:59:59.000Z

436

HRA Calculator v. 5.0 BETA  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-04-19T23:59:59.000Z

437

EPRI HRA Calculator Version 5.0  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-09-30T23:59:59.000Z

438

Electric power transmission and distribution systems: costs and their allocation. Research report  

SciTech Connect

Transmission and distribution costs contribute significantly to the total costs of providing electrical service. The costs derived from the transmission and distribution (TandD) system have historically comprised about 2/3 the costs of producing and delivering electricity to residential-commercial customers, and over 1/3 the total costs supplying electricity to large industrial customers. This report: (1) estimates the differences in transmission and distribution equipment required to serve industrial and residential-commercial customers and allocates to the above two customer classes the average costs of installing this equipment; (2) estimates the costs of operation and maintenance of the transmission and distribution system, and allocates these costs to the customer classes; and (3) calculates the TandD derived average costs for the two customer classes. (GRA)

Baughman, M.L.; Bottaro, D.J.

1975-07-01T23:59:59.000Z

439

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

tool to compare existing cost estimates from the literature,It compiles and organizes cost estimates obtained from aE. Hydrogen supply: cost estimate for hydrogen pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

440

U.S. Department of Energy Hydrogen Storage Cost Analysis  

SciTech Connect

The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â??bottom-upâ? costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA?® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

2013-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "levelized cost calculations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MCNP modeling of the Swiss LWRs for the calculation of the in- and ex-vessel neutron flux distributions  

SciTech Connect

MCNP models of all Swiss Nuclear Power Plants have been developed by the National Cooperative for the Disposal of Radioactive Waste (Nagra), in collaboration with the utilities and ETH Zurich, for the 2011 decommissioning cost study. The estimation of the residual radionuclide inventories and corresponding activity levels of irradiated structures and components following the NPP shut-down is of crucial importance for the planning of the dismantling process, the waste packaging concept and, consequently, for the estimation of the decommissioning costs. Based on NPP specific data, the neutron transport simulations lead to the best yet knowledge of the neutron spectra necessary for the ensuing activation calculations. In this paper, the modeling concept towards the MCNP-NPPs is outlined and the resulting flux distribution maps are presented. (authors)

Pantelias, M.; Volmert, B.; Caruso, S. [National Cooperative for the Disposal of Radioactive Waste Nagra, Hardstrasse 73, 5430, Wettingen (Switzerland); Zvoncek, P. [Laboratory for Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092, Zurich (Switzerland); Bitterli, B. [Kernkraftwerk Goesgen-Daeniken AG, 4658 Daeniken (Switzerland); Neukaeter, E.; Nissen, W. [BKW FMB Energie AG-Kernkraftwerk Muehleberg, 3203 Muehleberg (Switzerland); Ledergerber, G. [Kernkraftwerk Leibstadt AG, 5325 Leibstadt (Switzerland); Vielma, R. [Axpo AG-Kernkraftwerk Beznau, 5312 Doettingen (Switzerland)

2012-07-01T23:59:59.000Z

442

Biodiesel Performance, Costs, and Use  

U.S. Energy Information Administration (EIA)

Biodiesel Performance, Costs, and Use. by Anthony Radich. Introduction. The idea of using vegetable oil for fuel has been around as long as the diesel engine.

443

Preemptive scheduling with position costs  

E-Print Network (OSTI)

horizon is divided into time periods. In these models, the whole production is not processed in a single period, and production and holding costs are introduced...

444

WSRC Nuclear Materials Cost Module  

National Nuclear Security Administration (NNSA)

Office (GAO) WSRC NM Cost Module Generates WSRC monthly and fiscal year to date Inventory and Manufacturing Statement for government owned accountable nuclear materials....

445

CRC handbook of nuclear reactors calculations. Vol. III  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

Ronen, Y.

1986-01-01T23:59:59.000Z

446

A Look Inside the Cash Flow Opportunity Calculator: Calculations and  

NLE Websites -- All DOE Office Websites (Extended Search)

A Look Inside the Cash Flow Opportunity Calculator: Calculations A Look Inside the Cash Flow Opportunity Calculator: Calculations and Methodology Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

447

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) | Open  

Open Energy Info (EERE)

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Jump to: navigation, search Tool Summary Name: EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climateleaders/index.html Cost: Free The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop an annual GHG inventory based on the EPA Climate Leaders Greenhouse Gas Inventory Protocol. Overview The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop

448

NREL: PVWatts Site Specific Data Calculator (Version 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Specific Data Calculator (Version 1) Site Specific Data Calculator (Version 1) PVWattsTM Site Specific Data calculator allows users to select a photovoltaic (PV) system location from a defined list of options. For locations within the United States and its territories, users select a location from a map of 239 options. For international locations, users select a location from a drop-down menu of options. The PVWatts Site Specific Data calculator uses hourly typical meteorological year (TMY) weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. For locations in the United States and its territories, the PVWatts Version 1 calculator uses NREL TMY data. For other locations, it uses TMY data from the Solar and Wind Energy Resource Assessment

449

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

450

LBNL-52559 Learning and Cost Reductions for Generating  

E-Print Network (OSTI)

) incorporates endogenous learning into its cost calculations for power plants. The parameters that affect reductions due to learning for each of 21 power plants types. Technological learning is represented two ways, solar thermal, and photovoltaic plants. The initial TOFs are shown in Table 3. In NEMS, the first plant

451

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

452

SHORT CIRCUIT CALCULATION (TEMPORARY POWER)  

SciTech Connect

The purpose and objective of this calculation is to determine the momentary and interrupting duty on the breakers, for 69kV temporary power only.

Yuri Shane

1995-07-24T23:59:59.000Z

453

Cost prediction for ray shooting  

Science Conference Proceedings (OSTI)

The ray shooting problem arises in many different contexts. For example, solving it efficiently would remove a bottleneck when images are ray-traced in computer graphics. Unfortunately, theoretical solutions to the problem are not very practical, ... Keywords: average performance, cost model, cost prediction, octree, ray shooting, space decomposition

Boris Aronov; Herv Brnnimann; Allen Y. Chang; Yi-Jen Chiang

2002-06-01T23:59:59.000Z

454

10 MWe Solar Thermal Central Receiver Pilot Plant total capital cost  

DOE Green Energy (OSTI)

A detailed breakdown of the capital cost of the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, California is presented. The total capital requirements of the pilot plant are given in four cost breakdown structures: (1) project costs (research and development, design, factory, construction, and start-up); (2) plant system costs (land, structures and improvements, collector system, receiver system, thermal transport system, thermal storage system, turbine-generator plant system, electrical plant system, miscellaneous plant equipment, and plant level); (3) elements of work costs (sitework/earthwork, concrete work, metal work, architectural work, process equipment, piping and electrical work); and (4) recurring and non-recurring costs. For all four structures, the total capital cost is the same ($141,200,000); however, the allocation of costs within each structure is different. These cost breakdown structures have been correlated to show the interaction and the assignment of costs for specific areas.

Norris, H.F. Jr.

1985-02-01T23:59:59.000Z

455

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network (OSTI)

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities) and 37 percent complex (medical buildings and power plants). Allowing for the influence of one large facility which received less-extensive treatment due to previous work, thorough audits were obtained for an average cost of $0.050/SF. Large medical buildings (greater than about 170,000 square feet) were audited for $0.050/SF or less, and program costs for survey audits of 17.2 million square feet were $0.0028/SF. The effect on audit costs of complexity of recommended modifications, amount of savings determined, amount of implementation costs, building size, and building complexity are discussed. Primary effects on audit costs are size and complexity of buildings. Program guidelines limited consideration of projects with greater than a four year payback.

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

456

Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is My Trip Calculator? It is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs for your next road trip. Enter your own miles per gallon...

457

Comparative Analysis of the Cost Models Used for Estimating Renovation Costs of Universities in Texas  

E-Print Network (OSTI)

Facility managers use various cost models and techniques to estimate the cost of renovating a building and to secure the required funds needed for building renovation. A literature search indicates that these techniques offer both advantages and disadvantages that need to be studied and analyzed. Descriptive statistical methods and qualitative analysis are employed to identify and compare techniques used by facility managers to calculate the expected renovation costs of a building. The cost models presently used to predict the cost and accumulate the budget required for renovation of a building were determined through interviews with ten Texas-based university facilities managers. The data and information gathered were analyzed and compared. Analysis of results suggests that traditional methods like Floor Area Method (FAM) is the most accurate, less time consuming, easy to use as well as convenient for data collection. Case-Based Reasoning (CBR), though not as widely used as FAM, is known to facilities managers. This is due to the fact that, if a new type of project needs to be renovated, and the data for a similar project is not available with the facilities manager, a completely new database needs to be created. This issue can be resolved by creating a common forum where data for all types of project could be made available for the facilities managers. Methods such as regression analysis and neural networks are known to give more accurate results. However, of the ten interviewees, only one was aware of these new models but did not use them as they would be helpful for very large projects and they would need expertise. Thus such models should be simplified to not only give accurate results in less time but also be easy to use. These results may allow us to discuss changes needed within the various cost models.

Faquih, Yaquta Fakhruddin

2010-08-01T23:59:59.000Z

458

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network (OSTI)

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its associated coil and valve stem position. Thus, the non-intrusive virtual flow meter introduced in this paper provides a solution to one of the measurement barriers and challenges: a low cost, reliable energy metering system at the AHU level. Mathematical models were built and the preliminary experiments were conducted to investigate the feasibility of the virtual flow meter applications. As a result, the valve flow meter can be a cost effective means for water flow measurements at the AHU and thus provides an effective index for detecting and diagnosing the AHU operation faults.

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

459

MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations  

Science Conference Proceedings (OSTI)

A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

Joensson, P. [Lund Institute of Technology, Lund (Sweden); Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States)

1994-03-30T23:59:59.000Z

460

So how much will it cost to build a nuke?  

SciTech Connect

Trying to get a better understanding of the different estimates of the cost of nuclear power, Prof. Francois Leveque of Mines ParisTech and Marcelo Saguan of Microeconomix examined seven studies published since 2000. They examined levelized cost, which captures the cost of electricity generation from nuclear reactors over the entire life cycle, including initial investment