National Library of Energy BETA

Sample records for level nuclear generation

  1. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  2. ISO standardization of scaling factor method for low and intermediate level radioactive wastes generated at nuclear power plants

    SciTech Connect (OSTI)

    Kashiwagi, Makoto; Masui, Hideki; Denda, Yasutaka; James, David; Lantes, Bertrand; Mueller, Wolfgang; Garamszeghy, Mike; Leganes, Jose Luis; Maxeiner, Harald; Van Velzen, Leo

    2007-07-01

    Low- and intermediate-level radioactive wastes (L-ILW ) generated at nuclear power plants are disposed of in various countries. In the disposal of such wastes, it is required that the radioactivity concentrations of waste packages should be declared with respect to difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63 and a-emitting nuclides, which are often limited to maximum values in disposal licenses, safety cases and/or regulations for maximum radioactive concentrations. To fulfill this requirement, the Scaling Factor method (SF method) has been applied in various countries as a principal method for determining the concentrations of DTM nuclides. In the SF method, the concentrations of DTM nuclides are determined by multiplying the concentrations of certain key nuclides by SF values (the determined ratios of radioactive concentration between DTM nuclides and those key nuclides). The SF values used as conversion factors are determined from the correlation between DTM nuclides and key nuclides such as Co-60. The concentrations of key nuclides are determined by {gamma} ray measurements which can be made comparatively easily from outside the waste package. The SF values are calculated based on the data obtained from the radiochemical analysis of waste samples. The use of SFs, which are empirically based on analytical data, has become established as a widely recognized 'de facto standard'. A number of countries have independently collected nuclide data by analysis over many years and each has developed its own SF method, but all the SF methods that have been adopted are similar. The project team for standardization had been organized for establishing this SF method as a 'de jure standard' in the international standardization system of the International Organization for Standardization (ISO). The project team for standardization has advanced the standardization through technical studies, based upon each country's study results and analysis data. The

  3. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  4. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  5. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  6. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOE Patents [OSTI]

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  7. Utilities' Use of Nuclear Generation

    SciTech Connect (OSTI)

    Ray, Harold B.

    2002-09-30

    This PowerPoint presentation was given at the Nuclear Energy Research Advisory Committee meeting, held 30 September 2002 in Arlington, VA.

  8. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Nuclear Generation and Generating Capacity Data Released: August 25, 2016 Data for: June 2016 Next Release: September 2016 Year Capacity and Generation by State and Reactor 2016 P XLS 2015 P XLS 2014 P XLS 2013 XLS 2012 XLS 2011 XLS 2010 XLS 2009 XLS 2008 XLS 2007 XLS 2006 XLS 2005 XLS 2004 XLS 2003 XLS P = Preliminary U.S. Nuclear Generation: 1957 to latest available EIA final data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity

  9. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOE Patents [OSTI]

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  10. High level white noise generator

    DOE Patents [OSTI]

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  11. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  12. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  13. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments [OSTI]

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  14. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,070","6,989",74.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  16. Potential nuclear safeguards applications for neutron generators

    SciTech Connect (OSTI)

    Lindquist, L.O.

    1980-01-01

    Many nuclear safeguards inspection instruments use neutron sources to interrogate the fissile material (commonly /sup 235/U and /sup 239/Pu) to be measured. The neutron sources currently used in these instruments are isotopics such as Californium-252, Americium-Lithium, etc. It is becoming increasingly more difficult to transport isotopic sources from one measurement location to another. This represents a significant problem for the International Atomic Energy Agency (IAEA) safeguards inspectors because they must take their safeguards instruments with them to each nuclear installation to make an independent measurement. Purpose of this paper is to review the possibility of replacing isotopic neutron sources now used in IAEA safeguards instruments with electric neutron sources such as deuterium-tritium (D-T, 14-MeV neutrons) or deuterium-deuterium (D-D, 2-MeV neutrons). The potential for neutron generators to interrogate spent-light water reactor fuel assemblies in storage pools is also reviewed.

  17. Statistical approach to nuclear level density

    SciTech Connect (OSTI)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2014-10-15

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  18. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  19. Combinatorial nuclear level-density model (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model You are accessing a document from the Department ...

  20. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  1. NNSA Completes Fourth International Meeting on Next Generation Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safeguards | National Nuclear Security Administration | (NNSA) NNSA Completes Fourth International Meeting on Next Generation Nuclear Safeguards July 12, 2012 HANOI, VIETNAM - The U.S. Department of Energy's National Nuclear Security Administration (NNSA), together with the Vietnam Agency for Radiation and Nuclear Safety, announced today the successful completion of the Fourth International Meeting on Next Generation Safeguards. Organized by NNSA's Next Generation Safeguards Initiative

  2. Fostering the Next Generation of Nuclear Energy Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next Generation of Nuclear Energy Technology Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) What are the key facts? If finalized, this solicitation would make available $12.6 billion in loan guarantees for advanced nuclear energy technologies. Learn more about the draft

  3. Next-generation nuclear fuel withstands high-temperature accident...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-generation nuclear fuel withstands high-temperature accident conditions IDAHO FALLS - A safer and more efficient nuclear fuel is on the horizon. A team of researchers at the ...

  4. ORISE: Report shows nuclear engineering graduation rates leveling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE report shows nuclear engineering graduation rates leveling off in 2014 after five ... OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear ...

  5. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant

  6. Bush Administration Moves Forward to Develop Next Generation Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to

  7. Mix and mingle: Networking for the next nuclear generation |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mix and mingle: Networking ... Mix and mingle: Networking for the next nuclear generation Posted: February 25, 2016 ... for science, technology, engineering and math employees. ...

  8. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  9. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  10. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  11. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  12. Training the Next Generation of Nuclear Energy Leaders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho

  13. NNSA Next Generation Safeguards Initiative | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA Next Generation Safeguards Initiative January 02, 2009 International safeguards are a central pillar of the nuclear nonproliferation regime. Administered by the International Atomic Energy Agency (IAEA), international safeguards serve to monitor nuclear activities under the Non-Proliferation Treaty (NPT) and are the primary vehicle for verifying compliance with peaceful use and nuclear nonproliferation undertakings. The Department of Energy's National Nuclear

  14. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  15. 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330

    U.S. Energy Information Administration (EIA) Indexed Site

    LLC",1628 8,"Powerton","Coal","Midwest Generations EME LLC",1538 9,"Elwood Energy LLC","Natural gas","Elwood Energy LLC",1350 10,"Newton","Coal","Illinois Power Generating Co",119

  16. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" ...0","9,556",94.0,"PWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ...

  17. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  18. The National Nuclear Security Administration's Neutron Generator Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Nuclear Security Administration's Neutron Generator Activities OAS-L-14-11 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 20, 2014 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The National Nuclear Security Administration's Neutron Generator Activities"

  19. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles

  20. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,178","9,197",89.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  1. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,164","10,337",101.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  2. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  3. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,867,"7,727",101.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" 3,867,"6,866",90.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  4. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOE Patents [OSTI]

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  5. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect (OSTI)

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  6. NERC Presentation: Accommodating High Levels of Variable Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Variable Generation, October 29, 2010 North American Electric Reliability Corporation ... North American Electric Reliability Corporation (NERC): Accommodating High Levels of ...

  7. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  8. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect (OSTI)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  9. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  10. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  11. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density at the element, module and ...

  12. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  13. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  14. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  15. ORISE: Report shows nuclear engineering graduation rates leveling off in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 after five years of increase ORISE report shows nuclear engineering graduation rates leveling off in 2014 after five years of increase Decline seen in undergraduate and master degrees, while number of doctoral degrees awarded increased FOR IMMEDIATE RELEASE July 31, 2015 FY15-38 OAK RIDGE, Tenn.-The number of college students graduating with majors in nuclear engineering has flattened and even declined somewhat after five straight years of continual increases, according to a report by

  16. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  17. Table 9.1 Nuclear Generating Units, 1955-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nuclear Generating Units, 1955-2011 Year Original Licensing Regulations (10 CFR Part 50) 1 Current Licensing Regulations (10 CFR Part 52) 1 Permanent Shutdowns Operable Units 7 Construction Permits Issued 2,3 Low-Power Operating Licenses Issued 3,4 Full-Power Operating Licenses Issued 3,5 Early Site Permits Issued 3 Combined License Applications Received 6 Combined Licenses Issued 3 1955 1 0 0 – – – – – – 0 0 1956 3 0 0 – – – – – – 0 0 1957 1 1 1 – – – – – – 0 1 1958 0 0 0 –

  18. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect (OSTI)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  19. Generating unstructured nuclear reactor core meshes in parallel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  20. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  1. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-04-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  2. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  3. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  4. Level repulsion, nuclear chaos, and conserved quantum numbers

    SciTech Connect (OSTI)

    Garrett, J.D.

    1993-12-01

    A statistical analysis of the distribution of level spacings for states with the same spin and parity is described in which the average spacing is calculated for the total ensemble. Though the resulting distribution of level spacings for states of deformed nuclei with Z = 62 - 75 and A = 155 - 185 is the closest to that of a Poisson distribution yet obtained for nuclear levels, significant deviations are observed for small level spacings. Many, but not all, of the very closely-spaced levels have K-values differing by several units. The analysis of level spacings in {sup 157}Ho indicate that considerable caution should be excerised when drawing conclusions from such an analysis for a single deformed nucleus, since the sizable number of spacings that can be obtained from a few rotational bands are not all independent.

  5. Next Generation Nuclear Plant: A Report to Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a

  6. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  7. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  8. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  9. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    SciTech Connect (OSTI)

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  12. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    SciTech Connect (OSTI)

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  13. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  14. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  15. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  16. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  17. Nuclear Power Generation and Fuel Cycle Report 1996

    Reports and Publications (EIA)

    1996-01-01

    This report provides information and forecasts important to the domestic and world nuclear and uranium industries.

  18. Investing in the Next Generation of U.S. Nuclear Energy Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Next Generation of U.S. Nuclear Energy Leaders Investing in the Next Generation of U.S. Nuclear Energy Leaders August 9, 2011 - 5:12pm Addthis Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy As part of the Energy Department's Nuclear Energy University Programs (NEUP) annual workshop, I met today with professors from across the country and announced awards of up to $39 million for research projects aimed at developing

  19. Paving the path for next-generation nuclear energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  1. DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest

  2. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  3. Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Simpson, Michael F.; Benedict, Robert W.

    2007-09-01

    The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technology developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.

  4. National profile on commercially generated low-level radioactive mixed waste

    SciTech Connect (OSTI)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  5. Small Modular Reactors- Key to Future Nuclear Power Generation in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. University of Chicago, Energy Policy Institute at Chicago

  6. Main Generator Seal Oil Supply Reliability Improvements at Southern California Edison's San Onofre Nuclear Generating Station

    SciTech Connect (OSTI)

    Simma, Fred Y.; Chetwynd, Russell J.; Rowe, Stuart A.

    2006-07-01

    This paper presents the justification for the approach, details and results of the Main Generator Seal Oil System reliability enhancements on the San Onofre Nuclear Generating Station, SONGS. The SONGS, Unit 3 experienced substantial turbine damage in early 2001 after the turbine bearings lubrication oil supply failed. During a loss of off-site power incident, power was lost to the two AC powered turbine lubrication oil pumps due to a breaker failure in the switchgear and the DC powered emergency bearing lubricating oil pump failed to start due to a breaker trip. The SONGS turbine generators coasted down from full speed to a full stop without lubricating oil. This resulted in significant bearing, journal and steam path damage that required a four-month duration repair outage during a time period where electricity was in short supply in the State of California. The generator hydrogen sealing system remained operable during this event, however it was recognized during the event follow up investigation that this system had vulnerabilities to failure similar to the bearing lubrication system. In order to prevent a reoccurrence of this extremely costly event, SONGS has taken actions to modify both of these critical turbine generator systems by adding additional, continuously operating pumps with a new, independent power source and independently routed cables. The main challenge was to integrate the additional equipment into the existing lubrication and seal oil systems. The lubrication Oil System was the first system to be retro-fitted and these results already have been presented. Reference 2. This paper provides the result of the reliability enhancements for the Main Generator Seal Oil System, which concludes the turbine/generator critical oil systems reliability improvements, performed by SONGS. It is worth noting that the design team discovered and corrected a number of other significant operational issues, which had been present from the early days and also learned

  7. Meeting the Next Generation of Nuclear Nonproliferation Specialists...

    National Nuclear Security Administration (NNSA)

    ... DNN R&D directs an integrated research and development portfolio in support of its mission to detect signs of nuclear proliferation and nuclear detonations. The DNN R&D-funded ...

  8. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  9. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  10. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the highly ranked phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  11. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  14. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect (OSTI)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  15. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  16. Locations of Spent Nuclear Fuel and High-Level Radioactive Waste

    Broader source: Energy.gov [DOE]

    Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste.

  17. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect (OSTI)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  18. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    educational and research opportunities to prepare NS&E students for nuclear energy professions, in support of NE's mission. NE is seeking applicants for undergraduate...

  19. Nuclear Power Generation and Fuel Cycle Report 1997

    Reports and Publications (EIA)

    1997-01-01

    Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

  20. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Environmental Management (EM)

    Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent ... level radioactive waste and spent nuclear fuel in a single repository or repositories. ...

  1. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  2. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  3. Method and apparatus for generating low energy nuclear particles...

    Office of Scientific and Technical Information (OSTI)

    A thin target (14) is rotated in the path of the input beam for undergoing nuclear ... The target (14) produces low energy secondary particles and is effectively cooled by ...

  4. Investing in the next generation: The Office of Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The IUP mission is to maintain the discipline of nuclear science and engineering (NS&E). The NE component of IUP supports this mission by providing educational and research ...

  5. DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear...

    Energy Savers [EERE]

    an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process ...

  6. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  7. Transparent Cost Database for Generation at Regional Level? ...

    Open Energy Info (EERE)

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  8. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a

  9. Combinatorial nuclear level-density model (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level distribution functions with respect to

  10. Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)

    Broader source: Energy.gov [DOE]

    GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

  11. Entry-Level Positions | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Blog NNSA & Nuclear Security Enterprise support nation's preparedness NNSA Blog NNSA's work aids in fight against cancer NNSA Blog NSC leader recognized as community role model...

  12. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  13. Next Generation Nuclear Plant Project 2009 Status Report

    SciTech Connect (OSTI)

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  14. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,174","8,777",85.3,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,118","9,207",94.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  16. Seismic risk assessment as applied to the Zion Nuclear Generating Station

    SciTech Connect (OSTI)

    Wells, J.

    1984-08-01

    To assist the US Nuclear Regulatory Commission (NRC) in its licensing and evaluation role, the NRC funded the Seismic Safety Margins Research Program (SSMRP) at Lawrence Livermore National Laboratory (LLNL) with the goal of developing tools and data bases to evaluate the risk of earthquake caused radioactive release from a commercial nuclear power plant. This paper describes the SSMRP risk assessment methodology and the results generated by applying this methodology to the Zion Nuclear Generating Station. In addition to describing the failure probabilities and risk values, the effects of assumptions about plant configuration, plant operation, and dependence will be given.

  17. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,161","9,439",92.8,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,161","9,439",92.8

  18. Yonggwang nuclear power plant units 3 and 4; Bridging the gap to the next generation

    SciTech Connect (OSTI)

    Heider, R.C.; Daley, T.J.; Green, K.J. )

    1991-01-01

    This paper reports on the use of nuclear energy since the oil embargo of 1973 has displaced the use of 4.3 billion barrels of imported oil, which helped conserve 1 billion tons of coal and 6.5 trillion cubic feet of natural gas for future generations, and helped protect the environment by reducing utility emissions of carbon dioxide by 20% a year. The current 112 operating nuclear energy plants generate more electricity than those of France, Japan, and the Soviet Union-nations that have made a national commitment to nuclear energy-combined. Yet it has been over 10 years since the last construction permit was issued for a nuclear power plant in the United States. Considering a projected shortfall in baseload electric generation capacity in the mid-1990s, new requirements for costly air pollution controls on coal plants, the concern over increased dependence on oil imports from the unstable Middle East region, and the increased concern over the possible long-term effects of greenhouse gas emissions, the Nuclear Power Oversight Committee (NPOC), the governing organization for the commercial nuclear energy industry, has developed a strategic plan with the goal of being able to order new nuclear power plants by the mid-1990s. The strategic plan, which contains 14 enabling conditions or building blocks, outlines an integrated effort to address the range of institutional and technical issues on which significant progress must be achieved to make nuclear power attractive in the United States for the 1990s.

  19. Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture

    SciTech Connect (OSTI)

    CALMUS, R.B.

    2000-09-14

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

  20. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    SciTech Connect (OSTI)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  1. Threatened and Endangered Species Evaluation for Operating Commercial Nuclear Power Generating Plants

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.

    2004-01-15

    The Endangered Species Act (ESA) of 1973 requires that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered (T&E) species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The Office of Nuclear Reactor Regulation (NRR) staff have performed appropriate assessments of potential impacts to threatened or endangered species, and consulted with appropriate agencies with regard to protection of such species in authorizing the construction, operation, and relicensing of nuclear power generating facilities. However, the assessments and consultations concerning many facilities were performed during the 1970's or early 1980's, and have not been re-evaluated in detail or updated since those initial evaluations. A review of potential Endangered Species Act issues at licensed nuclear power facilities was completed in 1997. In that review 484 different ESA-listed species were identified as potentially occurring near one or more of the 75 facility sites that were examined. An update of the previous T&E species evaluation at this time is desired because, during the intervening 6 years: nearly 200 species have been added to the ESA list, critical habitats have been designated for many of the listed species, and significantly more information is available online, allowing for more efficient high-level evaluations of potential species presence near sites and the potential operation impacts. The updated evaluation included searching the NRC's ADAMS database to find any documents related to T

  2. Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building on President Obama’s Climate Action Plan to continue America’s leadership in clean energy innovation, the Energy Department announced more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure.

  3. Impact of the proposed energy tax on nuclear electric generating technologies

    SciTech Connect (OSTI)

    Edmunds, T.A.; Lamont, A.D.; Pasternak, A.D.; Rousseau, W.F.; Walter, C.E.

    1993-05-01

    The President`s new economic initiatives include an energy tax that will affect the costs of power from most electric generating technologies. The tax on nuclear power could be applied in a number of different ways at several different points in the fuel cycle. These different approaches could have different effects on the generation costs and benefits of advanced reactors. The Office of Nuclear Energy has developed models for assessing the costs and benefits of advanced reactor cycles which must be updated to take into account the impacts of the proposed tax. This report has been prepared to assess the spectrum of impacts of the energy tax on nuclear power and can be used in updating the Office`s economic models. This study was conducted in the following steps. First, the most authoritative statement of the proposed tax available at this time was obtained. Then the impacts of the proposed tax on the costs of nuclear and fossil fueled generation were compared. Finally several other possible approaches to taxing nuclear energy were evaluated. The cost impact on several advanced nuclear technologies and a current light water technology were computed. Finally, the rationale for the energy tax as applied to various electric generating methods was examined.

  4. Orex based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program

    SciTech Connect (OSTI)

    Haynes, B.

    1995-11-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. A typical 800 megawatt power station will generate between 6,000 to 10,000 cubic feet of DAW annually. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: (1). The number of radioactive waste repositories now accepting new waste is limited. (2). The current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum. (3). The cost of burial is constantly increasing. (4). Onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning. In order to address this issue, the industry must look to the application of {open_quotes}point of generation{close_quotes} technologies.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  7. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

    SciTech Connect (OSTI)

    Abramovich, Igor A.

    2013-06-20

    Implementation of the proposed seismometers turned out to be much more challenging than anticipated. The noise levels achieved are indeed well below those ever featured by any electrochemical sensor and just very nearly miss reaching the original objectives. However, while noise-wise the instruments could still prove their usefulness, especially considering their robustness and no-maintenance operation, the implementation of the proposed noise-reduction concept resulted in much larger and heavier devices than originally expected. Moreover, these large dimensions relate only to single-component vertical sensors. While building similar horizontal component is possible, the resulting three-component instrument would be way too large and heavy to be of any practical use. The prototype instruments developed and built retained the inherent advantages of the electrochemical seismometers: no maintenance operation; ability to perform with large installation tilts; and, unfortunately, to a much lesser extent in terms of robustness.

  8. Process for solidifying high-level nuclear waste

    DOE Patents [OSTI]

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  9. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect (OSTI)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  10. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect (OSTI)

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  11. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of...

  12. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an...

  13. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    SciTech Connect (OSTI)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously.

  14. Nuclear reactor with low-level core coolant intake

    DOE Patents [OSTI]

    Challberg, Roy C.; Townsend, Harold E.

    1993-01-01

    A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

  15. RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS

    SciTech Connect (OSTI)

    Donna Post Guillen; George L. Mesina; Joshua M. Hykes

    2006-06-01

    RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.

  16. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  17. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  18. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    SciTech Connect (OSTI)

    Pahladsingh, R.R.

    2002-07-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  19. Korea`s choice of a new generation of nuclear plants

    SciTech Connect (OSTI)

    Redding, J.R.

    1994-12-31

    The ABWR and SBWR design, both under development at GE, provide the best platform for developing the next generation advanced plants. The ABWR, which is rapidly setting the standard for new nuclear reactor plants, is clearly the best choice to meet the present energy needs of Korea. And through a GE/Korea partnership to develop the plant of the next century, Korea will establish itself as a leader in innovative reactor technology.

  20. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  1. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  2. 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2366.6

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2366.6 2,"PSEG Linden Generating Station","Natural gas","PSEG Fossil LLC",1639.2 3,"Bergen Generating Station","Natural gas","PSEG Fossil LLC",1219 4,"PSEG Hope Creek Generating

  3. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  4. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  5. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    SciTech Connect (OSTI)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  6. Ontology-based Software for Generating Scenarios for Characterizing Searches for Nuclear Materials

    SciTech Connect (OSTI)

    Ward, Richard C; Sorokine, Alexandre; Schlicher, Bob G; Wright, Michael C; Kruse, Kara L

    2011-01-01

    A software environment was created in which ontologies are used to significantly expand the number and variety of scenarios for special nuclear materials (SNM) detection based on a set of simple generalized initial descriptions. A framework was built that combined advanced reasoning from ontologies with geographical and other data sources to generate a much larger list of specific detailed descriptions from a simple initial set of user-input variables. This presentation shows how basing the scenario generation on a process of inferencing from multiple ontologies, including a new SNM Detection Ontology (DO) combined with data extraction from geodatabases, provided the desired significant variability of scenarios for testing search algorithms, including unique combinations of variables not previously expected. The various components of the software environment and the resulting scenarios generated will be discussed.

  7. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the

  8. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

    SciTech Connect (OSTI)

    Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

    2004-10-03

    The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

  9. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    SciTech Connect (OSTI)

    Eipeldauer, Mary D

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

  10. Melting of the metallic wastes generated by dismantling retired nuclear research facilities

    SciTech Connect (OSTI)

    Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

    2008-01-15

    The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was

  11. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect (OSTI)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  12. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  13. Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

  14. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  15. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  16. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  17. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    SciTech Connect (OSTI)

    Burchell, Timothy D; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  18. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  20. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  1. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  2. Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report

    SciTech Connect (OSTI)

    Hebdon, F.J.

    1993-03-01

    On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

  3. Development of polyphase ceramics for the immobilization of high-level Defense nuclear waste

    SciTech Connect (OSTI)

    Morgan, P.E.D.; Harker, A.B.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-02-25

    The report contains two major sections: Section I - An Improved Polyphase Ceramic for High-Level Defense Nucleation Waste reports the work conducted on titanium-silica based ceramics for immobilizing Savannah River Plant waste. Section II - Formulation and Processing of Alumina Based Ceramic Nuclear Waste Forms describes the work conducted on developing a generic alumina and alumina-silica based ceramic waste form capable of immobilizing any nuclear waste with a high aluminum content. Such wastes include the Savannah River Plant wastes, Hanford neutralized purex wastes, and Hanford N-Reactor acid wastes. The design approach and process technology in the two reports demonstrate how the generic high waste loaded ceramic form can be applied to a broad range of nuclear waste compositions. The individual sections are abstracted and indexed separately.

  4. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S.; Minatsuki, I.; Shimizu, K.

    2012-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  5. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  6. Development of Ceramic Waste Forms for High-Level Nuclear Waste Over the Last 30 Years

    SciTech Connect (OSTI)

    Vance, Eric

    2007-07-01

    Many types of ceramics have been put forward for immobilisation of high-level waste (HLW) from reprocessing of nuclear power plant fuel or weapons production. After describing some historical aspects of waste form research, the essential features of the chemical design and processing of these different ceramic types will be discussed briefly. Given acceptable laboratory and long-term predicted performance based on appropriately rigorous chemical design, the important processing parameters are mostly waste loading, waste throughput, footprint, offgas control/minimization, and the need for secondary waste treatment. It is concluded that the 'problem of high-level nuclear waste' is largely solved from a technical point of view, within the current regulatory framework, and that the main remaining question is which technical disposition method is optimum for a given waste. (author)

  7. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect (OSTI)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  8. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e

  9. Design Option of Heat Exchanger for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Eung Soo Kim; Chang Oh

    2008-09-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTGRS) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTGRS to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTGRS and hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTGRS to hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger are very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and thermal stress analyses of a printed circuit heat exchanger, helical coil heat exchanger, and shell/tube heat exchanger.

  10. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using

  11. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  12. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  13. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    SciTech Connect (OSTI)

    Preston, E.L.

    1986-09-21

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management.

  14. MeV Summer School prepares next-generation nuclear scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School is an annual 10-day program that provides early-career nuclear engineers with advanced studies in modeling, experimentation and validation of nuclear reactor design. ...

  15. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  16. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

    SciTech Connect (OSTI)

    Petti, Jason P.

    2007-01-01

    This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

  17. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  18. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect (OSTI)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  19. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  20. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    SciTech Connect (OSTI)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  1. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation E. Ela, 1 M. Milligan, 1 A. Bloom, 1 A. Botterud, 2 A. Townsend, 1 and T. Levin 2 1 National Renewable Energy Laboratory 2 Argonne National Laboratory Technical Report NREL/TP-5D00-61765 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

  2. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    SciTech Connect (OSTI)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  3. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect (OSTI)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  4. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    SciTech Connect (OSTI)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  5. Deep levels generated by thermal oxidation in p-type 4H-SiC

    SciTech Connect (OSTI)

    Kawahara, Koutarou; Suda, Jun; Kimoto, Tsunenobu

    2013-01-21

    Thermal oxidation is an effective method to reduce deep levels, especially the Z{sub 1/2}-center (E{sub C}-0.67 eV), which strongly suppresses carrier lifetimes in n-type 4H-SiC epilayers. The oxidation, however, simultaneously generates other deep levels, HK0 (E{sub V}+0.79 eV) and HK2 (E{sub V}+0.98 eV) centers, within the lower half of the bandgap of SiC, where the HK0 center is a dominant deep level with a concentration of about 1 Multiplication-Sign 10{sup 13} cm{sup -3} after oxidation. By comparing deep levels observed in three sets of p-type 4H-SiC: oxidized, electron-irradiated, and C{sup +}- or Si{sup +}-implanted samples, we find that the HK0 and HK2 centers are complexes including carbon interstitials such as the di-carbon interstitial or di-carbon antisite. Other defects observed in p-type 4H-SiC after electron irradiation or after C{sup +}/Si{sup +} implantation are also studied.

  6. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  7. Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    [In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

  8. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  9. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  10. US Central Station Nuclear Electric Generating Units: significant milestones. (Status as of April 1, 1980)

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Construction and operational milestones are tabulated for US nuclear power plants. Data are presented on nuclear steam supply system orders. A schedule of commercial operation through 1990 is given.

  11. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  12. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  13. Nuclear level densities of 64,66 Zn from neutron evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sectionsmore » have been analyzed with the exciton model of nuclear reaction.« less

  14. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    SciTech Connect (OSTI)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90{degrees}C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport.

  15. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  16. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect (OSTI)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  17. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect (OSTI)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance

  18. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Todd R. Allen

    2009-06-30

    This project will use proton irradiation to further understand the microstructural stability of ceramics being considered as matrix material for advanced nuclear fuels.

  19. STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS

    SciTech Connect (OSTI)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-15

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  20. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    SciTech Connect (OSTI)

    Troyer, G.L.

    1997-03-17

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  1. Instrument reliability for high-level nuclear-waste-repository applications

    SciTech Connect (OSTI)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-31

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed.

  2. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    SciTech Connect (OSTI)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is

  3. TSPA Model Development and Sensitivity Analysis of Processes Affecting Performance of a Salt Repository for Disposal of Heat-Generating Nuclear Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    The document describes the initial work on designing and developing requirements for a total system performance assessment (TSPA) model that can support preliminary safety assessments for a mined geologic repository for high-level waste (HLW) and spent nuclear fuel (SNF) in salt host rock at a generic site. A preliminary generic salt TSPA model for HLW/SNF disposal has been developed and tested for an isothermal repository in salt, for emplaced waste that is assumed to have no decay heat; for salt repositories containing heat-generating HLW/SNF, the present study develops model requirements based on features, events, and processes (FEPs) screening and proposed sensitivity analyses for heat-generating waste. These may better guide the construction of a more representative salt TSPA model.

  4. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    SciTech Connect (OSTI)

    Sorokine, Alexandre; Schlicher, Bob G; Ward, Richard C; Wright, Michael C; Kruse, Kara L

    2015-01-01

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNM detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. The approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information

  5. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    SciTech Connect (OSTI)

    Sorokine, Alexandre; Schlicher, Bob G.; Ward, Richard C.; Wright, Michael C.; Kruse, Kara L.; Bhaduri, Budhendra; Slepoy, Alexander

    2015-05-22

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNM detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. Furthermore, the approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information

  6. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sorokine, Alexandre; Schlicher, Bob G.; Ward, Richard C.; Wright, Michael C.; Kruse, Kara L.; Bhaduri, Budhendra; Slepoy, Alexander

    2015-05-22

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNMmore » detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. Furthermore, the approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information« less

  7. Nuclear Waste Treatment Program: Qualification of commercial high-level waste forms: Approach and status

    SciTech Connect (OSTI)

    Brouns, R.A.; Kuhn, W.L.

    1986-12-01

    In this document, the Nuclear Waste Treatment Program (NWTP) proposes an approach for demonstrating compliance with acceptance specifications. The proposed approach relies first on developing models of the process (vitrification) and product (waste form) to relate measurable process variables to the product quality, and then on using process control and sampling of melter feed input as the quality control method. Coordinated test programs, using pilot-scale nonradioactive and radioactive tests, will be used to establish these models at the confidence level needed to assure compliance to waste acceptance specifications. The test programs are broadly focused to encompass the range of anticipated future wastes, but the results should also be equally applicable to current wastes as well. Demonstration of waste form compliance by some other method would likely require extensive product testing, including glass sampling during production and routine destructive examination of canisters. The process and product modeling approach eliminates the need for this type of testing and should result in a very high level of statistical confidence that the individual waste forms are acceptable for disposal.

  8. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    SciTech Connect (OSTI)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. |

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  9. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  10. The Next Generation Nuclear Plant - Insights Gained from the INEEL Point Design Studies

    SciTech Connect (OSTI)

    Philip E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-08-01

    This paper provides the results of an assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebble-bed fuel helium gas reactor. Insights gained regarding the strengths and weaknesses of the two designs are also discussed. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. Two major modifications of the current Gas Turbine- Modular Helium Reactor (GT-MHR) design were needed to obtain a prismatic block design with a 1000 C outlet temperature: reducing the bypass flow and better controlling the inlet coolant flow distribution to the core. The total power that could be obtained for different core heights without exceeding a peak transient fuel temperature of 1600 C during a high or low-pressure conduction cooldown event was calculated. With a coolant inlet temperature of 490 C and 10% nominal core bypass flow, it is estimated that the peak power for a 10-block high core is 686 MWt, for a 12-block high core is 786 MWt, and for a 14-block core is about 889 MWt. The core neutronics calculations showed that the NGNP will exhibit strongly negative Doppler and isothermal temperature coefficients of reactivity over the burnup cycle. In the event of rapid loss of the helium gas, there is negligible core reactivity change. However, water or steam ingress into the core coolant channels can produce a relatively large reactivity effect. Two versions of an annular pebble-bed NGNP have also been developed, a 300 and a 600 MWt module. From this work we learned how to design passively safe pebble bed reactors that produce more than 600 MWt. We also found a way to improve both the fuel utilization and safety by modifying the pebble design (by adjusting the fuel zone radius in the pebble to optimize the fuel

  11. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect (OSTI)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ? 4.0-8.0 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ? 2.0-4.0 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  12. Letter to NEAC to Review the Next Generation Nuclear Plant Activities...

    Energy Savers [EERE]

    EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative; NGNP ...

  13. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  14. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect (OSTI)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  15. Greater-than-Class C low-level radioactive waste characterization. Appendix A-2: Timing of greater-than-Class C low-level radioactive waste from nuclear power plants

    SciTech Connect (OSTI)

    Steinke, W.F.

    1994-09-01

    Planning for the storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste. Timing, or the date the waste will require storage or disposal, is an integral aspect of that planning. The majority of GTCC LLW is generated by nuclear power plants, and the length of time a reactor remains operational directly affects the amount of GTCC waste expected from that reactor. This report uses data from existing literature to develop high, base, and low case estimates for the number of plants expected to experience (a) early shutdown, (b) 40-year operation, or (c) life extension to 60-year operation. The discussion includes possible effects of advanced light water reactor technology on future GTCC LLW generation. However, the main focus of this study is timing for shutdown of current technology reactors that are under construction or operating.

  16. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  17. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect (OSTI)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  18. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    Energy Science and Technology Software Center (OSTI)

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines themore » two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  19. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect (OSTI)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  20. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bartsch, Richard A.

    2003-06-01

    Calix[4]arenebiscrown-6 molecules are currently the selected technology for removal of radioactive cesium-137 from DOE nuclear wastes. By attachment of an acidic function to such molecules, the efficiency with which cesium ion can be extracted from an aqueous solution into an organic diluent is markedly increased since the requirement for concomitant extraction of an aqueous phase anion is avoided. Thus, cesium ion extraction by proton-ionizable calix[4]arenebiscrown-6 molecules may be the ''second-generation'' technology for removal of cesium-137 from DOE nuclear wastes. During Year 1 of this EMSP project, we have established synthetic routes to new, lipophilic, proton-ionizable calix[4]arenebiscrown-6 molecules to be evaluated for solvent extraction of cesium ion at Oak Ridge National Laboratory. Analogous calix[4]arenecrown-6 compounds are also being prepared to determine if even higher cesium ion selectivities can be obtained with extractants having a single crown ether unit.

  1. An Application of the SSHAC Level 3 Process to the Probabilistic Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA

    SciTech Connect (OSTI)

    Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.; Mcduffie, Stephen M.; Lisle, Greg A.

    2013-08-22

    Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with high levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.

  2. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOE Patents [OSTI]

    Brown, Roger A.

    1994-01-01

    Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

  3. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOE Patents [OSTI]

    Brown, R.A.

    1994-04-19

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.

  4. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    SciTech Connect (OSTI)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

  5. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  7. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  8. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  9. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  10. NERI Final Project Report: On-Line Intelligent Self-Diagnostic Monitoring System for Next Generation Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Sisk, Daniel R.; Hatley, Darrel D.; Watkins, Kenneth S.; Chai, Jangbom; Kim, Wooshik

    2003-06-20

    This project provides a proof-of-principle technology demonstration for SDMS, where a distributed suite of sensors is integrated with active components and passive structures of types expected to be encountered in next generation nuclear power reactor and plant systems. The project employs state-of-the-art operational sensors, advanced stressor-based instrumentation, distributed computing, RF data network modules and signal processing to improve the monitoring and assessment of the power reactor system and gives data that is used to provide prognostics capabilities.

  11. NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    North American Electric Reliability Corporation (NERC) presentation to the Electricity Advisory Committee, October 29, 2010, on accommodating high levels of variable electricity eneration. Variable...

  12. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  13. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  14. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect (OSTI)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  15. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect (OSTI)

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  16. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2005-11-01

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  17. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  18. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  19. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications (EIA)

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  20. Socio-economic impacts of nuclear generating stations: Crystal River Unit 3 case study

    SciTech Connect (OSTI)

    Bergmann, P.A.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined.

  1. Field testing an OREX{reg_sign} based {open_quotes}point of generation{close_quotes} low-level radioactive waste reduction program at FP&L`s St. Lucie Plant

    SciTech Connect (OSTI)

    Payne, K.; Haynes, B.

    1996-10-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: the number of radioactive waste repositories now accepting new waste is limited; the current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum; the cost of burial is constantly increasing; onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning.

  2. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    The Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel report assesses the technical options for the safe and permanent disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed by the Department of Energy. Specifically, it considers whether DOE-managed HLW and SNF should be disposed of with commercial SNF and HLW in one geologic repository or whether there are advantages to developing separate geologic disposal pathways for some DOE-managed HLW and SNF. The report recommends that the Department begin implementation of a phased, adaptive, and consent-based strategy with development of a separate mined repository for some DOE-managed HLW and cooler DOE-managed SNF.

  3. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

  4. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated

    Reports and Publications (EIA)

    2001-01-01

    To assist reporters in estimating emissions and emission reductions, The Energy Information Administration (EIA) has made available in the instructions to Forms EIA-1605 and EIA-1605EZ emission coefficients for most commonly used fossil fuels and electricity. These coefficients were based on 1992 emissions and generation data. In 1999, updated coefficients were prepared based on the most recent data (1998) then available; however, the updated coefficients were not included in the instructions for the 1999 data year. This year, they have been updated again, but based on three years worth of data (1997, 1998, and 1999) rather than a single year.

  5. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  6. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  7. A methodology for generating dynamic accident progression event trees for level-2 PRA

    SciTech Connect (OSTI)

    Hakobyan, A.; Denning, R.; Aldemir, T. [Ohio State Univ., Nuclear Engineering Program, 650 Ackerman Road, Columbus, OH 43202 (United States); Dunagan, S.; Kunsman, D. [Sandia National Laboratory, Albuquerque, NM 87185 (United States)

    2006-07-01

    Currently, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. A software tool (ADAPT) is described for automated APET generation using the concept of dynamic event trees. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. While the software tool could be applied to any systems analysis code, the MELCOR code is used for this illustration. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a pressurized water reactor. (authors)

  8. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  9. Next Generation Extractants for Cesium Separation from High-Level Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia Helene; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Marquez, Manuel; Zhou, Hui

    2006-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste. Disposal of high-level waste is horrendously expensive, in large part because the actual radioactive matter in underground waste tanks at various USDOE sites has been diluted over 1000-fold by ordinary inorganic chemicals. To vitrify the entire mass of the high-level waste would be prohibitively expensive. Accordingly, an urgent need has arisen for technologies to remove radionuclides such as {sup 137}Cs from the high-level waste so that the bulk of it may be diverted to cheaper low-level waste forms and cheaper storage. To address this need in part, chemical research at Oak Ridge National Laboratory (ORNL) has focused on calixcrown extractants, molecules that combine a crown ether with a calixarene. This hybrid possesses a cavity that is highly complementary for the Cs{sup +} ion vs. the Na+ ion, making it possible to cleanly separate cesium from wastes that contain 10,000- to 1,000,000-fold higher concentrations of sodium. Previous EMSP results in Project 55087 elucidated the underlying extraction

  10. The role of seniority-zero states in nuclear level densities

    SciTech Connect (OSTI)

    berg, S.; Carlsson, B. G.; Dssing, Th.; Mller, P.

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed eveneven nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  11. The role of seniority-zero states in nuclear level densities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Åberg, S.; Carlsson, B. G.; Døssing, Th.; Möller, P.

    2015-06-01

    At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.

  12. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  13. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  14. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  15. Canister storage building evaluation of nuclear safety for solidified high-level waste transfer and storage

    SciTech Connect (OSTI)

    Kidder, R.J., Westinghouse Hanford

    1996-09-17

    This document is issued to evaluate the safety impacts to the Canister Storage Building from transfer and storage of solidified high-level waste.

  16. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  17. The Development of Models to Optimize Selection of Nuclear Fuels through Atomic-Level Simulation

    SciTech Connect (OSTI)

    Prof. Simon Phillpot; Prof. Susan B. Sinnott; Prof. Hans Seifert; Prog. James Tulenko

    2009-01-26

    Demonstrated that FRAPCON can be modified to accept data generated from first principles studies, and that the result obtained from the modified FRAPCON make sense in terms of the inputs. Determined the temperature dependence of the thermal conductivity of single crystal UO2 from atomistic simulation.

  18. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  19. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOE Patents [OSTI]

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  20. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  1. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    SciTech Connect (OSTI)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs.

  2. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  3. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  4. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect (OSTI)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  5. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect (OSTI)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  6. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOE Patents [OSTI]

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  7. Investing in the next generation: The Office of Nuclear Energy Issues Requests for Scholarship and Fellowship Applications.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today, the Department of Energy's (DOE) Office of Nuclear Energy (NE) announced two new Requests for Applications (RFAs) for the Integrated University Program (IUP).

  8. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect (OSTI)

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  9. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect (OSTI)

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  10. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect (OSTI)

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  11. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  12. Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site

    Office of Environmental Management (EM)

    793 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated

  13. Characterization of high level nuclear waste glass samples following extended melter idling

    SciTech Connect (OSTI)

    Fox, K.

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  14. Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste Rob P. Rechard a,n , Michael L. Wilson b , S. David Sevougian c a Nuclear Waste Disposal Research & Analysis, Sandia National Laboratories, Albuquerque, NM 87185-0747, USA b Systems Analysis/Operations Research, Sandia National Laboratories, Albuquerque, NM 87185-1138, USA c Applied Systems Analysis & Research, Sandia National Laboratories,

  15. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  16. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  17. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  18. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect (OSTI)

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  19. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  20. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  1. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  2. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  3. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  4. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  5. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  6. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  7. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  8. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  9. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  10. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  11. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  12. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  13. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  14. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  15. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    SciTech Connect (OSTI)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M.

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  16. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge

  17. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  18. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    SciTech Connect (OSTI)

    Sweeney, Robin L,; Lechel, David J.

    2003-02-25

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

  19. Examining Supply Chain Resilience for the Intermodal Shipment of Spent Nuclear Fuel and High Level Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2016-01-01

    The U.S. Department of Energy (DOE) has a significant programmatic interest in the safe and secure routing and transportation of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States, including shipments entering the country from locations outside U.S borders. In any shipment of SNF/HLW, there are multiple chains; a jurisdictional chain as the material moves between jurisdictions (state, federal, tribal, administrative), a physical supply chain (which mode), as well as a custody chain (which stakeholder is in charge/possession) of the materials being transported. Given these interconnected networks, there lies vulnerabilities, whether in lack of communication between interested stakeholders or physical vulnerabilities such as interdiction. By identifying key links and nodes as well as administrative weaknesses, decisions can be made to harden the physical network and improve communication between stakeholders. This paper examines the parallel chains of oversight and custody as well as the chain of stakeholder interests for the shipments of SNF/HLW and the potential impacts on systemic resiliency. Using the Crystal River shutdown location as well as a hypothetical international shipment brought into the United States, this paper illustrates the parallel chains and maps them out visually.

  20. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    SciTech Connect (OSTI)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Kroll-Smith, S.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  1. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  2. Improved sampling and analytical techniques for characterization of very-low-level radwaste materials from commercial nuclear power stations

    SciTech Connect (OSTI)

    Robertson, D.E.; Robinson, P.J.

    1989-11-01

    This paper summarizes the unique sampling methods that were utilized in a recently completed project sponsored by the Electric Power Research Institute (EPRI) to perform accurate and precise radiological characterizations of several very-low-level radwaste materials from commercial nuclear power stations. The waste types characterized during this project included dry active waste (DAW), oil, secondary-side ion exchange resin, and soil. Special precautions were taken to insure representative sampling of the DAW. This involved the initial direct, quantitative gamma spectrometric analyses of bulk quantities (208-liter drums) of DAW utilizing a specially constructed barrel scanner employing a collimated intrinsic germanium detector assembly. Subsamples of the DAW for destructive radiochemical analyses of the difficult-to-measure 10CF61 radionuclides were then selected which had the same isotopic composition (to within {+-}25%) as that measured for the entire drum of DAW. The techniques for accomplishing this sampling are described. Oil samples were collected from the top, middle and bottom sections of 208-liter drums for radiochemical analyses. These samples were composited to represent the entire drum of oil. The accuracy of this type of sampling was evaluated by comparisons with direct, quantitative assays of a number of the drums using the barrel scanning gamma-ray spectrometer. The accuracy of sampling drums of spent secondary-side ion exchange resin was evaluated by comparing the radionuclide contents of grab samples taken from the tops of the drums with direct assays performed with the barrel scanner. The results of these sampling evaluations indicated that the sampling methods used were generally adequate for providing a reasonably representative subsample from bulk quantities of DAW, oil, and resin. The study also identified a number of potential pitfalls, in sampling of these materials.

  3. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  4. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  5. International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland

    Broader source: Energy.gov [DOE]

    Washington, D.C. — The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy...

  6. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  7. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  8. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  9. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  10. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  11. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  12. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  13. A Variable Trajectory Plume Segment Model to Assess Ground-Level Air Concentrations and Depositions of Routine Effluent Releases from Nuclear Power Facilities.

    Energy Science and Technology Software Center (OSTI)

    1986-05-27

    Version: 00 MESODIF-II, which embodies a variable trajectory plume segment atmospheric transport model, is designed to predict normalized air concentrations and deposition of radioactive, but otherwise non-reactive, effluents released from one or two levels over the same position in an xy-plane. In such a model, calculated particle trajectories vary as synoptic scale wind varies. At all sampling times, the particles are connected to form a segmented plume centerline. The lateral and vertical dimensions of themore » plume are determined by a parameterization of turbulence scale diffusion. The impetus for the development of this model arose from the need of the U. S. Nuclear Regulatory Commission to assess radiological effects resulting from routine nuclear power reactor operations, as outlined in U. S. Nuclear Regulatory Guide 1.111.« less

  14. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act. Teacher guide

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  15. First Graduates of Nuclear Security Education Program Announced | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) First Graduates of Nuclear Security Education Program Announced May 28, 2013 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA), the Massachusetts Institute of Technology (MIT), Pennsylvania State University and Texas A&M University have announced the first graduates of their new nuclear security program. This graduate-level program, which began in 2011, aims to develop and educate the next generation of personnel with careers

  16. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 ... Share of State total (percent) Net generation (thousand mwh) Illinois nuclear power ...

  17. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 ... Share of State total (percent) Net generation (thousand mwh) New York nuclear power ...

  18. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 ... Share of State total (percent) Net generation (thousand mwh) Maryland nuclear power ...

  19. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, by energy source, 2010 Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 ... Share of State total (percent) Net generation (thousand mwh) Michigan nuclear power ...

  20. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  1. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect (OSTI)

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  2. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  3. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    SciTech Connect (OSTI)

    Garcia, Marie-Paule Villoing, Daphnée; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  4. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    SciTech Connect (OSTI)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in the Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.

  5. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  6. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; Ela, Erik; Botterud, Audun; Townsend, Aaron; Levin, Todd

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  7. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.

    2001-08-20

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  8. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2002-06-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  9. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.

    2004-06-30

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  10. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-09-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  11. Experimental investigation on the chemical precipitation generation under the loss of coolant accident of nuclear power plants

    SciTech Connect (OSTI)

    Kim, C. H.; Sung, J. J.; Chung, Y. W.

    2012-07-01

    The PWR containment buildings are designed to facilitate core cooling in the event of a Loss of Coolant Accident (LOCA). The cooling process requires water discharged from the break and containment spray to be collected in a sump for recirculation. The containment sump contains screens to protect the components of the Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) from debris. Since the containment materials may dissolve or corrode when exposed to the reactor coolant and spray solutions, various chemical precipitations can be generated in a post-LOCA environment. These chemical precipitations may become another source of debris loading to be considered in sump screen performance and downstream effects. In this study, new experimental methodology to predict the type and quantity of chemical precipitations has been developed. To generate the plant-specific chemical precipitation in a post-LOCA environment, the plant specific chemical condition of the recirculation sump during post-LOCA is simulated with the experimental reactor for the chemical effect. The plant-specific containment materials are used in the present experiment such as glass fibers, concrete blocks, aluminum specimens, and chemical reagent - boric acid, spray additives or buffering chemicals (sodium hydroxide, Tri-Sodium Phosphate (TSP), or others). The inside temperature of the reactor is controlled to simulate the plant-specific temperature profile of the recirculation sump. The total amount of aluminum released from aluminum specimens is evaluated by ICP-AES analysis to determine the amount of AlOOH and NaAlSi{sub 3}O{sub 8} which induce very adverse effect on the head loss across the sump screens. The amount of these precipitations generated in the present experimental study is compared with the results of WCAP-16530-NP-A. (authors)

  12. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  13. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Taiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Hui Zhou

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  14. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  15. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    SciTech Connect (OSTI)

    Parrish, K.R.

    1995-09-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

  16. levelized costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levelized costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  17. Exelôn. Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exeln. Generation 4300 Winfield Road Warrenville, Illinois 60555 Writer's Direct Dial: ... On March 14, 2011, representatives of Exelon Generation Company, LLC and Exelon Nuclear ...

  18. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  19. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  1. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net ...

  2. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  3. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  4. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  5. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect (OSTI)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  6. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect (OSTI)

    1988-12-01

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  7. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  8. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  9. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  10. Characterization of Defense Nuclear Waste Using Hazardous Waste Guidance: Applications to Hanford Site Accelerated High-Level Waste Treatment and Disposal Mission

    SciTech Connect (OSTI)

    Hamel, William F.; Huffman, Lori A.; Lerchen, Megan E.; Wiemers, Karyn D.

    2003-02-24

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy’s (DOE) Hanford Site in southeast Washington State, one of the nation’s largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  11. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  12. Instrumentation report 1: specification, design, calibration, and installation of instrumentation for an experimental, high-level, nuclear waste storage facility

    SciTech Connect (OSTI)

    Brough, W.G.; Patrick, W.C.

    1982-01-01

    The Spent Fuel Test-Climax (SFT-C) is being conducted 420 m underground at the Nevada Test Site under the auspices of the US Department of Energy. The test facility houses 11 spent fuel assemblies from an operating commercial nuclear reactor and numerous other thermal sources used to simulate the near-field effects of a large repository. We developed a large-scale instrumentation plan to ensure that a sufficient quality and quantity of data were acquired during the three- to five-year test. These data help satisfy scientific, operational, and radiation safety objectives. Over 800 data channels are being scanned to measure temperature, electrical power, radiation, air flow, dew point, stress, displacement, and equipment operation status (on/off). This document details the criteria, design, specifications, installation, calibration, and current performance of the entire instrumentation package.

  13. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect (OSTI)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  14. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous

  15. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  16. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    SciTech Connect (OSTI)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F. |

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of various processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.

  17. Analysis/plot generation code with significance levels computed using Kolmogorov-Smirnov statistics valid for both large and small samples

    SciTech Connect (OSTI)

    Kurtz, S.E.; Fields, D.E.

    1983-10-01

    This report describes a version of the TERPED/P computer code that is very useful for small data sets. A new algorithm for determining the Kolmogorov-Smirnov (KS) statistics is used to extend program applicability. The TERPED/P code facilitates the analysis of experimental data and assists the user in determining its probability distribution function. Graphical and numerical tests are performed interactively in accordance with the user's assumption of normally or log-normally distributed data. Statistical analysis options include computation of the chi-square statistic and the KS one-sample test statistic and the corresponding significance levels. Cumulative probability plots of the user's data are generated either via a local graphics terminal, a local line printer or character-oriented terminal, or a remote high-resolution graphics device such as the FR80 film plotter or the Calcomp paper plotter. Several useful computer methodologies suffer from limitations of their implementations of the KS nonparametric test. This test is one of the more powerful analysis tools for examining the validity of an assumption about the probability distribution of a set of data. KS algorithms are found in other analysis codes, including the Statistical Analysis Subroutine (SAS) package and earlier versions of TERPED. The inability of these algorithms to generate significance levels for sample sizes less than 50 has limited their usefulness. The release of the TERPED code described herein contains algorithms to allow computation of the KS statistic and significance level for data sets of, if the user wishes, as few as three points. Values computed for the KS statistic are within 3% of the correct value for all data set sizes.

  18. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  19. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  20. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  1. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  2. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  3. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D.; Langford, D.W.; Ouderkirk, S.J.

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  4. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  6. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  7. Nuclear Waste Challenge | Department of Energy

    Office of Environmental Management (EM)

    Consent-Based Siting Nuclear Waste Challenge Nuclear Waste Challenge Approximate locations of the current sites where spent nuclear fuel and high-level radioactive waste are ...

  8. Technical-evaluation report on the adequacy of station electric-distribution-system voltages for the Prairie Island Nuclear Generating Plant, Units 1 and 2. (Docket Nos. 50-282, 50-306)

    SciTech Connect (OSTI)

    Selan, J C

    1982-09-17

    This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Prairie Island Nuclear Generating Plant, Units 1 and 2. The evaluation is to determine if the onsite distribution system in conjunction with the offsite power sources has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The evaluation finds that with some minor transformer loading modifications, hardware changes and the results of equipment testing and manufacturer data, the offsite sources were demonstrated to supply adequate voltage to the Class 1E equipment under worst case conditions.

  9. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  10. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    and net generation, 2010 Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn ... "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." ...

  11. Status of low-level radioactive waste management in Korea

    SciTech Connect (OSTI)

    Lee, K.J.

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  12. International Nuclear Security | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such

  13. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  14. Overview of calcite/opal deposits at or near the proposed high-level nuclear waste site, Yucca Mountain, Nevada, USA: Pedogenic, hypogene, or both?

    SciTech Connect (OSTI)

    Hill, C.A.; Dublyansky, Y.V.; Harmon, R.S.

    1995-09-01

    Calcite/opal deposits (COD) at Yucca Mountain were studied with respect to their regional and field geology, petrology and petrography, chemistry and isotopic geochemistry, and fluid inclusions. They were also compared with true and pedogenic deposits (TPD), groundwater spring deposits (GSD), and calcite vein deposits (CVD) in the subsurface. Some of the data are equivocal and can support either a hypogene or pedogenic origin for these deposits. However, Sr-, C-, and O-isotope, fluid inclusion, and other data favor a hypogene interpretation. A hypothesis that may account for all currently available data is that the COD precipitated from warm, CO{sub 2}-rich water that episodically upwelled along faults during the Pleistocene, and which, upon reaching the surface, flowed down-slope within existing alluvial, colluvial, eluvial, or soil deposits. Being formed near, or on, the topographic surface, the COD acquired characteristics of pedogenic deposits. This subject relates to the suitability of Yucca Mountain as a high-level nuclear waste site. 64 refs., 21 figs., 3 tabs.

  15. Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy

    SciTech Connect (OSTI)

    P. D. Wheatley; R. P. Rechard

    1998-09-01

    The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

  16. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  17. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  18. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene; Sloop Jr, Frederick {Fred} V; Williams, Neil J; Birdwell Jr, Joseph F; Lee, Denise L; Leonard, Ralph; Fink, Samuel D; Peters, Thomas B.; Geeting, Mark W

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  19. EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    The Proposed Action defined in the Yucca Mountain FEIS is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain to dispose of spent nuclear fuel and high-level radioactive waste. The Proposed Action includes transportation of these materials from commercial and DOE sites to the repository.

  20. nuclear testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA activities are vital to detecting nuclear explosions and helping verify compliance with the testing ban worldwide. Recent developments at NNSA's Livermore National Laboratory (LLNL) will help NNSA meet this commitment. Using computer-generated models and field experiments, LLNL simulates how

  1. Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    1992-06-18

    The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks

  2. Flow directions and hydraulic gradients in the variable density flow system at the proposed high-level nuclear waste repository site in the Texas panhandle

    SciTech Connect (OSTI)

    Bair, E.S.; O'Donnell, T.P.

    1985-01-01

    Bedded salt, welded tuff, and basalt are the three rock types proposed as possible host rock for the nation's first high-level nuclear waste repository. Regional flow at the proposed bedded salt site in the Texas Panhandle is unique because it contains waters with highly variable fluid density. The site area is underlain by three regional hydrostratigraphic units: a shallow aquifer system developed in the Ogallala Formation and Dockum Group containing waters with less than 1500 mg/1 TDS, a shale and evaporite aquitard associated with the target salt horizon commonly containing waters with 300,000 mg/1 TDS, and a deep aquifer system developed in the Wolfcamp Series and Pennsylvanian System commonly containing waters with 50,000 to 200,000 mg/1 TDS. The associated fluid density variations can lead to miscalculation of flow directions, hydraulic gradients, and travel times. Pressure-depth diagrams based on shut-in pressure and specific-gravity data from drill-stem tests indicate that regionally the potential for downward flow exists in the shale and evaporite aquitard and the potential for horizontal flow exists in the deep aquifer system. Determination of the direction and magnitude of the vertical hydraulic gradient across the target salt horizon based on a method that solely uses pressure data and which incorporates the effects of variable fluid density indicates a downward-oriented hydraulic gradient at the proposed Texas Panhandle site. These methods do not require calculation of hydraulic head and, therefore, are a more realistic way of determining flow characteristics in variable density flow systems.

  3. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  4. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  5. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  6. Milestones for Selection Characterization and Analysis of the Performance of a Repository for Spent Nuclear Fuel and HIh-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis throu gh 2009 of the performance of a repository for spent nuclear fuel and high - level radi oactive waste at Yucca Mou ntain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and an alogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a ) R egulatory requirements and related federal policy in laws and court decisions, (c ) Presidential and agency directives, (c) technical milestones of implemen ting institutions, and (d ) critiques of the Yucca Mountai n P roject and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safe ty on the performance assessment for the Yucca Mountain

  7. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  8. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  9. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  10. Nuclear Safety | Department of Energy

    Energy Savers [EERE]

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009) of Energy

    Regulatory Commission Regulatory and Licensing Matters Nuclear Regulatory Commission Regulatory and Licensing Matters GC-52

  11. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  12. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Savers [EERE]

    that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor ... nuclear fuel, nuclear materials, and non high-level ...

  13. World nuclear outlook 1994

    SciTech Connect (OSTI)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  14. World nuclear outlook 1995

    SciTech Connect (OSTI)

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  15. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  16. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  17. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  18. Electricity generator cost data from survey form EIA-860

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy Comprehensive data ... capacity estimates that use direct current (DC) ratings of PV panels. ...

  19. Socioeconomic impacts of nuclear generating stations: Crystal River Unit 3 case study. Technical report 1 Oct 78-4 Jan 82

    SciTech Connect (OSTI)

    Bergmann, P.A.

    1982-07-01

    The report documents a case study of the socioeconomic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socioeconomic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-81. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socioeconomic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined.

  20. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Nuclear Reactor Technologies

    Broader source: Energy.gov [DOE]

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%)...

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    96.7 BWR 6301971 982030 554 4,695 96.7 Data for 2010 BWR Boiling Water Reactor. ... 520 full-time and contract employees. Reactor Descriptions: The nuclear generating unit ...

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    85.5 BWR 1211969 492029 615 4,601 85.5 Data for 2010 BWR Boiling Water Reactor. ... not including security personnel. Reactor Descriptions: The nuclear generating unit ...

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Entergy Nuclear Generation Co 1 Plant 1 Reactor 685 5,918 100.0 Note: Totals may not ... 98.7 BWR 1211972 682012 685 5,918 98.7 Data for 2010 BWR Boiling Water Reactor. ...

  6. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Entergy Nuclear Generation Co 1 Plant 1 Reactor 685 5,918 100.0 Owner Note: Totals may ... Data for 2010 BWR Boiling Water Reactor. Source: Form EIA-860, "Annual Electric ...

  7. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of State nuclear net generation (percent) Cooper 1 767 6,793 101.1 BWR 711974 1182014 767 6,793 101.1 Data for 2010 BWR Boiling Water Reactor. Source: Form EIA-860, ...

  8. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles

  9. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  10. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  11. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  12. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to ...

  13. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006

    SciTech Connect (OSTI)

    Ringbom, Anders; Elmgren, K.; Lindh, Karin; Peterson, Jenny; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Panisko, Mark E.; Williams, Richard M.

    2009-12-03

    Abstract Following the claimed nuclear test in the Democratic People’s Republic of Korea (DPRK) on October 9, 2006, and a reported seismic event, a mobile system for sampling of atmospheric xenon was transported to the Republic of South Korea (ROK) in an attempt to detect possible emissions of radioxenon in the region from a presumed test. Five samples were collected in the ROK during October 11–14, 2006 near the ROK–DPRK border, and thereafter transported to the Swedish Defense Research Agency (FOI) in Stockholm, Sweden, for analysis. Following the initial measurements, an automatic radioxenon sampling and analysis system was installed at the same location in the ROK, and measurements on the ambient atmospheric radioxenon background in the region were performed during November 2006 to February 2007. The measured radioxenon concentrations strongly indicate that the explosion in October 9, 2006 was a nuclear test. The conclusion is further strengthened by atmospheric transport models. Radioactive xenon measurement was the only independent confirmation that the supposed test was in fact a nuclear explosion and not a conventional (chemical) explosive.

  14. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  15. NRC Fact-Finding Task Force report on the ATWS event at Salem Nuclear Generating Station, Unit 1, on February 25, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions.

  16. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  17. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  18. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  19. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  20. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2

  1. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  2. Solving The Long-Standing Problem Of Low-Energy Nuclear Reactions At The Highest Microscopic Level. Annual Continuation And Progress Report, August 15, 2014 -- August 14, 2015

    SciTech Connect (OSTI)

    Quaglioni, Sofia

    2015-03-19

    The aim of this project is to develop a comprehensive framework that will lead to a fundamental description of both structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. This project will provide the research community with the theoretical and computational tools what will enable: an accurate prediction for fusion reactions that power stars and Earth-based fusion facilities; an improved description of the spectroscopy of exotic nuclei, including light Borromean systems; and, a fundamental understanding of the three-nucleon force in nuclear reaction and nuclei at the drip line.

  3. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically

  4. National Nuclear Science Week Day 4: NNSA Highlights Science of Nuclear

    National Nuclear Security Administration (NNSA)

    Nonproliferation | National Nuclear Security Administration | (NNSA) National Nuclear Science Week Day 4: NNSA Highlights Science of Nuclear Nonproliferation January 27, 2011 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) is committed to promoting excellence in nuclear science and attracting the next generation of nuclear security experts to the field. As part of that effort, NNSA is celebrating National Nuclear Science Week with five days of features on the NNSA

  5. National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science Careers

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science Careers January 25, 2011 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) is committed to promoting excellence in nuclear science and attracting the next generation of nuclear security experts to the field. As part of that effort, NNSA is celebrating National Nuclear Science Week with five days of features on the NNSA website that showcase the

  6. NNSA Announces New Name for Test Site | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Announces New Name for Test Site August 23, 2010 LAS VEGAS -- National Nuclear Security ... incident involving nuclear materials and test the next generation of radiation detection ...

  7. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High ...

  8. Energy Department Announces New Investments in Advanced Nuclear...

    Energy Savers [EERE]

    in the next generation of nuclear energy technologies and enable low-carbon nuclear power to be a significant ... analysis on sodium thermal hydraulics to support ...

  9. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This symposium celebrates the contributions of Edward G. Bilpuch to nuclear physic and to the Triangle Universities Nuclear Laboratory (TUNL), which is a U.S. Department of Energy Center of Excellence in Nuclear Physics. Dr. Bilpuch was a Henry W. Newson Professor of Physics at Duke University, a member of the first generation of nuclear physicists who founded TUNL and the longest-term director of TUNL.

  10. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  11. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  12. Development of New Generation of Adsorbents and Waste Forms for...

    Office of Scientific and Technical Information (OSTI)

    Development of New Generation of Adsorbents and Waste Forms for Nuclear Waste Management. Citation Details In-Document Search Title: Development of New Generation of Adsorbents and ...

  13. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    America Treaty Organization NCT Nuclear Counterterrorism NCTIR Nuclear Counterterrorism and Incident Response Program NDAA National Defense Authorization Act NELA Nuclear Explosive Like-Assembly NEST Nuclear Emergency Support Team NGSI Next Generation Safeguards Initiative NIS Nonproliferation and International Security Program NMF National Mission Force NNSA National Nuclear Security Administration NNSS Nevada Nuclear Security Site NPAC Nonproliferation Policy and Arms Control Program NPT

  14. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  15. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  16. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  17. Generation IV International Forum Updates Technology Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    status of the Lead Fast Reactor and Sodium Fast Reactor (SFR) Generation IV concepts, ... Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). ...

  18. explicit representation of uncertainty in solar generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar generation - Sandia Energy Energy Search Icon Sandia ... Secure & Sustainable Energy Future Stationary Power Energy ... National Solar Thermal Test Facility Nuclear ...

  19. explicit representation of uncertainty in wind generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind generation - Sandia Energy Energy Search Icon Sandia ... Secure & Sustainable Energy Future Stationary Power Energy ... National Solar Thermal Test Facility Nuclear ...

  20. PROGRESS TOWARDS NEXT GENERATION, WAVEFORM BASED THREE-DIMENSIONAL MODELS AND METRICS TO IMPROVE NUCLEAR EXPLOSION MONITORING IN THE MIDDLE EAST

    SciTech Connect (OSTI)

    Savage, B; Peter, D; Covellone, B; Rodgers, A; Tromp, J

    2009-07-02

    three methods were made. These comparisons help to identify problematic stations and sources which may bias the final solution. Estimates of standard errors were generated for each event's source depth and focal mechanism to identify poorly constrained events. A final, well characterized set of sources and stations will be then used to iteratively improve the wave speed model of the Middle East. After a few iterations during the adjoint inversion process, the sources will be reexamined and relocated to further reduce mapping of source errors into structural features. Finally, efforts continue in developing the infrastructure required to 'quickly' generate event kernels at the n-th iteration and invert for a new, (n+1)-th, wave speed model of the Middle East. While development of the infrastructure proceeds, initial tests using a limited number of events shows the 3D model, while showing vast improvement compared to the 1D model, still requires substantial modifications. Employing our new, full source set and iterating the adjoint inversions at successively shorter periods will lead to significant changes and refined wave speed structures of the Middle East.

  1. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  2. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  3. EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this environmental impact statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high-level wastes currently stored in underground tanks at West Valley, New York.

  4. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  5. Implications of an Improvised Nuclear Device Detonation on Command and Control for Surrounding Regions at the Local, State and Federal Levels

    SciTech Connect (OSTI)

    Pasquale, David A.; Hansen, Richard G.

    2013-01-23

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: Would the current command and control framework change in the face of an IND incident? What would the management of operations look like as the event unfolded? How do neighboring and/or affected jurisdictions coordinate with the state? If the target areas command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? How would public health and medical services fit into the command and control structure? How can pre-planning and common policies improve coordination and response effectiveness? Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?

  6. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  7. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  8. Nuclear Fuels | Department of Energy

    Energy Savers [EERE]

    A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and ... scales from micro-structural level to individual pellets to entire rods and bundles. ...

  9. Using the sound of nuclear energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrett, Steven; Smith, James; Smith, Robert; Heidrich, Benden; Heibel, Michael

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  10. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  11. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  12. Relevance of biotic pathways to the long-term regulation of nuclear-waste disposal. Topical report on reference western arid low-level sites

    SciTech Connect (OSTI)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1982-10-01

    The purpose of the work reported here was to develop an order of magnitude estimate for the potential dose to man resulting from biotic transport mechanisms at a reference western arid low-level waste site. A description of the reference site is presented that includes the waste inventories, site characteristics and biological communities. Parameter values for biotic transport processes are based on data reported in current literature. Transport and exposure scenarios are developed for assessing biotic transport during 100 years following site closure. Calculations of radionuclide decay and waste container decomposition are made to estimate the quantities available for biotic transport. Dose to a man occupying the reference site following the 100 years of biotic transport are calculated. These dose estimates are compared to dose estimates for the intruder-agricultural scenario reported in the DEIS for 10 CFR 61 (NRC). Dose to man estimates as a result of biotic transport are estimated to be of the same order of magnitude as the dose resulting from the more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by the findings presented in this report. These results indicate that biotic transport has the potential to influence low-level waste site performance. Through biotic transport, radionuclides may be moved to locations where they can enter exposure pathways to man.

  13. US nuclear waste may have temporary home

    SciTech Connect (OSTI)

    Kramer, David

    2015-05-15

    Combined developments could break the logjam over disposition of spent nuclear fuel and defense high-level radioactive waste.

  14. TUNL Nuclear Data Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Levels of Light Nuclei, A = 3 - 20 Nuclear Data Evaluation Project Triangular Universities Nuclear Laboratory TUNL Nuclear Data Evaluation Home Page Information on mass chains and nuclides 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Info Publications HTML General Tables Level Diagrams Tables of EL's NSR Key# Retrieval ENSDF Excitation Functions Thermal N Capt. G.S. Decays TUNL Dissertations NuDat at BNL Useful Links Citation Examples Home Sitemap Directory Email Us Search WWW

  15. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  16. Levelized cost and levelized avoiced cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies Wind 34 56.6 13.3 0.0 3.2 73.1 Wind - Offshore 37 141.7 22.8 0.0 5.7 170.3 Solar PV 2 25 95.3 11.4 0.0 4.0 110.8 -9.5 101.3 Solar Thermal 20 156.2 42.1 0.0 5.9 204.3...

  17. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  18. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon

  19. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  20. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  1. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  2. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Topical report on reference eastern humid low-level sites

    SciTech Connect (OSTI)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1983-01-01

    The purpose of the work reported here was to develop an order-of-magnitude estimate for the potential dose to man resulting from biotic transport mechanisms at a humid reference low-level waste site in the eastern US. A description of the reference site is presented that includes the waste inventories, site characteristics and biological communites. Parameter values for biotic transport processes are based on data reported in current literature. Transport and exposure scenarios are developed for assessing biotic transport during 500 years following site closure. Calculations of radionuclide decay and waste container decomposition are made to estimate the quantities available for biotic transport. Doses to man are calculated for the biological transport of radionucludes at the reference site after loss of institutional control. These dose estimates are compared to dose estimates we calculated for the intruder-agricultural scenarios reported in the DEIS for 10 CFR 61 (NRC). Dose to man estimates as a result of cumulative biotic transport are calculated to be of the same order-of-magnitude as the dose resulting from the more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by findings presented in this report. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man.

  3. Levelized Cost of Electricity and Levelized Avoided Cost of Electricit...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... are the number of hours in a year that the plant is assumed to operate. For dispatchable generation such as coal, nuclear, or gas-fired plants, EIA calculates this based on an ...

  4. Waste Generated from LMR-AMTEC Reactor Concept

    SciTech Connect (OSTI)

    Hasan, Ahmed; Mohamed, Yasser, T.; Mohammaden, Tarek, F.

    2003-02-25

    The candidate Liquid Metal Reactor-Alkali Metal Thermal -to- Electric Converter (LMR-AMTEC) is considered to be the first reactor that would use pure liquid potassium as a secondary coolant, in which potassium vapor aids in the conversion of thermal energy to electric energy. As with all energy production, the thermal generation of electricity produces wastes. These wastes must be managed in ways which safeguard human health and minimize their impact on the environment. Nuclear power is the only energy industry, which takes full responsibility for all its wastes. Based on the candidate design of the LMR-AMTEC components and the coolant types, different wastes will be generated from LMR. These wastes must be classified and characterized according to the U.S. Code of Federal Regulation, CFR. This paper defines the waste generation and waste characterization from LMR-AMTEC and reviews the applicable U.S. regulations that govern waste transportation, treatment, storage and final disposition. The wastes generated from LMR-AMTEC are characterized as: (1) mixed waste which is generated from liquid sodium contaminated by fission products and activated corrosion products; (2) hazardous waste which is generated from liquid potassium contaminated by corrosion products; (3) spent nuclear fuel; and (4) low-level radioactive waste which is generated from the packing materials (e.g. activated carbon in cold trap and purification units). The regulations and management of these wastes are summarized in this paper.

  5. Systems study of the feasibility of high-level nuclear-waste fractionation for thermal stress control in a geologic repository: main report

    SciTech Connect (OSTI)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. System costs are developed for a broad range of conditions comparing the Cs/Sr fractionation concept with disposal of 10-year-old vitrified HLW and vitrified HLW aged to achieve (through decay) the same heat output as the fractionated high-level waste (FHLW). All comparisons are based on a 50,000 metric ton equivalent (MTE) system. The FHLW and the Cs/Sr waste are both disposed of as vitrified waste but emplaced in separate areas of a basalt repository. The FHLW is emplaced in high-integrity packages at relatively high waste loading but low heat loading, while the Cs/Sr waste is emplaced in minimum-integrity packages at relatively high heat loading in a separate region of the repository. System cost comparisons are based on minimum cost combinations of canister diameter, waste concentration, and canister spacing in a basalt repository. The effects on both long- and near-term safety considerations are also addressed. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However, there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. 37 figures, 58 tables.

  6. NNSA Next Generation Safeguards Initiative | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  7. Advanced Nuclear Reactors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  8. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers Educating Future Nuclear Engineers The Nuclear Energy University

  9. Nuclear Energy University Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy

  10. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  11. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  12. Effect of organics on nuclear cycles

    SciTech Connect (OSTI)

    Riddle, J.M. . Chemistry Services Section)

    1992-07-01

    Organics entering the nuclear cycle undergo hydrolysis or radiolysis and form carboxylic acids, acetic, formic, and propionic acids being the most prominent. Sequestered sulfur, halogens, metal species, and silica may also be released. The corrosion effects of halogens and sulfate are reasonably well understood. Historically, organic acids at low levels (e.g., 10 to 50 ppb) in nuclear cycles have been viewed as a nuisance or as potentially detrimental. This study reviews literature references of the effects of organics in nuclear cycles. Sources of organics and corrosion effects on plant materials are given from various references. Acetate can neutralize caustic in PWR steam generator crevices, whereas formate and oxalate as sodium salts can decompose to sodium carbonate. Sodium carbonate in crevices hydrolyzes to carbon dioxide and sodium hydroxide, which promotes SCC and IGA of Alloy 600. Formate and oxalate can act as oxygen scavengers in the BWR cycle and mitigate IGSCC of austenitic stainless steel. No firm evidence exists that organic acids have caused corrosion in turbines, piping, or heat exchangers in nuclear cycles, although organic acids at high levels can cause specific corrosion effects as a result of low pH.

  13. Managing the Nuclear Fuel Cycle, The Big Picture

    SciTech Connect (OSTI)

    Brett W Carlsen

    2010-07-01

    The nuclear industry, at least in the United States, has failed to deliver on its promise of cheap, abundant energy. After pioneering the science and application and becoming a primary exporter of nuclear technologies, domestic use of nuclear power fell out-of-favor with the public and has been relatively stagnant for several decades. Recently, renewed interest has generated optimism and talk of a nuclear renaissance characterized by a new generation of safe, clean nuclear plants in this country. But, as illustrated by recent policy shifts regarding closure of the fuel cycle and geologic disposal of high-level radioactive wastes, significant hurdles have yet to be overcome. Using the principles of system dynamics, this paper will take a holistic look at the nuclear industry and the interactions between the key players to explore both the intended and unintended consequences of efforts to address the issues that have impeded the growth of the industry and also to illustrate aspects which must be effectively addressed if the renaissance of our industry is to be achieved and sustained.

  14. Scram signal generator

    DOE Patents [OSTI]

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  15. Scram signal generator

    DOE Patents [OSTI]

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  16. National Nuclear Security Administration honors Y-12 employees | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlantic Treaty Organization NCT Nuclear Counterterrorism NCTIR Nuclear Counterterrorism and Incident Response Program NDAA National Defense Authorization Act NELA Nuclear Explosive Like-Assembly NEST Nuclear Emergency Support Team NGSI Next Generation Safeguards Initiative NIS Nonproliferation and International Security Program NMF National Mission Force NNSA National Nuclear Security Administration NNSS Nevada National Security Site NPAC Nonproliferation Policy and Arms Control Program NPT

  17. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    Atlantic Treaty Organization NCT Nuclear Counterterrorism NCTIR Nuclear Counterterrorism and Incident Response Program NDAA National Defense Authorization Act NELA Nuclear Explosive Like-Assembly NEST Nuclear Emergency Support Team NGSI Next Generation Safeguards Initiative NIS Nonproliferation and International Security Program NMF National Mission Force NNSA National Nuclear Security Administration NNSS Nevada National Security Site NPAC Nonproliferation Policy and Arms Control Program NPT

  18. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  19. Solar thermoelectric generator

    DOE Patents [OSTI]

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  20. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  1. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  2. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  3. Arizona Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",3937,14.9,"31,200",27.9 "Coal","6,233",23.6,"43,644",39.1 "Hydro and Pumped ...

  4. Maryland Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,705",13.6,"13,994",32.1 "Coal","4,886",39.0,"23,668",54.3 "Hydro and Pumped ...

  5. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,251",8.0,"9,643",17.7 "Coal","2,526",16.1,"13,629",25.0 "Natural ...

  6. Pennsylvania Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","9,540",20.9,"77,828",33.9 "Coal","18,481",40.6,"110,369",48.0 "Hydro and Pumped ...

  7. Connecticut Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,103",25.4,"16,750",50.2 "Coal",564,6.8,"2,604",7.8 "Hydro and Pumped ...

  8. Illinois Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","11,441",25.9,"96,190",47.8 "Coal","15,551",35.2,"93,611",46.5 "Hydro and Pumped ...

  9. Iowa Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",601,4.1,"4,451",7.7 "Coal","6,956",47.7,"41,283",71.8 "Hydro and Pumped ...

  10. Louisiana Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,142",8.0,"18,639",18.1 "Coal","3,417",12.8,"23,924",23.3 "Hydro and Pumped ...

  11. Michigan Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,947",13.2,"29,625",26.6 "Coal","11,531",38.7,"65,604",58.8 "Hydro and Pumped ...

  12. Missouri Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,190",5.5,"8,996",9.7 "Coal","12,070",55.5,"75,047",81.3 "Hydro and Pumped ...

  13. Ohio Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,134",6.5,"15,805",11.0 "Coal","21,360",64.6,"117,828",82.1 "Hydro and Pumped ...

  14. Vermont Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",620,55.0,"4,782",72.2 "Hydro and Pumped Storage",324,28.7,"1,347",20.3 "Natural ...

  15. Wisconsin Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,584",8.9,"13,281",20.7 "Coal","8,063",45.2,"40,169",62.5 "Hydro and Pumped ...

  16. Arkansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,835",11.5,"15,023",24.6 "Coal","4,535",28.4,"28,152",46.2 "Hydro and Pumped ...

  17. Minnesota Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,594",10.8,"13,478",25.1 "Coal","4,789",32.5,"28,083",52.3 "Hydro and Pumped ...

  18. Florida Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,924",6.6,"23,936",10.4 "Coal","9,975",16.9,"59,897",26.1 "Hydro and Pumped ...

  19. Texas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,966",4.6,"41,335",10.0 "Coal","22,335",20.6,"150,173",36.5 "Hydro and Pumped ...

  20. Virginia Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,501",14.5,"26,572",36.4 "Coal","5,868",24.3,"25,459",34.9 "Hydro and Pumped ...