Powered by Deep Web Technologies
Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Positrons for linear colliders  

SciTech Connect (OSTI)

The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

Ecklund, S.

1987-11-01T23:59:59.000Z

2

[New technology for linear colliders  

SciTech Connect (OSTI)

This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

McIntyre, P.M.

1992-08-12T23:59:59.000Z

3

International Workshop on Linear Colliders 2010  

ScienceCinema (OSTI)

IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

None

2011-10-06T23:59:59.000Z

4

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network [OSTI]

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

5

Siting the International Linear Collider at Hanford  

SciTech Connect (OSTI)

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facilityl.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-03-15T23:59:59.000Z

6

Siting the International Linear Collider at Hanford  

SciTech Connect (OSTI)

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facility.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-05-01T23:59:59.000Z

7

Linear Collider Physics Resource Book Snowmass 2001  

SciTech Connect (OSTI)

The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.

Ronan (Editor), M.T.

2001-06-01T23:59:59.000Z

8

2009 Linear Collider Workshop of the Americas  

SciTech Connect (OSTI)

The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designs was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.

Seidel, Sally

2009-09-29T23:59:59.000Z

9

QCD Interconnection Studies at Linear Colliders  

E-Print Network [OSTI]

Heavy objects like the W, Z and t are short-lived compared with typical hadronization times. When pairs of such particles are produced, the subsequent hadronic decay systems may therefore become interconnected. We study such potential effects at Linear Collider energies.

Valery A. Khoze; Torbjörn Sjöstrand

1999-12-10T23:59:59.000Z

10

Towards a Future Linear Collider and The Linear Collider Studies at CERN  

ScienceCinema (OSTI)

During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

None

2011-10-06T23:59:59.000Z

11

International linear collider reference design report  

SciTech Connect (OSTI)

The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

Aarons, G.

2007-06-22T23:59:59.000Z

12

Governance of the International Linear Collider Project  

SciTech Connect (OSTI)

Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly apportioned at both a national and global level, is essential if the project is to be realised. Finally, models for running costs and decommissioning at the conclusion of the ILC project are proposed. This document represents an interim report of the bodies and individuals studying these questions inside the structure set up and supervised by the International Committee for Future Accelerators (ICFA). It represents a request for comment to the international community in all relevant disciplines, scientific, technical and most importantly, political. Many areas require further study and some, in particular the site selection process, have not yet progressed sufficiently to be addressed in detail in this document. Discussion raised by this document will be vital in framing the final proposals due to be published in 2012 in the Technical Design Report being prepared by the Global Design Effort of the ILC.

Foster, B.; /Oxford U.; Barish, B.; /Caltech; Delahaye, J.P.; /CERN; Dosselli, U.; /INFN, Padua; Elsen, E.; /DESY; Harrison, M.; /Brookhaven; Mnich, J.; /DESY; Paterson, J.M.; /SLAC; Richard, F.; /Orsay, LAL; Stapnes, S.; /CERN; Suzuki, A.; /KEK, Tsukuba; Wormser, G.; /Orsay, LAL; Yamada, S.; /KEK, Tsukuba

2012-05-31T23:59:59.000Z

13

Physics at the e+ e- Linear Collider  

E-Print Network [OSTI]

A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.

Moortgat-Pick, G; Battaglia, M; Belanger, G; Fujii, K; Kalinowski, J; Heinemeyer, S; Kiyo, Y; Olive, K; Simon, F; Uwer, P; Wackeroth, D; Zerwas, P M; Arbey, A; Asano, M; Bechtle, P; Bharucha, A; Brau, J; Brummer, F; Choi, S Y; Denner, A; Desch, K; Dittmaier, S; Ellis, J; Ellwanger, U; Englert, C; Freitas, A; Ginzburg, I; Godfrey, S; Greiner, N; Grojean, C; Grunewald, M; Heisig, J; Hocker, A; Kanemura, S; Kawagoe, K; Kogler, R; Krawczyk, M; Kronfeld, A S; Kroseberg, J; Liebler, S; List, J; Mahmoudi, F; Mambrini, Y; Matsumoto, S; Mnich, J; Monig, K; Muhlleitner, M M; Poschl, R; Porod, W; Porto, S; Rolbiecki, K; Schlatter, D; Schmitt, M; Serpico, P; Stanitzki, M; Stål, O; Stefaniak, T; Stockinger, D; Wagner, A; Weiglein, G; Wilson, G W; Zeune, L; Moortgat, F; Xella, S

2015-01-01T23:59:59.000Z

14

Physics at the e+ e- Linear Collider  

E-Print Network [OSTI]

A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.

G. Moortgat-Pick; H. Baer; M. Battaglia; G. Belanger; K. Fujii; J. Kalinowski; S. Heinemeyer; Y. Kiyo; K. Olive; F. Simon; P. Uwer; D. Wackeroth; P. M. Zerwas; A. Arbey; M. Asano; P. Bechtle; A. Bharucha; J. Brau; F. Brummer; S. Y. Choi; A. Denner; K. Desch; S. Dittmaier; U. Ellwanger; C. Englert; A. Freitas; I. Ginzburg; S. Godfrey; N. Greiner; C. Grojean; M. Grunewald; J. Heisig; A. Hocker; S. Kanemura; K. Kawagoe; R. Kogler; M. Krawczyk; A. S. Kronfeld; J. Kroseberg; S. Liebler; J. List; F. Mahmoudi; Y. Mambrini; S. Matsumoto; J. Mnich; K. Monig; M. M. Muhlleitner; R. Poschl; W. Porod; S. Porto; K. Rolbiecki; M. Schmitt; P. Serpico; M. Stanitzki; O. Stål; T. Stefaniak; D. Stockinger; G. Weiglein; G. W. Wilson; L. Zeune; F. Moortgat; S. Xella

2015-04-07T23:59:59.000Z

15

Klystron switching power supplies for the Internation Linear Collider  

SciTech Connect (OSTI)

The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

Fraioli, Andrea; /Cassino U. /INFN, Pisa

2009-12-01T23:59:59.000Z

16

LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.  

SciTech Connect (OSTI)

The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

2001-05-03T23:59:59.000Z

17

Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet  

SciTech Connect (OSTI)

The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

2006-09-28T23:59:59.000Z

18

Background Simulations for the International Linear Collider  

E-Print Network [OSTI]

on superconducting technology to collide bunches of electrons and positrons. The baseline configuration (about 31 km in a clean experimental environment with low backgrounds. The LHC will likely discover the Higgs boson accelerator directly. DESY FLC, 22603 Hamburg, Germany, adrian.vogel@desy.de 1 #12;Figure 1: Overall view

19

Reliability and Maintainability Issues for the Next Linear Collider  

SciTech Connect (OSTI)

Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.; /SLAC

2011-08-26T23:59:59.000Z

20

Power Saving Optimization for Linear Collider Interaction Region Parameters  

SciTech Connect (OSTI)

Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

Seryi, Andrei; /SLAC

2009-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Linear Collider Calorimeter Testbeam Study Group Report  

E-Print Network [OSTI]

segmentation to distinguish energy deposits from charged and neutral hadrons, associating the energy clusters#cient single particle shower data at a wide range of energies for EFA development to construct shower librari, jet energy resolutions need to be at the level of 30%/ # E that is capable of distinguishing W and Z

Yu, Jaehoon

22

Linear Collider Calorimeter Testbeam Study Group Report  

E-Print Network [OSTI]

segmentation to distinguish energy deposits from charged and neutral hadrons, associating the energy clusters: · Sufficient single particle shower data at a wide range of energies for EFA development to construct shower , jet energy resolutions need to be at the level of 30%/ E that is capable of distinguishing W and Z

Yu, Jaehoon

23

Study of Dark Matter inspired cMSSM scenarios at a TeV-class Linear Collider  

E-Print Network [OSTI]

hep- ph/0405253. 4. M. Battaglia, I. Hinchli?e and D. Tovey,level. References 1. M. Battaglia et al. , Eur. Phys. J. CCLASS LINEAR COLLIDER MARCO BATTAGLIA Department of Physics

Battaglia, Marco

2009-01-01T23:59:59.000Z

24

RF properties of periodic accelerating structures for linear colliders  

SciTech Connect (OSTI)

With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

Wang, J.W.

1989-07-01T23:59:59.000Z

25

Phenomenology of the minimal $B-L$ Model: the Higgs sector at the Large Hadron Collider and future Linear Colliders  

E-Print Network [OSTI]

This Thesis is devoted to the study of the phenomenology of the Higgs sector of the minimal $B-L$ extension of the Standard Model at present and future colliders. Firstly, the motivations that call for the minimal $B-L$ extension are summarised. In addition, the model is analysed in its salient parts. Moreover, a detailed review of the phenomenological allowed Higgs sector parameter space is given. Finally, a complete survey of the distinctive Higgs boson signatures of the model at both the Large Hadron Collider and the future linear colliders is presented.

Giovanni Marco Pruna

2011-06-23T23:59:59.000Z

26

DAPNIA/SEA-00-15 TESLA Linear Collider : Status Report  

E-Print Network [OSTI]

DAPNIA/SEA-00-15 TESLA Linear Collider : Status Report O. Napoly for the TESLA Collaboration CEA) October 24-28, 2000, FNAL, Batavia, IL, USA #12;#12;TESLA Linear Collider : Status Report O. Napoly for the TESLA Collaboration CEA/Saclay, DAPNIA/SEA 91191 Gif-sur-Yvette, FRANCE Abstract. We review the current

27

International Linear Collider-A Technical Progress Report  

SciTech Connect (OSTI)

The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Elsen, Eckhard; /DESY; Harrison, Mike; /Brookhaven; Hesla, Leah; /Fermilab; Ross, Marc; /Fermilab; Royole-Degieux, Perrine; /Paris, IN2P3; Takahashi, Rika; /KEK, Tsukuba; Walker, Nicholas; /DESY; Warmbein, Barbara; /DESY; Yamamoto, Akira; /KEK, Tsukuba; Yokoya, Kaoru; /KEK, Tsukuba; Zhang, Min; /Beijing, Inst. High Energy Phys.

2011-11-04T23:59:59.000Z

28

Zeroth-order design report for the next linear collider. Volume 1  

SciTech Connect (OSTI)

This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.

Raubenheimer, T.O. [ed.

1996-05-01T23:59:59.000Z

29

Zeroth-order design report for the next linear collider. Volume 2  

SciTech Connect (OSTI)

This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.

Raubenheimer, T.O. [ed.

1996-05-01T23:59:59.000Z

30

TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA-  

E-Print Network [OSTI]

TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA- Tunnel liegt in wasserdurchlässigen und -undurchlässigen Schichten. Die wasserdurch gesättigt. 230 #12;TESLA Linear-Collider Projekt Voruntersuchungen zum TESLA Linear-Collider Projekt Ein

31

Acclerator R&D for a Linear Collider  

SciTech Connect (OSTI)

The goal of this project was to perform simulations of beam transport in linear colliders, with an emphasis on emittance dilution, spin polarization transport, and development and testing of beam based tuning algorithms. Our simulations are based on an existing object-oriented particle-tracking library, Bmad. To facilitate the efficient development of simulations, an accelerator design and analysis program based on Bmad has been developed called Tao (Tool for Accelerator Optics). The three beam-based alignment algorithms, Dispersion Free Steering, Ballistic Alignment (BA), and the Kubo Method have been implemented in Tao. We have studied the effects of magnet misalignments, BPM resolution, beam jitter, stray fields, BPM and steering magnet failure and the effects of various cavity shape wakefields. A parametric study has been conducted in the presence of the above types of errors for all three alignment algorithms. We find that BPM resolution has only modest impact on the effectiveness of beam based alignment. The DFS correction algorithm was found to be very robust in situations where there were BPM and/or steering magnet failures. The wakefields in the main linac are very weak and cause negligible emittance growth. Spin tracking was extended to study all accelerator components between the damping ring and the interaction point, including RF cavities and the helical undulator. We find that there is no significant depolarization in the RTML, main linac or beam delivery system and that the polarization is relatively insensitive to misalignment. We have developed an effective spin rotator. During the final year of the grant we exploited the computing power of our new linux cluster, along with the modeling codes that we had developed, to investigate damping ring physics and design, specifically as it relates to the CESR Test Accelerator project.

Rubin, D.L.; Dugan, G.; Gibbons, L.; Palmer, M.; Patterson, R.; Sagan, D.; Smith, J.C.; Tenenbaum, P.; Woodley, M.; Fields, J.; Urban, J.

2008-11-26T23:59:59.000Z

32

[New technology for linear colliders]. Annual progress report and renewal proposal  

SciTech Connect (OSTI)

This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

McIntyre, P.M.

1992-08-12T23:59:59.000Z

33

Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials  

SciTech Connect (OSTI)

In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

Loew, Greg

2006-04-17T23:59:59.000Z

34

Pair Production of Tau Sneutrinos at Linear Colliders  

E-Print Network [OSTI]

The pair production of tau sneutrinos in $e^{+}e^{-}$ collisions and their subsequent decays are studied in a framework of the supersymmetric extension of the standard model. We present an analysis for the parameter space (BR vs. mass) which could be explored at the future high energy $e^{+}e^{-}$ colliders.

V. Ari; O. Cakir

2010-07-15T23:59:59.000Z

35

Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)  

ScienceCinema (OSTI)

Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

None

2011-10-06T23:59:59.000Z

36

Measurement of the Higgs Boson Mass with a Linear e+e- Collider  

E-Print Network [OSTI]

The potential of a linear e+e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4.

P. Garcia-Abia; W. Lohmann; A. Raspereza

2005-05-30T23:59:59.000Z

37

CONSTRAINTS ON LASER-DRIVEN ACCELERATORS FOR A HIGH-ENERGY LINEAR COLLIDER*  

E-Print Network [OSTI]

CONSTRAINTS ON LASER-DRIVEN ACCELERATORS FOR A HIGH-ENERGY LINEAR COLLIDER* J.S. Wurtele and AV on 1 TeV) are applied to free-space laser and laser/plasma accelerators. It is shown that the requirements impose very severe constraints upon the new accelerators-- so severe, that it seems unlikely

Wurtele, Jonathan

38

A High Intensity Linear e+ e- Collider Facility at Low Energy  

E-Print Network [OSTI]

I discuss a proposal for a high intensity $e^+e^-$ linear collider operated at low center of mass energies $\\sqrt{s}intensity beams. Such a facility would provide high statistics samples of (charmed) vector mesons and would permit searches for LFV with unprecedented precision in decays of $\\tau$ leptons and mesons. Implications on the design of the linear accelerator are discussed together with requirements to achieve luminosities of $10^{35}$ cm$^{-2}$s$^{-1}$ or more.

A. Schoning

2006-10-23T23:59:59.000Z

39

Long ion chamber systems for the SLC (Stanford Linear Collider)  

SciTech Connect (OSTI)

A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

1989-03-01T23:59:59.000Z

40

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network [OSTI]

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Effects of R-parity violating supersymmetry in top pair production at linear colliders with polarized beams  

E-Print Network [OSTI]

In the minimal supersymmetric standard model with R-parity violation, the lepton number violating top quark interactions can contribute to the top pair production at a linear collider via tree-level u-channel squark exchange diagrams. We calculate such contributions and find that in the allowed range of these R-violating couplings, the top pair production rate as well as the top quark polarization and the forward-backward asymmetry can be significantly altered. By comparing the unpolarized beams with the polarized beams, we find that the polarized beams are more powerful in probing such new physics.

Xuelei Wang; Jitao Li; Suzhen Liu

2006-11-06T23:59:59.000Z

42

International Linear Collider Accelerator Physics R&D  

SciTech Connect (OSTI)

ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector’s response to an event at the beginning of the run. We determined that the device installed in our beam, which was instrumented with an 8-bit 500 MHz ADC, could measure the beam timing to an accuracy of 0.4 picoseconds. Simulations of the device showed that an increase in ADC clock rate to 2 GHz would improve measurement precision by the required factor of four. As a result, we felt that a device of this sort, assuming matters concerning dynamic range and long-term stability can be addressed successfully, would work at the ILC. Cost effective operation of the ILC will demand highly reliable, fault tolerant and adaptive solutions for both hardware and software. The large numbers of subsystems and large multipliers associated with the modules in those subsystems will cause even a strong level of unit reliability to become an unacceptable level of system availability. An evaluation effort is underway to evaluate standards associated with high availability, and to guide ILC development with standard practices and well-supported commercial solutions. One area of evaluation involves the Advanced Telecom Computing Architecture (ATCA) hardware and software. We worked with an ATCA crate, processor monitors, and a small amount of ATCA circuit boards in order to develop a backplane “spy” board that would let us watch the ATCA backplane communications and pursue development of an inexpensive processor monitor that could be used as a physics-driven component of the crate-level controls system. We made good progress, and felt that we had determined a productive direction to extend this work. We felt that we had learned enough to begin designing a workable processor monitor chip if there were to be sufficient interest in ATCA shown by the ILC community. Fault recognition is a challenging issue in the crafting a high reliability controls system. With tens of thousands of independent processors running hundreds of thousands of critical processes, how can the system identify that a problem has arisen and determine the appropriate steps to take to correct, or compensate, for the

George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

2008-09-03T23:59:59.000Z

43

Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER  

SciTech Connect (OSTI)

The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

Brau, James E [Univ. of Oregon] [Univ. of Oregon

2013-04-22T23:59:59.000Z

44

Off-shell effects in Higgs processes at a linear collider and implications for the LHC  

E-Print Network [OSTI]

The importance of off-shell contributions is discussed for $H\\to VV^{(*)}$ with $V\\in\\{Z,W\\}$ for large invariant masses $m_{VV}$ involving a standard model (SM)-like Higgs boson with $m_H=125$GeV at a linear collider (LC). Both dominant production processes $e^+e^-\\to ZH\\to ZVV^{(*)}$ and $e^+e^-\\to\

Stefan Liebler; Gudrid Moortgat-Pick; Georg Weiglein

2015-02-27T23:59:59.000Z

45

Off-shell effects in Higgs processes at a linear collider and implications for the LHC  

E-Print Network [OSTI]

The importance of off-shell contributions is discussed for $H\\to VV^{(*)}$ with $V\\in\\{Z,W\\}$ for large invariant masses $m_{VV}$ involving a standard model (SM)-like Higgs boson with $m_H=125$GeV at a linear collider (LC). Both dominant production processes $e^+e^-\\to ZH\\to ZVV^{(*)}$ and $e^+e^-\\to\

Liebler, Stefan; Weiglein, Georg

2015-01-01T23:59:59.000Z

46

A modified post damping ring bunch compressor beamline for the TESLA linear collider  

SciTech Connect (OSTI)

We propose a modified bunch compressor beamline, downstream of the damping ring, for the TESLA linear collider. This modified beamline uses a third harmonic radio-frequency section based on the 3.9 GHz superconducting cavity under development at Fermilab. In our design the beam deceleration is about {approx}50 MeV instead of {approx}450 MeV in the original design proposed.

Philippe R.-G. Piot; Winfried Decking

2004-03-23T23:59:59.000Z

47

Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders  

SciTech Connect (OSTI)

We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.

Gabrielli, E. [CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Mele, B. [INFN, Sezione di Roma, c/o Dipartimento di Fisica, Universita di Roma 'La Sapienza', Piazzale A. Moro 2, I-00185 Rome (Italy)

2011-04-01T23:59:59.000Z

48

Proceedings of the workshop on new kinds of positron sources for linear colliders  

SciTech Connect (OSTI)

It has been very clear from the beginning of studies for future linear colliders that the conventional positron source approach, as exemplified by the SLC source, is pushing uncomfortably close to the material limits of the conversion target. Nonetheless, since this type of positron source is better understood and relatively inexpensive to build, it has been incorporated into the initial design studies for the JLC/NLC. New ideas for positron sources for linear colliders have been regularly reported in the literature and at accelerator conferences for at least a decade, and indeed the recirculation scheme associated with the VLEPP design is nearly two decades old. Nearly all the new types of positron sources discussed in this workshop come under the heading of crystals (or channeling), undulators, and Compton. Storage ring and nuclear reactor sources were not discussed. The positron source designs that were discussed have varying degrees of maturity, but except for the case of crystal sources, where proof of principle experiments have been undertaken, experimental results are missing. It is hoped that these presentations, and especially the recommendations of the working groups, will prove useful to the various linear collider groups in deciding if and when new experimental programs for positron sources should be undertaken.

Clendenin, J.; Nixon, R. [eds.

1997-06-01T23:59:59.000Z

49

DEPFET active pixel detectors for a future linear $e^+e^-$ collider  

E-Print Network [OSTI]

The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

2013-01-01T23:59:59.000Z

50

Higgs Boson Search at e+e- and Photon Linear Colliders  

E-Print Network [OSTI]

The various search modes for the Higgs bosons of the Standard Model (SM) and its Minimal Supersymmetric Extension (MSSM) at the International Linear Collider (ILC) will be summarized briefly. In particular, as a unique discovery mode the production of heavy neutral MSSM Higgs bosons for medium values of $\\tan\\beta$ in photon collisions will be presented. Furthermore, $\\tau^+\\tau^-$ fusion into MSSM Higgs bosons in the photon mode will be shown to give access to the mixing parameter $\\tan\\beta$ with a precision of better than 10% for large values of this parameter.

M. M. Muhlleitner

2005-12-19T23:59:59.000Z

51

Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders  

SciTech Connect (OSTI)

We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures.

Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; /SLAC

2006-12-18T23:59:59.000Z

52

Investigation into electron cloud effects in the International Linear Collider positron damping ring  

SciTech Connect (OSTI)

We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.; Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.

2014-02-28T23:59:59.000Z

53

Non-linear model of particle acceleration at colliding shock flows  

E-Print Network [OSTI]

Powerful stellar winds and supernova explosions with intense energy release in the form of strong shock waves can convert a sizeable part of the kinetic energy release into energetic particles. The starforming regions are argued as a favorable site of energetic particle acceleration and could be efficient sources of nonthermal emission. We present here a non-linear time-dependent model of particle acceleration in the vicinity of two closely approaching fast magnetohydrodynamic (MHD) shocks. Such MHD flows are expected to occur in rich young stellar cluster where a supernova is exploding in the vicinity of a strong stellar wind of a nearby massive star. We find that the spectrum of the high energy particles accelerated at the stage of two closely approaching shocks can be harder than that formed at a forward shock of an isolated supernova remnant. The presented method can be applied to model particle acceleration in a variety of systems with colliding MHD flows.

Bykov, A M; Osipov, S M

2012-01-01T23:59:59.000Z

54

Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D  

SciTech Connect (OSTI)

The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

Harrison, M.

2011-04-30T23:59:59.000Z

55

Optical tuning in the arcs and final focus sections of the Stanford Linear Collider  

SciTech Connect (OSTI)

In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

Bambade, P.S.

1989-03-01T23:59:59.000Z

56

Neutralino Production and Decay at an e^+e^- Linear Collider with Transversely Polarized Beams  

E-Print Network [OSTI]

Once supersymmetric neutralinos chi^0 are produced copiously at e^+e^- linear colliders, their characteristics can be measured with high precision. In particular, the fundamental parameters in the gaugino/higgsino sector of the minimal supersymmetric extension of the standard model (MSSM) can be analyzed. Here we focus on the determination of possible CP-odd phases of these parameters. To that end, we exploit the electron/positron beam polarization, including transverse polarization, as well as the spin/angular correlations of the neutralino production e^+ e^- to chi^0_i chi^0_j and subsequent 2-body decays chi^0_i to chi^0_k h, chi^0_k Z, \\tilde \\ell^\\pm_R \\ell^\\mp, using (partly) optimized CP-odd observables. If no final-state polarizations are measured, the Z and h modes are independent of the chi^0_i polarization, but CP-odd observables constructed from the leptonic decay mode can help in reconstructing the neutralino sector of the CP-noninvariant MSSM. However, transverse beam polarization does not seem ...

Choi, S Y; Song, J

2006-01-01T23:59:59.000Z

57

Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)  

ScienceCinema (OSTI)

How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

None

2011-10-06T23:59:59.000Z

58

Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond  

E-Print Network [OSTI]

Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that can enable particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official jet reconstruction pipelines. Our hope is that this new technique will improve physics analysis when used in combination with state-of-the-art algorithms in high-luminosity hadron collider environments.

Federico Colecchia

2014-12-19T23:59:59.000Z

59

A Highly Granular Silicon-Tungsten Electromagnetic Calorimeter and Top Quark Production at the International Linear Collider  

E-Print Network [OSTI]

This thesis deals with two aspects of the International Linear Collider (ILC) which is a project of a linear electron-positron collider of up to at least 500 GeV center of mass energy. The first aspect is the development of a silicon-tungsten electromagnetic calorimeter (SiW-ECAL) for one of the detectors of the ILC. The concept of this detector is driven by the ILC beam specifications and by the Particle Flow Algorithm (PFA). This requires highly granular calorimeter and very compact one with integrated electronics. To prove the capability of the SiW- ECAL a technological prototype has been built and tested in test beam at DESY. The results are presented here, and show, after the calibration procedure a signal over noise ratio of 10, even in the power pulsing mode. The second aspect is the study of one of the important physics channels of the ILC, the top anti-top quark pairs production. The main goal of this study is to determine the precision that we can expect at the ILC on the top coupling with the W bos...

Rouëné, J

2014-01-01T23:59:59.000Z

60

International Linear Collider Reference Design Report Volume 2: Physics at the ILC  

SciTech Connect (OSTI)

The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak forces, which are observed by experiments in very different forms. So far, there is no direct experimental evidence for a Higgs field or the Higgs particle that should accompany it. Furthermore, quantum effects of the type already observed in experiments should destabilize the Higgs boson of the Standard Model, preventing its operation at Terascale energies. The proposed antidotes for this quantum instability mostly involve dramatic phenomena at the Terascale: new forces, a new principle of nature called supersymmetry, or even extra dimensions of space. Thus for particle physicists the Higgs boson is at the center of a much broader program of discovery, taking off from a long list of questions. Is there really a Higgs boson? If not, what are the mechanisms that give mass to particles and break the electroweak force? If there is a Higgs boson, does it differ from the hypothetical Higgs of the Standard Model? Is there more than one Higgs particle? What are the new phenomena that stabilize the Higgs boson at the Terascale? What properties of Higgs boson inform us about these new phenomena? Another major opportunity for the ILC is to shed light on the dark side of the universe. Astrophysical data shows that dark matter dominates over visible matter, and that almost all of this dark matter cannot be composed of known particles. This data, combined with the concordance model of Big Bang cosmology, suggests that dark matter is comprised of new particles that interact weakly with ordinary matter and have Terascale masses. It is truely remarkable that astrophysics and cosmology, completely independently of the particle physics considerations reviewed above, point to new phenomena at the Terascale. If Terascale dark matter exists, experiments at the ILC should be able to produce such particles in the laboratory and study their properties. Another list of questions will then beckon. Do these new particles really have the correct properties to be the dark matter? Do they account for all of the dark matter, or only part of it? What do their properties tell us about the evolut

Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

2011-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Vertex Tracker at the e+e- Linear Collider Conceptual Design, Detector R&D and Physics Performances for the Next Generation of Silicon Vertex Detectors  

E-Print Network [OSTI]

The e+e- linear collider physics programme sets highly demanding requirements on the accurate determination of charged particle trajectories close to their production point. A new generation of Vertex Trackers, based on different technologies of high resolution silicon sensors, is being developed to provide the needed performances. These developments are based on the experience with the LEP/SLC vertex detectors and on the results of the R&D programs for the LHC trackers and also define a further program of R&D specific to the linear collider applications. In this paper the present status of the conceptual tracker design, silicon detector R&D and physics studies is discussed.

Marco Battaglia; Massimo Caccia

1999-11-26T23:59:59.000Z

62

A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider  

SciTech Connect (OSTI)

Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of {Delta}m{tilde t}{sub 1} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density

Freitas, Ayres; /Chicago U. /Argonne /Zurich U.; Milstene, Caroline; /Fermilab /Wayne State U.; Schmitt, Michael; /Northwestern U.; Sopczak, Andre; /Lancaster U.

2008-06-01T23:59:59.000Z

63

Recent Electron-Cloud Simulation Results for the Main Damping Rings of the NLC and the TESLA Linear Colliders  

SciTech Connect (OSTI)

In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

Pivi, Mauro T F

2003-05-19T23:59:59.000Z

64

Photon collider Higgs factories  

E-Print Network [OSTI]

The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

V. I. Telnov

2014-09-19T23:59:59.000Z

65

Neutral Higgs-pair production at Linear Colliders within the general 2HDM: quantum effects and triple Higgs boson self-interactions  

E-Print Network [OSTI]

The pairwise production of neutral Higgs bosons is analyzed in the context of the future linear colliders, such as the ILC and CLIC, within the general Two-Higgs-Doublet Model (2HDM). The corresponding cross-sections are computed at the one-loop level in full compliance with the current phenomenological bounds and the stringent theoretical constraints inherent to the consistency of the model. We uncover regions across the 2HDM parameter space, mainly for low tan\\beta near 1 and moderate values of the relevant lambda_5 parameter, wherein the radiative corrections to the Higgs-pair production cross sections can comfortably reach 50% This behavior can be traced back to the enhancement capabilities of the trilinear Higgs self-interactions -- a trademark feature of the 2HDM, with no counterpart in the Minimal Supersymmetric Standard Model. Interestingly enough, the quantum effects are positive for energies around 500 GeV, thereby producing a significant enhancement in the expected number of events precisely around the fiducial startup energy of the ILC. The Higgs-pair production rates can be substantial, typically amounting to a few thousand events per 500 inverse femtobarn of integrated luminosity. In contrast, the corrections are negative in the highest energy range (1 TeV). We also compare the exclusive pairwise production of Higgs bosons with the inclusive gauge boson fusion channels leading to 2H+X finals states, and also with the exclusive triple Higgs boson production. We find that these multiparticle final states can be highly complementary in the overall Higgs bosons search strategy.

David Lopez-Val; Joan Sola

2010-01-08T23:59:59.000Z

66

Physics Reach at Future Colliders  

SciTech Connect (OSTI)

The physics reach at future colliders is discussed, with focus on the Higgs sector. First we present the Standard Model and some results obtained at the existing high-energy hadron collider, Tevatron, together with the corresponding expectations for the Large Hadron Collider (LHC), which starts operating in 2008. Then we discuss important low energy measurements: the anomalous magnetic moment for muon and the leptonic B-decay together with b{yields}s{gamma}. Finally the potential of the planned e{sup +}e{sup -} International Linear Collider (ILC) and its possible option Photon Linear Collider (PLC), e{gamma} and {gamma}{gamma}, is shortly presented.

Krawczyk, Maria [Institute of Theoretical Physics, University of Warsaw, ul. Hoz-dota 69, 00-681 Warsaw (Poland); CERN, CH-1211 Geneva 23 (Switzerland)

2007-11-27T23:59:59.000Z

67

Ion Colliders  

E-Print Network [OSTI]

High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

Fischer, W

2015-01-01T23:59:59.000Z

68

Photon collider at TESLA  

E-Print Network [OSTI]

High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

Valery Telnov

2001-03-06T23:59:59.000Z

69

Resurgence, Stokes phenomenon and alien derivatives for level-one linear  

E-Print Network [OSTI]

Resurgence, Stokes phenomenon and alien derivatives for level-one linear differential systems. Mich of alien derivatives. We make explicit the Stokes-Ramis matrices as functions of the connection constants, summability, resurgence, alien derivatives. AMS classification: 34M03, 34M30, 34M35, 34M40. 1 #12;Loday

70

Resurgence, Stokes phenomenon and alien derivatives for level-one linear  

E-Print Network [OSTI]

Resurgence, Stokes phenomenon and alien derivatives for level-one linear differential systems. Mich of alien derivatives. We make explicit the Stokes-Ramis matrices as functions of the connection constants, summability, resurgence, alien derivatives. AMS classification: 34M03, 34M30, 34M35, 34M40. 1 hal-00491614

Boyer, Edmond

71

Resurgence, Stokes phenomenon and alien derivatives for level-one linear differential systems  

E-Print Network [OSTI]

A precise description of the singularities of the Borel transform of solutions of a level-one linear differential system is deduced from a proof of the summable-resurgence of the solutions by the perturbative method of J. \\'Ecalle. Then we compare the meromorphic classification (Stokes phenomenon) from the viewpoint of the Stokes cocycle and the viewpoint of alien derivatives. We make explicit the Stokes-Ramis matrices as functions of the connection constants in the Borel plane and we develop two examples. No assumption of genericity is made.

Loday-Richaud, Michèle

2010-01-01T23:59:59.000Z

72

The application of bi-level non-linear programming to the aluminum industry  

SciTech Connect (OSTI)

In this paper a bi-level non-linear mathematical model of an aluminum smelter is described. The model is based on the Portland Aluminum smelter and aims at maximizing the aluminum production while minimizing the costs associated with the production of this maximum output. The model has two variables, the power input (kilo-Amperes) and the setting cycle (of the anode replacement). The solution algorithm, based on a grid search which enumerates the appropriate intersections of the resource and other constraints is then discussed. Additionally, some of the areas currently being developed, including sensitivity analysis and the incorporation of dependencies between some of the variables and coefficients are considered.

Nicholls, M.

1994-12-31T23:59:59.000Z

73

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network [OSTI]

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

74

LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder  

E-Print Network [OSTI]

LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder , E. Esarey, Cs. T´oth, C. G. R. Geddes-generation linear col- lider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator gamma-gamma () collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator collider

Geddes, Cameron Guy Robinson

75

Ground motion data for International Collider models  

SciTech Connect (OSTI)

The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

2007-11-01T23:59:59.000Z

76

Conventional power sources for colliders  

SciTech Connect (OSTI)

At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 ..mu..sec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 ..mu..sec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 ..mu..sec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths.

Allen, M.A.

1987-07-01T23:59:59.000Z

77

The Large Hadron Electron Collider Project  

E-Print Network [OSTI]

A Conceptual Design Report (CDR) for the Large Hadron Electron Collider, the LHeC, is being prepared, to which an introduction was given for the plenary panel discussion on the future of deep inelastic scattering held at DIS09. This is briefly summarised here. The CDR will comprise designs of the ep/eA collider, based on ring and linear electron accelerators, of the interaction region, designed for simultaneous $ep$ and $pp$ operation, of a new, modular detector, and it will present basics on the physics motivation for a high luminous Tera scale electron-nucleon collider as a complement to the LHC.

Max Klein

2009-08-20T23:59:59.000Z

78

Gamma-Gamma Colliders  

E-Print Network [OSTI]

a gamma collider, we need to discuss the laser optics in thegamma collider will be given later, coupled with some discussions of the requisite opticsoptics and an adequate laser for Compton conversion. With this approach, the luminosity for the gamma-

Kim, K.-J.

2008-01-01T23:59:59.000Z

79

TESLA*HERA Based gamma-p and gamma-A Colliders  

E-Print Network [OSTI]

Main parameters and physics search potential of gamma-p and gamma-A colliders, which will be available due to constructing the TESLA linear electron-positron collider tangentially to the HERA proton ring, are discussed.

A. K. Ciftci; S. Sultansoy; O. Yavas

2000-07-05T23:59:59.000Z

80

International linear collider reference design report  

E-Print Network [OSTI]

m Shaft with Underground Cavern, Service and Beam Tunnels (Hall, showing BDS Service Cavern Arrangement 4.2-6 4.4-1 AirConstruction Water Halls Caverns e ? ML Shaft Base Caverns

Aarons, G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International linear collider reference design report  

E-Print Network [OSTI]

transformers located along the Service Tunnel tap-o? the MV distribution system to provide power to the LV systems and components.

Aarons, G.

2008-01-01T23:59:59.000Z

82

Twistor Spinoffs for Collider Physics  

SciTech Connect (OSTI)

Finding the adding up of Feynman diagrams tedious? Hidden symmetries found in the sums of diagrams suggest there is a better way to predict the results of particle collisions - in the past two years, spin-offs of a new theory, known as the Twistor String Theory, have led to the development of efficient alternatives to Feynman diagrams which can be useful for work at the Tevatron, the LHC and for future research at the International Linear Collider. Come see what this 'twistor' is all about!

Dixon, Lance

2005-12-19T23:59:59.000Z

83

TESLA*HERA as Lepton (Photon)-Hadron Collider  

E-Print Network [OSTI]

New facilities for particle and nuclear physics research, which will be available due to constructing the TESLA linear electron-positron collider tangentially to the HERA proton ring, are discussed.

O. Yavas; A. K. Ciftci; S. Sultansoy

2000-04-11T23:59:59.000Z

84

Strong non-linearity-induced correlations for counter-propagating photons scattering on a two-level emitter  

E-Print Network [OSTI]

We analytically treat the scattering of two counter-propagating photons on a two-level emitter embedded in an optical waveguide. We find that the non-linearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quantified via a reduction in coincident clicks in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce suitable fidelity measures which account for these changes, and find that high values can still be achieved even when accounting for all properties of the scattered photonic state.

Anders Nysteen; Dara P. S. McCutcheon; Jesper Mørk

2015-02-21T23:59:59.000Z

85

SPADs for Vertex Tracker detectors in Future Colliders  

E-Print Network [OSTI]

Physics aims at the future linear colliders impose such stringent requirements on detector systems that exceed those met by any previous technology. Amongst other novel technologies, SPADs (Single Photon Avalanche Diodes) detectors are being developed to track high energy particles at ILC (International Linear Collider) and CLIC (Compact LInear Collider). These sensors offer outstanding qualities, such as an extraordinary high sensitivity, ultra-fast response time and virtually infinite gain, in addition to compatibility with standard CMOS technologies. As a result, SPAD detectors enable the direct conversion of a single particle event onto a CMOS digital signal in the sub-nanosecond time scale, which leads to the possibility of single BX (bunch crossing) resolution at some particle colliders. However, SPAD detectors suffer from two main problems, namely the noise pulses generated by the sensor and the low fill-factor. The noise pulses worsen the detector occupancy, while the low fill-factor reduces the detec...

Vilella, E; Vila, A; Dieguez, A

2015-01-01T23:59:59.000Z

86

Applying Effective Theories to Collider Phenomenology  

E-Print Network [OSTI]

Theories to Collider Phenomenology by Grigol GagikovichTheories to Collider Phenomenology Copyright 2010 by GrigolTheories to Collider Phenomenology by Grigol Gagikovich

Ovanesyan, Grigol

2010-01-01T23:59:59.000Z

87

Hadron colliders (SSC/LHC)  

SciTech Connect (OSTI)

The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

Chao, A.W. [Superconducting Super Collider Lab., Dallas, TX (United States); Palmer, R.B. [Superconducting Super Collider Lab., Dallas, TX (United States); [Stanford Linear Accelerator Center, CA (United States); Evans, L.; Gareyte, J. [CERN, Geneva (Switzerland); Siemann, R.H. [Cornell Univ., Ithaca, NY (United States)

1992-12-31T23:59:59.000Z

88

Diffraction at collider energies  

SciTech Connect (OSTI)

Lessons with ``soft`` hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy.

Frankfurt, L.L.

1992-12-31T23:59:59.000Z

89

Diffraction at collider energies  

SciTech Connect (OSTI)

Lessons with soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy.

Frankfurt, L.L.

1992-01-01T23:59:59.000Z

90

Future Accelerators, Muon Colliders, and Neutrino Factories  

SciTech Connect (OSTI)

Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

Richard A Carrigan, Jr.

2001-12-19T23:59:59.000Z

91

H and A Discrimination using Linear Polarization of Photons at the PLC  

E-Print Network [OSTI]

First realistic estimate of the usefulness of the Photon Linear Collider with linearly polarized photons as analyzer of the CP-parity of Higgs bosons is presented. MSSM Higgs bosons H and A with 300 GeV mass, for the model parameters corresponding to the so called "LHC wedge" region, are considered. When switching from circular to linear photon polarization a significant increase in heavy quark production background, which is no longer suppressed by helicity conservation, and decrease of the Higgs boson production cross sections by a factor of two is expected. Nevertheless, after three years of Photon Linear Collider running heavy scalar and pseudoscalar Higgs bosons in MSSM can be distinguished at a 4.5 sigma level.

A. F. Zarnecki; P. Niezurawski; M. Krawczyk

2007-10-20T23:59:59.000Z

92

Stochastic cooling in muon colliders  

SciTech Connect (OSTI)

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

93

Neutrinos and Collider Physics  

E-Print Network [OSTI]

We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

Deppisch, Frank F; Pilaftsis, Apostolos

2015-01-01T23:59:59.000Z

94

Muon Collider Progress: Accelerators  

E-Print Network [OSTI]

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Michael S. Zisman

2011-09-14T23:59:59.000Z

95

N/Z dependence of balance energy throughout the colliding geometries  

E-Print Network [OSTI]

We study the N/Z dependence of balance energy throughout the mass range for colliding geometry varying from central to peripheral ones. Our results indicate that balance energy decreases linearly with increase in N/Z ratio for all the masses throughout the colliding geometry range. Also, the N/Z dependence of balance energy is sensitive to symmetry energy.

Sakshi Gautam; Rajeev K. Puri

2011-07-28T23:59:59.000Z

96

Colliding neutrino beams  

E-Print Network [OSTI]

From several neutrino oscillation experiments, we understand now that neutrinos have mass. However, we really don't know what mechanism is responsible for producing this neutrino mass. Current or planned neutrino experiments utilize neutrino beams and long-baseline detectors to explore flavor mixing but do not address the question of the origin of neutrino mass. In order to answer that question, neutrino interactions need to be explored at much higher energies. This paper outlines a program to explore neutrinos and their interactions with various particles through a series of experiments involving colliding neutrino beams.

Reinhard Schwienhorst

2007-11-08T23:59:59.000Z

97

Colliding Nuclei at High Energy  

ScienceCinema (OSTI)

Physicist Peter Steinberg explains what happens when atomic nucleii travelling at close to the speed of light smash together in Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC).

Brookhaven Lab

2010-01-08T23:59:59.000Z

98

Results from hadron colliders  

SciTech Connect (OSTI)

The present status of hadron collider physics is reviewed. The total cross section for {bar p} + p has been measured at 1.8 TeV: {sigma}{sub tot} = 72.1 {plus minus} 3.3 mb. New data confirm the UA2 observation of W/Z {yields} {bar q}q. Precision measurements of M{sub W} by UA2 and CDF give an average value M{sub W} = 80.13 {plus minus} 0.30 GeV/c{sup 2}. When combined with measurements of M{sub Z} from LEP and SLC this number gives sin{sup 2}{theta}{sub W} = 0.227 {plus minus} 0.006, or m{sub top} = 130{sub {minus}60}{sup +40} GeV/c{sup 2} from the EWK radiative correction term {Delta}r. Evidence for hadron colliders as practical sources of b quarks has been strengthened, while searches for t quarks have pushed the mass above M{sub W}: m{sub top} > 89 GeV/c{sup 2} 95% cl (CDF Preliminary). Searches beyond the standard model based on the missing E{sub T} signature have not yet produced any positive results. Future prospects for the discovery of the top quark in the range m{sub top} < 200 GeV/c{sup 2} look promising. 80 refs., 35 figs., 7 tabs.

Pondrom, L.G. (Wisconsin Univ., Madison, WI (USA))

1990-12-14T23:59:59.000Z

99

High Energy Colliders as Tools to Understand the Early Universe  

SciTech Connect (OSTI)

Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

Tait, Tim (ANL) [ANL

2008-08-16T23:59:59.000Z

100

Hadron collider physics at UCR  

SciTech Connect (OSTI)

This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

Kernan, A.; Shen, B.C.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIS-0138: Superconducting Super Collider  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the potential environmental impacts of constructing the Superconducting Super Collider, a large proton accelerator, at each of seven alternative locations.

102

Muon collider interaction region design  

SciTech Connect (OSTI)

Design of a muon collider interaction region (IR) presents a number of challenges arising from low {beta}* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 10{sup 34} cm{sup -2}s{sup -1} with an adequate protection of magnet and detector components.

Alexahin, Y.I.; Gianfelice-Wendt, E.; Kashikhin, V.V.; Mokhov, N.V.; Zlobin, A.V.; /Fermilab; Alexakhin, V.Y.; /Dubna, JINR

2010-05-01T23:59:59.000Z

103

Muon Collider Task Force Report  

SciTech Connect (OSTI)

Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

2007-12-01T23:59:59.000Z

104

Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme  

SciTech Connect (OSTI)

Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

Bahrim, Cristian; Nelson, Chris [Department of Physics, Lamar University, P.O. Box 10046, Beaumont, Texas 77710 (United States)

2011-03-15T23:59:59.000Z

105

Detectors for Linear Colliders: Tracking and Vertexing (2/4)  

ScienceCinema (OSTI)

Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

None

2011-10-06T23:59:59.000Z

106

acceleration linear collider: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

breaking. Many extensions of the standard model have a decoupling limit, with a Higgs boson similar to the standard one and other, higher-mass states. Mindful of such...

107

International Linear Collider Technical Design Report (Volumes 1 through 4)  

SciTech Connect (OSTI)

The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

Harrison M.

2013-03-27T23:59:59.000Z

108

Precision measurement of a particle mass at the linear collider  

SciTech Connect (OSTI)

Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle (LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.

Milstene, C.; /Fermilab; Freitas, A.; /Zurich U.; Schmitt, M.; /Northwestern U.; Sopczak, A.; /Lancaster U.

2007-06-01T23:59:59.000Z

109

SLAC-R-1004 International Linear Collider Technical  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: CrystalFG36-08GO18149SpeedingRenewable Energy Agricultural &7842 1R-1004

110

SciTech Connect: International Linear Collider Technical Design Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2) Cu (3)GettingGeochemical Process Relevant

111

JLab Supports International Linear Collider Cavity Development Work |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/SurfacePump-TestingJEDI: JobsTimothy|Scientist

112

Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)  

ScienceCinema (OSTI)

In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

None

2011-10-06T23:59:59.000Z

113

Colliding axisymmetric pp-waves  

E-Print Network [OSTI]

An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

B. V. Ivanov

1997-10-21T23:59:59.000Z

114

Muon Colliders: The Next Frontier  

ScienceCinema (OSTI)

Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

Yagmur Tourun

2010-01-08T23:59:59.000Z

115

2005 International Linear Collider Workshop Stanford, U.S.A. Selectron Mass Reconstruction and the Resolution of the Linear Collider  

E-Print Network [OSTI]

to isolate the forward selectron-decay signal from Standard-Model backgrounds, as well as techniques on the results of those studies. 2. SIGNAL SELECTION Backgrounds to the selectron-decay electron signal come from in angle to the beam trajectory, and thus escape detection, and the Z-boson fusion process e+ e- e+ e

California at Santa Cruz, University of

116

Muon Muon Collider: Feasibility Study  

SciTech Connect (OSTI)

A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley; ,

2012-04-05T23:59:59.000Z

117

Collider Phenomenology with Split-UED  

SciTech Connect (OSTI)

We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Extra Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays. The Minimal Universal Extra Dimensions scenario has received great attention. Recently non-vanishing bulk fermion masses have been introduced without spoiling the virtue of KK-parity. The fermion profiles are no longer simple sine/cosine functions and depend upon the specific values of bulk parameters. The profiles of fermions are split along the extra dimensions while the wave functions of the bosons remain the same as in UED. A simple introduction of a KK-parity conserving bulk fermion mass has significant influences on collider aspects as well as astrophysical implications of UED. For instance, the DM annihilation fraction into certain SM fermion pairs is either enhanced or reduced (compared to the MUED case) so that one can perhaps explain the PAMELA positron excess while suppressing the anti-proton flux. In this paper, we have concentrated on collider phenomenology of Split Universal Extra Dimensions. We have revisited the KK decomposition in detail and analyzed wave function overlaps to compute relevant couplings for collider studies. We have discussed general collider implication for level-1 KK modes and level-2 KK with non-zero bulk mass and have computed LHC reach for the EW level-2 KK bosons, {gamma}{sub 2} and Z{sub 2}, in the dilepton channel. The LHC should able to cover the large parameter space (up to M{sub V{sub 2}} {approx} 1.5 TeV for {mu}L {ge} 1) even with early data assuming {approx}100 pb{sup -1} or less. The existence of double resonances is one essential feature arising from extra dimensional models. Whether or not one can see double resonances depends both on how degenerate the two resonances are and on the mass resolution of the detector. The very high P{sub T} from the decay makes resolution in dimuon channel worse than in dielectron final state. This is because one can reconstruct electron from ECAL but muon momentum reconstruction relies on its track, which is barely curved in this case. Further indication for SUED might be the discovery of W'-like signature of mass close to Z{sub 2}. The MUED predicts a somewhat lower event rate due to 1-loop suppressed coupling of level-2 bosons to SM fermion pair, while it exists at tree level in SUED. Therefore in UED, one has to rely on indirect production of level-2 bosons, whose collider study requires complete knowledge of the model: the mass spectrum and all the couplings. On the other hand, in the large {mu} limit of SUED, the dependence on mass spectrum is diminished since level-2 KK bosons decay only into SM fermion pairs. This allows us to estimate the signal rate from their direct production, so that they can be discovered at the early phase of the LHC. The indirect production mechanism only increases production cross sections, improving our results. Once a discovery has been made, one should try to reconstruct events and do further measurements such as spin and coupling determination, with more accumulated data, which might discriminate KK resonances from other Z' models. The coupling measurement is directly related to the determination of the bulk masses. A challenging issue might be the existence of two resonances which are rather close to each other.

Kong, Kyoungchul; /SLAC; Park, Seong Chan; /Tokyo U., IPMU; Rizzo, Thomas G.; /SLAC

2011-12-15T23:59:59.000Z

118

Tevatron instrumentation: boosting collider performance  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

2006-05-01T23:59:59.000Z

119

Probing Higgs Boson Interactions At Future Colliders.  

E-Print Network [OSTI]

??We present in this thesis a detailed analysis of Higgs boson interactions at future colliders. In particular we examine, in a model independent way, the… (more)

Biswal, Sudhansu Sekhar

2009-01-01T23:59:59.000Z

120

Collider shot setup for Run 2 observations and suggestions  

SciTech Connect (OSTI)

This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.

Annala, J.; Joshel, B.

1996-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Brilliant positron sources for CLIC and other collider projects  

E-Print Network [OSTI]

The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

2013-01-01T23:59:59.000Z

122

Comparison of photon colliders based on e-e- and e+e- beams  

E-Print Network [OSTI]

At photon colliders gamma-gamma, gamma-electron high energy photons are produced by Compton scattering of laser light off the high energy electrons (or positrons) at a linear collider. At first sight, photon colliders based on e-e- or e+e- primary beams have similar properties and therefore for convenience one can use e+e- beams both for e+e- and gamma-gamma modes of operation. Below we compare these options and show that e-e- beams are much better (mandatory) because in the e+e- case low energy background gamma-gamma to hadrons is much higher and e+e- annihilation reactions present a very serious background for gamma-gamma processes.

V. I. Telnov

2005-07-15T23:59:59.000Z

123

Superconducting solenoids for the Muon collider  

E-Print Network [OSTI]

muon collider has superconducting solenoids as an integralLBNL-44303 SCMAG-690 Superconducting Solenoids for the MuonDE-AC03-76SFOOO98. J Superconducting Solenoids for the Muon

Green, M.A.

2011-01-01T23:59:59.000Z

124

PHYSICS AT HIGH LUMINOSITY MUON COLLIDERS AND A FACILITY OVERVIEW.  

SciTech Connect (OSTI)

Physics potentials at future colliders including high luminosity {mu}{sup +}{mu}{sup -} colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included.

PARSA,Z.

2001-07-01T23:59:59.000Z

125

PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE  

SciTech Connect (OSTI)

A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

KING,B.J.

2000-05-05T23:59:59.000Z

126

Test of Little Higgs Mechanism at Future Colliders  

E-Print Network [OSTI]

In the little higgs scenario, several coupling constants are related to each other to guarantee the stability of the higgs boson mass at one-loop level. This relation is called the little higgs mechanism. We discuss how accurately the relation can be tested at future $e^+e^-$ colliders, with especially focusing on the top sector of the scenario using a method of effective lagrangian. In order to test the mechanism, it is important to measure the Yukawa coupling of the top partner. Higgs associated and threshold productions of the top partner are found to be the best processes for this purpose.

Shigeki Matsumoto

2012-02-25T23:59:59.000Z

127

The Search for Higgs particles at high-energy colliders: Past, Present and Future  

E-Print Network [OSTI]

I briefly review the Higgs sector in the Standard Model and its minimal Supersymmetric extension, the MSSM. After summarizing the properties of the Higgs bosons and the present experimental constraints, I will discuss the prospects for discovering these particle at the upgraded Tevatron, the LHC and a high-energy $e^+e^-$ linear collider. The possibility of studying the properties of the Higgs particles will be then summarized.

A. Djouadi

2002-05-22T23:59:59.000Z

128

The Quirky Collider Signals of Folded Supersymmetry  

SciTech Connect (OSTI)

We investigate the collider signals associated with scalar quirks ('squirks') in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. The excited 'squirkonium' loses energy to radiation before annihilating back into Standard Model particles. We calculate the branching fractions into various channels for this process, which is prompt on collider time-scales. The most promising annihilation channel for discovery is W+photon which dominates for squirkonium near its ground state. We demonstrate the feasibility of the LHC search, showing that the mass peak is visible above the SM continuum background and estimate the discovery reach.

Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng; Harnik, Roni; Krenke, Christopher A.

2008-08-01T23:59:59.000Z

129

Beam instrumentation for the Tevatron Collider  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

2009-10-01T23:59:59.000Z

130

Top quark studies at hadron colliders  

SciTech Connect (OSTI)

The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

1997-01-01T23:59:59.000Z

131

PHYSICS WITH AND PHYSICS OF COLLIDING ELECTRON BEAMS  

E-Print Network [OSTI]

contributed so much to the physics of colliding beams, theyto reap so little from the physics with colliding beams.Conference on High-Energy Physics, Vienna" September 1968 (

Pellegrini, Claudio

2008-01-01T23:59:59.000Z

132

Challenges for highest energy circular colliders  

E-Print Network [OSTI]

A new tunnel of 80–100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCCee/TLEP) as potential intermediate step, and a leptonhadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, topup injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.

Benedikt, M; Wenninger, J; Zimmermann, F

2014-01-01T23:59:59.000Z

133

Future Colliders Beyond the Standard Model  

E-Print Network [OSTI]

. Of course, the lesson of high energy physics has been that higher energies have generally revealed new that the full exploration of the Standard Model was likely to require a very high energy hadron collider important, it is not possible to postpone indefinitely new physics associated with the Higgs boson. To see

Murayama, Hitoshi

134

Electron Ion Collider: The Next QCD Frontier  

E-Print Network [OSTI]

Electron Ion Collider: The Next QCD Frontier Executive Summary Understanding the glue that binds us . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Physics Possibilities at the Intensity Frontier . . . . . . . . . . . . . 10 1 charge. This causes the gluons to interact with each other, generating nearly all the mass of the nucleon

Homes, Christopher C.

135

Phenomenology of the minimal B ? L Model: the Higgs sector at the Large Hadron Collider and future linear colliders.  

E-Print Network [OSTI]

??This thesis is devoted to the study of the phenomenology of the Higgs sector of the minimal B ?L extension of the Standard Model at… (more)

Pruna, Giovanni Marco

2011-01-01T23:59:59.000Z

136

Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider  

E-Print Network [OSTI]

Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The longrange beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing acrossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, ...

Sun, Y P; Barranco, J; Tomàs, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

2009-01-01T23:59:59.000Z

137

Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider  

E-Print Network [OSTI]

Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

2009-01-01T23:59:59.000Z

138

Future high energy colliders symposium. Summary report  

SciTech Connect (OSTI)

A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

1996-12-31T23:59:59.000Z

139

Fermilab collider run 1b accelerator performance  

SciTech Connect (OSTI)

This report summarizes the performance of Run 1b as of the end of July 1995. This run is the conclusion of Fermilab Collider Run 1, which consists of Run 1a (May 1992 - May 1993) and Run 1b (January 1994 - February 1996). Run 1b is characterized by being the first with the new 400 MeV Linac. At this time the run is not complete. Colliding beam physics is scheduled to resume after the summer 1995 shut down and continue until mid-February 1996. All of the operation to date is at a Tevatron energy of 900 GeV. This report emphasizes performance numbers and the various improvements made to systems to achieve this performance. It will only discuss the underlying physics to a limited extent. The report is divided into sections on: run statistics, I&C issues, proton source performance, antiproton source performance, main ring performance, Tevatron performance, and a summary.

Bharadwaj, V.; Halling, M.; Lucas, P.; McCrory, E.; Mishra, S.; Pruss, S.; Werkema, S.

1996-04-01T23:59:59.000Z

140

The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab  

SciTech Connect (OSTI)

In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

Edward Nissen, Todd Satogata, Yuhong Zhang

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Really large hadron collider working group summary  

SciTech Connect (OSTI)

A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study.

Dugan, G. [Cornell Univ., Ithaca, NY (United States); Limon, P. [Fermilab, Batavia, IL (United States); Syphers, M. [Brookhaven National Lab., Upton, NY (United States)

1996-12-01T23:59:59.000Z

142

1987 DOE review: First collider run operation  

SciTech Connect (OSTI)

This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.

Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.

1987-05-01T23:59:59.000Z

143

Interpenetration and stagnation in colliding laser plasmas  

SciTech Connect (OSTI)

We have investigated plasma stagnation and interaction effects in colliding laser-produced plasmas. For generating colliding plasmas, two split laser beams were line-focused onto a hemi-circular target and the seed plasmas so produced were allowed to expand in mutually orthogonal directions. This experimental setup forced the expanding seed plasmas to come to a focus at the center of the chamber. The interpenetration and stagnation of plasmas of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated in this study. Fast-gated imaging, Faraday cup ion analysis, and optical emission spectroscopy were used for diagnosing seed and colliding plasma plumes. Our results show that high-Z target (W, Mo) plasma ions interpenetrate each other, while low-Z (C, Al) plasmas stagnate at the collision plane. For carbon seed plasmas, an intense stagnation was observed resulting in longer plasma lifetime; in addition, the stagnation layer was found to be rich with C{sub 2} dimers.

Al-Shboul, K. F. [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States) [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid 22110 (Jordan); Harilal, S. S., E-mail: hari@purdue.edu; Hassan, S. M.; Hassanein, A. [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)] [Center for Materials Under eXtreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Costello, J. T. [School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland)] [School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland); Yabuuchi, T.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 5650871 (Japan)] [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 5650871 (Japan); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu (Japan)] [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu (Japan)

2014-01-15T23:59:59.000Z

144

arXiv:hep-ph/961238817Dec1996 Signals from Flavor Changing Scalar Currents at the Future Colliders  

E-Print Network [OSTI]

arXiv:hep-ph/961238817Dec1996 Signals from Flavor Changing Scalar Currents at the Future Colliders Neutral Cur- rents arising at the tree level. The existing constraints mainly affect the couplings (2HDM) with Flavor Changing Neu- tral Currents (FCNC's) allowed at the tree level [1]-[3]. This Model

Thomas Jefferson National Accelerator Facility

145

Reducing backgrounds in the higgs factory muon collider detector  

SciTech Connect (OSTI)

A preliminary design of the 125-GeV Higgs Factory (HF) Muon Collider (MC) has identified an enormous background loads on the HF detector. This is related to the twelve times higher muon decay probability at HF compared to that previously studied for the 1.5-TeV MC. As a result of MARS15 optimization studies, it is shown that with a carefully designed protection system in the interaction region, in the machine-detector interface and inside the detector one can reduce the background rates to a manageable level similar to that achieved for the optimized 1.5-TeV case. The main characteristics of the HF detector background are presented for the configuration found.

Mokhov, N. V.; Tropin, I. S.

2014-06-01T23:59:59.000Z

146

SSC collider dipole magnet end mechanical design  

SciTech Connect (OSTI)

This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs.

Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Leung, K.K. (Superconducting Super Collider Lab., Dallas, TX (USA))

1991-05-01T23:59:59.000Z

147

B Physics Theory for Hadron Colliders  

E-Print Network [OSTI]

A short overview of theoretical methods for B physics at hadron colliders is presented. The main emphasis is on the theory of two-body hadronic B decays, which provide a rich field of investigation in particular for the Tevatron and the LHC. The subject holds both interesting theoretical challenges as well as many opportunities for flavor studies and new physics tests. A brief review of the current status and recent developments is given. A few additional topics in B physics are also mentioned.

G. Buchalla

2008-09-03T23:59:59.000Z

148

Future high energy colliders. Formal report  

SciTech Connect (OSTI)

This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

Parsa, Z. [ed.] [ed.

1996-12-31T23:59:59.000Z

149

QCD Factorization for heavy quarkonium production at collider energies  

E-Print Network [OSTI]

In this talk, I briefly review several models of the heavy quarkonium production at collider energies, and discuss the status of QCD factorization for these production models.

Jian-Wei Qiu

2006-10-31T23:59:59.000Z

150

Search for the Standard Model Higgs Boson at the LEP2 Collider near  

E-Print Network [OSTI]

Search for the Standard Model Higgs Boson at the LEP2 Collider near ps = 183 GeV The ALEPHV. These data are used to look for possible signals from the production of the Standard Model Higgs boson on the mass of the Higgs boson: mH > 87:9 GeV=c2 at 95% con#12;dence level. The ALEPH Collaboration wish

Boyer, Edmond

151

Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab  

SciTech Connect (OSTI)

Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

2012-08-01T23:59:59.000Z

152

Energy Content of Colliding Plane Waves using Approximate Noether Symmetries  

E-Print Network [OSTI]

This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

M. Sharif; Saira Waheed

2011-09-19T23:59:59.000Z

153

Detectors for Neutrino Physics at the First Muon Collider  

E-Print Network [OSTI]

We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop'' scale is also discussed.

Deborah A. Harris; Kevin S. McFarland

1998-04-20T23:59:59.000Z

154

EIS-0138-S: Superconducting Super Collider, Supplemental, Waxahatchie, Texas  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this supplementary statement to analyze the environmental impacts of design modifications to the Superconducting Super Collider that were made following the publication of the Record of Decision that selected Ellis County, Texas, as the location of the laboratory facility. This statement supplements DOE/EIS-0138, Superconducting Super Collider.

155

TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS  

SciTech Connect (OSTI)

This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of ? s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of ? s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

Jabeen, Shabnam

2013-10-20T23:59:59.000Z

156

Alignment tolerance of accelerating structures and corrections for future linear colliders  

SciTech Connect (OSTI)

The alignment tolerance of accelerating structures is estimated by tracking simulations. Both single-bunch and multi-bunch effects are taken into account. Correction schemes for controlling the single and multi-bunch emittance growth in the case of large misalignment are also tested by simulations.

Kubo, K.; Adolphsen, C.; Bane, K.L.F.; Raubenheimer, T.O.; Thompson, K.A.

1995-06-01T23:59:59.000Z

157

Linear Collider LHC Subpanel | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The Ernest OrlandoJohnLegislativeLinac

158

SciTech Connect: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsisSchedulesenrichedoil shale"ProgramFactory

159

A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794 PREPRINTWillisHormetic0123RD MIAMIA Beam

160

Detector for the Linear Collider General Detector Concepts and Detector Performance  

E-Print Network [OSTI]

Conveners: M. Martinez, D.J. Miller, M. Piccolo Working Group: A. Andreazza, M. Battaglia, G. Blair, G. A d, A. Andreazza, P. Bambade, T. Barklow, W. Bartel, M. Battaglia, R. Bellanzzini, S. Bertolucci, G

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The role of Spectator Fragments at an electron Ion collider  

E-Print Network [OSTI]

Efficient detection of spectator fragments is key to the main topics at an electron-ion collider (eIC). Any process which leads to emission of fragments or $\\gamma$'s breaks coherence in diffractive processes. Therefore this is equivalent to non-detection of rapidity gaps in pp collisions. For example, in coherent photoproduction of vector mesons their 4-momentum transfer distribution would image the "gluon charge" in the nucleus in the same way that Hofstadter measured its charge structure using elastic scattering of $\\sim$100 MeV electrons. Whereas he could measure the $\\sim$4 MeV energy loss by the electron due to excitation of nuclear energy levels (Figure 1), even the energy spread of the incident beam would prevent such an inclusive selection of quasielastic events at an eIC. The only available tool is fragment detection. Since, in our example, one finds that $\\sim100$ of deexcitations go through $\\gamma$'s or 1 neutron, rarely to 2 neutron and never to protons(due to Coulomb barrier suppression), the eIC design should emphasize their detection.

Sebastian White; Mark Strikman

2010-03-10T23:59:59.000Z

162

Weak Boson Emission in Hadron Collider Processes  

E-Print Network [OSTI]

The O(alpha) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(alpha) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(alpha) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, t-bar t, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(alpha) virtual weak radiative corrections partially cancel.

U. Baur

2006-11-17T23:59:59.000Z

163

Cryogenics for the Large Hadron Collider  

E-Print Network [OSTI]

The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36'000 ton cold mass, immersed in some 400 m3 static pressurised superfluid helium. The LHC also makes use of supercritical helium for non-isothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressors. T...

Lebrun, P

1999-01-01T23:59:59.000Z

164

Cryogenics for the Large Hadron Collider  

E-Print Network [OSTI]

The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

Lebrun, P

2000-01-01T23:59:59.000Z

165

Rf System Requirements for JLab’s MEIC Collider Ring  

SciTech Connect (OSTI)

The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. At the top energy are the electron and ion collider rings. For the ion ring, it accelerates five long ion bunches to colliding energy and rebunches ions into a train of very short bunches before colliding. A set of low frequency RF system is needed for the long ion bunch energy ramping. Another set of high frequency RF cavities is needed to rebunch ions. For the electron ring, superconducting RF (SRF) cavities are needed to compensate the synchrotron radiation energy loss. The impedance of the SRF cavities must be low enough to keep the high current electron beam stable. The preliminary design requirements of these RF cavities are presented.

Wang, Shaoheng [JLAB; Li, Rui [JLAB; Rimmer, Robert A. [JLAB; Wang, Haipeng [JLAB; Zhang, Yuhong [JLAB

2013-06-01T23:59:59.000Z

166

Global QCD Analysis and Collider Phenomenology--CTEQ  

E-Print Network [OSTI]

An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration.

Wu-Ki Tung; H. L. Lai; J. Pumplin; P. Nadolsky; C. -P. Yuan

2007-07-02T23:59:59.000Z

167

Higgs boson production at hadron colliders: Signal and background processes  

SciTech Connect (OSTI)

We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

David Rainwater; Michael Spira; Dieter Zeppenfeld

2004-01-12T23:59:59.000Z

168

Studies of Gauge Boson Production with a gamma/gamma-collider at TESLA  

E-Print Network [OSTI]

In absence of the Standard Model Higgs boson the interaction among the gauge bosons becomes strong at high energies and influences the couplings between them. Each trilinear and quartic gauge boson vertex is characterised by a set of couplings which are expected to deviate from their Standard Model values already at energies lower than the energy scale of the New Physics.The precise measurement of gauge boson couplings can provide clues to the mechanism of the electroweak symmetry breaking and their anomalous values can be a sign of a New Physics effect beyond the Standard Model. The estimated precisions of the trilinear gauge boson coupling (TGC) measurements at a photon collider are about one to two orders of magnitude higher than at LEP and Tevatron providing a measurement highly sensitive to the physics beyond the Standard Model. The optimisation of the forward region of the photon collider detector brings the amount of the low-energy background to the manageable level providing a clean environment for the TGC measurements at a photon collider with estimated precisions.

Jadranka Sekaric

2006-01-16T23:59:59.000Z

169

Prospects of Heavy Neutrino Searches at Future Lepton Colliders  

E-Print Network [OSTI]

We discuss the future prospects of heavy neutrino searches at next generation lepton colliders. In particular, we focus on the planned electron-positron colliders, operating in two different beam modes, namely, $e^+e^-$ and $e^-e^-$. In the $e^+e^-$ beam mode, we consider various production and decay modes of the heavy neutrino ($N$), and find that the final state with $e+2j+\\slashed{E}$, arising from the $e^+e^-\\to N\

Banerjee, Shankha; Ibarra, Alejandro; Mandal, Tanumoy; Mitra, Manimala

2015-01-01T23:59:59.000Z

170

Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider  

E-Print Network [OSTI]

We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon 197Au79+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both meth...

Bruce, R; Fischer, W; Jowett, J M

2010-01-01T23:59:59.000Z

171

Linear Programming: Penn State Math 484 Lecture Notes  

E-Print Network [OSTI]

. Matrix Inverse 35 6. Solution of Linear Equations 37 7. Linear Combinations, Span, Linear Independence 39 Programs with Matlab 47 Chapter 4. Convex Sets, Functions and Cones and Polyhedral Theory 51 1. Convex Sets on the Graph of z. The level sets existing in R2 while the graph of z existing R3 . The level sets have been

Squicciarini, Anna Cinzia

172

On Field Emission in High Energy Colliders Initiated by a Relativistic Positively Charged Bunch of Particles  

E-Print Network [OSTI]

The design of the LHC and future colliders aims their operation with high intensity beams, with bunch population, $N_p$, of the order of $10^{11}$. This is dictated by a desire to study very rare processes with maximum data sample. HEP colliders are engineering structures of many kilometers in length, whose transverse compactness is achieved by the application of the superconducting technologies and limitations of cost. However the compactness of the structural elements conceals and potential danger for the stable work of the accelerator. This is because a high intensity beam of positively charged particles (protons, positrons, ions) creates around itself an electric self-field of very high intensity, $10^5 - 10^6$ V/cm. Being located near the conducting surfaces, at the distances of 1-20 mm away from them, the field of such bunches activates the field emission of electrons from the surface. These electrons, in addition to electrons from the ionization of residual gases, secondary electrons and electrons knocked out by synchrotron radiation, contribute to the development of a dense electron cloud in the transport line. The particles of the bunch, being scattered on the dense electron cloud with $N_e\\sim N_p$, leaves the beam and may cause noticeable damage. The paper presents an analysis of the conditions, under which the field emission in the LHC collimator system may become a serious problem. The analogous analysis of a prototype of the International Linear Collider (ILC) project, USLC, reveals that a noticeable field emission will accompany positron bunches on their entire path during acceleration.

B. B. Levchenko

2006-08-12T23:59:59.000Z

173

Analysis of Copositive Optimization Based Linear Programming ...  

E-Print Network [OSTI]

instances on which upper and lower bounds are exact at a finite level of the hierarchy, .... where r ? N, gives rise to a linear programming problem with O(nr+

2014-04-18T23:59:59.000Z

174

A new micro-strip tracker for the new generation of experiments at hadron colliders  

SciTech Connect (OSTI)

This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Z{sup o}'s or W{sup {+-}}'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

Dinardo, Mauro E.; /Milan U.

2005-12-01T23:59:59.000Z

175

Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider  

SciTech Connect (OSTI)

We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

2010-06-01T23:59:59.000Z

176

Looking for hints of a reconstructible seesaw model at the Large Hadron Collider  

E-Print Network [OSTI]

We study the production of heavy neutrinos at the Large Hadron Collider (LHC) through the dominant s-channel production mode as well as the vector boson fusion (VBF) process. We consider the TeV scale minimal linear seesaw model containing two heavy singlets with opposite lepton number. This model is fully reconstructible from oscillation data apart from an overall normalization constant which can be constrained from meta-stability of the electroweak vacuum and bounds coming from lepton flavor violation (LFV) searches. Dirac nature of heavy neutrinos in this model implies suppression of the conventional same-sign-dilepton signal at the LHC. We analyze the collider signatures with tri-lepton final state and missing transverse energy as well as VBF type signals which are characterized by two additional forward tagged jets. Our investigation reveals that due to stringent constraints on light-heavy mixing coming from LFV and meta-stability bounds, the model can be explored only for light to moderate mass range of heavy neutrinos. We also note that in case of a positive signal, flavor counting of the final tri-lepton channel can give information about the mass hierarchy of the light neutrinos.

Gulab Bambhaniya; Srubabati Goswami; Subrata Khan; Partha Konar; Tanmoy Mondal

2014-10-21T23:59:59.000Z

177

Transverse beams stability studies at the Large Hadron Collider  

E-Print Network [OSTI]

A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

Buffat, Xavier; Pieloni, Tatiana

2015-01-30T23:59:59.000Z

178

A 233 km tunnel for lepton and hadron colliders  

SciTech Connect (OSTI)

A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T. [Dept. of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 (United States)

2012-12-21T23:59:59.000Z

179

Precision linear ramp function generator  

DOE Patents [OSTI]

A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

1984-08-01T23:59:59.000Z

180

Massive Stars in Colliding Wind Systems: the GLAST Perspective  

SciTech Connect (OSTI)

Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

2011-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept  

SciTech Connect (OSTI)

We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

2013-01-01T23:59:59.000Z

182

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network [OSTI]

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

183

A concept of the photon collider beam dump  

E-Print Network [OSTI]

Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long, pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.

L. I. Shekhtman; V. I. Telnov

2014-09-19T23:59:59.000Z

184

Optical data transmission at the superconducting super collider  

SciTech Connect (OSTI)

Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs.

Leskovar, B.

1989-02-01T23:59:59.000Z

185

Collider Detector at Fermilab (CDF): Data from B Hadrons Research  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

186

History of Proton Linear Accelerators  

E-Print Network [OSTI]

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

187

Unit I-2 Linear Maps 1 Linear maps  

E-Print Network [OSTI]

Unit I-2 Linear Maps 1 Unit I-2 Linear maps Unit I-2 Linear Maps 2 Linear map · V & U are vector spaces over the same scalars · a function f: VU is a linear map if it preserves the vector space transformation [particularly when f: RnRm] ­ linear operator when f: V V [same v.s.] ­ linear mapping ­ linear

Birkett, Stephen

188

Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider  

E-Print Network [OSTI]

We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon Au beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

R. Bruce; M. Blaskiewicz; W. Fischer; J. M. Jowett

2010-09-08T23:59:59.000Z

189

E-Print Network 3.0 - asymmetric colliding nuclei Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

colliding nuclei Search Powered by Explorit Topic List Advanced Search Sample search results for: asymmetric colliding nuclei Page: << < 1 2 3 4 5 > >> 1 managed for the U.S....

190

A Detector Scenario for the MuonCollider Cooling Experiment  

E-Print Network [OSTI]

: Meson Lab at Fermilab: Power Supplies (two floors) Cooling Apparatus Muon Beamline shielding shieldingA Detector Scenario for the Muon­Collider Cooling Experiment C. Lu, K.T. McDonald and E.J. Prebys the emittance of the muon beam to 3% accuracy before and after the muon cooling apparatus. 1 #12; Possible site

McDonald, Kirk

191

First events and prospects at the Fermilab collider  

SciTech Connect (OSTI)

A brief description of the Collider Detector at Fermilab (CDF) is given including the detector components and the data acquisition system. The first test run, the first events, and the performance of the detector are discussed. Finally the prospects for future running are reviewed.

Binkley, M.

1986-03-01T23:59:59.000Z

192

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER  

E-Print Network [OSTI]

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER D. Taqqu Paul Scherrer Institut, Villigen, CH Abstract A scheme for obtaining an intense source of low energy muons is described. It is based of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative

McDonald, Kirk

193

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

194

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

195

Higgs-boson production at the Photon Collider at TESLA  

E-Print Network [OSTI]

In this thesis feasibility of the precise measurement of the Higgs-boson production cross section gamma+gamma->higgs->b+bbar at the Photon Collider at TESLA is studied in detail. The study is based on the realistic luminosity spectra simulation. The heavy quark background is estimated using the dedicated code based on NLO QCD calculations. Other background processes, which were neglected in the earlier analyses, are also studied. Also the contribution from the overlaying events, gamma+gamma->hadrons, is taken into account. The non-zero beam crossing angle and the finite size of colliding bunches are included in the event generation. The analysis is based on the full detector simulation with realistic b-tagging, and the criteria of event selection are optimized separately for each considered Higgs-boson mass. For the Standard-Model Higgs boson with mass of 120 to 160 GeV the partial width \\Gamma(h->gamma+gamma)BR(h->b+bbar) can be measured with a statistical accuracy of 2.1-7.7% after one year of the Photon Collider running. The systematic uncertainties of the measurement are estimated to be of the order of 2%. For MSSM Higgs bosons A and H, for M_A=200-350 GeV and tan(beta)=7, the statistical precision of the cross-section measurement is estimated to be 8--34%, for four considered MSSM parameters sets. As heavy neutral Higgs bosons in this scenario may not be discovered at LHC or at the first stage of the e+e- collider, an opportunity of being a discovery machine is also studied for the Photon Collider.

Piotr Niezurawski

2005-03-31T23:59:59.000Z

196

Time evolution of colliding laser produced magnesium plasmas investigated using a pinhole camera  

E-Print Network [OSTI]

suitable conditions for x-ray amplification in a laser produced plasma.24 When two plasmas collide, variTime evolution of colliding laser produced magnesium plasmas investigated using a pinhole camera S for publication 14 February 2001 Time resolved studies of colliding laser produced magnesium plasmas are performed

Harilal, S. S.

197

Physics and Analysis at a Hadron Collider - An Introduction (1/3)  

ScienceCinema (OSTI)

This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

None

2011-10-06T23:59:59.000Z

198

Radiation damage considerations in a high luminosity collider: The interaction region  

SciTech Connect (OSTI)

The interaction region in a high luminosity collider will be a source of radiation for all components in the vicinity and will place stringent requirements on their design. The major components in the vicinity and will place stingent requirements on their design. The major components in the vicinity of the interaction region are the physics detectors that surround the beam pipe and the focusing quadrupole magnets nearby. We will present the radiation levels in such a physics detector and the power in the forward direction that will be deposited in the forward calorimeters and quad magnets. The implications of the levels on a variety of detector components and electronics will be presented. The calculational techniques and limitation will be reviewed.

Lee, D.M.

1992-01-01T23:59:59.000Z

199

Radiation damage considerations in a high luminosity collider: The interaction region  

SciTech Connect (OSTI)

The interaction region in a high luminosity collider will be a source of radiation for all components in the vicinity and will place stringent requirements on their design. The major components in the vicinity and will place stingent requirements on their design. The major components in the vicinity of the interaction region are the physics detectors that surround the beam pipe and the focusing quadrupole magnets nearby. We will present the radiation levels in such a physics detector and the power in the forward direction that will be deposited in the forward calorimeters and quad magnets. The implications of the levels on a variety of detector components and electronics will be presented. The calculational techniques and limitation will be reviewed.

Lee, D.M.

1992-10-01T23:59:59.000Z

200

Measuring W photon couplings in a 500 GeV e sup + e sup - collider  

SciTech Connect (OSTI)

The Standard Model gives definite predictions for the W-photon couplings. Measuring them would test an important ingredient of the model. In this work we study the capability of a 500 GeV e{sup +}e{sup {minus}} collider to measure these couplings. We study the most general C and P conserving WW{lambda} vertex. This vertex contains two free parameters, {kappa} and {lambda}. We look at three processes: e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}, e{lambda} {yields} W{nu} and {lambda}{lambda} {yields} W{sup +}W{sup {minus}}. For each process we present analytical expressions of helicity amplitudes for arbitrary values of {kappa} and {lambda}. We consider three different sources for the initial photon(s). The first two are breamsstrahlung and beamstrahlung (photon radiation induced by the collective fields of the opposite bunch). Both occur naturally in the collider environment. The third is a photon beam generated by scattering low energy laser light off a high energy electron beam. We examine potential observables for each process, calculating their sensitivity to {kappa} and {lambda}, and estimating the accuracy with which they can be measured. Assuming Standard Model values are actually measured, we present the region in the {kappa}-{lambda} plane to which the W couplings can be restricted with a given confidence level. We find that combining the three processes, one can measure {kappa} and {lambda} with accuracy of 0.01--0.02.

Yehudai, E.

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 1, Search for new phenomena at colliding-beam facilities  

SciTech Connect (OSTI)

This report contains brief papers and viewgraphs on high energy topics like: supersymmetry; new gauge bosons; and new high energy colliders.

Rogers, J. [ed.

1992-12-31T23:59:59.000Z

202

Higgs Boson Searches at Hadron Colliders (1/4)  

SciTech Connect (OSTI)

In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

None

2010-06-21T23:59:59.000Z

203

Higgs Boson Searches at Hadron Colliders (1/4)  

ScienceCinema (OSTI)

In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

None

2011-10-06T23:59:59.000Z

204

R&D Toward a Neutrino Factory and Muon Collider  

SciTech Connect (OSTI)

There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

Zisman, Michael S

2009-04-29T23:59:59.000Z

205

Learning to See at the Large Hadron Collider  

SciTech Connect (OSTI)

The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

Quigg, Chris

2010-01-01T23:59:59.000Z

206

Finite element analyses of a linear-accelerator electron gun  

SciTech Connect (OSTI)

Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000?°C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of)] [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan)] [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)] [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2014-02-15T23:59:59.000Z

207

Heavy ion beam loss mechanisms at an electron-ion collider  

E-Print Network [OSTI]

There are currently several proposals to build a high-luminosity electron-ion collider, to study the spin structure of matter and measure parton densities in heavy nuclei, and to search for gluon saturation and new phenomena like the colored glass condensate. These measurements require operation with heavy-nuclei. We calculate the cross-sections for two important processes that will affect accelerator and detector operations: bound-free pair production, and Coulomb excitation of the nuclei. Both of these reactions have large cross-sections, 28-56 mb, which can lead to beam ion losses, produce beams of particles with altered charge:mass ratio, and produce a large flux of neutrons in zero degree calorimeters. The loss of beam particles limits the sustainable electron-ion luminosity to levels of several times $10^{32}/$cm$^2$/s.

Spencer R. Klein

2014-09-18T23:59:59.000Z

208

Radio Frequency Noise Effects on the CERN Large Hadron Collider Beam Diffusion  

SciTech Connect (OSTI)

Radio frequency (rf) accelerating system noise can have a detrimental impact on the Large Hadron Collider (LHC) performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and rf station dynamics with the bunch length growth. Measurements were conducted at LHC to determine the performance limiting rf components and validate the formalism through studies of the beam diffusion dependence on rf noise. As a result, a noise threshold was established for acceptable performance which provides the foundation for beam diffusion estimates for higher energies and intensities. Measurements were also conducted to determine the low level rf noise spectrum and its major contributions, as well as to validate models and simulations of this system.

Mastoridis, T.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN; Rivetta, C.; Fox, J.D.; /SLAC

2012-04-30T23:59:59.000Z

209

Robust Linear Optimization With Recourse  

E-Print Network [OSTI]

We propose an approach to two-stage linear optimization with recourse that does ... Linear optimization with recourse was first introduced by Dantzig in [17] as a ...

2010-05-19T23:59:59.000Z

210

Linear Quantum Feedback Networks  

E-Print Network [OSTI]

The mathematical theory of quantum feedback networks has recently been developed for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical systems Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.

J. Gough; R. Gohm; M. Yanagisawa

2008-07-15T23:59:59.000Z

211

Linear Programming Environmental  

E-Print Network [OSTI]

Linear Program to control air pollution was developed in 1968 by Teller, which minimized cost Fall 2006 #12;Topics · Introduction · Background · Air · Land · Water #12;Introduction · "The United States spends more than 2% of its gross domestic product on pollution control, and this is more than any

Nagurney, Anna

212

Michael Schmitt Physics at a -Collider 15-March-2001 1 Physics at a -Collider  

E-Print Network [OSTI]

's { it is possible to prepare initial states of speci#12;c CP #15; Since photons couple only to electric charge mass charged particles can circulate, and sensitivity is not masked by a large SM tree level challenging. The cost comes in a broad energy distribution. (better than protons, inferior to electrons

Schmitt, Michael

213

Michael Schmitt Physics at a -Collider 20-March-2001 1 Physics at a -Collider  

E-Print Network [OSTI]

of speci#12;c CP #15; Since photons couple only to electric charge, production of neutral particles circulate, and sensitivity is not masked by a large SM tree level contribution. #12; Michael Schmitt Physics;. #15; Preparing the photon beam is experimentally challenging. The cost comes in a broad energy

Schmitt, Michael

214

HIGH-ENERGY PARTICLE COLLIDERS: PAST 20 YEARS, NEXT 20 YEARS, AND BEYOND  

SciTech Connect (OSTI)

Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary

Shiltsev, V.

2013-09-25T23:59:59.000Z

215

Radiative Return Capabilities of a High-Energy, High-Luminosity $e^+e^-$ Collider  

E-Print Network [OSTI]

An electron-positron collider operating at a center-of-mass energy $E_{CM}$ can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at $E_{CM}$ = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy $e^+e^-$ colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

Karliner, Marek; Rosner, Jonathan L; Wang, Lian-Tao

2015-01-01T23:59:59.000Z

216

The liquid helium storage system for the Large Hadron Collider.  

E-Print Network [OSTI]

The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN has a total helium inventory of 140 t. Up to 50 t can be stored in gas storage tanks. The remaining inventory will be stored in a liquid helium storage system consisting of six 15-t liquid helium tanks in 4 locations. The two liquid helium tanks of specific low heat inleak design and the required infrastructure of the first location were recently commissioned. Four additional tanks shall be operational end 2010. The paper describes the features and characteristics of the liquid helium storage system and presents the measurement of the thermal performance of the two first tanks.

Benda, V; Fathallah, M; Goiffon, T; Parente, C; Perez-Duenas, E; Perret, Ph; Pirotte, O; Serio, L; Vullierme, B

2011-01-01T23:59:59.000Z

217

Synchrotron-Radiation Photon Distribution for Highest Energy Circular Colliders  

E-Print Network [OSTI]

At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

Maury Cuna, GHI; Dugan, G; Zimmermann, F

2013-01-01T23:59:59.000Z

218

Synchrotron-Radiation Photon Distributions for Highest Energy Circular Colliders  

E-Print Network [OSTI]

At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

Maury Cuna, G H I; Dugan, G; Zimmermann, F

2013-01-01T23:59:59.000Z

219

Thermal conduction of SSC (Superconducting Super Collider) wire  

SciTech Connect (OSTI)

A method suitable for measuring the thermal conductivity of good thermal conductors at low temperatures was implemented. It successfully served its purpose: to detect the effect of doping with manganese the interfilament part of the copper matrix of the superconducting wire used in the magnets of the Superconducting Super Collider. It uses two heaters and one thermometer per sample reducing the accuracy requirement on the thermometers, automatically compensating for zero offsets and reducing the number of critical thermal contacts. Commercially available strain gauges are used as heaters. 3 refs., 2 figs.

Kuchnir, M.; Tague, J.L.

1989-08-01T23:59:59.000Z

220

Complementarity between collider, direct detection, and indirect detection experiments  

E-Print Network [OSTI]

We examine the capabilities of planned direct detection, indirect detection, and collider experiments in exploring the 19-parameter p(henomenological)MSSM, focusing on the complementarity between the different search techniques. In particular, we consider dark matter searches at the 7, 8 (and eventually 14) TeV LHC, \\Fermi, CTA, IceCube/DeepCore, and LZ. We see that the search sensitivities depend strongly on the WIMP mass and annihilation mechanism, with the result that different search techniques explore orthogonal territory. We also show that advances in each technique are necessary to fully explore the space of Supersymmetric WIMPs.

Matthew Cahill-Rowley

2014-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radio emission from Colliding-Wind Binaries: Observations and Models  

E-Print Network [OSTI]

We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibits dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.

S. M. Dougherty; J. M. Pittard; E. P. O'Connor

2005-10-18T23:59:59.000Z

222

Control Surveys for Underground Construction of the Superconducting Super Collider  

SciTech Connect (OSTI)

Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

2005-08-16T23:59:59.000Z

223

SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES  

SciTech Connect (OSTI)

The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it

MURPHY, JAMES E [University of Nevada, Reno] [University of Nevada, Reno

2013-02-28T23:59:59.000Z

224

Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider  

E-Print Network [OSTI]

The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9_9 cm2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5_5 mm2. This prototype enter sits construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R&D goal of10:1.

Rouëné,J

2013-01-01T23:59:59.000Z

225

Duality in linearized gravity  

SciTech Connect (OSTI)

We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case.

Henneaux, Marc; Teitelboim, Claudio [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C. P. 231, B-1050 Brussels (Belgium) and Centro de Estudios Cientificos (CECS), Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)

2005-01-15T23:59:59.000Z

226

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

227

Linear induction accelerator  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

228

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network [OSTI]

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

229

Discovery Mass Reach for Excited Quarks at Hadron Colliders  

E-Print Network [OSTI]

If quarks are composite particles then excited states are expected. We estimate the discovery mass reach as a function of integrated luminosity for excited quarks decaying to dijets at the Tevatron, LHC, and a Very Large Hadron Collider (VLHC). At the Tevatron the mass reach is 0.94 TeV for Run II (2 fb^-1) and 1.1 TeV for TeV33 (30 fb^-1). At the LHC the mass reach is 6.3 TeV for 100 fb^-1. At a VLHC with a center of mass energy, sqrt(s), of 50 TeV (200 TeV) the mass reach is 25 TeV (78 TeV) for an integrated luminosity of 10^4 fb^-1. However, an excited quark with a mass of 25 TeV would be discovered at a hadron collider with sqrt(s)=100 TeV and an integrated luminosity of 13 fb^-1, illustrating a physics example where a factor of 2 in machine energy is worth a factor of 1000 in luminosity.

Robert M. Harris

1996-09-11T23:59:59.000Z

230

Two-Level Nonregular Designs From Quaternary Linear Codes  

E-Print Network [OSTI]

Goethals, and related codes. IEEE Trans. Inform. Theory 40,Theory of Error-Correcting Codes. North- Holland, Amsterdam.1967). An optimum nonlinear code. Inform. Control 11, Sun,

Hongquan Xu; Alan Wong

2011-01-01T23:59:59.000Z

231

2780 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Jetlike Emission From Colliding  

E-Print Network [OSTI]

attractive applications in the field of X-ray lasers, pulsed-laser deposition (PLD), extreme ultraviolet Colliding Laser-Produced Plasmas Sivanandan S. Harilal, Mathew P. Polek, and Ahmed Hassanein, Member, IEEE Abstract--We report a large jetlike collimated emission feature from colliding laser-produced plasmas (LPPs

Harilal, S. S.

232

Measurement of the W Boson Mass With the Collider Detector at Fermilab  

E-Print Network [OSTI]

Measurement of the W Boson Mass With the Collider Detector at Fermilab A thesis presented by Andrew With the Collider Detector at Fermilab Andrew Scott Gordon Thesis Advisor: Melissa Franklin Abstract We measure at Fermilab from pp collisions at ps = 1800 GeV. The data weretaken from January 1994 through July 1995

Weitz, David

233

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET (IPAC13, THPFI092) The baseline target concept for a Muon Collider or Neutrino Factory is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir

McDonald, Kirk

234

Activation of the liquid helium contamination during its passage in the Collider ring  

SciTech Connect (OSTI)

Radioactivation of possible contamination of the liquid helium trapped in the arcs of the Collider ring of the Superconducting Super Collider and transported by the liquid helium is estimated. This estimation is used to calculate the dose rate on the filter of the refrigerator plant located at the top of the shaft.

Lopez, G.

1994-01-01T23:59:59.000Z

235

History of Proton Linear Accelerators  

E-Print Network [OSTI]

the board to show why the accelerator couldn't work. Then atmuch. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,

Alvarez, Luis W.

1986-01-01T23:59:59.000Z

236

Wave functions of linear systems  

E-Print Network [OSTI]

Complete analysis of quantum wave functions of linear systems in an arbitrary number of dimensions is given. It is shown how one can construct a complete set of stationary quantum states of an arbitrary linear system from purely classical arguments. This construction is possible because for linear systems classical dynamics carries the whole information about quantum dynamics.

Tomasz Sowinski

2007-06-05T23:59:59.000Z

237

E1 Working Group Summary: Neutrino Factories and Muon Colliders  

E-Print Network [OSTI]

We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

D. Harris

2001-11-02T23:59:59.000Z

238

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation ...

Henley, D B; Pittard, J M

2003-01-01T23:59:59.000Z

239

Multifragmentation at the balance energy of mass asymmetric colliding nuclei  

E-Print Network [OSTI]

Using the quantum molecular dynamics model, we study the role of mass asymmetry of colliding nuclei on the fragmentation at the balance energy and on its mass dependence. The study is done by keeping the total mass of the system fixed as 40, 80, 160, and 240 and by varying the mass asymmetry of the ($\\eta$ = $\\frac{A_{T}-A_{P}}{A_{T}+A_{P}}$; where $A_{T}$ and $A_{P}$ are the masses of the target and projectile, respectively) reaction from 0.1 to 0.7. Our results clearly indicate a sizeable effect of the mass asymmetry on the multiplicity of various fragments. The mass asymmetry dependence of various fragments is found to increase with increase in total system mass (except for heavy mass fragments). Similar to symmetric reactions, a power law system mass dependence of various fragment multiplicities is also found to exit for large asymmetries.

Supriya Goyal

2011-06-20T23:59:59.000Z

240

Strangelet Search at the BNL Relativistic Heavy Ion Collider  

SciTech Connect (OSTI)

We have searched for strangelets in a triggered sample of 61 million central (top 4percent) Au+Au collisions at sqrt sNN = 200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order>_0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few 10-6 to 10-7 per central Au+Au collision are set for strangelets with mass>~;;30 GeV/c2.

Ritter, Ha

2005-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

242

3-D SPH simulations of colliding winds in eta Carinae  

E-Print Network [OSTI]

We study colliding winds in the superluminous binary eta Carinae by performing three-dimensional, Smoothed Particle Hydrodynamics (SPH) simulations. For simplicity, we assume both winds to be isothermal. We also assume that wind particles coast without any net external forces. We find that the lower density, faster wind from the secondary carves out a spiral cavity in the higher density, slower wind from the primary. Because of the phase-dependent orbital motion, the cavity is very thin on the periastron side, whereas it occupies a large volume on the apastron side. The model X-ray light curve using the simulated density structure fits very well with the observed light curve for a viewing angle of i=54 degrees and phi=36 degrees, where i is the inclination angle and phi is the azimuth from apastron.

Atsuo T. Okazaki; Stanley P. Owocki; Christopher M. P. Russell; Michael F. Corcoran

2008-03-27T23:59:59.000Z

243

The Emerging QCD Frontier: The Electron Ion Collider  

E-Print Network [OSTI]

The self-interactions of gluons determine all the unique features of QCD and lead to a dominant abundance of gluons inside matter already at moderate $x$. Despite their dominant role, the properties of gluons remain largely unexplored. Tantalizing hints of saturated gluon densities have been found in $e$+p collisions at HERA, and in d+Au and Au+Au collisions at RHIC. Saturation physics will have a profound influence on heavy-ion collisions at the LHC. But unveiling the collective behavior of dense assemblies of gluons under conditions where their self-interactions dominate will require an Electron-Ion Collider (EIC): a new facility with capabilities well beyond those In this paper I outline the compelling physics case for $e$+A collisions at an EIC and discuss briefly the status of machine design concepts. of any existing accelerator.

Thomas Ullrich

2008-05-31T23:59:59.000Z

244

The Problem of Colliding Networks and its Relation to Cancer  

E-Print Network [OSTI]

Complex systems, ranging from living cells to human societies, can be represented as attractor networks, whose basic property is to exist in one of allowed states, or attractors. We noted that merging two systems that are in distinct attractors creates uncertainty, as the hybrid system cannot assume two attractors at once. As a prototype of this problem, we explore cell fusion, whose ability to combine distinct cells into hybrids was proposed to cause cancer. By simulating cell types as attractors, we find that hybrids are prone to assume spurious attractors, which are emergent and sporadic states of networks, and propose that cell fusion can make a cell cancerous by placing it into normally inaccessible spurious states. We define basic features of hybrid networks and suggest that the problem of colliding networks has general significance in processes represented by attractor networks, including biological, social, and political phenomena.

Alexei A. Koulakov; Yuri Lazebnik

2012-01-13T23:59:59.000Z

245

Collective Effects in the SuperB Collider  

SciTech Connect (OSTI)

Some collective effects have been studied for the SuperB high luminosity collider. Estimates of the effect of Intra Beam Scattering (IBS) on the emittance and energy spread growths have been carried up for both the High Energy (HER, positrons) and the Low Energy (LER, electrons) rings. Electron cloud build up simulations for HER were performed with the ECLOUD code, developed at CERN, to predict the cloud formation in the arcs, taking into account possible remediation techniques such as clearing electrodes. The new code CMAD, developed at SLAC, has been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

Demma, Theo; /INFN, Rome; Pivi, Mauro; /SLAC

2012-06-25T23:59:59.000Z

246

Single Anomalous Production of the Fourth SM Family Quarks at Future e+e-, ep, and pp Colliders  

SciTech Connect (OSTI)

Possible single productions of fourth SM family u4 and d4 quarks via anomalous interactions at the e+e-, ep, and pp colliders are investigated. Signatures of such anomalous processes are discussed at above colliders comparatively.

Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Institute of Physics, Academy of Sciences, H.Cavid Avenue 33, Baku (Azerbaijan); Yildiz, H. Duran [Physics Department, Faculty of Sciences and Arts, Dumlupinar University, Merkez Kampus, Ankara (Turkey)

2007-04-23T23:59:59.000Z

247

Production Of The ADD Type Kaluza-Klein Excitations At Future e+e-, ep And pp Colliders  

SciTech Connect (OSTI)

Possible production of ADD type Kaluza-Klein excitations are investigated at future high energy e+e-, ep and pp colliders. Discovery limits and signatures of such excitations are discussed at above colliders comparatively.

Billur, A. A.; Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Inan, S. C. [Physics Department, Faculty of Sciences and Arts, Cumhuriyet University, 58140, Sivas (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

248

Production of the Randall-Sundrum Type Kaluza-Klein Excitations at Future e+e-, ep and pp Colliders  

SciTech Connect (OSTI)

Possible production of Randall-Sundrum type Kaluza-Klein excitations are investigated at future high energy e+e-, ep and pp colliders. Discovery limits and signatures of such excitations are discussed at above colliders comparatively.

Billur, A. A.; Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Inan, S. C. [Physics Department, Faculty of Sciences and Arts, Cumhuriyet University, 58140, Sivas (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

249

Single Anomalous Production of the Fourth SM Family Leptons at Future e+e-, ep and pp Colliders  

SciTech Connect (OSTI)

Possible single productions of fourth SM family charged and neutral leptons via anomalous interactions at the future e+e-, ep, and pp colliders are studied. Signatures of such anomalous processes are argued at above colliders comparatively.

Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R.; Karadeniz, H. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku (Azerbaijan); Yildiz, H. Duran [Physics Department, Faculty of Sciences and Arts, Dumlupinar University, Merkez Campus, Kutahya (Turkey)

2007-04-23T23:59:59.000Z

250

Atomic mass dependent electrostatic diagnostics of colliding laser plasma plumes  

SciTech Connect (OSTI)

The behaviours of colliding laser plasma plumes (C{sub p}) compared with single plasma plumes (S{sub p}) are investigated for 14 different atomic mass targets. A Faraday cup, situated at the end of a drift tube (L = 0.99 m), is employed to record the time-of-flight (TOF) current traces for all elements and both plume configurations, for a fixed laser intensity of I{sub p} = 4.2 × 10{sup 10} W cm{sup ?2} (F = 0.25 kJ cm{sup ?2}). The ratio of the peak current from the C{sub p} relative to twice that from the S{sub p} is designated as the peak current ratio while the ratio of the integrated charge yield from the C{sub p} relative to twice that from the S{sub p} is designated as the charge yield ratio. Variation of the position of the Faraday cup within the drift tube (L = 0.33, 0.55, and 0.99 m) in conjunction with a lower laser fluence (F = 0.14 kJ cm{sup ?2}) facilitated direct comparison of the changing TOF traces from both plasma configurations for the five lightest elements studied (C, Al, Si, Ti, and Mn). The results are discussed in the frame of laser plasma hydrodynamic modelling to approximate the critical recombination distance L{sub CR}. The dynamics of colliding laser plasma plumes and the atomic mass dependence trends observed are presented and discussed.

Yeates, P. [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland)] [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland); Fallon, C. [School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland)] [School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland); Kennedy, E. T.; Costello, J. T. [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland) [National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU), Dublin 7 (Ireland); School of Physical Sciences, Dublin City University (DCU), Dublin 7 (Ireland)

2013-09-15T23:59:59.000Z

251

2005 Final Report: New Technologies for Future Colliders  

SciTech Connect (OSTI)

This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

Peter McIntyre; Al McInturff

2005-12-31T23:59:59.000Z

252

IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION.  

SciTech Connect (OSTI)

A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics.

LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

2005-05-16T23:59:59.000Z

253

Winding for linear pump  

DOE Patents [OSTI]

A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

1989-01-01T23:59:59.000Z

254

Linear equalities in blackbox optimization ?  

E-Print Network [OSTI]

May 28, 2014 ... extensions to treat problems with linear equalities whose expression is known. The main idea consists in reformulating the optimization ...

Mathilde Peyrega

2014-05-28T23:59:59.000Z

255

Quantization of general linear electrodynamics  

SciTech Connect (OSTI)

General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

Rivera, Sergio; Schuller, Frederic P. [Albert Einstein Institute, Max Planck Institute for Gravitational Physics, Am Muehlenberg 1, 14476 Potsdam (Germany)

2011-03-15T23:59:59.000Z

256

Large hadron collider (LHC) project quality assurance plan  

SciTech Connect (OSTI)

The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

2002-09-30T23:59:59.000Z

257

First electron-cloud studies at the Large Hadron Collider  

E-Print Network [OSTI]

During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electr...

Dominguez, O; Arduini, G; Metral, E; Rumolo, G; Zimmermann, F; Maury Cuna, H

2013-01-01T23:59:59.000Z

258

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.

D. B. Henley; I. R. Stevens; J. M. Pittard

2003-06-23T23:59:59.000Z

259

Hydrodynamics and High-Energy Physics of WR Colliding Winds  

E-Print Network [OSTI]

One of the main properties of Wolf-Rayet (WR) stars is a very intense outflow of gas. No less than 40\\% \\ of WR stars belong to binary systems. Young massive O and B stars are the secondary components of such systems. OB stars also have an intense stellar wind. If the intensities of the stellar winds of WR and OB stars are more or less comparable or if the distance between the components of the binary is large enough, the winds flowing out of WR and OB stars can collide and the shock waves are formed. In the shock the gas is heated to temperature $\\sim 10^7$ K and generates X-ray emission. Stellar wind collision may be responsible not only for the X-ray emission of WR + OB binaries and for their radio, IR and $\\gamma$-ray emision as well. Stellar wind collision, gas heating, particle acceleration, and generation of X-ray, $\\gamma$-ray, radio and IR emission in WR + OB binaries are discussed.

Vladimir V. Usov

1994-05-29T23:59:59.000Z

260

Muon Collider Final Cooling in 30-50 T Solenoids  

SciTech Connect (OSTI)

Muon ionization cooling to the required normalized rms emittance of 25 microns transverse, and 72 mm longitudinal, can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises from the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases. Preliminary simulations of transverse cooling in hydrogen, at low energies, suggests that muon collider emittance requirements can be met using solenoid fields of 40 T or more. It might also be acceptable with 30 T. But these simulations did not include hydrogen windows,matching or reacceleration, whose performance, with one exception, was based on numerical estimates. Full simulations of more stages are planned. The design and simulation of hydrogen windows must be included, and space charge effects, and absorber heating, calculated.

Palmer, R.B.; Fernow, R.C.; Lederman, J.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Collider searches and cosmology in the MSSM with heavy scalars  

SciTech Connect (OSTI)

In a variety of supersymmetric extensions of the Standard Model, the scalar partners of the quarks and leptons are predicted to be very heavy and beyond the reach of next-generation colliders. For instance, the realization of electroweak baryogenesis in supersymmetry requires new sources of CP-violation, which can only be naturally accommodated with electric dipole moment constraints if the first and second generation scalar fermions are beyond the TeV scale. Also in focus-point supersymmetry and split supersymmetry the scalar fermions are very heavy. In this work, the phenomenology of scenarios with electroweak baryogenesis and in the focus point region at the LHC and ILC is studied, which becomes challenging due to the presence of heavy scalar fermions. Implications for the analysis of baryogenesis and dark matter are deduced. It is found that precision measurements of superpartner properties allow an accurate determination of the dark matter relic density in both scenarios, while important but only incomplete information about the baryogenesis mechanism can be obtained.

Carena, Marcela; /Fermilab; Freitas, A.; /Zurich U.

2006-08-01T23:59:59.000Z

262

Design of High Luminosity Ring-Ring Electron- Light Ion Collider at CEBAF  

SciTech Connect (OSTI)

Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

Slawomir Bogacz; Antje Bruell; Jean Delayen; Yaroslav Derbenev; Rolf Ent; Joseph Grames; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Bogdan Wojtsekhowski; Byung Yunn; Yuhong Zhang; C Montag

2007-06-25T23:59:59.000Z

263

SciTech Connect: Proton-Proton Colliding-Beam Storage Rings for...  

Office of Scientific and Technical Information (OSTI)

future plans can be based. It is to be emphasized that this is not a proposal for construction. The major results of the study are that 100-100 BeV colliding beam rings can be...

264

LEVEL BUNDLE METHODS FOR ORACLES WITH ON-DEMAND ...  

E-Print Network [OSTI]

convergence of exact level variants known in the literature. A numerical benchmark on a battery of two-stage stochastic linear programs assesses the interest of ...

2012-11-25T23:59:59.000Z

265

MIXED INTEGER LINEAR PROGRAMMING FORMULATION ...  

E-Print Network [OSTI]

Jul 22, 2014 ... multi-commodity network flow problem with piecewise linear costs. ...... [82] IBM ILOG, CPLEX High-performance mathematical programming engine. .... Scheduling of Public Transport Urban Passenger Vehicle and Crew ...

2014-07-22T23:59:59.000Z

266

Linear actuator powered flapping wing  

E-Print Network [OSTI]

Small scale unmanned aerial vehicles (UAVs) have proven themselves to be useful, but often too noisy for certain operations due to their rotary motors. This project examined the feasibility of using an almost silent linear ...

Benson, Christopher Lee

2010-01-01T23:59:59.000Z

267

A linear induction motor conveyer  

E-Print Network [OSTI]

A LINEAR INCUCTION MOTOR CONVEYER A Thesis Kenneth Sheldon. Solinsky Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree of MASTER 07 SCIENCE May 1973 Major Subject: Industrial.... Howie, USAMC-ITC-P/P, Red River Army Depot, Texarkana, Texas 75501. Approved owxe, xe , ro uc o uction Engineering For the Commander ne , grec or, I A LINEAR INDUCTION MOTOR CONVEYER A Thesis by Kenneth Sheldon Solinsky App ved as to style...

Solinsky, Kenneth Sheldon

1973-01-01T23:59:59.000Z

268

Preservation and control of the proton and deuteron polarizations in the proposed electron-ion collider at Jefferson Lab  

SciTech Connect (OSTI)

We propose a scheme of preserving the proton and deuteron beam polarizations during acceleration and storage in the proposed electron-ion collider at Jefferson Lab. This scheme allows one to provide both the longitudinal and transverse polarization orientations of the proton and deuteron beams at the interaction points of the figure-8 ion collider ring. We discuss questions of matching the polarization direction at all stages of the beam transport including the pre-booster, large booster and ion collider ring.

Kondratenko, Anatoliy [Scientific and Technical Laboratory Zaryad, Novosibirsk (Russian Federation); Derbenev, Yaroslav S. [JLAB, Newport News, VA (United States); Filatov, Yury [Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Lin, Fanglei [JLAB, Newport News, VA (United States); Morozov, Vasiliy [JLAB, Newport News, VA (United States); Kondratenko, M. A. [Scientific and Technical Laboratory Zaryad, Novosibirsk (Russian Federation); Zhang, Yuhong [JLAB, Newport News, VA (United States)

2014-01-01T23:59:59.000Z

269

Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas  

SciTech Connect (OSTI)

As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

NONE

1995-05-01T23:59:59.000Z

270

Role of colliding geometry on the balance energy of mass-asymmetric systems  

E-Print Network [OSTI]

We study the role of colliding geometry on the balance energy (Ebal) of mass-asymmetric systems by varying the mass asymmetry ({\\eta} = AT - Ap/AT + AP, where AT and AP are the masses of the target and projectile, respectively) from 0.1 to 0.7, over the mass range 40-240 and on the mass dependence of the balance energy. Our findings reveal that colliding geometry has a significant effect on the Ebal of asymmetric systems. We find that, as we go from central collisions to peripheral ones, the effect of mass asymmetry on Ebal increases throughout the mass range. Interestingly, we find that for every fixed system mass (Atot) the effect of the impact parameter variation is almost uniform throughout the mass-asymmetry range. For each {\\eta}, Ebal follows a power-law behavior (\\propto A{\\tau}) at all colliding geometries

Supriya Goyal

2011-04-16T23:59:59.000Z

271

Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)  

SciTech Connect (OSTI)

As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

Crease, Robert P. (Ph.D, Department of Philosophy, Stony Brook University) [Ph.D, Department of Philosophy, Stony Brook University

2007-12-12T23:59:59.000Z

272

Biholomorphic maps with linear parts having Jordan blocks: linearization and  

E-Print Network [OSTI]

Jordan block. Our main result proves convergence of the linearizing transformation of maps for which the Jordan part of the spectrum lies inside the unit circle and the spectrum satis#12;es a R in (C [x]) n , (1.2) where C [x] stands for the set of all formal power series with complex coe

273

Linear operator inequalities for strongly stable weakly regular linear systems  

E-Print Network [OSTI]

that A has compact resolvent and its eigenvectors form a Riesz basis for the state space, we give an explicit to a spectral factorization problem and to a lin- ear quadratic optimal control problem. More concretely R, which implies that R #21; 0. The associated linear matrix inequality in the unknown self

Curtain, Ruth F.

274

Final Report - The Decline and Fall of the Superconducting Super Collider  

SciTech Connect (OSTI)

In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

RIORDAN, MICHAEL

2011-11-29T23:59:59.000Z

275

GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders  

SciTech Connect (OSTI)

We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

Roblin, Yves [JLAB; Morozov, Vasiliy [JLAB; Terzic, Balsa [JLAB; Aturban, Mohamed A. [Old Dominion University; Ranjan, D. [Old Dominion University; Zubair, Mohammed [Old Dominion University

2013-06-01T23:59:59.000Z

276

Role of colliding geometry on the N/Z dependence of balance energy  

E-Print Network [OSTI]

We study the role of colliding geometry on the N/Z dependence of balance energy using isospin-dependent quantum molecular dynamics model. Our study reveals that the N/Z dependence of balance energy becomes much steeper for peripheral collisions as compared to the central collisions. We also study the effect of system mass on the impact parameter dependence of N/Z dependence of balance energy. The study shows that lighter systems shows greater sensitivity to colliding geometry towards the N/Z dependence.

Sakshi Gautam; Aman D. Sood; Rajeev K. Puri

2011-08-01T23:59:59.000Z

277

Discovering Higgs boson pair production through rare final states at a 100 TeV collider  

E-Print Network [OSTI]

We consider Higgs boson pair production at a future proton collider with centre-of-mass energy of 100 TeV, focusing on rare final states that include a bottom-anti-bottom quark pair and multiple isolated leptons: $hh \\rightarrow (b\\bar{b}) + n \\ell + X$, $n = \\{2,4\\}$, $X = \\{ E_T^\\mathrm{miss}, \\gamma, -\\}$. We construct experimental search strategies for observing the process through these channels and make suggestions on the desired requirements for the detector design of the future collider.

Papaefstathiou, Andreas

2015-01-01T23:59:59.000Z

278

Interaction region design for a RHIC-based medium-energy electron-ion collider  

SciTech Connect (OSTI)

As a first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac (ERL) in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to use the present RHIC magnets for focusing of the high-energy ion beam. Meanwhile, electron low-beta focusing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges and present the current design status of this e-A interaction region.

Montag,C.; Beebe-Wang, J.

2009-05-04T23:59:59.000Z

279

Les Houches guidebook to Monte Carlo generators for hadron collider physics  

SciTech Connect (OSTI)

Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

Dobbs, Matt A.; Frixione, Stefano; Laenen, Eric; Tollefson, Kirsten

2004-03-01T23:59:59.000Z

280

Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider  

SciTech Connect (OSTI)

The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

Quigg, Chris; /Fermilab /CERN

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

282

Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

283

Electron-Ion Collider - taking us to the next QCD frontier  

E-Print Network [OSTI]

In this talk, I demonstrate that the proposed Electron-Ion Collider (EIC) will be an ideal and unique future facility to address many overarching questions about QCD and strong interaction physics at one place. The EIC will be the world's first polarized electron-proton (and light ion), as well as the first electron-nucleus collider at flexible collision energies. With its high luminosity and beam polarization, the EIC distinguishes itself from HERA and the other fixed target electron-hadron facilities around the world. The EIC is capable of taking us to the next QCD frontier to explore the glue that binds us all.

Jian-Wei Qiu

2014-12-08T23:59:59.000Z

284

Les Houches Guidebook to Monte Carlo generators for hadron collider physics  

SciTech Connect (OSTI)

Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

Dobbs, M.A

2004-08-24T23:59:59.000Z

285

Resurgence, Stokes phenomenon and alien derivatives for levelone linear  

E-Print Network [OSTI]

Resurgence, Stokes phenomenon and alien derivatives for level­one linear di#erential systems. Mich of alien derivatives. We make explicit the Stokes­Ramis matrices as functions of the connection constants, summability, resurgence, alien derivatives. AMS classification: 34M03, 34M30, 34M35, 34M40. 1 #12; Loday

286

Search for Supersymmetry Using Weak Boson Fusion Processes in Proton-Proton Collisions at the Large Hadron Collider  

E-Print Network [OSTI]

In 2012, the Large Hadron Collider at CERN (LHC) collided protons at an unprecedented center-of-mass energy of 8 TeV. With data corresponding to a total integrated luminosity of 19.7 fb^(?1), the Compact Muon Solenoid (CMS) collaboration is studying...

Flanagan, Will

2014-08-08T23:59:59.000Z

287

Linearized theory of peridynamic states.  

SciTech Connect (OSTI)

A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

Silling, Stewart Andrew

2009-04-01T23:59:59.000Z

288

Linear electric field mass spectrometry  

DOE Patents [OSTI]

A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

McComas, D.J.; Nordholt, J.E.

1992-12-01T23:59:59.000Z

289

Transformations for densities Linear transformations  

E-Print Network [OSTI]

' & $ % Lecture 28 Transformations for densities Linear transformations 1-1 differentiable functions General transformations Expectation of a function 1 #12;' & $ % Transformations for discrete transformation of a U[0, 1] · Take X U[0, 1], so that fX(x) = 1 0 0 and set Y

Adler, Robert J.

290

Why quantum dynamics is linear  

E-Print Network [OSTI]

Quantum dynamics is linear. How do we know? From theory or experiment? The history of this question is reviewed. Nonlinear generalizations of quantum mechanics have been proposed. They predict small but clear nonlinear effects, which very accurate experiments have not seen. Is there a reason in principle why nonlinearity is not found? Is it impossible? Does quantum dynamics have to be linear? Attempts to prove this have not been decisive, because either their assumptions are not compelling or their arguments are not conclusive. The question has been left unsettled. There is a simple answer, based on a simple assumption. It was found in two steps separated by 44 years. They are steps back to simpler and more compelling assumptions. A proof of the assumptions of the Wigner-Bargmann proof has been known since 1962. It assumes that the maps of density matrices in time are linear. For this step, it is also assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease. In a step taken in 2006, it is proved that the maps of density matrices in time are linear. It is assumed, as in the earlier step, that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics, so the question is only about how things change in time. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system, but must allow the system to be described as part of a larger system.

Thomas F. Jordan

2007-02-16T23:59:59.000Z

291

Linear Optics From Closed Orbits (LOCO): An Introduction  

SciTech Connect (OSTI)

The LOCO code is used to find and correct errors in the linear optics of storage rings. The original FORTRAN code was written to correct the optics of the NSLS X-Ray ring, and was applied soon thereafter to debug problems with the ALS optics. The ideas used in the code were developed from previous work at SLAC. Several years ago, LOCO was rewritten in MATLAB. As described in this newsletter, the MATLAB version includes a user-friendly interface, with many useful fitting and analysis options. LOCO has been used at many accelerators. Presently, a search for LOCO in the text of papers on the Joint Accelerator Conferences Website yields 107 papers. A comprehensive survey of applications will not be included here. Details of recent results at a few light sources are included in this newsletter. In the past, the quality of LOCO fitting results varied significantly, depending on the storage ring. In particular, the results were mixed for colliding beam facilities, where there tend to be fewer BPMs that in light sources. Fitting rings with less BPM data to constrain the fit optics parameters often led to unreasonably large fit quadrupole gradient variations. Recently, modifications have been made to the LOCO fitting algorithm which leads to much better results when the BPM data does not tightly constrain the fit parameters. The modifications are described in this newsletter, and an example of results with this new algorithm is included.

Safranek, James; /SLAC

2009-06-18T23:59:59.000Z

292

Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas  

E-Print Network [OSTI]

Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas P been investigated using time and space resolved optical emission spectroscopies and spectrally and angularly resolved fast imaging. The emission results highlight a difference in neutral atom and ion

Harilal, S. S.

293

Summary audit report on lessons learned from the Superconducting Super Collider Project  

SciTech Connect (OSTI)

In October 1993, the Congress decided to terminate the Superconducting Super Collider (SSC) project after expending about $1.57 billion on the project. While both internal and external factors contributed to the demise of the project, its cancellation offers the Department a unique opportunity to analyze what went wrong, correct the mistakes, and apply the lessons learned to future large-scale projects.

NONE

1996-04-23T23:59:59.000Z

294

Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens  

E-Print Network [OSTI]

Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens Sunshine, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about

Bermingham, Eldredge

295

Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens  

E-Print Network [OSTI]

Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens Sunshine with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little

Bermingham, Eldredge

296

Signatures for Right-Handed Neutrinos at the Large Hadron Collider  

SciTech Connect (OSTI)

We explore possible signatures for right-handed neutrinos in a TeV scale B-L extension of the standard model at the Large Hadron Collider. The studied four lepton signal has a tiny standard model background. We find the signal experimentally accessible at the LHC for the considered parameter regions.

Huitu, Katri; Rai, Santosh Kumar [Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Khalil, Shaaban [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo, 11566 (Egypt); Okada, Hiroshi [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No, 11837, P.O. Box 43 (Egypt)

2008-10-31T23:59:59.000Z

297

A NEW GENERATION OF EBIS: HIGH CURRENT DEVICES FOR ACCELERATORS AND COLLIDERS*  

E-Print Network [OSTI]

A NEW GENERATION OF EBIS: HIGH CURRENT DEVICES FOR ACCELERATORS AND COLLIDERS* E. Beebe, J. Alessi of magnitude compared to fixed target operation of existing accelerators.[1] RHIC, for example, requires 3.4x10 20 times higher than electron beams utilized in devices at accelerators at Dubna, Saclay

298

Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report  

E-Print Network [OSTI]

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.

J. Butterworth; G. Dissertori; S. Dittmaier; D. de Florian; N. Glover; K. Hamilton; J. Huston; M. Kado; A. Korytov; F. Krauss; G. Soyez; J. R. Andersen; S. Badger; L. Barzè; J. Bellm; F. U. Bernlochner; A. Buckley; J. Butterworth; N. Chanon; M. Chiesa; A. Cooper-Sarkar; L. Cieri; G. Cullen; H. van Deurzen; G. Dissertori; S. Dittmaier; D. de Florian; S. Forte; R. Frederix; B. Fuks; J. Gao; M. V. Garzelli; T. Gehrmann; E. Gerwick; S. Gieseke; D. Gillberg; E. W. N. Glover; N. Greiner; K. Hamilton; T. Hapola; H. B. Hartanto; G. Heinrich; A. Huss; J. Huston; B. Jäger; M. Kado; A. Kardos; U. Klein; F. Krauss; A. Kruse; L. Lönnblad; G. Luisoni; Daniel Maître; P. Mastrolia; O. Mattelaer; J. Mazzitelli; E. Mirabella; P. Monni; G. Montagna; M. Moretti; P. Nadolsky; P. Nason; O. Nicrosini; C. Oleari; G. Ossola; S. Padhi; T. Peraro; F. Piccinini; S. Plätzer; S. Prestel; J. Pumplin; K. Rabbertz; Voica Radescu; L. Reina; C. Reuschle; J. Rojo; M. Schönherr; J. M. Smillie; J. F. von Soden-Fraunhofen; G. Soyez; R. Thorne; F. Tramontano; Z. Trocsanyi; D. Wackeroth; J. Winter; C-P. Yuan; V. Yundin; K. Zapp

2014-05-05T23:59:59.000Z

299

The $B-L$ Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider  

E-Print Network [OSTI]

We review the TeV scale $B-L$ extension of the Minimal Supersymmetric Standard Model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the Large Hadron Collider (LHC).

Khalil, S

2015-01-01T23:59:59.000Z

300

Physics Opportunities at a Muon Collider Kirk T. McDonald  

E-Print Network [OSTI]

@puphep.princeton.edu January 7, 1999 DPF'99 Session 11B: Future Accelerator Projects Muon Collider main page: http at any energy. · Intense neutrino beams and spallation neutron beams are available as byproducts. Muons. ­ A rich supersymmetric sector. ­ ... And more .... · That our investment in future accelerators

McDonald, Kirk

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

T864 (MiniMax): A Search for Disoriented Chiral Condensate at the Fermilab Collider  

E-Print Network [OSTI]

A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, $\\eta \\approx 4.1$. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

J. D. Bjorken

1996-10-16T23:59:59.000Z

302

Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)  

ScienceCinema (OSTI)

This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.

None

2011-10-06T23:59:59.000Z

303

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network [OSTI]

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

304

Structure and Dynamics of Colliding Plasma Jets C. K. Li,1,* D. D. Ryutov,2  

E-Print Network [OSTI]

Structure and Dynamics of Colliding Plasma Jets C. K. Li,1,* D. D. Ryutov,2 S. X. Hu,3 M. J at various angles shed light on the structures and dynamics of these collisions. The observations compare noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a character

305

Measurement of proton and anti-proton intensities in the Tevatron Collider  

SciTech Connect (OSTI)

This paper describes the techniques used to measure the intensities of the proton (p) and anti-proton ({bar p}) beams in the Tevatron collider. The systems provide simultaneous measurements of the intensity of the 36 proton and 36 antiproton bunches and their longitudinal profiles.

Stephen Pordes et al.

2003-06-04T23:59:59.000Z

306

Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators  

SciTech Connect (OSTI)

The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

Schroeder, C. B.; Esarey, E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

307

Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport  

E-Print Network [OSTI]

Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport by Ananth P. Chikkatur Submitted to the Department of Physics in partial fulfillment Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport

308

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET V.B. Graves , Oak is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Modifications

McDonald, Kirk

309

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad  

E-Print Network [OSTI]

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad BNL FNAL KEK CERN Carlsbad Kirk T. McDonald Princeton U. mcdonald@puphep.princeton.edu Workshop on the Next Generation U.S. Underground Science Facility Carlsbad, NM, June 13, 2000 http://puhep1.princeton

McDonald, Kirk

310

The Neutrino Factory and Muon Collider Collaboration The R&D Program for  

E-Print Network [OSTI]

Channels Beam Aluminum Plate HASSANEIN (ANL) NEUTRINO-FACTORY TARGET DESIGN Cylindrical Graphite Target Time MaximumTotalPressure,katm Deposition time, µs Carbon P T R = 7 mm Q av = 20 J/g Cylindrical Target Collider Collaboration Simple Target Tests Simple targets: Pipe, trough, waterfall: Plus: carbon and nickel

McDonald, Kirk

311

Workshop on Calorimetery for the Superconducting Super Collider  

SciTech Connect (OSTI)

The international workshop brought together 170 participants to further develop the SSC design and performance specifications of the LAr, Gas, Scintillation, Silicon, and Warm Liquid calorimeter technologies, and to develop the general topics of Requirements, Simulation, and Electronics. Progress was made across a broad front in all areas; at the feasibility level for some and In the fine structure for others. The meeting established areas of agreement, provided some general direction, and helped to quantify some differences at widely varying levels of detector technology development. The workshop helped to level the different understandings of the participants; increased the depth of the generalists and the breadth of the specialists. A high degree of group partitioning limited access to the detailed discussion within some detector groups. The communication was clearly necessary and rewarding, and seemed to meet or exceed the expectations of most participants. This report will deal with: the Liquid Argon detector and, to a lesser extent, the Requirements working groups, an update on uranIum material logistics, and a view of LAr calorimetry by others.

Mulholland, G.T.; /Fermilab

1989-03-19T23:59:59.000Z

312

Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies  

E-Print Network [OSTI]

The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

Sailer, André; Lohse, Thomas

2013-01-10T23:59:59.000Z

313

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

314

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

315

Cast dielectric composite linear accelerator  

DOE Patents [OSTI]

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

316

An evaluation of linear instability waves as sources of sound in a supersonic turbulent jet  

E-Print Network [OSTI]

An evaluation of linear instability waves as sources of sound in a supersonic turbulent jet Kamran 2002; published 5 September 2002 Mach wave radiation from supersonic jets is revisited to better justification of the linear theory. However, it is found that the sound pressure level predicted by LNS

Dabiri, John O.

317

LINEAR APPROXIMATION OF OPEN-CHANNEL FLOW ROUTING WITH BACKWATER EFFECT  

E-Print Network [OSTI]

available methods are derived from either kinematic wave or diffusion analogy models. Different linear to a local feedback between the discharge and the water level deviations. A moment matching method

Paris-Sud XI, Université de

318

Unit I-4 More about linear maps 1 More about linear maps  

E-Print Network [OSTI]

Unit I-4 More about linear maps 1 Unit I-4 More about linear maps Unit I-4 More about linear maps 2 Using bases to define linear maps · V, U vector spaces · a unique linear map T: V U is determined · if v = a1v1 + ... + anvn then T(v) = a1T(v1) + ... + anT(vn) Unit I-4 More about linear maps 3 Example

Birkett, Stephen

319

Linear Accelerator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'Neill About Us LiisaLin WangLinear

320

Duality for Mixed-Integer Linear Programs  

E-Print Network [OSTI]

The theory of duality for linear programs is well-developed and has been ... tended to mixed-integer linear programs, but this has proven difficult, in part because ...

2007-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New architecture for RF power amplifier linearization  

E-Print Network [OSTI]

Power amplifier linearization has become an important part of the transmitter system as 3G and developing 4G communication standards require higher linearity than ever before. The thesis proposes two power amplifier ...

Boo, Hyun H

2009-01-01T23:59:59.000Z

322

Optimization Online - Vector Space Decomposition for Linear ...  

E-Print Network [OSTI]

Feb 26, 2015 ... Abstract: This paper describes a vector space decomposition algorithmic framework for linear programming guided by dual feasibility ...

Jean Bertrand Gauthier

2015-02-26T23:59:59.000Z

323

Repair of overheating linear accelerator  

SciTech Connect (OSTI)

Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

2004-01-01T23:59:59.000Z

324

Probing Charged Higgs Boson Couplings at the FCC-hh Collider  

E-Print Network [OSTI]

Many of the new physics models predicts a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at the FCC-hh collider. With an integrated luminosity of 500 fb$^{-1}$ at very high energy frontier, we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1 TeV.

Cakir, I T; Saygin, H; Senol, A; Cakir, O

2015-01-01T23:59:59.000Z

325

On signatures for the Littlest Higgs model in electron-positron colliders  

E-Print Network [OSTI]

There is a recent proposal of identifying the Higgs particle of the Standard Model as a pseudo Nambu-Goldstone boson. This new broken symmetry introduces new particles and new interactions. Among these new interactions a central role to get a new physics is played by the new neutral gauge boson. We have studied the new neutral currents in the Littlest Higgs model and compared with other extended models. For high energy $e^+ + e^-$ colliders we present a clear signature for new neutral gauge bosons that can indicate the theoretical origin of these particles. Previous analysis by other authors were done at collider energies equal to the new gauge boson mass $M_{A_H}$. In this paper we show that asymmetries in fermion anti-fermion production can display model differences in the case $M_{A_H} > \\sqrt{s}$. For $M_{A_H} New bounds for the new neutral gauge boson masses are also presented.

F. M. L. de Almeida Jr.; Y. A. Coutinho; J. A. Martins Simões; A. J. Ramalho; S. Wulck; M. A. B. do Vale

2006-07-27T23:59:59.000Z

326

A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson  

E-Print Network [OSTI]

We consider the possibility of a 120x120 GeV e+e- ring collider in the LHC tunnel. A luminosity of 10^34/cm2/s can be obtained with a luminosity life time of a few minutes. A high operation efficiency would require two machines: a low emittance collider storage ring and a separate accelerator injecting electrons and positrons into the storage ring to top up the beams every few minutes. A design inspired from the high luminosity b-factory design and from the LHeC design report is presented. Statistics of over 10^4 HZ events per year per experiment can be contemplated for a Standard Higgs Boson mass of 115-130 GeV.

Alain Blondel; Frank Zimmermann

2012-02-15T23:59:59.000Z

327

Betatron squeeze optimisation at the Large Hadron Collider based on first year of operation data  

E-Print Network [OSTI]

In order to achieve the high luminosity expected from the Large Hadron Collider, the beta function at the interaction points must be minimised. As the aperture in the surroundings of the interaction points become smaller and smaller with decreasing beta function at the interaction point, the latter is kept higher during injection and energy ramp and reduced before the production of collision, by the means of the betatron squeeze. This operation as shown to be very critical in previous colliders, however, good performances were achieved early during the commissioning of the machine allowing to optimise this operation along the year. Firstly, a systematic fill by fill analysis of the beam parameters is performed in order to point out, understand and solve potential issues, allowing, in particular, to minimise the beam losses during the operation. Secondly, simulations of beam parameters based on the strength of the magnets extracted from the control system are introduced and validated with measurements. The sim...

Buffat, Xavier; Redaelli, Stefano

2011-01-01T23:59:59.000Z

328

Pre-Town Meeting on Spin Physics at an Electron-Ion Collider  

E-Print Network [OSTI]

A polarized $ep/eA$ collider (Electron--Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center--of--mass energy $\\sqrt{s} \\sim 20$ to $\\sim100$~GeV (upgradable to $\\sim 150$ GeV) and a luminosity up to $\\sim 10^{34} \\, \\textrm{cm}^{-2} \\textrm{s}^{-1}$, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three--dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini--review contains a short update on progress in these areas since the EIC White paper~\\cite{Accardi:2012qut}.

Elke-Caroline Aschenauer; Ian Balitsky; Leslie Bland; Stanley J. Brodsky; Matthias Burkardt; Volker Burkert; Jian-Ping Chen; Abhay Deshpande; Markus Diehl; Leonard Gamberg; Matthias Grosse Perdekamp; Jin Huang; Charles Hyde; Xiangdong Ji; Xiaodong Jiang; Zhong-Bo Kang; Valery Kubarovsky; John Lajoie; Keh-Fei Liu; Ming Liu; Simonetta Liuti; Wally Melnitchouk; Piet Mulders; Alexei Prokudin; Andrey Tarasov; Jian-Wei Qiu; Anatoly Radyushkin; David Richards; Ernst Sichtermann; Marco Stratmann; Werner Vogelsang; Feng Yuan

2014-10-31T23:59:59.000Z

329

Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider  

SciTech Connect (OSTI)

In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

Alexahin, Y.; /Fermilab; Ohmi, K.; /KEK, Tsukuba

2012-05-01T23:59:59.000Z

330

Computational accelerator science needs towards laser-plasma accelerators for future colliders  

E-Print Network [OSTI]

Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.

Geddes, C G R; Schroeder, C B; Esarey, E; Leemans, W P

2013-01-01T23:59:59.000Z

331

The colliding-wind binary WR140: the particle acceleration laboratory  

E-Print Network [OSTI]

WR+O star binary systems exhibit synchrotron emission arising from relativistic electrons accelerated where the wind of the WR star and that of its massive binary companion collide - the wind-collision region (WCR). These ``colliding-wind'' binaries (CWB), provide an excellent laboratory for the study of particle acceleration, with the same physical processes as observed in SNRs, but at much higher mass, photon and magnetic energy densities. WR140 is the best studied CWB, and high resolution radio observations permit a determination of several system parameters, particularly orbit inclination and distance, that are essential constraints for newly developed models of CWBs. We show a model fit to the radio data at orbital phase 0.9, and show how these models may be used to predict the high energy emission from WR140.

S. M. Dougherty; J. M. Pittard

2005-10-18T23:59:59.000Z

332

(Parallel Linear Algebra Package) Jess Cmara Moreno  

E-Print Network [OSTI]

álgebra lineal (Linear Algebra Objects). También permite la utilización de vistas (objetos referenciadosPLAPACK (Parallel Linear Algebra Package) Jesús Cámara Moreno Programación Paralela y Computación Reducción de Vectores Inicialización de PLAPACK. Funciones. Templates. Funciones. Linear Algebra Objects

Giménez, Domingo

333

Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor  

SciTech Connect (OSTI)

This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

2013-07-29T23:59:59.000Z

334

Construction of block-coil high-field model dipoles for future hadron colliders  

SciTech Connect (OSTI)

A family of high-field dipoles is being developed at Texas A&M University, as part of the program to improve the cost-effectiveness of superconducting magnet technology for future hadron colliders. The TAMU technology employs stress management, flux-plate control of persistent-current multipoles, conductor optimization using mixed-strand cable, and metal-filled bladders to provide pre-load and surface compliance. Construction details and status of the latest model dipole will be presented.

Blackburn, Raymond; Elliott, Tim; Henchel, William; McInturff, Al; McIntyre, Peter; Sattarov, Akhdior

2002-08-04T23:59:59.000Z

335

A bipolar monolithic preamplifier for high-capacitance SSC (Superconducting Super Collider) silicon calorimetry  

SciTech Connect (OSTI)

This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs.

Britton, C.L. Jr. (Oak Ridge National Lab., TN (USA)); Kennedy, E.J. (Tennessee Univ., Knoxville, TN (USA). Dept. of Electrical and Computer Engineering Oak Ridge National Lab., TN (USA)); Bugg, W.M. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

1990-01-01T23:59:59.000Z

336

Second order QCD corrections to gluonic jet production at hadron colliders  

E-Print Network [OSTI]

We report on the calculation of the next-to-next-to-leading order (NNLO) QCD corrections to the production of two gluonic jets at hadron colliders. In previous work, we discussed gluonic dijet production in the gluon-gluon channel. Here, for the first time, we update our numerical results to include the leading colour contribution to the production of two gluonic jets via quark-antiquark scattering.

James Currie; Aude Gehrmann-De Ridder; Thomas Gehrmann; Nigel Glover; Joao Pires; Steven Wells

2014-07-21T23:59:59.000Z

337

mTGen: mass scale measurements in pair-production at colliders  

E-Print Network [OSTI]

ar X iv :0 70 8. 10 28 v4 [ he p- ph ] 6 A ug 20 09 Cavendish-HEP-2007-05 PACS: 13.85.Hd 13.85.-t 11.30.Pb 11.80.Cr 12.60.-i mTGen : Mass scale measurements in pair-production at colliders Christopher G. Lester† and Alan J. Barr‡ † Cavendish...

Lester, Christopher G; Barr, Alan

2007-01-01T23:59:59.000Z

338

Physics and Analysis at a Hadron Collider - Making Measurements (3/3)  

ScienceCinema (OSTI)

This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

None

2011-10-06T23:59:59.000Z

339

Study of single top production at high energy electron positron colliders  

E-Print Network [OSTI]

Top production will play a important role in future high energy electron--positron colliders. Detailed calculations are already available for the process $e^+e^-\\rightarrow t\\bar{t}$, but single top events have mostly been neglected so far. We evaluate the relevance of these events and advocate the exploration of the related process $e^+e^-\\rightarrow W^+bW^-\\bar{b}$.

Ignacio Garcia; Martin Perello; Eduardo Ros; Marcel Vos

2014-12-02T23:59:59.000Z

340

Refraction index analysis of light propagation in a colliding gravitational wave spacetime  

E-Print Network [OSTI]

The optical medium analogy of a given spacetime was developed decades ago and has since then been widely applied to different gravitational contexts. Here we consider the case of a colliding gravitational wave spacetime, generalizing previous results concerning single gravitational pulses. Given the complexity of the nonlinear interaction of two gravitational waves in the framework of general relativity, typically leading to the formation of either horizons or singularities, the optical medium analogy proves helpful to simply capture some interesting effects of photon propagation.

Donato Bini; Andrea Geralico; Maria Haney

2014-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report  

E-Print Network [OSTI]

We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC.

G. Brooijmans; R. Contino; B. Fuks; F. Moortgat; P. Richardson; S. Sekmen; A. Weiler; A. Alloul; A. Arbey; J. Baglio; D. Barducci; A. J. Barr; L. Basso; M. Battaglia; G. Bélanger; A. Belyaev; J. Bernon; A. Bharucha; O. Bondu; F. Boudjema; E. Boos; M. Buchkremer; V. Bunichev; G. Cacciapaglia; G. Chalons; E. Conte; M. J. Dolan; A. Deandrea; K. De Causmaecker; A. Djouadi; B. Dumont; J. Ellis; C. Englert; A. Falkowski; S. Fichet; T. Flacke; A. Gaz; M. Ghezzi; R. Godbole; A. Goudelis; M. Gouzevitch; D. Greco; R. Grober; C. Grojean; D. Guadagnoli; J. F. Gunion; B. Herrmann; J. Kalinowski; J. H. Kim; S. Kraml; M. E. Krauss; S. Kulkarni; S. J. Lee; S. H. Lim; D. Liu; F. Mahmoudi; Y. Maravin; A. Massironi; L. Mitzka; K. Mohan; G. Moreau; M. M. Mühlleitner; D. T. Nhung; B. O'Leary; A. Oliveira; L. Panizzi; D. Pappadopulo; S. Pataraia; W. Porod; A. Pukhov; F. Riva; J. Rojo; R. Rosenfeld; J. Ruiz-Álvarez; H. Rzehak; V. Sanz; D. Sengupta; M. Spannowsky; M. Spira; J. Streicher; N. Strobbe; A. Thamm; M. Thomas; R. Torre; W. Waltenberger; K. Walz; A. Wilcock; A. Wulzer; F. Würthwein; C. Wymant

2014-05-07T23:59:59.000Z

342

Linear harmonic analysis of Stirling engine thermodynamics  

SciTech Connect (OSTI)

The analysis involves linearization of the pressure waveform and represents each term in the conservation equations by a truncated Fourier series, including enthalpy flux discontinuity. Second-Law analysis is presented of four important loss mechanisms that result from adiabatic cylinders, transient heat transfer in semiadiabatic cylinders, pressure drop through the heat exchangers, and gas leakage from the compression space. The four loss mechanisms, all leading to efficiency reduction below the Carnot level, are characterized by irreversible thermodynamic processes that occur when heat is transferred across a finite temperature difference; when gases at two different temperatures are mixed; or when there is a mass flow through a pressure difference. The allocation of each individual loss mechanism is derived precisely in terms of entropy production but evaluated by use of pressure, temperature, and mass oscillations calculated from the linear harmonic approximation. When the theory is applied to an engine of Sunpower's RE-1000 dimensions, it reveals clearly that the adiabatic loss (due to temperature fluctuations in the cylinders) consists of two components: gas mixing and heat transfer across a temperature difference. The theory further shows that the adiabatic effect is more important than the transient heat transfer loss if the gas-to-cylinder heat transfer rate is small (i.e., nearly adiabatic conditions); the reverse is true for intermediate heat transfer rates; and both losses vanish at very high heat transfer rates. In addition, entropy analyses of pressure drop and mass leakage for isothermal cylinders shed some light on coupling between the different individual loss mechanisms.

Chen, N.C.J.; Griffin, F.P.; West, C.D.

1984-08-01T23:59:59.000Z

343

Proton annihilation at hadron colliders and Kamioka: high-energy versus high-luminosity  

E-Print Network [OSTI]

We examine models and prospects for proton annihilation to dileptons, a process which violates baryon and lepton number each by two. We determine that currently Super-Kamiokande would place the most draconian bound on $pp \\rightarrow \\ell^+ \\ell^+$, ruling out new physics below a scale of $\\sim 1.6$ TeV. We also find present and future hadron collider sensitivity to these processes. While 8 TeV LHC data excludes new physics at a scale below $\\sim 800$ GeV, the reach of a 14 TeV LHC run is $\\sim 1.8$ TeV, putting it on par with the sensitivity of Super-Kamiokande. On the other hand, a 100 TeV proton-proton collider would be sensitive to proton annihilation at a scale up to 10 TeV, allowing it to far exceed the reach of both Super-Kamiokande and the projected 2 TeV reach of Hyper-Kamiokande. Constraints from neutron star observation and cosmological evolution are not competitive. Therefore, although high-luminosity water Cherenkov experiments currently place the leading bounds on baryon and lepton number violation, next generation high-energy hadron colliders will begin surpassing them in sensitivity to some $B/L$-violating processes.

Joseph Bramante; Jason Kumar; John Learned

2014-12-05T23:59:59.000Z

344

Constraining Light Dark Matter with Low-Energy e+e- Colliders  

E-Print Network [OSTI]

We investigate the power of low-energy, high-luminosity electron--positron colliders to probe hidden sectors with a mass below ~10 GeV that couple to Standard Model particles through a light mediator. Such sectors provide well-motivated dark matter candidates, and can give rise to distinctive mono-photon signals at B-factories and similar experiments. We use data from an existing mono-photon search by BaBar to place new constraints on this class of models, and give projections for the sensitivity of a similar search at a future B-factory such as Belle II. We find that the sensitivity of such searches are more powerful than searches at other collider or fixed-target facilities for hidden-sector mediators and particles with masses between a few hundred MeV and 10 GeV. Mediators produced on-shell and decaying invisibly to hidden-sector particles such as dark matter can be probed particularly well. Sensitivity to light dark matter produced through an off-shell mediator is more limited, but may be improved with a better control of backgrounds, allowing background estimation and a search for kinematic edges. We compare our results to existing and future direct detection experiments and show that low-energy colliders provide an indispensable and complementary avenue to search for light dark matter. The implementation of a mono-photon trigger at Belle II would provide an unparalleled window into such light hidden sectors.

Rouven Essig; Jeremy Mardon; Michele Papucci; Tomer Volansky; Yi-Ming Zhong

2015-02-21T23:59:59.000Z

345

Study of high pressure gas filled RF cavities for muon collider  

E-Print Network [OSTI]

Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

Yonehara, Katsuya

2015-01-01T23:59:59.000Z

346

Fault tolerance in parity-state linear optical quantum computing  

SciTech Connect (OSTI)

We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

Hayes, A. J. F.; Ralph, T. C. [Centre for Quantum Computer Technology and Physics Department, University of Queensland, QLD 4072, Brisbane (Australia); Haselgrove, H. L. [C3I Division, Defence Science and Technology Organisation, Canberra, ACT 2600 (Australia); Gilchrist, Alexei [Physics Department, Macquarie University, Sydney, NSW 2109 (Australia)

2010-08-15T23:59:59.000Z

347

Radio-frequency quadrupole resonator for linear accelerator  

DOE Patents [OSTI]

An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

Moretti, A.

1982-10-19T23:59:59.000Z

348

Reticle stage based linear dosimeter  

DOE Patents [OSTI]

A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

Berger, Kurt W. (Livermore, CA)

2007-03-27T23:59:59.000Z

349

On extreme Bosonic linear channels  

E-Print Network [OSTI]

The set of all channels with fixed input and output is convex. We first give a convenient formulation of necessary and sufficient condition for a channel to be extreme point of this set in terms of complementary channel, a notion of big importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra due to Arveson. We then apply this formulation to prove the main result of this note: under certain nondegeneracy conditions, purity of the environment is necessary and sufficient for extremality of Bosonic linear (quasi-free) channel. It follows that Gaussian channel between finite-mode Bosonic systems is extreme if and only if it has minimal noise.

A. S. Holevo

2011-11-15T23:59:59.000Z

350

Linear Transformer Ideal Transformer Consider linear and ideal transformers attached to Circuit 1 and Circuit 2.  

E-Print Network [OSTI]

Linear Transformer Ideal Transformer I1 + V2 _ + V1 _ Consider linear and ideal transformers in linear transformer equations for :MLL ,, 21 ( ) ( ) ( ) ( ) ( ) ( ) 12212212 2 1 112 2 12 2 1 2212 2 PP Now solve the linear transformer equations for the currents: 1 212 2 22 2 1 2 1 212 2 22 12 2 2 2

Kozick, Richard J.

351

Next-to-Next-to-Leading-Order Subtraction Formalism in Hadron Collisions and its Application to Higgs-Boson Production at the Large Hadron Collider  

SciTech Connect (OSTI)

We consider higher-order QCD corrections to the production of colorless high-mass systems (lepton pairs, vector bosons, Higgs bosons, etc.) in hadron collisions. We propose a new formulation of the subtraction method to numerically compute arbitrary infrared-safe observables for this class of processes. To cancel the infrared divergences, we exploit the universal behavior of the associated transverse-momentum (q{sub T}) distributions in the small-q{sub T} region. The method is illustrated in general terms up to the next-to-next-to-leading order in QCD perturbation theory. As a first explicit application, we study Higgs-boson production through gluon fusion. Our calculation is implemented in a parton level Monte Carlo program that includes the decay of the Higgs boson into two photons. We present selected numerical results at the CERN Large Hadron Collider.

Catani, Stefano; Grazzini, Massimiliano [INFN, Sezione di Firenze and Dipartimento di Fisica, Universita di Firenze, I-50019 Sesto Fiorentino, Florence (Italy)

2007-06-01T23:59:59.000Z

352

Estimating the economic cost of sea-level rise  

E-Print Network [OSTI]

(cont.) In the case of a classical linear sea-level rise of one meter per century, the use of DIVA generally decreases the protection fraction of the coastline, and results in a smaller protection cost because of high ...

Sugiyama, Masahiro, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

353

A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components  

SciTech Connect (OSTI)

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

Woods, M.; Erickson, R.; Frisch, J.; Hast, C.; Jobe, R.K.; Keller, L.; Markiewicz, T.; Maruyama, T.; McCormick, D.; Nelson, J.; Nelson, T.; Phinney, N.; Raubenheimer, T.; Ross, M.; Seryi, A.; Smith, S.; Szalata, Z.; Tenenbaum, P.; Woodley, M.; /SLAC; Angal-Kalinin, D.; Beard, C.; /Daresbury /CERN /DESY /KEK, Tsukuba /LLNL, Livermore /Lancaster U.

2005-05-23T23:59:59.000Z

354

Off-shell effects in Higgs decays to heavy gauge bosons and signal-background interference in Higgs decays to photons at a linear collider  

E-Print Network [OSTI]

We discuss off-shell contributions in Higgs decays to heavy gauge bosons $H\\rightarrow VV^{(*)}$ with $V\\in\\lbrace Z,W\\rbrace$ for a standard model (SM) Higgs boson for both dominant production processes $e^+e^-\\rightarrow ZH\\rightarrow ZVV^{(*)}$ and $e^+e^-\\rightarrow \

Liebler, Stefan

2015-01-01T23:59:59.000Z

355

Summer 2012 Mathematics 317, Linear Algebra  

E-Print Network [OSTI]

or download a .pdf version for use on a Kindle or Sony Reader or a printable .pdf version. You do not need://linear.ups.edu/xml/latest/fcla-xml-latest.xml Amazon Kindle DX format (optimized PDF): http://linear.ups.edu/download/fcla-kindleDX-2.30.pdf SONY Reader format (optimized PDF for PRS-500, PRS-505): http://linear.ups.edu/download/fcla-sony505-2.30.pdf

Long, Nicholas

356

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

357

Optimization Online - Linear equalities in blackbox optimization  

E-Print Network [OSTI]

May 28, 2014 ... ... neither in theory nor in practice. The present work proposes extensions to treat problems with linear equalities whose expression is known.

Charles Audet

2014-05-28T23:59:59.000Z

358

LED Replacements for Linear Fluorescent Lamps Webcast  

Broader source: Energy.gov [DOE]

In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

359

Elastic Wave Behavior Across Linear Slip Interfaces  

E-Print Network [OSTI]

plane waves incident at arbitrary angles upon a plane linear slip interface are computed ... Also included in these sections is an analysis ... ish, Ut is of the form.

Schoenberg, M.

360

Optimization Online - Accelerated Linearized Bregman Method  

E-Print Network [OSTI]

Jun 27, 2011 ... Abstract: In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related ...

Bo Huang

2011-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stochastic linear programming games with concave preferences  

E-Print Network [OSTI]

We study stochastic linear programming games: a class of stochastic ... which include minimum cost spanning trees (Granot and Huberman 1981) as a special

2014-12-04T23:59:59.000Z

362

Linear conic optimization for nonlinear optimal control  

E-Print Network [OSTI]

Jul 7, 2014 ... 3Faculty of Electrical Engineering, Czech Technical University in Prague, ..... This linear transport equation is classical in fluid mechanics, ...

2014-07-07T23:59:59.000Z

363

Linear dependence of exponentials - Department of Mathematics ...  

E-Print Network [OSTI]

in the books of the Russian mathematician A. Leontiev. Dear Steven and Sherman,. I recently saw the problem on “linear independence of exponentials”.

2012-09-30T23:59:59.000Z

364

Linear PM Generator for Wave Energy Conversion.  

E-Print Network [OSTI]

??The main objective of this thesis is to design a selected version of linear PM generator and to determine the electromechanical characteristics at variable operating… (more)

Parthasarathy, Rajkumar

2012-01-01T23:59:59.000Z

365

Linear Functionals in ECG and Diplomarbeit  

E-Print Network [OSTI]

Linear Functionals in ECG and VCG Diplomarbeit zur Erlangung des akademischen Grades Diplom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5. 12-lead ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Heart

Münster, Westfälische Wilhelms-Universität

366

Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders  

E-Print Network [OSTI]

The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

Christopher M. Harris

2005-02-01T23:59:59.000Z

367

Non-thermal high-energy emission from colliding winds of massive stars  

E-Print Network [OSTI]

Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

A. Reimer; M. Pohl; O. Reimer

2005-10-25T23:59:59.000Z

368

Addendum to Distinguishing Spins in Decay Chains at the Large Hadron Collider.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 06 06 21 2v 1 2 0 Ju n 20 06 Preprint typeset in JHEP style - PAPER VERSION Cavendish–HEP–06/15 Addendum to “Distinguishing Spins in Decay Chains at the Large Hadron Collider”? Christiana Athanasiou1, Christopher G. Lester2... mass distributions of the three observable two-body combinations: dileptons (mll), quark- or antiquark-jet plus positive lepton (mjl+), and jet plus negative lepton (mjl?).1 If P (m|S) represents the normalized probability distribution of any one...

Athanasiou, Christiana; Lester, Christopher G; Smillie, Jennifer M; Webber, Bryan R

369

Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider  

SciTech Connect (OSTI)

More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

Cao Qinghong [High Energy Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States); Khalil, Shaaban [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo 11566 (Egypt); Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Okada, Hiroshi [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt)

2011-04-01T23:59:59.000Z

370

Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet  

SciTech Connect (OSTI)

The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

Nicol, T.H.

1989-09-01T23:59:59.000Z

371

Concepts for ELIC - A High Luminosity CEBAF Based Electron-Light Ion Collider  

SciTech Connect (OSTI)

A CEBAF accelerator based electron-light ion collider (ELIC) of rest mass energy from 20 to 65 GeV and luminosity from 10^33 to 10^35 cm6-2s^-1 with both beams polarized is envisioned as a future upgrade to CEBAF. A two step upgrade scenario is under study: CEBAF accelerator-ring-ring scheme (CRR) as the first step, and a multi-turn ERL-ring as the second step, to attain a better electron emittance and maximum luminosity. In this paper we report results of our studies of the CRR version of ELIC.

Ya. Derbenev, A. Bogacz, G. Krafft, R. Li, L. Merminga, B. Yunn, Y. Zhang

2006-09-01T23:59:59.000Z

372

Model Independent Searches for New Physics at the Fermilab Tevatron Collider  

E-Print Network [OSTI]

The standard model is a successful but limited theory. There is significant theoretical motivation to believe that new physics may appear at the energy scale of a few TeV, the lower end of which is currently probed by the Fermilab Tevatron Collider. The methods used to search for physics beyond the standard model in a model independent way and the results of these searches based on 1.0 fb-1 of data collected with the D0 detector and 2.0 fb^-1 at the CDF detector are presented.

Joel Piper

2009-06-19T23:59:59.000Z

373

Measuring the Higgs boson mass in dileptonic W-boson decays at hadron colliders  

E-Print Network [OSTI]

ar X iv :0 90 2. 48 64 v2 [ he p- ph ] 22 Ju l 2 00 9 Cavendish-HEP-09/04 Measuring the Higgs boson mass in dileptonic W -boson decays at hadron colliders Alan J. Barr,1, ? Ben Gripaios,2, † and Christopher G. Lester3, ‡ 1Denys Wilkinson... measurements of the Higgs boson mass using the decay h ? W+W?, followed by the leptonic decay of each W -boson, will be performed by fitting the shape of a distribution that is sensitive to the Higgs mass. We demonstrate that the variable most commonly used...

Barr, Alan; Gripaios, Ben; Lester, Christopher G

2009-01-01T23:59:59.000Z

374

Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism.  

E-Print Network [OSTI]

ar X iv :0 90 2. 46 97 v1 [ he p- ph ] 26 Fe b 2 00 9 CAVENDISH-HEP-2009-03, DAMTP-2009-15, DO-TH-09/01 Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism B. C. Allanach? DAMTP, University of Cambridge... ) In the minimal supersymmetric extension to the Standard Model, a non-zero lepton number violating coupling ??111 predicts both neutrinoless double beta decay and resonant single slepton production at the LHC. We show that, in this case, if neutrinoless double...

Allanach, B C; Kom, C H; Pas, H

375

Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector  

E-Print Network [OSTI]

We add fermions to an abelian-gauged hidden sector. We show that the lightest can be the dark matter with the right thermal relic abundance, and discovery is within reach of upcoming dark matter detectors. We also show that these fermions change Higgs boson phenomenology at the Large Hadron Collider (LHC), and in particular could induce a large invisible width to the lightest Higgs boson state. Such an invisibly decaying Higgs boson can be discovered with good significance in the vector boson fusion channel at the LHC.

Shrihari Gopalakrishna; Seung J. Lee; James D. Wells

2009-04-13T23:59:59.000Z

376

Cold- and Beam Test of the First Prototypes of the Superstructure for the TESLA Collider  

SciTech Connect (OSTI)

After three years of preparation, two superstructures, each made of two superconducting 7-cell weakly coupled subunits, have been installed in the TESLA Test Facility linac (TTF) for the cold- and beam-test. The energy stability, the HOMs damping, the frequency and the field adjustment methods were tested. The measured results confirmed expectation on the superstructure performance and proved that alternative layout for the 800 GeV upgrade of the TESLA collider, as it was proposed in TDR, is feasible. We report on the test and give here an overview of its results which are commented in more detail elsewhere in these Proceedings.

Baboi, Nicoleta

2003-08-08T23:59:59.000Z

377

Has the QCD Critical Point Been Signaled by Observations at the BNL Relativistic Heavy Ion Collider?  

SciTech Connect (OSTI)

The shear viscosity to entropy ratio ({eta}/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider ({radical}(s{sub NN})=200 GeV). A very low value is found; {eta}/s{approx}0.1, which is close to the conjectured lower bound (1/4{pi}). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

Lacey, Roy A.; Ajitanand, N. N.; Alexander, J. M.; Chung, P.; Holzmann, W. G.; Issah, M.; Taranenko, A. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400 (United States); Danielewicz, P. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Stoecker, Horst [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet D60438 Frankfurt (Germany)

2007-03-02T23:59:59.000Z

378

Search for chargino and neutralino at Run II of the Tevatron Collider  

SciTech Connect (OSTI)

In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb{sup -1} of integrated luminosity collected by the CDF experiment at the p{bar p} Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

Canepa, Anadi; /Purdue U.

2006-08-01T23:59:59.000Z

379

Development of the SSC (Superconducting Super Collider) trim coil beam tube assembly  

SciTech Connect (OSTI)

The Superconducting Super Collider uses approx. =9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development.

Skaritka, J.; Kelly, E.; Schneider, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bintinger, D.; Coluccio, R.; Schieber, L.

1987-01-01T23:59:59.000Z

380

Linearization using Digital Predistortion of a High-Speed, Pulsed, Radio Frequency Power Amplifier for VHF Radar Depth-Sounder Systems  

E-Print Network [OSTI]

was developed and linearized using memoryless digital predistortion (DP) to obtain high linearity and high efficiency. The DP linearization decreased near-range side-lobe levels 11 dB from -46 dBc to -57 dBc, with a maximum reduction in the far-range side...

Player, Kevin

2010-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NONEQUILIBRIUM LINEAR BEHAVIOR OF BIOLOGICAL SYSTEMS  

E-Print Network [OSTI]

-phosphorylation in mitochondria (2, 3), sodium transport in frog skin, toad bladder (4) and toad skin (5), and hydrogen ion transport in turtle bladder (6). Linearity has also been noted in a synthetic membrane exhibiting active transport (7). (Linearity as used in these papers and here implies the flow, J, is related to the force, A1

Stanley, H. Eugene

382

LOCAL LINEAR PID CONTROLLERS FOR NONLINEAR CONTROL  

E-Print Network [OSTI]

1 LOCAL LINEAR PID CONTROLLERS FOR NONLINEAR CONTROL Jing Lan1, Jeongho Cho1, Deniz Erdogmus2, Jos}@cnel.ufl.edu, derdogmus@ieee.org, m.a.motter@larc.nasa.gov Abstract Nonlinear PID design is difficult if one approaches modeling approach with traditional linear PID controller design techniques to arrive at a principled

Slatton, Clint

383

Architecture of an Automatic Tuned Linear Algebra  

E-Print Network [OSTI]

/01 and PI-34/00788/F5/01. #12;Hierarchical Architecture of a Self-Optimised Lineal Algebra LibraryArchitecture of an Automatic Tuned Linear Algebra Library* Javier Cuenca Domingo Giménez José .... SPt c,z Architecture of a Self-Optimised Linear Algebra Routine (SOLAR) Installation_information n1

Giménez, Domingo

384

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

385

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

386

Hierarchical Linear Discriminant Analysis for Beamforming  

E-Print Network [OSTI]

model of h-LDA by relating it to the two-way multivariate analysis of variance (MANOVA), which fits well dimension reduction, hierarchical linear discriminant analysis (h-LDA) to a well-known spatial localization1 Hierarchical Linear Discriminant Analysis for Beamforming Jaegul Choo , Barry L. Drake

Park, Haesun

387

Soft materials for linear electromechanical energy conversion  

E-Print Network [OSTI]

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

388

Decomposing Linear Programs for Parallel Solution?  

E-Print Network [OSTI]

Decomposing Linear Programs for Parallel Solution? Ali P nar, Umit V. Catalyurek, Cevdet Aykanat in the solution of Linear Programming (LP) problems with block angular constraint matrices has been exploited industrial applications and the advent of powerful computers have in- creased the users' ability to formulate

�atalyürek, �mit V.

389

Decomposing Linear Programs for Parallel Solution ?  

E-Print Network [OSTI]

Decomposing Linear Programs for Parallel Solution ? Ali Pinar, ¨ Umit V. C¸ ataly¨urek, Cevdet in the solution of Linear Programming (LP) problems with block angular constraint matrices has been exploited with successful industrial applications and the advent of powerful computers have in­ creased the users' ability

�atalyürek, �mit V.

390

Best Linear Unbiased Estimate Motivation for BLUE  

E-Print Network [OSTI]

1 Chapter 6 Best Linear Unbiased Estimate (BLUE) #12;2 Motivation for BLUE Except for Linear Model to a sub-optimal estimate BLUE is one such sub-optimal estimate Idea for BLUE: 1. Restrict estimate) Advantage of BLUE:Needs only 1st and 2nd moments of PDF Mean & Covariance Disadvantages of BLUE: 1. Sub

Fowler, Mark

391

On linear programing approach to inventory control  

E-Print Network [OSTI]

On linear programing approach to inventory control problems Zhu received his PhD from Wayne State with inventory control problems under the discounted criterion. The objective is to minimize the discounted total imbeds the inventory control problem into an infinite-dimensional linear program over a space of measures

Mayfield, John

392

Company Name: Linear Technology Corporation Web Site: www.linear.com  

E-Print Network [OSTI]

Company Name: Linear Technology Corporation Web Site: www.linear.com Industry: Semiconductor Brief worldwide for three decades. The Company's products provide an essential bridge between our analog world

New Hampshire, University of

393

Assumptions that imply quantum dynamics is linear  

E-Print Network [OSTI]

A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proved very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schrodinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease.

Thomas F. Jordan

2006-01-26T23:59:59.000Z

394

Linearity of Climate Response to Increases in Black Carbon Aerosols  

SciTech Connect (OSTI)

The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

395

Stress-energy tensor in colliding plane wave space-times: An approximation procedure  

E-Print Network [OSTI]

In a recent work on the quantization of a massless scalar field in a particular colliding plane wave space-time, we computed the vacuum expectation value of the stress-energy tensor on the physical state which corresponds to the Minkowski vacuum before the collision of the waves. We did such a calculation in a region close to both the Killing-Cauchy horizon and the folding singularities that such a space-time contains. In the present paper, we give a suitable approximation procedure to compute this expectation value, in the conformal coupling case, throughout the causal past of the center of the collision. This will allow us to approximately study the evolution of such an expectation value from the beginning of the collision until the formation of the Killing-Cauchy horizon. We start with a null expectation value before the arrival of the waves, which then acquires nonzero values at the beginning of the collision and grows unbounded towards the Killing-Cauchy horizon. The value near the horizon is compatible with our previous result, which means that such an approximation may be applied to other colliding plane wave space-times. Even with this approximation, the initial modes propagated into the interaction region contain a function which cannot be calculated exactly and to ensure the correct regularization of the stress-energy tensor with the point-splitting technique, this function must be given up to adiabatic order four of approximation.

Miquel Dorca

1997-11-07T23:59:59.000Z

396

CMSSM, naturalness and the "fine-tuning price" of the Very Large Hadron Collider  

E-Print Network [OSTI]

The absence of supersymmetry or other new physics at the Large Hadron Collider (LHC) has lead many to question naturalness arguments. With Bayesian statistics, we argue that natural models are most probable and that naturalness is not merely an aesthetic principle. We calculate a probabilistic measure of naturalness, the Bayesian evidence, for the Standard Model (SM) with and without quadratic divergences, confirming that the SM with quadratic divergences is improbable. We calculate the Bayesian evidence for the Constrained Minimal Supersymmetric Standard Model (CMSSM) with naturalness priors in three cases: with only the $M_Z$ measurement; with the $M_Z$ measurement and LHC measurements; and with the $M_Z$ measurement, $m_h$ measurement and a hypothetical null result from a $\\sqrt{s}=100\\,\\text{TeV}$ Very Large Hadron Collider (VLHC) with $3000/\\text{fb}$. The "fine-tuning price" of the VLHC given LHC results would be $\\sim400$, which is slightly less than that of the LHC results given the electroweak scale ($\\sim500$).

Andrew Fowlie

2014-03-13T23:59:59.000Z

397

Proper motions of new dust in the colliding-wind binary WR 140  

E-Print Network [OSTI]

The eccentric WR+O binary system WR 140 produces dust for a few months at intervals of 7.94 yrs coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases ~0.039 and ~0.055, using aperture masking techniques on the Keck-I telescope to achieve diffraction-limited resolution. Proper motions of approximately 1.1 milliarcsecond per day were detected, implying a distance ~1.5 kpc from the known wind speed. The dust plume observed is not as simple as the ``pinwheel'' nebulae seen around other WR colliding wind binaries, indicating the orbital plane is highly inclined to our line-of-sight and/or the dust formation is very clumpy. Follow-up imaging in the mid-infrared and with adaptive optics is urgently required to track the dust motion further, necessary for unambiguously determining the orbital geometry which we only partially constrain here. With full knowledge of the orbital elements, these infrared images can be used to reconstruct the dust distribution along the colliding wind interface, providing a unique tool for probing the post-shock physical conditions of violent astrophysical flows.

J. D. Monnier; P. G. Tuthill; W. C. Danchi

2002-02-16T23:59:59.000Z

398

Design development for the 50mm Superconducting Super Collider dipole cryostat  

SciTech Connect (OSTI)

The cryostat of a Superconducting Super Collider (SSC) dipole magnet consists of all magnet components except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their expected operating life. This paper describes the design of the current 50mm SSC collider dipole cryostat and includes discussions on the structural and thermal considerations involved in the development of each of the major systems. Where appropriate, comparisons will be made with the 40mm cryostat. 7 refs., 5 figs., 4 tabs.

Nicol, T.H.

1991-03-01T23:59:59.000Z

399

Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all  

E-Print Network [OSTI]

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them, and it benefited from inputs from the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the U.S., established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

A. Accardi; J. L. Albacete; M. Anselmino; N. Armesto; E. C. Aschenauer; A. Bacchetta; D. Boer; W. K. Brooks; T. Burton; N. -B. Chang; W. -T. Deng; A. Deshpande; M. Diehl; A. Dumitru; R. Dupré; R. Ent; S. Fazio; H. Gao; V. Guzey; H. Hakobyan; Y. Hao; D. Hasch; R. Holt; T. Horn; M. Huang; A. Hutton; C. Hyde; J. Jalilian-Marian; S. Klein; B. Kopeliovich; Y. Kovchegov; K. Kumar; K. Kumeri?ki; M. A. C. Lamont; T. Lappi; J. -H. Lee; Y. Lee; E. M. Levin; F. -L. Lin; V. Litvinenko; T. W. Ludlam; C. Marquet; Z. -E. Meziani; R. McKeown; A. Metz; R. Milner; V. S. Morozov; A. H. Mueller; B. Müller; D. Müller; P. Nadel-Turonski; H. Paukkunen; A. Prokudin; V. Ptitsyn; X. Qian; J. -W. Qiu; M. Ramsey-Musolf; T. Roser; F. Sabatié; R. Sassot; G. Schnell; P. Schweitzer; E. Sichtermann; M. Stratmann; M. Strikman; M. Sullivan; S. Taneja; T. Toll; D. Trbojevic; T. Ullrich; R. Venugopalan; S. Vigdor; W. Vogelsang; C. Weiss; B. -W. Xiao; F. Yuan; Y. -H. Zhang; L. Zheng

2014-11-30T23:59:59.000Z

400

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider  

E-Print Network [OSTI]

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Linear Transformations In this Chapter, we will define the notion of a linear transformation between  

E-Print Network [OSTI]

Chapter 6 Linear Transformations In this Chapter, we will define the notion of a linear transformation between two vector spaces V and W which are defined over the same field and prove the most basic transformations is equivalent to matrix theory. We will also study the geometric properties of linear

Carrell, Jim

402

Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

,

403

Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

404

Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider  

SciTech Connect (OSTI)

This thesis reports on two searches for the production of squarks and gluinos, supersymmetric partners of the Standard Model (SM) quarks and gluons, using the CDF detector at the Tevatron {radical}s = 1.96 TeV p{bar p} collider. An inclusive search for squarks and gluinos pair production is performed in events with large E{sub T} and multiple jets in the final state, based on 2 fb{sup -1} of CDF Run II data. The analysis is performed within the framework of minimal supergravity (mSUGRA) and assumes R-parity conservation where sparticles are produced in pairs. The expected signal is characterized by the production of multiple jets of hadrons from the cascade decays of squarks and gluinos and large missing transverse energy E{sub T} from the lightest supersymmetric particles (LSP). The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% confidence level (CL) upper limits on production cross sections and squark and gluino masses in a given mSUGRA scenario. An upper limit on the production cross section is placed in the range between 1 pb and 0.1 pb, depending on the gluino and squark masses considered. The result of the search is negative for gluino and squark masses up to 392 GeV/c{sup 2} in the region where gluino and squark masses are close to each other, gluino masses up to 280 GeV/c{sup 2} regardless of the squark mass, and gluino masses up to 423 GeV=c2 for squark masses below 378 GeV/c{sup 2}. These results are compatible with the latest limits on squark/gluino production obtained by the D0 Collaboration and considerably improve the previous exclusion limits from direct and indirect searches at LEP and the Tevatron. The inclusive search is then extended to a scenario where the pair production of sbottom squarks is dominant. The new search is performed in a generic MSSM scenario with R-parity conservation. A specific SUSY particle mass hierarchy is assumed such that the sbottom decays exclusively as {tilde b}{sub 1} {yields} b{sub {tilde {chi}}{sub 1}{sup 0}}. The expected signal for direct sbottom pair production is characterized by the presence of two jets of hadrons from the hadronization of the bottom quarks and E=T from the two LSPs in the final state. The events are selected with large E{sub T} and two energetic jets in the final state, and at least one jet is required to be associated with a b quark. The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% CL exclusion limits on production cross sections and sbottom and neutralino masses in the given MSSM scenario. Cross sections down to 0.1 pb are excluded for the sbottom mass range considered. Sbottom masses up to 230 GeV/c{sup 2} are excluded at 95% CL for neutralino masses below 70 GeV/c{sup 2}. This analysis increases the previous CDF limit by more than 40 GeV/c{sup 2}. The sensitivity of both the inclusive and the exclusive search is dominated by systematic effects and the results of the two analyses can be considered as conclusive for CDF Run II. With the new energy frontier of the newly commissioned Large Hadron Collider in Geneva, the experience from Tevatron will be of crucial importance in the developing of effective strategies to search for SUSY in the next era of particle physics experiments.

De Lorenzo, Gianluca; /Barcelona, IFAE

2010-05-01T23:59:59.000Z

405

LED Linear Lamps and Troffer Lighting  

Broader source: Energy.gov [DOE]

The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as well as cost-effectiveness. There is also a concise guidance document that describes the findings of the Series 21 studies and provides practical advice to manufacturers, specifiers, and consumers (Report 21.4: Summary of Linear (T8) LED Lamp Testing , 5 pages, June 2014).

406

Linear phase distribution of acoustical vortices  

SciTech Connect (OSTI)

Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

Gao, Lu; Zheng, Haixiang [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China); Tu, Juan; Zhang, Dong [Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China)

2014-07-14T23:59:59.000Z

407

Optically isolated signal coupler with linear response  

DOE Patents [OSTI]

An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

408

The Need for a Photon-Photon Collider in addition to LHC & ILC for Unraveling the Scalar Sector of the Randall-Sundrum Model  

E-Print Network [OSTI]

In the Randall-Sundrum model there can be a rich new phenomenology associated with Higgs-radion mixing. A photon-photon collider would provide a crucial complement to the LHC and a future ILC collider for fully determining the parameters of the model and definitively testing it.

Gunion, J F

2004-01-01T23:59:59.000Z

409

Support graph preconditioners for sparse linear systems  

E-Print Network [OSTI]

Elliptic partial differential equations that are used to model physical phenomena give rise to large sparse linear systems. Such systems can be symmetric positive de?nite and can be solved by the preconditioned conjugate gradients method...

Gupta, Radhika

2005-02-17T23:59:59.000Z

410

Photon emission within the linear sigma model  

E-Print Network [OSTI]

Soft-photon emission rates are calculated within the linear sigma model. The investigation is aimed at answering the question to which extent the emissivities map out the phase structure of this particular effective model of strongly interacting matter.

F. Wunderlich; B. Kampfer

2014-12-22T23:59:59.000Z

411

Linear Thermodynamics of Rodlike DNA Filtration  

E-Print Network [OSTI]

Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

Li, Zirui

412

18.06 Linear Algebra, Spring 2005  

E-Print Network [OSTI]

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and ...

Strang, Gilbert

413

A polynomial projection algorithm for linear programming  

E-Print Network [OSTI]

algorithm is based on a procedure whose input is a homogeneous system of linear ..... In this case s = 0 and the procedure sets the output vector yout to 0.

2013-05-03T23:59:59.000Z

414

The Computational Complexity of Linear Optics  

E-Print Network [OSTI]

We give new evidence that quantum computers---moreover, rudimentary quantum computers built entirely out of linear-optical elements---cannot be efficiently simulated by classical computers. In particular, we define a model ...

Aaronson, Scott

2011-01-01T23:59:59.000Z

415

NEAR-INFRARED LINEAR POLARIZATION OF ULTRACOOL DWARFS  

SciTech Connect (OSTI)

We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 {mu}m for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MASS J02411151-0326587 (L0), appears to be strongly polarized (P {approx} 3%) in the J band with a significance level of P/{sigma}{sub P} {approx} 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 {+-} 8 pc), this object becomes an excellent target for the direct detection of the disk.

Zapatero Osorio, M. R. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Bejar, V. J. S.; Rebolo, R.; Acosta-Pulido, J. A.; Manchado, A.; Pena Ramirez, K. [Instituto de Astrofisica de Canarias, C/. Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Goldman, B. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Caballero, J. A., E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: rrl@iac.es, E-mail: jaa@iac.es, E-mail: amt@iac.es, E-mail: karla@iac.es, E-mail: goldman@mpia.de, E-mail: caballero@cab.inta-csic.es [Centro de Astrobiologia (CSIC-INTA), P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain)

2011-10-10T23:59:59.000Z

416

A linear program for testing local realism  

E-Print Network [OSTI]

We present a linear program that is capable of determining whether a set of correlations can be captured by a local realistic model. If the correlations can be described by such a model, the linear program outputs a joint probability distribution that produces the given correlations. If the correlations cannot be described under the assumption of local realism, the program outputs a Bell inequality violated by the correlations.

Matthew B. Elliott

2009-05-18T23:59:59.000Z

417

Zeros in linear multivariable control systems  

E-Print Network [OSTI]

ZEROS IN LINEAR MULTIVARIABLE CONTROL SYSTEMS A Thesis by ROBERT FENNELL EWING Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974 Major... Control Systems (August 1974) Robert Fennell Ewing, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. J. W. Howze This thesis examines the problem of altering the transfer function matrix of a linear, time-invariant, multivariable system...

Ewing, Robert Fennell

1974-01-01T23:59:59.000Z

418

Lectures on Linear Algebra over Division Ring  

E-Print Network [OSTI]

In this book i treat linear algebra over division ring. A system of linear equations over a division ring has properties similar to properties of a system of linear equations over a field. However, noncommutativity of a product creates a new picture. Matrices allow two products linked by transpose. Biring is algebra which defines on the set two correlated structures of the ring. As in the commutative case, solutions of a system of linear equations build up right or left vector space depending on type of system. We study vector spaces together with the system of linear equations because their properties have a close relationship. As in a commutative case, the group of automorphisms of a vector space has a single transitive representation on a frame manifold. This gives us an opportunity to introduce passive and active representations. Studying a vector space over a division ring uncovers new details in the relationship between passive and active transformations, makes this picture clearer. Considering of twin representations of division ring in Abelian group leads to the concept of D vector space and their linear map. Based on polyadditive map I considered definition of tensor product of rings and tensor product of D vector spaces.

Aleks Kleyn

2014-10-11T23:59:59.000Z

419

Tests of an RF Dipole Crabbing Cavity for an Electron-Ion Collider  

SciTech Connect (OSTI)

On the scheme of developing a medium energy electron-ion collider (MEIC) at Jefferson Lab, we have designed a compact superconducting rf dipole cavity at 750 MHz to crab both electron and ion bunches and increase luminosities at the interaction points (IP) of the machine. Following the design optimization and characterization of the electromagnetic properties such as peak surface fields and shunt impedance, along with field nonuniformities, multipole components content, higher order modes (HOM) and multipacting, a prototype cavity was built by Niowave Inc. The 750 MHz prototype crab cavity has been tested at 4 K and is ready for re-testing at 4 K and 2 K at Jefferson Lab. In this paper we present the detailed results of the rf tests performed on the 750 MHz crab cavity prototype.

Castilla Loeza, Alejandro [ODU, JLAB; Delayen, Jean R. [ODU, JLAB

2013-12-01T23:59:59.000Z

420

Cross sections for production of closed superstrings at high energy colliders in brane world models  

E-Print Network [OSTI]

In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D brane. This includes all missing energy sources for this string theory model up to s=8M_s^2, and it can be used to put new limits on the string scale M_s.

Diego Chialva; Roberto Iengo; Jorge G. Russo

2005-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear dynamics at the balance energy of mass asymmetric colliding nuclei  

E-Print Network [OSTI]

Using the quantum molecular dynamics model, we study the nuclear dynamics at the balance energy of mass asymmetric colliding nuclei by keeping the total mass of the system fixed as 40, 80, 160, and 240. The calculations are performed by varying the mass asymmetry ($\\eta$ = $\\frac{A_{T}-A_{P}}{A_{T}+A_{P}}$; where $A_{T}$ and $A_{P}$ are the masses of the target and projectile, respectively) of the reaction from 0.1 to 0.7. In particular, we study the various quantities like average and maximum density, collision rate, participant-spectator matter, anisotropic ratio, relative momentum as well as their mass asymmetry and mass dependence. We find sizeable effects of mass asymmetry on these quantities. Our results indicate that the mass dependence of various quantities increases slightly with increase in $\\eta$.

Supriya Goyal

2011-12-18T23:59:59.000Z

422

Correlation between balance energy and transition energy for symmetric colliding nuclei  

SciTech Connect (OSTI)

We study the correlation between balance energy and transition energy of fragments in heavy-ion collisions for different systems at incident energies between 40 and 1200 MeV/nucleon using an isospin-dependent quantum molecular dynamics model. With increasing incident energy, the elliptic flow shows a transition from positive (in-plane) to negative (out-of-plane) flow. This transition energy is found to depend on the size of the fragments, composite mass of the reacting system, and the impact parameter of the reaction. It has been observed that a reduced cross section can explain the experimental data. There is a correlation between transition energy and balance energy as their difference decreases with an increase in the total mass of colliding nuclei.

Rajni,; Kumar, Suneel; Puri, Rajeev K. [School of Physics and Materials Science, Thapar University, Patiala-147004, Punjab (India); Department of Physics, Panjab University, Chandigarh-160014 (India)

2011-09-15T23:59:59.000Z

423

Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects  

SciTech Connect (OSTI)

EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive scattering probabilities are small, and any integrated detector/interaction region design needs to provide uniform coverage to detect spectator and diffractive products. This is because e-p and even more e-A colliders have a large fraction of their science related to what happens to the nucleon or ion beams. As a result, the philosophy of integration of complex detectors into an extended interaction region faces challenging constraints. Designs feature crossing angles between the protons or heavy ions during collisions with electrons, to remove potential problems for the detector induced by synchrotron radiation. Designs allocate quite some detector space before the final-focus ion quads, at the cost of luminosity, given that uniform detection coverage is a must for deep exclusive and diffractive processes. The integrated EIC detector/interaction region design at JLab focused on establishing full acceptance for such processes over a wide range of proton energies (20-100 GeV) with well achievable interaction region magnets. The detector design at BNL uses the higher ion beam energies to achieve good detection efficiency for instance for protons following a DVCS reaction, for proton beam energies starting from 100 GeV. Following a recommendation of the 2007 US Nuclear Science Long-Range Planning effort, the DOE Office of Nuclear Physics (DOE/NP) has allocated accelerator R&D funds to lay the foundation for a polarized EIC. BNL, in association with JLab and DOE/NP, has also established a generic detector R&D program to address the scientific requirements for measurements at a future EIC.

Rolf Ent

2012-04-01T23:59:59.000Z

424

Precision Studies of Hadronic and Electro-Weak Interactions for Collider Physics. Final Report  

SciTech Connect (OSTI)

This project was directed toward developing precision computational tools for proton collisions at the Large Hadron Collider, focusing primarily on electroweak boson production and electroweak radiative corrections. The programs developed under this project carried the name HERWIRI, for High Energy Radiation With Infra-Red Improvements, and are the first steps in an ongoing program to develop a set of hadronic event generators based on combined QCD and QED exponentiation. HERWIRI1 applied these improvements to the hadronic shower, while HERWIRI2 will apply the electroweak corrections from the program KKMC developed for electron-positron scattering to a hadronic event generator, including exponentiated initial and final state radiation together with first-order electroweak corrections to the hard process. Some progress was also made on developing differential reduction techniques for hypergeometric functions, for application to the computation of Feynman diagrams.

Yost, Scott A [The Citadel, Charleston, SC (United States)] [The Citadel, Charleston, SC (United States)

2014-04-02T23:59:59.000Z

425

Correlation between balance energy and transition energy for symmetric colliding nuclei  

E-Print Network [OSTI]

We study the correlation between balance energy and transition energy of fragment in heavy-ion collisions for different systems at incident energies between 40 and 1200 MeV/nucleon using an isospin-dependent quantum molecular dynamics model. With increasing incident energy, the elliptic flow shows a transition from positive (in-plane) to negative (out-of-plane) flow. This transition energy is found to depend on the size of fragments, composite mass of reacting system, and the impact parameter of reaction. It has been observed that reduced cross-section can explain the experimental data. There is a correlation between transition energy and balance energy as their difference decreases with increase in the total mass of colliding nuclei.

Rajni; Suneel Kumar; Rajeev K. Puri

2011-10-04T23:59:59.000Z

426

Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider  

E-Print Network [OSTI]

We investigate the prospects for discovering charginos and neutralinos at a future $pp$ collider with $\\sqrt{s} = 100$ TeV. We focus on models where squarks and sleptons are decoupled -- as motivated by the LHC data. Our initial study is based on models where Higgsinos form the main component of the LSP and $W$-inos compose the heavier chargino states ($M_2 > \\mu$), though it is straightforward to consider the reverse situation also. We show that in such scenarios $W$-inos decay into $W^\\pm$, $Z$ and $h$ plus neutralinos almost universally. In the $W Z$ channel we compare signal and background in various kinematical distributions. We design simple but effective signal regions for the trilepton channel and evaluate discovery reach and exclusion limits. Assuming 3000 fb$^{-1}$ of integrated luminosity, $W$-inos could be discovered (excluded) up to 1.1 (1.8) TeV if the spectrum is not compressed.

Bobby S. Acharya; Krzysztof Bozek; Chakrit Pongkitivanichkul; Kazuki Sakurai

2014-10-06T23:59:59.000Z

427

System-size independence of directed flow at the RelativisticHeavy-Ion Collider  

SciTech Connect (OSTI)

We measure directed flow (v{sub 1}) for charged particles in Au + Au and Cu + Cu collisions at {radical}s{sub NN} = 200 GeV and 62.4 GeV, as a function of pseudorapidity ({eta}), transverse momentum (p{sub t}) and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v{sub 1} in different collision systems, and investigate possible explanations for the observed sign change in v{sub 1}(p{sub t}).

STAR Coll

2008-09-20T23:59:59.000Z

428

Effect of Field Errors in Muon Collider IR Magnets on Beam Dynamics  

SciTech Connect (OSTI)

In order to achieve peak luminosity of a Muon Collider (MC) in the 10{sup 35} cm{sup -2}s{sup -1} range very small values of beta-function at the interaction point (IP) are necessary ({beta}* {le} 1 cm) while the distance from IP to the first quadrupole can not be made shorter than {approx}6 m as dictated by the necessity of detector protection from backgrounds. In the result the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics very sensitive to all kind of errors. In the present report we consider the effects on momentum acceptance and dynamic aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both dipoles and quadrupoles in the ase of 1.5 TeV (c.o.m.) MC. Analysis shows these effects to be strong but correctable with dedicated multipole correctors.

Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.V.; /Fermilab

2012-05-01T23:59:59.000Z

429

Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider  

E-Print Network [OSTI]

We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross section in SM and MSSM with Higgs boson mass for various choices of MSSM parameters tan \\beta and m\\sub A. We observe that at fixed CM energy, in the SM, the total cross section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM case. The changes that occur for the MSSM case in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross section. The observed large deviations in cross section for different choices of Higgs mass suggest that the measurements of the cross section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat

2005-07-26T23:59:59.000Z

430

Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment  

E-Print Network [OSTI]

The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

Douglas P. Benjamin

2008-10-20T23:59:59.000Z

431

Crab dispersion and its impact on the CERN Large Hadron Collider collimation  

E-Print Network [OSTI]

Crab cavities are proposed to be used for a luminosity upgrade of the Large Hadron Collider (LHC). Crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The crab cavity introduces another kind of dispersion to the particles which is z dependent, and thus could complicate the beam dynamics and have an impact on the LHC collimation system. As for LHC, the off-momentum beta-beat and dispersion-beat already compromise the performance of the collimation system; the crab dispersion introduced by global crab cavities might do the same, and should be carefully evaluated. In this paper, we present a definition for the crab dispersion, and study its impact on the LHC collimation system.

Sun, P; Tomàs, R; Zimmermann, F

2010-01-01T23:59:59.000Z

432

Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons  

E-Print Network [OSTI]

Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons (FCNC) decay ¯B0 ¯K0 e+ e- K- + e+ e-. Prompt photon production in pp (p¯p) collisions. Production measurement of photon polarization is difficult, therefore one can instead use virtual-photon production b

433

Observation of Top Quark Production in [¯ over p]p Collisions with the Collider Detector at Fermilab  

E-Print Network [OSTI]

We establish the existence of the top quark using a 67pb[superscript ?1] data sample of [¯ over p]p collisions at ?s = 1.8TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those ...

Bauer, Gerry P.

434

PHYSICAL REVIEW C 81, 044910 (2010) Production of exotic atoms at energies available at the CERN Large Hadron Collider  

E-Print Network [OSTI]

one of the ions in the collider ("bound-free" pair production). In particular the process of pair several insights in the production mechanism which have not been explored in the literature. OurPHYSICAL REVIEW C 81, 044910 (2010) Production of exotic atoms at energies available at the CERN

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

435

Opportunities and requirements for experimentation at high energy e/sup +/e/sup /minus// collider  

SciTech Connect (OSTI)

Over the past fifteen years of high-energy physics, electron-positron annihilation has been the most productive of all reactions probing the fundamental interactions. The e/sup +/e/sup /minus// annihilation process is unique in offering at the same time copious production of novel particles, low backgrounds from more conventional physics, and the most efficient use of the energy which an accelerator provides. These features have allowed the detailed characterization of the charm and bottom quark-antiquark systems and the unambiguous discovery of gluon jets---the crucial ingredients in the establishment of Quantum Chromodynamics as the correct theory of the strong interactions---as well as the discovery of the tau lepton and confirmation of the weak and electromagnetic properties of all the quarks and leptons at high energy. Over the past few years, experiments will begin at SLC and LEP, and we anticipate new discoveries from the detailed study of the Z/sup 0/ resonance. It is time, then to begin to think out how one might continue this mode experimentation to still higher energies. This document is the report of a committee convened by the Director of SLAC, Burton Richter, to set out the major physics goals of an e/sup +/e/sup /minus// collider in the energy range 600 GeV-1 TeV, corresponding to the next feasible step in accelerator technology. The committee was charged with the task of outlining the main experiments that such a collider might carry out and the requirements which those experiments place on the accelerator design. 106 refs., 105 figs., 13 tabs.

Ahn, C.; Baltay, C.; Barklow, T.L.; Burchat, P.R.; Burke, D.L.; Cooper, A.R.; Dib, C.; Feldman, G.J.; Gunion, J.F.; Haber, H.E.

1988-05-01T23:59:59.000Z

436

THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS  

SciTech Connect (OSTI)

Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

2000-05-11T23:59:59.000Z

437

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider  

E-Print Network [OSTI]

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte-Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

R. Bruce; R. W. Assmann; V. Boccone; C. Bracco; M. Brugger; M. Cauchi; F. Cerutti; D. Deboy; A. Ferrari; L. Lari; A. Marsili; A. Mereghetti; D. Mirarchi; E. Quaranta; S. Redaelli; G. Robert-Demolaize; A. Rossi; B. Salvachua; E. Skordis; C. Tambasco; G. Valentino; T. Weiler; V. Vlachoudis; D. Wollmann

2014-09-10T23:59:59.000Z

438

Lineal: A linear-algebraic -calculus Pablo Arrighia,1  

E-Print Network [OSTI]

Lineal: A linear-algebraic -calculus Pablo Arrighia,1 , Gilles Dowekc aUniversit´e de Grenoble, together with linear algebra. We see this Linear-algebraic -calculus (also referred to as Lineal for short and linear algebra. This language extends the -calculus with the possibility to make arbitrary linear

Dowek, Gilles

439

Lineal: A linear-algebraic -calculus Pablo Arrighia,1  

E-Print Network [OSTI]

Lineal: A linear-algebraic -calculus Pablo Arrighia,1 , Gilles Dowekc aUniversit´e de Grenoble, together with linear algebra. We see this Linear-algebraic -calculus (also referred to as Lineal for short and linear algebra. This language extends the -calculus with the possibility to make arbitrary linear

Paris-Sud XI, Université de

440

The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider  

SciTech Connect (OSTI)

The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

R. Raja et al.

2001-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity  

E-Print Network [OSTI]

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity Anand anand@ece.ucsb.edu Abstract--As photodiodes become more linear, accurately characterizing, the limitations of the measurement system in determining the distortion of highly linear photodiodes. I

Coldren, Larry A.

442

alfven fluctuations linear: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfven...

443

On frequency dependence of pulsar linear polarization  

E-Print Network [OSTI]

Frequency dependence of pulsar linear polarization is investigated by simulations of emission and propagation processes. Linearly polarized waves are generated through curvature radiation by relativistic particles streaming along curved magnetic field lines, which have ordinary mode (O-mode) and extra-ordinary mode (X-mode) components. As emitted waves propagate outwards, two mode components are separated due to re- fraction of the O mode, and their polarization states are also modified. According to the radius to frequency mapping, low frequency emission is generated from higher magnetosphere, where significant rotation effect leads the X and O modes to be sepa- rated. Hence, the low frequency radiation has a large fraction of linear polarization. As the frequency increases, emission is generated from lower heights, where the rotation effect becomes weaker and the distribution regions of two modes are more overlapped. Hence, more significant depolarization appears for emission at higher frequencies. In addit...

Wang, P F; Han, J L

2015-01-01T23:59:59.000Z

444

Dual-range linearized transimpedance amplifier system  

DOE Patents [OSTI]

A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

Wessendorf, Kurt O. (Albuquerque, NM)

2010-11-02T23:59:59.000Z

445

Linear Polarization Measurements for High-Spin States in 146Gd  

E-Print Network [OSTI]

A {\\gamma}-ray linear polarization measurement has been performed to directly determine the parities for the levels in 146Gd nucleus. High-spin states in this nucleus were populated in a reaction 115In + 34S at 140 MeV incident energy. Linearly polarized {\\gamma} - rays emitted from oriented states were measured using a Compton polarimeter consisting of an array of 8 Compton-suppressed Clover detectors. Unambiguous assignments of the spin and parity have been made for most of the observed levels and changes made in the previously reported spin-parity assignments for a few levels. Shell model calculations performed with judicious truncation over the {\\pi}(gdsh) valence space interpret the structure of only the low-lying levels up to J{\\pi} = 19+ and 9-. N = 82 neutron-core breaking is found to be essential for high spin states with excitation energies Ex > 7 MeV.

Krishichayan; Rajashri Bhattacherjee; S. K. Basu; R. K. Bhowmik; A. Chakraborty; L. Chaturvedi; A. Dhal; U. Garg; S. S. Ghugre; R. Goswami; A. Jhingan; N. Madhvan; P. V. Madhusudhana Rao; S. Mukhopadhyay; S. Muralithar; S. Nath; N. S. Pattabiraman; S. Ray; S. Saha; M. Saha Sarkar; S. Sarkar; R. Singh; R. P. Singh; A. K. Sinha; R. K. Sinha; P. Sugathan; B. K. Yogi

2013-08-01T23:59:59.000Z

446

Linear and angular retroreflecting interferometric alignment target  

DOE Patents [OSTI]

The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

Maxey, L. Curtis (Powell, TN)

2001-01-01T23:59:59.000Z

447

Linear Parameter-Varying versus Linear Time-Invariant Control Design for a Pressurized Water Reactor  

E-Print Network [OSTI]

-dependent control to a nuclear pressurized water reactor is investigated and is compared to that of using an H1Linear Parameter-Varying versus Linear Time-Invariant Control Design for a Pressurized Water Reactor Pascale Bendotti y Electricit e de France Direction des Etudes et Recherches 6 Quai Watier, 78401

Bodenheimer, Bobby

448

A linear logical view of linear type isomorphisms Vincent Balat and Roberto Di Cosmo  

E-Print Network [OSTI]

A linear logical view of linear type isomorphisms Vincent Balat and Roberto Di Cosmo LIENS ' Ecole lambda calculus) have recently been investigated due to their practical interest in library search, where they provide a means to search functions by type (see [18, 19, 17, 20, 9, 8, 10]) and to match

Balat, Vincent - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7

449

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

450

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

451

Top-Quark Initiated Processes at High-Energy Hadron Colliders  

E-Print Network [OSTI]

In hadronic collisions at high energies, the top-quark may be treated as a parton inside a hadron. Top-quark initiated processes become increasingly important since the top-quark luminosity can reach a few percent of the bottom-quark luminosity. In the production of a heavy particle $H$ with mass $m_H > m_t$, treating the top-quark as a parton allows us to resum large logarithms $\\log(m_{H}^{2}/m_{t}^{2}$) arising from collinear splitting in the initial state. We quantify the effect of collinear resummation at the 14-TeV LHC and a future 100-TeV hadron collider, focusing on the top-quark open-flavor process $gg\\to t\\bar t H$ in comparison with $t\\bar t \\to H$ and $tg\\rightarrow tH$ at the leading order (LO) in QCD. We employ top-quark parton distribution functions with appropriate collinear subtraction and power counting. We find that (1) Collinear resummation enhances the inclusive production of a heavy particle with $m_H\\approx$ 5 TeV (0.5 TeV) by more than a factor of two compared to the open-flavor process at a 100-TeV (14-TeV) collider; (2) Top-quark mass effects are important for scales $m_H$ near the top-quark threshold, where the cross section is largest. We advocate a modification of the ACOT factorization scheme, dubbed m-ACOT, to consistently treat heavy-quark masses in hadronic collisions; (3) The scale uncertainty of the total cross section in m-ACOT is of about 20 percent at the LO. While a higher-order calculation is indispensable for a precise prediction, the LO cross section is well described by the process $t\\bar t\\to H$ using an effective factorization scale significantly lower than $m_H$. We illustrate our results by the example of a heavy spin-0 particle. Our main results also apply to the production of particles with spin-1 and 2.

Tao Han; Joshua Sayre; Susanne Westhoff

2014-11-10T23:59:59.000Z

452

Linear Tapered Slot Antenna with Substrate Integrated Waveguide Feed Ian Wood*(1)  

E-Print Network [OSTI]

antennas. Several TSA types exist, the most common being linear-tapered (LTSA), Vivaldi-tapered (VTSA) The beamwidths of CWSA's are typically the smallest, followed by LTSA's and VTSA's. As one would expect, the situation is opposite for the side lobe level. As such LTSA's are an ideal compromise between beamwidth

Bornemann, Jens

453

Parallel NonLinear Optimization : Towards The Design Of A Decision Support System For Air  

E-Print Network [OSTI]

outcomes (e.g. financial return) whilst minimizing environmental damage. In the area of air pollution, such technology has been used for real world studies predicting air pollution levels over a planning horizon1 Parallel Non­Linear Optimization : Towards The Design Of A Decision Support System For Air

Abramson, David

454

Automatic tuning for linearly tunable filter  

E-Print Network [OSTI]

A new tuning scheme for linearly tunable high-Q filters is proposed. The tuning method is based on using the phase information for both frequency and Q factor tuning. There is no need to find out the relationship between a filter's passband...

Huang, Sung-Ling

2004-09-30T23:59:59.000Z

455

SME0141 lgebra Linear e Equaes Diferenciais  

E-Print Network [OSTI]

SME0141 Álgebra Linear e Equações Diferenciais Aula 5 Maria Luísa Bambozzi de Oliveira marialuisa; Propriedades; Teorema. Maria Luísa SME0141 Aula 5 #12;Equações Diferenciais ­ Introdução Fenômenos em física químicas, etc. Maria Luísa SME0141 Aula 5 #12;Equações Diferenciais ­ Definições Equação diferencial

Spreafico, Mauro - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo

456

Original Paper Fully interconnected, linear control  

E-Print Network [OSTI]

Original Paper Fully interconnected, linear control for limit cycle walking Joseph H Solomon1 and simple control methodologies for these models (Collins & Ruina, 2005; Hobbelen & Wisse, 2008a, 2008b. Corresponding author: Joseph H. Solomon, Northwestern University, Department of Mechanical Engineering, 2145

Hartmann, Mitra J. Z.

457

Primes Solutions Of Linear Diophantine Equations  

E-Print Network [OSTI]

Let k => 1, m => 1 be small fixed integers, gcd(k, m) = 1. This note develops some techniques for proving the existence of infinitely many primes solutions x = p, and y = q of the linear Diophantine equation y = mx + k.

N. A. Carella

2014-04-03T23:59:59.000Z

458

Linearity -statistics 1.1B training  

E-Print Network [OSTI]

Linearity - statistics IPAT 1.1B training 300M training D0 resolution is evaluated using 100k. Black is a bank with 3.5 times as much statistics. There may be a hint of slight improvement;Narrow beam + high statistics IPAT Default FTK constants Narrow-beam constants Reconstruction performance

459

Numerical Linear Algebra and Optimization on Facebook  

E-Print Network [OSTI]

Numerical Linear Algebra and Optimization on Facebook: "In a relationship" or "It's complicated indicate their "relationship status" on Facebook (!!!). (I don't need to define Facebook, right?) #12;Facebook is close to ubiquitous (1.2 billion users in March 2014). 556 million people log on to Facebook

Sidorov, Nikita

460

Section Notes 5 Review of Linear Programming  

E-Print Network [OSTI]

3 Lecture 4: Convexity, Extreme points 3 4 Lecture 5: Primal Simplex 4 5 Lecture 6: Advanced Primal (LP) is an optimization problem that involves maximizing or minimizing a linear objective function, ..., Am form a square matrix that is invertible · Span ­ These vectors A1, ..., Am span the vector space

Chen, Yiling

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Controlling Wild Bodies Using Linear Temporal Logic  

E-Print Network [OSTI]

Controlling Wild Bodies Using Linear Temporal Logic Leonardo Bobadilla Oscar Sanchez Justin or state feedback. We do this by exploiting the wild motions of very simple bodies in an environment propose to start with a "wildly behaving" body for which its precise equations of motion are unknown

LaValle, Steven M.

462

THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) REFRIGERATOR SYSTEM AT BROOKHAVEN NATIONAL LABORATORY: PHASE III OF THE SYSTEM PERFORMANCE AND OPERATIONS UPGRADES FOR 2003  

SciTech Connect (OSTI)

An ongoing program at Brookhaven National Laboratory (BNL) consists of improving the efficiency of the Relativistic Heavy Ion Collider (RHIC) cryogenic system and reducing its power consumption. Phase I and I1 of the program addressed plant operational improvements and modifications that resulted in substantial operational cost reduction and improved system reliability and stability, and a compressor input power reduction of 2 MW has been demonstrated. Phase 111, now under way, consists of plans for further increasing the efficiency of the plant by adding a load ''wet'' turbo-expander and its associated heat exchangers at the low temperature end of the plant. This additional stage of cooling at the coldest level will further reduce the required compressor flow and therefore compressor power input. This paper presents the results of the plant characterization, as it is operating presently, as well as the results of the plant simulations of the various planned upgrades for, the plant. The immediate upgrade includes the changes associated with the load expander. The subsequent upgrade will involve the resizing of expander 5 and 6 to increase their efficiencies. The paper summarizes the expected improvement in the plant efficiency and the overall reduction in the compressor power.

SIDI-YEKHLEF,A.; TUOZZOLO,J.; THAN, R.; KNUDSEN, P.; ARENIUS, D.

2005-08-29T23:59:59.000Z

463

The Relativistic Heavy Ion Collider (RHIC) Refrigerator System at Brookhaven National Laboratory: Phase III of the System Performance and Operations Upgrades for 2006  

SciTech Connect (OSTI)

An ongoing program at Brookhaven National Laboratory (BNL) consists of improving the efficiency of the Relativistic Heavy Ion Collider (RHIC) cryogenic system and reducing its power consumption. Phase I and II of the program addressed plant operational improvements and modifications that resulted in substantial operational cost reduction and improved system reliability and stability, and a compressor input power reduction of 2 MW has been demonstrated. Phase III, now under way, consists of plans for further increasing the efficiency of the plant by adding a load ''wet'' turbo-expander and its associated heat exchangers at the low temperature end of the plant. This additional stage of cooling at the coldest level will further reduce the required compressor flow and therefore compressor power input. This paper presents the results of the plant characterization, as it is operating presently, as well as the results of the plant simulations of the various planned upgrades for the plant. The immediate upgrade includes the changes associated with the load expander. The subsequent upgrade will involve the resizing of expander 5 and 6 to increase their efficiencies. The paper summarizes the expected improvement in the plant efficiency and the overall reduction in the compressor power.

A. Sidi-Yekhlef; R. Than; J. Tuozzolo; V. Ganni; P. Knudsen; D. Arenius

2006-05-01T23:59:59.000Z

464

The Program in Muon and Neutrino Physics Super Beams, Cold Muon Beams, Neutrino Factory and the Muon Collider  

E-Print Network [OSTI]

We outline in detail a staging scenario for realizing the Neutrino Factory and the Muon Collider. As a first stage we envisage building an intense proton source that can be used to perform high intensity conventional neutrino beam experiments ("Superbeams"). While this is in progress, we perform R&D in collecting, cooling and accelerating muons which leads to the next two stages of "Cold Muon Beams" and the Neutrino Factory. Further progress in Muon Cooling especially in the area of emittance exchange will lead us to the Muon Collider. A staged scenario such as this opens up new physics avenues at each step and will provide a long range base program for particle physics.

Raja, R; Gallardo, J; Geer, S; Kaplan, D; McDonald, K F; Palmer, R; Sessler, Andrew M; Skrinsky, A N; Summers, D; Tigner, Maury; Tollestrup, Alvin V; Wurtele, J S; Zisman, M S; Raja, Rajendran

2001-01-01T23:59:59.000Z

465

Proper motions of new dust in the colliding-wind binary WR 140  

E-Print Network [OSTI]

The eccentric WR+O binary system WR 140 produces dust for a few months at intervals of 7.94 yrs coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases ~0.039 and ~0.055, using aperture masking techniques on the Keck-I telescope to achieve diffraction-limited resolution. Proper motions of approximately 1.1 milliarcsecond per day were detected, implying a distance ~1.5 kpc from the known wind speed. The dust plume observed is not as simple as the ``pinwheel'' nebulae seen around other WR colliding wind binaries, indicating the orbital plane is highly inclined to our line-of-sight and/or the dust formation is very clumpy. Follow-up imaging in the mid-infrared and with adaptive optics is urgently required to track the dust motion further, necessary for unambiguously determining the orbital geometry which we only partially constrain here. With full knowledge of the orbital elements, these infrared images can be used to reconstruct the dust distribution along t...

Monnier, J D; Danchi, W C

2002-01-01T23:59:59.000Z

466

Towards the optimal energy of the proton driver for a neutrino factory and muon collider  

E-Print Network [OSTI]

Cross section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross section data are corrected for the beam-energy dependent amplification due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4

J. Strait; N. V. Mokhov; S. I. Striganov

2010-11-11T23:59:59.000Z

467

Thermal Performance of the Supporting System for the Large Hadron Collider (LHC) Superconducting Magnets  

E-Print Network [OSTI]

The LHC collider will be composed of approximately 1700 main ring superconducting magnets cooled to 1.9 K in pressurised superfluid helium and supported within their cryostats on low heat in-leak column-type supports. The precise positioning of the heavy magnets and the stringent thermal budgets imposed by the machine cryogenic system, require a sound thermo-mechanical design of the support system. Each support is composed of a main tubular thin-walled structure in glass-fibre reinforced epoxy resin, with its top part interfaced to the magnet at 1.9 K and its bottom part mounted onto the cryostat vacuum vessel at 293 K. In order to reduce the conduction heat in-leak at 1.9 K, each support mounts two heat intercepts at intermediate locations on the column, both actively cooled by cryogenic lines carrying helium gas at 4.5-10 K and 50-65 K. The need to assess the thermal performance of the supports has lead to setting up a dedicated test set-up for precision heat load measurements on prototype supports. This pa...

Castoldi, M; Parma, Vittorio; Vandoni, Giovanna

1999-01-01T23:59:59.000Z

468

Mitigating Radiation Impact on Superconducting Magnets of the Higgs Factory Muon Collider  

E-Print Network [OSTI]

Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold ...

Mokhov, Nikolai; Kashikhin, Vadim V; Striganov, Sergei I; Tropin, Igor S; Zlobin, Alexander V

2015-01-01T23:59:59.000Z

469

Performance Modeling and Optimization of a High Energy CollidingBeam Simulation Code  

SciTech Connect (OSTI)

An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms.

Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

2006-06-01T23:59:59.000Z

470

A Novel method for modeling the recoil in W boson events at hadron collider  

SciTech Connect (OSTI)

We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

2009-07-01T23:59:59.000Z

471

NNLO Benchmarks for Gauge and Higgs Boson Production at TeV Hadron Colliders  

E-Print Network [OSTI]

The inclusive production cross sections for $W^+, W^-$ and $Z^0$-bosons form important benchmarks for the physics at hadron colliders. We perform a detailed comparison of the predictions for these standard candles based on recent next-to-next-to-leading order (NNLO) parton parameterizations and new analyses including the combined HERA data, compare to all available experimental results, and discuss the predictions for present and upcoming RHIC, SPS, Tevatron and LHC energies. The rates for gauge boson production at the LHC can be rather confidently predicted with an accuracy of better than about 10% at NNLO. We also present detailed NNLO predictions for the Higgs boson production cross sections for Tevatron and LHC energies (1.96, 7, 8, 14 TeV), and propose a possible method to monitor the gluon distribution experimentally in the kinematic region close to the mass range expected for the Higgs boson. The production cross sections of the Higgs boson at the LHC are presently predicted with an accuracy of about 10--17%. The inclusion of the NNLO contributions is mandatory for achieving such accuracies since the total uncertainties are substantially larger at NLO.

S. Alekhin; J. Blümlein; P. Jimenez-Delgado; S. Moch; E. Reya

2010-11-29T23:59:59.000Z

472

IMAGING THE TIME EVOLUTION OF ETA CARINAE'S COLLIDING WINDS WITH HST  

SciTech Connect (OSTI)

We report new Hubble Space Telescope/Space Telescope Imaging Spectrograph observations that map the high-ionization forbidden line emission in the inner arcsecond of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54 year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blueshifted emission (-400 to -200 km s{sup -1}) is symmetric and elongated along the northeast-southwest axis, while the redshifted emission (+100 to +200 km s{sup -1}) is asymmetric and extends to the north-northwest. Comparison with synthetic images generated from a three-dimensional (3D) dynamical model strengthens the 3D orbital orientation found by Madura et al., with an inclination of i Almost-Equal-To 138 Degree-Sign , an argument of periapsis of {omega} Almost-Equal-To 270 Degree-Sign , and an orbital axis that is aligned at the same position angle on the sky as the symmetry axis of the Homunculus, 312 Degree-Sign . We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system.

Gull, Theodore R. [Astrophysics Science Division, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madura, Thomas I.; Groh, Jose H. [Max-Planck-Institut fur Radioastronomie, Auf dem Hugel 69, D-53121 Bonn (Germany); Corcoran, Michael F., E-mail: Theodore.R.Gull@nasa.gov [CRESST and X-ray Astrophysics Laboratory, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2011-12-10T23:59:59.000Z

473

Colliding Stellar Wind Models with Nonequilibrium Ionization: X-rays from WR 147  

E-Print Network [OSTI]

The effects of nonequilibrium ionization are explicitly taken into account in a numerical model which describes colliding stellar winds (CSW) in massive binary sytems. This new model is used to analyze the most recent X-ray spectra of the WR+OB binary system WR 147. The basic result is that it can adequately reproduce the observed X-ray emission (spectral shape, observed flux) but some adjustment in the stellar wind parameters is required. Namely, (i) the stellar wind velocities must be higher by a factor of 1.4 - 1.6; (ii) the mass loss must be reduced by a factor of ~ 2. The reduction factor for the mass loss is well within the uncertainties for this parameter in massive stars, but given the fact that the orbital parameters (e.g., inclination angle and eccentricity) are not well constrained for WR 147, even smaller corrections to the mass loss might be sufficient. Only CSW models with nonequilibrium ionization and equal (or nearly equal) electron and ion postshock temperature are successful. Therefore, the analysis of the X-ray spectra of WR 147 provides evidence that the CSW shocks in this object must be collisionless.

Svetozar A. Zhekov

2007-09-11T23:59:59.000Z

474

Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles  

SciTech Connect (OSTI)

A series of full-scale demonstration SSC collider dipole magnets were built for the ASST. These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results.

Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mazur, P.; Orris, D.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Thompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States)

1992-04-01T23:59:59.000Z

475

Mechanical design of 56 MHz superconducting RF cavity for RHIC collider  

SciTech Connect (OSTI)

A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

2011-03-28T23:59:59.000Z

476

Propagation dynamics of laterally colliding plasma plumes in laser-blow-off of thin film  

SciTech Connect (OSTI)

We report a systematic investigation of two plume interactions at different spatial separation (3-7?mm) in laser-blow-off. The plasmas plumes are created using Laser-blow-off (LBO) scheme of a thin film. The fast imaging technique is used to record the evolution of seed plasmas and the interaction zone which is formed as a result of interaction of the two seed plasmas. Time resolved optical emission spectroscopy is used to study evolution of optical emissions of the species present in the different regions of the plasmas. Neutral Li emissions (Li I 670.8?nm (2s {sup 2}S{sub 1/2} ? 2p {sup 2}P{sub 3/2,1/2}) and Li I 610.3?nm (2p {sup 2}P{sub 3/2,1/2} ? 3d {sup 2}D{sub 3/2,5/2})) are dominant in the plasmas but significant differences are observed in the emission and estimated plasma parameters of the seed and the interaction zone. The transport of plasma species from the seed plasmas to the interaction zone is discussed in the terms of plume divergence, kinetic energy of particles, and ion acoustic speed. An attempt is made to understand the formation and dynamics of the interaction zone in the colliding LBO seed plasmas.

Kumar, Bhupesh; Singh, R. K.; Sengupta, Sudip; Kaw, P. K.; Kumar, Ajai, E-mail: ajai@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2014-08-15T23:59:59.000Z

477

3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae's Inner Colliding Winds  

E-Print Network [OSTI]

We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 M_Sun), highly eccentric (e ~ 0.9) binary star system Eta Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF journal publication and the benefits of using 3D visualization and 3D printing as tools to analyze data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics (SPH) simulations of Eta Carinae's inner (r ~ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (phi ~ 1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise a...

Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter

2015-01-01T23:59:59.000Z

478

Operational Experience and Consolidations for the Current Lead Control Valves of the Large Hadron Collider  

E-Print Network [OSTI]

The Large Hadron Collider superconducting magnets are powered by more than 1400 gas cooled current leads ranging from 120 A to 13000 A. The gas flow required by the leads is controlled by solenoid proportional valves with dimensions from DN 1.8 mm to DN 10 mm. During the first months of operation, signs of premature wear were found in the active parts of the valves. This created major problems for the functioning of the current leads threatening the availability of the LHC. Following the detection of the problems, a series of measures were implemented to keep the LHC running, to launch a development program to solve the premature wear problem and to prepare for a global consolidation of the gas flow control system. This article describes first the difficulties encountered and the measures taken to ensure a continuous operation of the LHC during the first year of operation. The development of new friction free valves is then presented along with the consolidation program and the test equipment developed to val...

Perin, A; Pirotte, O; Krieger, B; Widmer, A

2012-01-01T23:59:59.000Z

479

Next-to-Leading Order Predictions for W + 3-Jet Distributions at Hadron Colliders  

SciTech Connect (OSTI)

We present next-to-leading order QCD predictions for a variety of distributions in W + 3-jet production at both the Tevatron and the Large Hadron Collider. We include all subprocesses and incorporate the decay of the W boson into leptons. Our results are in excellent agreement with existing Tevatron data and provide the first quantitatively precise next-to-leading order predictions for the LHC. We include all terms in an expansion in the number of colors, confirming that the specific leading-color approximation used in our previous study is accurate to within three percent. The dependence of the cross section on renormalization and factorization scales is reduced significantly with respect to a leading-order calculation. We study different dynamical scale choices, and find that the total transverse energy is significantly better than choices used in previous phenomenological studies. We compute the one-loop matrix elements using on-shell methods, as numerically implemented in the BlackHat code. The remaining parts of the calculation, including generation of the real-emission contributions and integration over phase space, are handled by the SHERPA package.

Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, L.J.; /SLAC; Febres Cordero, F.; /UCLA; Forde, D.; Gleisberg, T.; /SLAC; Ita, H.; /UCLA; Kosower, D.A.; /Saclay, SPhT; Maitre, D.; /Durham U.

2009-12-09T23:59:59.000Z

480

Radiation effects in a muon collider ring and dipole magnet protection  

SciTech Connect (OSTI)

The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "level linear collider" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Observability Criteria and Estimator Design for Stochastic Linear Hybrid Systems  

E-Print Network [OSTI]

. Alessandri and Coletta [5] proposed a Luenberger observer design methodology for deterministic linear hybrid

Gummadi, Ramakrishna

482

SWITCHING TIME ESTIMATION OF PIECEWISE LINEAR SYSTEMS. APPLICATION TO DIAGNOSIS  

E-Print Network [OSTI]

systems. Recently (Alessandri, 2001), Alessandri considered the case where continuous evolution is linear

Boyer, Edmond

483

Compact Proof Certificates For Linear Logic Kaustuv Chaudhuri  

E-Print Network [OSTI]

Compact Proof Certificates For Linear Logic Kaustuv Chaudhuri INRIA, France http://kaustuv.chaudhuri

Chaudhuri, Kaustuv

484

Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider  

E-Print Network [OSTI]

Estimated AC power consumption ranges from ~280 MW (1) to 416 MW (2) for a 350 GeV E_cm 80 km circumference colliding beam storage ring complex with parameters given in (1). The difference between the two estimates is from differing assumptions concerning heat removal, cryo-plant efficiency, klystron operation etc. The purpose of this note is to list and explain these. (1) Mike Koratzinos, et al, IPAC13 (2) Marc Ross, Higgs Quo Vadis Workshop, March 2013.

Ross, Marc C

2013-01-01T23:59:59.000Z

485

Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF  

SciTech Connect (OSTI)

The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

Zhang, Y; Bruell, A; Chevtsov, P; Derbenev, Y S; Ent, R; Krafft, G A; Li, R; Merminga, L

2009-05-01T23:59:59.000Z

486

Bound-free pair production cross section in heavy-ion colliders from the equivalent photon approach  

E-Print Network [OSTI]

Exact calculations of the electron-positron pair production by a single photon in the Coulomb field of a nucleus with simultaneous capture of the electron into the K-shell are discussed for different nuclear charges. Using the equivalent photon method of Weizsaecker and Williams, a simple expression for the bound-free production of electron-positron pairs by colliding very-high-energy fully stripped heavy ions is derived for nuclei of arbitrary charge.

Andreas Aste

2008-01-16T23:59:59.000Z

487

Single production of excited electrons at future e{sup +}e{sup -}, ep and pp colliders  

SciTech Connect (OSTI)

We analyzed the potential of the LC with {radical}(s)=0.5 TeV, LCxLHC based ep collider with {radical}(s)=3.74 TeV and the LHC with {radical}(s)=14 TeV to search for excited electrons through transition magnetic type couplings with gauge bosons. The e*{yields}e{gamma} signal and corresponding backgrounds are studied in detail.

Cakir, O.; Yilmaz, A.; Sultansoy, S. [Ankara University, Faculty of Sciences, Department of Physics, 06100, Tandogan, Ankara (Turkey); Gazi University, Faculty of Arts and Sciences, Department of Physics, 06500, Teknikokullar, Ankara (Turkey); Azerbaijan Academy of Sciences, Institute of Physics, H. Cavid Ave. 33, Baku (Azerbaijan)

2004-10-01T23:59:59.000Z

488

Les Houches Physics at TeV Colliders 2005 Beyond the Standard Model Working Group: Summary Report  

SciTech Connect (OSTI)

The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.

Allanach, B.C.; /Cambridge U., DAMTP; Grojean, C.; /Saclay, SPhT /CERN; Skands, P.; /Fermilab; Accomando, E.; Azuelos, G.; Baer, H.; Balazs, C.; Belanger, G.; Benakli, K.; Boudjema, F.; Brelier, B.; Bunichev, V.; Cacciapaglia, G.; Carena, M.; Choudhury, D.; Delsart, P.-A.; De Sanctis, U.; Desch, K.; Dobrescu, B.A.; Dudko, L.; El Kacimi, M.; /Saclay,

2006-03-17T23:59:59.000Z

489

Tiltmeter leveling mechanism  

DOE Patents [OSTI]

A tiltmeter device having a pair of orthogonally disposed tilt sensors that are levelable within an inner housing containing the sensors. An outer housing can be rotated to level at least one of the sensor pair while the inner housing can be rotated to level the other sensor of the pair. The sensors are typically rotated up to about plus or minus 100 degrees. The device is effective for measuring tilts in a wide range of angles of inclination of wells and can be employed to level a platform containing a third sensor.

Hunter, Steven L. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Farris, Alvis (late of Byron, CA)

2002-01-01T23:59:59.000Z

490

The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)  

SciTech Connect (OSTI)

Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

Sickles, Anne [BNL Physics Department

2014-03-19T23:59:59.000Z

491

Speed-of-light limitations in passive linear media  

E-Print Network [OSTI]

We prove that well-known speed of light restrictions on electromagnetic energy velocity can be extended to a new level of generality, encompassing even nonlocal chiral media in periodic geometries, while at the same time weakening the underlying assumptions to only passivity and linearity of the medium (either with a transparency window or with dissipation). As was also shown by other authors under more limiting assumptions, passivity alone is sufficient to guarantee causality and positivity of the energy density (with no thermodynamic assumptions). Our proof is general enough to include a very broad range of material properties, including anisotropy, bianisotropy (chirality), nonlocality, dispersion, periodicity, and even delta functions or similar generalized functions. We also show that the "dynamical energy density" used by some previous authors in dissipative media reduces to the standard Brillouin formula for dispersive energy density in a transparency window. The results in this paper are proved by exploiting deep results from linear-response theory, harmonic analysis, and functional analysis that had previously not been brought together in the context of electrodynamics.

Aaron Welters; Yehuda Avniel; Steven G. Johnson

2014-05-01T23:59:59.000Z

492

arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider  

E-Print Network [OSTI]

arXiv:0802.2965v1[hep-ex]21Feb2008 Single Top Quark Production at the Fermilab Tevatron Collider at the Fermilab Tevatron Collider are s-channel, which involve the exchange of a time-like W boson, and t be created in association with an an on-shell W boson, but this process is negligible at the Fermilab

California at Santa Cruz, University of

493

Designing Networks: A Mixed-Integer Linear Optimization Approach  

E-Print Network [OSTI]

Designing networks with specified collective properties is useful in a variety of application areas, enabling the study of how given properties affect the behavior of network models, the downscaling of empirical networks to workable sizes, and the analysis of network evolution. Despite the importance of the task, there currently exists a gap in our ability to systematically generate networks that adhere to theoretical guarantees for the given property specifications. In this paper, we propose the use of Mixed-Integer Linear Optimization modeling and solution methodologies to address this Network Generation Problem. We present a number of useful modeling techniques and apply them to mathematically express and constrain network properties in the context of an optimization formulation. We then develop complete formulations for the generation of networks that attain specified levels of connectivity, spread, assortativity and robustness, and we illustrate these via a number of computational case studies.

Gounaris, Chrysanthos E; Kevrekidis, Ioannis G; Floudas, Christodoulos A

2015-01-01T23:59:59.000Z

494

Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics  

E-Print Network [OSTI]

We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.

Andrei Khrennikov; Yaroslav Volovich

2006-04-27T23:59:59.000Z

495

Enhanced dielectric-wall linear accelerator  

DOE Patents [OSTI]

A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

1998-09-22T23:59:59.000Z

496

Linearized warp drive and the energy conditions  

E-Print Network [OSTI]

''Warp drive'' spacetimes are useful as ''gedanken-experiments'' and as a theoretician's probe of the foundations of general relativity. Applying linearized gravity to the weak-field warp drive, i.e., for non-relativistic warp-bubble velocities, we find that the occurrence of energy condition violations in this class of spacetimes is generic to the form of the geometry under consideration and is not simply a side-effect of the ''superluminal'' properties. Using the linearized construction it is now possible to compare the warp field energy with the mass-energy of the spaceship, and applying the ''volume integral quantifier'', extremely stringent conditions on the warp drive spacetime are found.

Francisco S. N. Lobo; Matt Visser

2004-12-14T23:59:59.000Z

497

An LED pulser for measuring photomultiplier linearity  

E-Print Network [OSTI]

A light-emitting diode (LED) pulser for testing the low-rate response of a photomultiplier tube (PMT) to scintillator-like pulses has been designed, developed, and implemented. This pulser is intended to simulate 80 ns full width at half maximum photon pulses over the dynamic range of the PMT, in order to precisely determine PMT linearity. This particular design has the advantage that, unlike many LED test rigs, it does not require the use of multiple calibrated LEDs, making it insensitive to LED gain drifts. Instead, a finite-difference measurement is made using two LEDs which need not be calibrated with respect to one another. These measurements give a better than 1% mapping of the response function, allowing for the testing and development of particularly linear PMT bases.

Friend, M; Quinn, B

2011-01-01T23:59:59.000Z

498

A robustness application for linear estimation  

E-Print Network [OSTI]

, recursive algorithm for yielding estimates of the state of a linear dynamic system (see, for example, the excellent tutorial [1]). Many other applications of this estimation scheme exist in the areas of signal processing, power systems, telecommunications... on robustness causes the coefficient which maximizes J to approach the coefficient which produces maximum robustness. 37 REFERENCES [1] I. B. Rhodes, "A Tutorial Introduction to Estimation and Filtering, "IEEE Trans. on Automatic Control, vol. AC-16, pp...

Kitzman, Kenneth Victor

1990-01-01T23:59:59.000Z

499

Positive energy quantization of linear dynamics  

E-Print Network [OSTI]

The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into 3 stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. 4 kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and