Sample records for level conductivity probe

  1. Electronmagnetic induction probe calibration for electrical conductivity measurements and moisture content determination of Hanford high level waste

    SciTech Connect (OSTI)

    Wittekind, W.D., Westinghouse Hanford

    1996-05-23T23:59:59.000Z

    Logic of converting EMI measured electrical conductivity to moisture with expected uncertainty. Estimates from present knowledge, assumptions, and measured data. Archie`s Law has been used since the 1940`s to relate electrical conductivity in porous media to liquid volume fraction. Measured electrical conductivity to moisture content uses: Porosity, Interstitial liquid electrical conductivity, Solid particle density,Interstitial liquid density, and interstitial liquid water content. The uncertainty of assumed values is calculated to determine the final moisture wt.% result uncertainty.

  2. Non-contact Nondestructive Probing of Charge Carrier Conductivity in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4Organic Materials and their

  3. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublicexceeds wasteNew insightsplants

  4. MEASUREMENT OF THE DYNAMIC RESPONSE OF A CONTACT PROBE THERMOSENSOR IN CONDUCTIVE MEDIA

    E-Print Network [OSTI]

    experimental method for determining the step response of the probe. It is achieved by self-heating that the heat transfer processes controlling self-heating are the same as the processes controlling the step in a conductive solid. A relationship between the step response and the thermistor response to a step power self-heating

  5. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01T23:59:59.000Z

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 °C to 600 °C. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  6. Real-time crystallization in fluorinated parylene probed by conductivity spectra

    SciTech Connect (OSTI)

    Khazaka, R., E-mail: rabih.khazaka@laplace.univ-tlse.fr; Diaham, S. [Université de Toulouse, UPS, INPT, Laboratoire LAPLACE, 118 route de Narbonne, F-31062 Toulouse (France); Locatelli, M. L. [Université de Toulouse, UPS, INPT, Laboratoire LAPLACE, 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Tenailleau, C. [Université de Toulouse, UPS, Laboratoire CIRIMAT/LCMIE, 118 route de Narbonne - Bât. 2R1, F-31062 Toulouse cedex 9 (France); Kumar, R. [Speciality Coating Systems, Inc. (SCS), Cookson Electronics, 7645 Woodland Drive, Indianapolis, Indiana 46278 (United States)

    2014-03-17T23:59:59.000Z

    Dielectric relaxation spectroscopy experiments were performed at high temperature on fluorinated parylene films during the occurrence of the isothermal crystalline phase transition. For this polymer, since the difference between the glass transition temperature (T{sub g}) and the phase transition temperature (T{sub c}) is very strong (T{sub c}???4T{sub g}), segmental and dipolar relaxation usually used to probe the crystallization are not shown in the experiment frequency window (10{sup ?1} to 10{sup 6}?Hz) during the crystallization. The charge diffusion becomes the only electrical marker that allows probing the phase transition. During the transition phase, a continuous decrease of about two orders of magnitude is observed in the conductivity values below an offset frequency (f{sub c}) with a tendency to stabilization after 600?min. Below the offset frequency, the decrease of the normalized conductivity to the initial value as function of time is frequency independent. The same behavior is also observed for the f{sub c} values that decrease from 160?Hz to about 20?Hz. Above the offset frequency, the electronic hopping mechanism is also affected by the phase transition and the power law exponent (n) of the AC conductivity shows a variation from 0.7 to 0.95 during the first 600?min that tend to stabilize thereafter. Accordingly, three parameters (n, f{sub c}, and AC conductivity values for frequencies below f{sub c}) extracted from the AC conductivity spectra in different frequency windows seem suitable to probe the crystalline phase transition.

  7. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry

    SciTech Connect (OSTI)

    Feser, Joseph P. [Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716 (United States); Liu, Jun; Cahill, David G. [Department of Materials Science and Engineering, and Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-10-15T23:59:59.000Z

    We previously demonstrated an extension of time-domain thermoreflectance (TDTR) which utilizes offset pump and probe laser locations to measure in-plane thermal transport properties of multilayers. However, the technique was limited to systems of transversely isotropic materials studied using axisymmetric laser intensities. Here, we extend the mathematics so that data reduction can be performed on non-transversely isotropic systems. An analytic solution of the diffusion equation for an N-layer system is given, where each layer has a homogenous but otherwise arbitrary thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles. As a demonstration, we use both TDTR and time-resolved magneto-optic Kerr effect measurements to obtain thermal conductivity tensor elements of <110> ?-SiO{sub 2}. We show that the out-of-phase beam offset sweep has full-width half-maxima that contains nearly independent sensitivity to the in-plane thermal conductivity corresponding to the scanning direction. Also, we demonstrate a Nb-V alloy as a low thermal conductivity TDTR transducer layer that helps improve the accuracy of in-plane measurements.

  8. Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste

    SciTech Connect (OSTI)

    Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C

    2012-06-25T23:59:59.000Z

    Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.

  9. Absorption free superluminal light propagation in a three level pump-probe system

    E-Print Network [OSTI]

    M. Mahmoudi; S. Worya Rabiei; L. Ebrahimi Zohravi; M. Sahrai

    2007-11-21T23:59:59.000Z

    We investigate the dispersion and the absorption properties of a weak probe field in a three-level pump-probe atomic system. It is shown that the slope of dispersion changes from positive to negative just with the intensity of the coherent or indirect incoherent pumping fields. It is demonstrated that the absorption free superluminal light propagation is appeared in this system.

  10. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps

    SciTech Connect (OSTI)

    Vasko, Stephanie E.; Kapetanovic, Adnan; Talla, Vamsi; Brasino, Michael D.; Zhu, Zihua; Scholl, Andreas; Torrey, Jessica D.; Rolandi, Marco

    2011-05-16T23:59:59.000Z

    Precise materials integration in nanostructures is fundamental for future electronic and photonic devices. We demonstrate Si, Ge, and SiGe nanostructure direct-write with deterministic size, geometry, and placement control. The biased probe of an atomic force microscope (AFM) reacts diphenylsilane or diphenylgermane to direct-write carbon-free Si, Ge, and SiGe nano and heterostructures. Parallel directwrite is available on large areas by substituting the AFM probe with conducting microstructured stamps. This facile strategy can be easily expanded to a broad variety of semiconductor materials through precursor selection.

  11. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    SciTech Connect (OSTI)

    Vu, B.T.V.

    1994-02-01T23:59:59.000Z

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical ({approximately}10{sup 18}/cm{sup 3}) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  12. Acceptor levels in ZnMgO:N probed by deep level optical spectroscopy

    SciTech Connect (OSTI)

    Kurtz, A.; Hierro, A., E-mail: adrian.hierro@upm.es; Muñoz, E. [ISOM and Dpto. Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mohanta, S. K.; Nakamura, A.; Temmyo, J. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2014-02-24T23:59:59.000Z

    A combination of deep level optical spectroscopy and lighted capacitance voltage profiling has been used to analyze the effect of N into the energy levels close to the valence band of Zn{sub 0.9}Mg{sub 0.1}O. Three energy levels at E{sub V}?+?0.47?eV, E{sub V}?+?0.35?eV, and E{sub V}?+?0.16?eV are observed in all films with concentrations in the range of 10{sup 15}–10{sup 18}?cm{sup ?3}. The two shallowest traps at E{sub V}?+?0.35?eV and E{sub V}?+?0.16?eV have very large concentrations that scale with the N exposure and are thus potential acceptor levels. In order to correctly quantify the deep level concentrations, a metal-insulator-semiconductor model has been invoked, explaining well the resulting capacitance-voltage curves.

  13. Probes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPoints ofJanoschek

  14. Guidance Manual for Conducting Screening Level Ecological Risk Assessments at the INEL

    SciTech Connect (OSTI)

    R. L. VanHorn; N. L. Hampton; R. C. Morris

    1995-06-01T23:59:59.000Z

    This document presents reference material for conducting screening level ecological risk assessments (SLERAs)for the waste area groups (WAGs) at the Idaho National Engineering Laboratory. Included in this document are discussions of the objectives of and processes for conducting SLERAs. The Environmental Protection Agency ecological risk assessment framework is closely followed. Guidance for site characterization, stressor characterization, ecological effects, pathways of contaminant migration, the conceptual site model, assessment endpoints, measurement endpoints, analysis guidance, and risk characterization are included.

  15. Magneto thermal conductivity of superconducting Nb with intermediate level of impurity

    SciTech Connect (OSTI)

    L.S. Sharath Chandra, M.K. Chattopadhyay, S.B. Roy, V.C. Sahni, G.R. Myneni

    2012-03-01T23:59:59.000Z

    Niobium materials with intermediate purity level are used for fabrication of superconducting radio frequency cavities (SCRF), and thermal conductivity is an important parameter influencing the performance of such SCRF cavities. We report here the temperature and magnetic field dependence of thermal conductivity {kappa} for superconducting niobium (Nb) samples, for which the electron mean free path I{sub e}, the phonon mean free path I{sub g}, and the vortex core diameter 2r{sub C} are of the same order of magnitude. The measured thermal conductivity is analyzed using the effective gap model (developed for I{sub e} >> 2r{sub C} (Dubeck et al 1963 Phys. Rev. Lett. 10 98)) and the normal core model (developed for I{sub e} << 2r{sub C} (Ward and Dew-Hughes 1970 J. Phys. C: Solid St. Phys. 3 2245)). However, it is found that the effective gap model is not suitable for low temperatures when I{sub e} {approx} 2r{sub C}. The normal core model, on the other hand, is able to describe {kappa}(T,H) over the entire temperature range except in the field regime between H{sub C1} and H{sub C2} i.e. in the mixed state. It is shown that to understand the complete behavior of {kappa} in the mixed state, the scattering of quasi-particles from the vortex cores and the intervortex quasi-particle tunneling are to be invoked. The quasi-particle scattering from vortices for the present system is understood in terms of the framework of Sergeenkov and Ausloos (1995 Phys. Rev. B 52 3614) extending their approach to the case of Nb. The intervortex tunneling is understood within the framework of Schmidbauer et al (1970 Z. Phys. 240 30). Analysis of the field dependence of thermal conductivity shows that while the quasi-particle scattering from vortices dominates in the low fields, the intervortex quasi-particle tunneling dominates in high fields. Analysis of the temperature dependence of thermal conductivity shows that while the quasi-particle scattering is dominant at low temperatures, the intervortex quasi-particle tunneling is dominant at high temperatures.

  16. Phase control of probe response in a Doppler-broadened N-type four-level system

    SciTech Connect (OSTI)

    Fan Xijun; Liu Zhongbo; Liang Ying; Jia Kening [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Tong Dianmin [School of Physics, Shandong University, Jinan 250100 (China)

    2011-04-15T23:59:59.000Z

    In this paper, we investigate theoretically the effect of the relative phase ({phi}) between the probe and driving fields on gain (absorption) and dispersion of the probe field in a Doppler-broadened N-type four-level system with spontaneously generated coherence from different respects. It is shown that gain (absorption) and dispersion are very sensitive to variations in the relative phase, and changing the Doppler width also has an obvious effect on the phase-dependent gain (absorption) and dispersion. When the probe and driving fields have the same propagation directions (copropagating), for the same Doppler width, the dispersion curve with {phi}={alpha} is the same as the gain (absorption) curve with {phi}={alpha}+{pi}/2; however, when the probe and driving fields have opposite propagation directions (counterpropagating), the dispersion curve and gain (absorption) curve are different and the difference becomes more considerable with an increase in Doppler width. In the co- and counterpropagating cases, gain (absorption) and dispersion always vary periodically with varying {phi}, and the period is 2{pi}. By adjusting the value of {phi}, the largest gain (absorption) and dispersion can be obtained, and a large index of refraction without absorption can be realized. Generally speaking, gain decreases with an increase in Doppler width, but by adjusting value of {phi}, at some special values of Doppler width, a larger gain than that without Doppler broadening can be obtained. Our study also shows that gain in the copropagating case is much larger than that in the counterpropagating case.

  17. Including probe-level uncertainty in model-based gene expression clustering

    E-Print Network [OSTI]

    Liu, Xuejun; Lin, Kevin K; Andersen, Bogi; Rattray, Magnus

    2007-01-01T23:59:59.000Z

    quantity. For the six-group and seven-group datasets, threeexpression level for group seven is x qij = A qi , where Asecond column is for the seven group dataset with one noise

  18. Precision lifetime measurement of the cesium $6P_{3/2}$ level using ultrafast pump-probe laser pulses

    E-Print Network [OSTI]

    Patterson, Brian M; Ehrenreich, Thomas; Gearba, Mirela A; Brooke, George M; Scoville, James; Knize, Randy J

    2014-01-01T23:59:59.000Z

    Using the inherent timing stability of pulses from a mode-locked laser, we have precisely measured the cesium $6P_{3/2}$ excited state lifetime. An initial pump pulse excites cesium atoms in two counter-propagating atomic beams to the $6P_{3/2}$ level. A subsequent synchronized probe pulse ionizes atoms which remain in the excited state, and the photo-ions are collected and counted. By selecting pump pulses which vary in time with respect to the probe pulses, we obtain a sampling of the excited state population in time, resulting in a lifetime value of 30.462(46) ns. The measurement uncertainty (0.15%) is larger than our previous report of 0.12% [Phys. Rev. A 84, 010501(R) (2011)] due to the inclusion of additional data and systematic errors. In this follow-up paper we present details of the primary systematic errors encountered in the measurement, which include atomic motion within the intensity profiles of the laser beams, quantum beating in the photo-ion signal, and radiation trapping. Improvements to furt...

  19. Nuclear level density as a tool for probing the inelastic scattering of 6He

    E-Print Network [OSTI]

    Bora Canbula; Halil Babacan

    2014-10-23T23:59:59.000Z

    The cross sections are calculated for the both elastic and inelastic scattering of 6He from 12C and 4He. A phenomenological optical potential is used to describe the elastic scattering. 4He is taken as spherical and inelastic couplings to the first excited states of 6He and 12C are described with collective rotational model and coupled-channels method. Deformation lengths for 6He and 12C are determined from semi-classical nuclear level density model by using Laplace-like formula for the nuclear level density parameter. The comparison of the predicted and the measured cross sections are presented to test the applicability of nuclear level density model to the light exotic nuclei reactions. Good agreement is achieved between the predicted and measured cross sections.

  20. Statistical distributions of level widths and conductance peaks in irregularly shaped quantum dots

    SciTech Connect (OSTI)

    Alhassid, Y.; Lewenkopf, C.H. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States)] [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States); [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1995-11-20T23:59:59.000Z

    Analytical expressions for width and conductance peak distributions for quantum dots with multichannel leads in the Coulomb blockade regime are presented for both limits of conserved and broken time-reversal symmetry. The results are valid for any number of nonequivalent and correlated channels, and the distributions are expressed in terms of the channel correlation matrix {ital M} in each lead. The matrix {ital M} is also given in closed form. A chaotic billiard is used as a model to test numerically the theoretical predictions. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  1. Probing Signal Design for Power System Identification

    SciTech Connect (OSTI)

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31T23:59:59.000Z

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  2. Fiberoptic probe and system for spectral measurements

    DOE Patents [OSTI]

    Dai, S.; Young, J.P.

    1998-10-13T23:59:59.000Z

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  3. Spectrophotometric probe

    DOE Patents [OSTI]

    Prather, William S. (Augusta, GA); O'Rourke, Patrick E. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  4. Spectrophotometric probe

    DOE Patents [OSTI]

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02T23:59:59.000Z

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  5. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23T23:59:59.000Z

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  6. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  7. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  8. Rotating concave eddy current probe

    SciTech Connect (OSTI)

    Roach, Dennis P. (Albuquerque, NM); Walkington, Phil (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Hohman, Ed (Albuquerque, NM)

    2008-04-01T23:59:59.000Z

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  9. Fig. 1 A 1 2 Conductance

    E-Print Network [OSTI]

    Hasegawa, Shuji

    were direct electrical conductivity measurements with monolithic microscopic four-point probes and four. The probe spacing (a side of the square) was 60 µm. Experimental data are fitted by a function described of monolithic MFPP measurements with 8-µm spacing probes (A) on a step-bunching region and (B) a step-free re

  10. Probing Mercury's Partnering Preferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange . .ProbingProbing

  11. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09T23:59:59.000Z

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  12. Received 10 May 2013 | Accepted 10 Oct 2013 | Published 8 Nov 2013 Probing single-to multi-cell level charge transport

    E-Print Network [OSTI]

    -cell level charge transport in Geobacter sulfurreducens DL-1 Xiaocheng Jiang1,*, Jinsong Hu2,*, Emily R energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate

  13. Development Of 2-Meter Soil Temperature Probes And Results Of...

    Open Energy Info (EERE)

    Temperature Probes And Results Of Temperature Survey Conducted At Desert Peak, Nevada, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  14. Integrated Optical Probes

    SciTech Connect (OSTI)

    Brent Frogget, Douglas DeVore, Vincent Romero, David Esquibel, and David Holtkamp

    2008-09-04T23:59:59.000Z

    Optical probes used in velocimetry measurements have typically been individual probes that collect data for a single diagnostic at a single point. These probes have been used in diagnostics such as VISAR, PDV, and radiometry, which measure surface velocity, temperature, and other characteristics. When separate probes are used for these measurements, the different diagnostic points measured must be significantly separated. We have developed integrated probes that collect data for multiple optical diagnostics; these probes measure points in close proximity.

  15. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm ExchangeSynchrotronProbing

  16. Hydrodynamic ultrasonic probe

    DOE Patents [OSTI]

    Day, Robert A. (Livermore, CA); Conti, Armond E. (San Jose, CA)

    1980-01-01T23:59:59.000Z

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  17. Conductive Polymers

    SciTech Connect (OSTI)

    Bohnert, G.W.

    2002-11-22T23:59:59.000Z

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  18. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    DOE Patents [OSTI]

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27T23:59:59.000Z

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  19. Rugged fiber optic probe for raman measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Toole, Jr., William R. (Aiken, SC); Nave, Stanley E. (Evans, GA)

    1998-01-01T23:59:59.000Z

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  20. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  1. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  2. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  3. Low thermal conductivity skutterudites

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1997-07-01T23:59:59.000Z

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  4. Non-contact Nondestructive Probing of Charge Carrier Conductivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport processes at interfaces is one of the most important subjects in organic electronics. Charge carriers are injected or extracted through metalsemiconductor...

  5. Directional intraoperative probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Popov, Vladimir; Loutts, Georgii

    2003-11-04T23:59:59.000Z

    An introperative surgical probe incorporating both a fiber optic imaging system and multi-element beta/gamma radiation directional indicating system is described.

  6. Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

    2005-01-01T23:59:59.000Z

    A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  7. Experimental investigations of solid-solid thermal interface conductance

    E-Print Network [OSTI]

    Collins, Kimberlee C. (Kimberlee Chiyoko)

    2010-01-01T23:59:59.000Z

    Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to ...

  8. On the design of heat-transfer probes

    SciTech Connect (OSTI)

    Brich, M.A.; Ganzha, V.L.; Saxena, S.C. [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)

    1997-03-01T23:59:59.000Z

    Saxena and coworkers have reported heat-transfer coefficient values for magnetofluidized beds using electrically heated heat-transfer probes. Here, a two-dimensional heat-transfer model is employed to investigate the influence of significant design features on measured parameters. Numerical calculations reveal that the thermal conductivity of the probe material has an insignificant contribution but the material of end caps and relative sizes and locations of the probe and heater appreciably influence the heat-transfer rates through end-conduction.

  9. System and method for determining coolant level and flow velocity in a nuclear reactor

    DOE Patents [OSTI]

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10T23:59:59.000Z

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  10. Carbon nanotube based electromechanical probes

    E-Print Network [OSTI]

    Yaglioglu, Onnik, 1976-

    2007-01-01T23:59:59.000Z

    Electromechanical probing applications continuously require smaller pitches, faster manufacturing and lower electrical resistance. Conventional techniques, such as MEMS based cantilever probes have their shortcomings in ...

  11. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  12. Focus: DNA probes

    SciTech Connect (OSTI)

    Not Available

    1986-11-01T23:59:59.000Z

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  13. Small ASM probes

    SciTech Connect (OSTI)

    Fritz, J.N.; Olinger, B.; Vorthman, J.E.; Wilder, L.

    1988-10-01T23:59:59.000Z

    A part of the ongoing effort to miniaturize the adjoint sensitivity method (ASM) probe, six small probes in different configurations were tested on a single experiment. The results of the different configurations are presented. The ASM probe is quite accurate and its performance is well understood in those situations where we have a relatively large area that has 1-D flow. Area is expensive and it is desirable to make measurements using a minimum of this resource. When we confine ourselves to a small area we get electromagnetic effects and perturbations in the hydrodynamic flows that were absent in experiments whose lateral extent was large enough to effectively eliminate these problems. We are forced toward magnet and coil configurations that are not ideal for best accuracy. In the experiment described in this report, we describe and report the results of six ASM probes that approach the goal of using less area. 2 refs., 23 figs., 2 tabs.

  14. Nanoscale Current Imaging of the Conducting Channels in Proton

    E-Print Network [OSTI]

    Buratto, Steve

    Nanoscale Current Imaging of the Conducting Channels in Proton Exchange Membrane Fuel Cells David A area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic particle at its end. This is due to the formation of protons, at the carbon cloth side of the cell

  15. Probing Uranium's Mysteries | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbingProbingProbing

  16. Radiation Belt Storm Probes Ion Composition Experiment

    E-Print Network [OSTI]

    current produced the "bays" (decreases in the ground-level geomagnetic field) measured in magnetogram current" around Earth and its association with geomagnetic storms began in the early days of the twentieth Storm Probes (RBSP) spacecraft is the magnetosphere ring current instrument that will provide data

  17. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  18. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    SciTech Connect (OSTI)

    Viertl, John R. M. (Niskayuna, NY); Lee, Martin K. (Niskayuna, NY)

    2001-01-01T23:59:59.000Z

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  19. Multispectral imaging probe

    DOE Patents [OSTI]

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27T23:59:59.000Z

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  20. Quantum probes for fractional Gaussian processes

    E-Print Network [OSTI]

    Matteo G. A. Paris

    2014-07-19T23:59:59.000Z

    We address the characterization of classical fractional random noise via quantum probes. In particular, we focus on estimation and discrimination problems involving the fractal dimension of the trajectories of a system subject to fractional Brownian noise. We assume that the classical degree of freedom exposed to the environmental noise is coupled to a quantum degree of freedom of the same system, e.g. its spin, and exploit quantum limited measurements on the spin part to characterize the classical fractional noise. More generally, our approach may be applied to any two-level system subject to dephasing perturbations described by fractional Brownian noise, in order to assess the precision of quantum limited measurements in the characterization of the external noise. In order to assess the performances of quantum probes we evaluate the Bures metric, as well as the Helstrom and the Chernoff bound, and optimize their values over the interaction time. We find that quantum probes may be successfully employed to obtain a reliable characterization of fractional Gaussian process when the coupling with the environment is weak or strong. In the first case decoherence is not much detrimental and for long interaction times the probe acquires information about the environmental parameters without being too much mixed. Conversely, for strong coupling, information is quickly impinged on the quantum probe and can effectively retrieved by measurements performed in the early stage of the evolution. In the intermediate situation, none of the two above effects take place: information is flowing from the environment to the probe too slowly compared to decoherence, and no measurements can be effectively employed to extract it from the quantum probe. The two regimes of weak- and strong-coupling are defined in terms of a threshold value of the coupling, which itself increases with the fractional dimension.

  1. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  2. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  4. Flexible high-temperature pH probe

    DOE Patents [OSTI]

    Bielawski, John C. (Scotia, NY); Outwater, John O. (Cambridge, MA); Halbfinger, George P. (Schenectady, NY)

    2003-04-22T23:59:59.000Z

    A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.

  5. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work... gas release from the fuel particle and contact resistance at the fuel-matrix interface. A description of the methodology used to construct the model is given in Chapter 3. Comparisons between the analytic predictions and the experimental data...

  6. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  7. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect (OSTI)

    Ul-Hamid, Anwar [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)]. E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Mohammed, Abdul-Rashid I. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Al-Jaroudi, Said S. [Saudi Aramco, P.O. Box 65, Tanajib 31311 (Saudi Arabia); Abbas, Nureddin M. [Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2006-04-15T23:59:59.000Z

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  8. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing OrganicProbingProbing

  9. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbingProbing

  10. Experimental probes of axions

    SciTech Connect (OSTI)

    Chou, Aaron S.; /Fermilab

    2009-10-01T23:59:59.000Z

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  11. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

    2009-05-19T23:59:59.000Z

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  12. Detecting Weld Zone Over Anticorrosion Painting by Rotating Uniform Eddy Current Probe

    SciTech Connect (OSTI)

    Hoshikawa, H.; Koyama, K.; Naruse, Y. [Nihon University, Izumicho Narashino Chiba 275-8575 (Japan)

    2005-04-09T23:59:59.000Z

    The authors have studied application of rotating uniform eddy current probe to detecting weld zone in steed material over anticorrosion painting. The probe detects not only weld position by the signal level but also weld direction by the signal phase. The experimental results have indicated that the probe provides a signal almost linear to its position with respect to weld zone center over the full width of weld. The signal of the probe is much less influenced by the painting thickness variation than that of the conventional differential pancake-coils probe.

  13. Probing Multiparton Correlations at CEBAF

    E-Print Network [OSTI]

    Jianwei Qiu

    1998-08-08T23:59:59.000Z

    In this talk, I explore the possibilities of probing the multiparton correlation functions at CEBAF at its current energy and the energies with its future upgrades.

  14. The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds

    E-Print Network [OSTI]

    A. Marcolini; D. K. Strickland; A. D'Ercole; T. M. Heckman; C. G. Hoopes

    2005-06-27T23:59:59.000Z

    In this paper we present high-resolution hydrodynamical models of warm ionized clouds embedded in a superwind, and compare the OVI and soft X-ray properties to the existing observational data. These models include thermal conduction, which we show plays an important role in shaping both the dynamics and radiative properties of the resulting wind/cloud interaction. Heat conduction stabilizes the cloud by inhibiting the growth of K-H and R-T instabilities, and also generates a shock wave at the cloud's surface that compresses the cloud. This dynamical behaviour influences the observable properties. We find that while OVI emission and absorption always arises in cloud material at the periphery of the cloud, most of the soft X-ray arises in the region between the wind bow shock and the cloud surface, and probes either wind or cloud material depending on the strength of conduction and the relative abundances of the wind with respect to the cloud. In general only a small fraction (thermal conduction, in particular in terms of the OVI-to-X-ray luminosity ratio, but cloud life times are uncomfortably short (thermal conductivity and found that even when we reduced conduction by a factor of 25 that the simulations retained the beneficial hydrodynamical stability and low O{\\sc vi}-to-X-ray luminosity ratio found in the Spitzer-level conductive models, while also having reduced evaporation rates.

  15. Conductive Channel for Energy Transmission

    SciTech Connect (OSTI)

    Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

    2011-11-10T23:59:59.000Z

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  16. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  17. Cosmological Probes for Supersymmetry

    E-Print Network [OSTI]

    Khlopov, Maxim

    2015-01-01T23:59:59.000Z

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  18. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  19. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  20. Dissecting holographic conductivities

    E-Print Network [OSTI]

    Richard A. Davison; Blaise Goutéraux

    2015-05-19T23:59:59.000Z

    The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.

  1. Embrittlement of RPV steels; An atom probe tomography perspective

    SciTech Connect (OSTI)

    Miller, Michael K [ORNL; Russell, Kaye F [ORNL

    2007-01-01T23:59:59.000Z

    Atom probe tomography has played a key role in the understanding of the embrittlement of neutron irradiated reactor pressure vessel steels through the atomic level characterization of the microstructure. Atom probe tomography has been used to demonstrate the importance of the post weld stress relief treatment in reducing the matrix copper content in high copper alloys, the formation of {approx}-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates during neutron irradiation in copper containing RPV steels, and the coarsening of these precipitates during post irradiation heat treatments. Atom probe tomography has been used to detect {approx}2-nm-diameter nickel-, silicon- and manganese-enriched clusters in neutron irradiated low copper and copper free alloys. Atom probe tomography has also been used to quantify solute segregation to, and precipitation on, dislocations and grain boundaries.

  2. Probing the antisymmetric Fano interference assisted by a Majorana fermion

    SciTech Connect (OSTI)

    Dessotti, F. A.; Ricco, L. S. [Departamento de Física e Química, Unesp - Univ Estadual Paulista, 15385-000 Ilha Solteira, São Paulo (Brazil); Souza, M. de [Departamento de Física, IGCE, Unesp - Univ Estadual Paulista, 13506-900 Rio Claro, São Paulo (Brazil); Souza, F. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil); Seridonio, A. C. [Departamento de Física e Química, Unesp - Univ Estadual Paulista, 15385-000 Ilha Solteira, São Paulo (Brazil); Departamento de Física, IGCE, Unesp - Univ Estadual Paulista, 13506-900 Rio Claro, São Paulo (Brazil)

    2014-11-07T23:59:59.000Z

    As the Fano effect is an interference phenomenon where tunneling paths compete for the electronic transport, it becomes a probe to catch fingerprints of Majorana fermions lying on condensed matter systems. In this work, we benefit of this mechanism by proposing as a route for that an Aharonov-Bohm-like interferometer composed by two quantum dots, being one of them coupled to a Majorana bound state, which is attached to one of the edges of a semi-infinite Kitaev wire within the topological phase. By changing the Fermi energy of the leads and the symmetric detuning of the levels for the dots, we show that opposing Fano regimes result in a transmittance characterized by distinct conducting and insulating regions, which are fingerprints of an isolated Majorana quasiparticle. Furthermore, we show that the maximum fluctuation of the transmittance as a function of the detuning is half for a semi-infinite wire, while it corresponds to the unity for a finite system. The setup proposed here constitutes an alternative experimental tool to detect Majorana excitations.

  3. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe AFM Compound Microscope Scanning Probe AFM Compound Microscope The atomic force microscope (AFM) compound microscope is designed primarily for fluorescence imaging in the...

  4. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  5. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

    1994-01-01T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  6. Optic probe for semiconductor characterization

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

    2008-09-02T23:59:59.000Z

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  7. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

  8. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 2, dated 12-3-14, cancels Admin Chg 1.

  9. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  10. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  11. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  12. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing Organic Transistors

  13. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing Organic

  14. Probing the Proton's Weak Side | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br BromineProbing the Proton's Weak Side

  15. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01T23:59:59.000Z

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  16. Cermet fuel thermal conductivity

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    ? ) is expressed by k ( + + ) (3 21) where llg? gap conductance (W/mz-'K) kg? ? conductivity of the gas mixture (W/m-'K) d = actual gap dimension (m) gt gz= temperature jump distances at the fuel and cladding surfaces (cm) The value of d in Equation 3. 21...- ?, )+ ( ") 3 (I- ?, ) - ( ? ) 3 1 yvM trMT b 1+ vF g?T a 1-v?a 1-vF (3. 31) and finally, 2aFBF T 2EMC3M 1 1-2va 1-va 1+vM a (3, 32) 21 Once the constants have been determined, Equation 3. 28 can be solved at the fuel particle outer radius to determine...

  17. Electrically conductive alternating copolymers

    DOE Patents [OSTI]

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31T23:59:59.000Z

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  18. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  19. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  20. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  1. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06T23:59:59.000Z

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  2. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, Ruoyi (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Embury, John David (Hamilton, CA)

    1998-01-01T23:59:59.000Z

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  3. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01T23:59:59.000Z

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  4. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOE Patents [OSTI]

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24T23:59:59.000Z

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  5. TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX

    E-Print Network [OSTI]

    Walker, D. Greg

    to sev- eral applications including flexible thin-film transistors, PEM fuel cells, and direct energy, particularly Peltier devices, high electrical conductivity and low thermal conductivity are preferred

  6. Water at the Surfaces of Aligned Phospholipid Multibilayer Model Membranes Probed with Ultrafast Vibrational

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water at the Surfaces of Aligned Phospholipid Multibilayer Model Membranes Probed with Ultrafast@stanford.edu Abstract: The dynamics of water at the surface of artificial membranes composed of aligned multibilayers pump-probe spectroscopy. The experiments are performed at various hydration levels, x ) 2 - 16 water

  7. Operating Experience Level 3, Importance of Conduct of Operations and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCO OverviewFreedom ofDepartment offorOccupied Areas

  8. Probing the Kondo Lattice Model with Alkaline Earth Atoms

    E-Print Network [OSTI]

    Michael Foss-Feig; Michael Hermele; Ana Maria Rey

    2009-12-24T23:59:59.000Z

    We study transport properties of alkaline-earth atoms governed by the Kondo Lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.

  9. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  10. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine

  11. Selected factors influencing GCL hydraulic conductivity

    SciTech Connect (OSTI)

    Petrov, R.J. [Trow Consulting Engineers Ltd., Brampton, Ontario (Canada); Rowe, R.K.; Quigley, R.M. [Univ. of Western Ontario, London, Ontario (Canada)

    1997-08-01T23:59:59.000Z

    A series of confined swell and hydraulic conductivity tests were conducted on a needle-punched geosynthetic clay liner (GCL) with water as the hydrating medium and reference permeant. Increases in the static confining stress and the needle-punching both restricted GCL swell and contributed to lower bulk GCL void ratios and hence significantly lower hydraulic conductivity values. A well defined linear-log relationship is found between the bulk void ratio and hydraulic conductivity. The number of pore volumes of permeant flow and consequently the level of chemical equilibrium is shown to have a significant effect on the hydraulic conductivity. It is shown that there is a decrease in hydraulic conductivity for small amounts of permeant flow for all ethanol/water mixtures examined. At or near chemical equilibrium, low concentration mixtures (25 and 50% ethanol) continued to produce relative decreases in GCL hydraulic conductivity due to the increased viscosity of the permeant; however, highly concentrated mixtures (75 and 100% ethanol) produced relative increases in GCL hydraulic conductivity arising from double layer contraction. The implications are discussed.

  12. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect (OSTI)

    Jamil A. Khan

    2009-11-21T23:59:59.000Z

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  13. Hand-held survey probe

    DOE Patents [OSTI]

    Young, Kevin L. (Idaho Falls, ID) [Idaho Falls, ID; Hungate, Kevin E. (Idaho Falls, ID) [Idaho Falls, ID

    2010-02-23T23:59:59.000Z

    A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

  14. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing OrganicProbing

  15. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbing Strain-Induced

  16. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43ProbingProbing

  17. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

    1997-12-31T23:59:59.000Z

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  18. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

    2011-09-20T23:59:59.000Z

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  19. Standards of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:

  20. Design and Optimize a Two Color Fourier Domain Pump Probe Optical Coherence Tomography System

    E-Print Network [OSTI]

    Jacob, Desmond

    2010-01-16T23:59:59.000Z

    processes at a molecular level. Pump probe spectroscopy has been used extensively to study the molecular properties of poorly fluorescing biomolecules, because it utilizes the known absorption spectrum of these chromophores. Optical Coherence Tomography (OCT...

  1. Nuclear Physics with Electroweak Probes

    E-Print Network [OSTI]

    Omar Benhar

    2009-02-26T23:59:59.000Z

    In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

  2. JLF Conduct of Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities in mesoporesSourcesItJLF

  3. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWaterNanoscaleProject

  4. Rules of Conduct Definitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember 15Rotary Firing inRotaryRui Liu Rui

  5. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES ThematerialsAbout » Leadership,

  6. High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys

    SciTech Connect (OSTI)

    Abu-Nabah, Bassam A.; Nagy, Peter B. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221-0070 (United States)

    2007-03-21T23:59:59.000Z

    Recent research indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stress in surface-treated components. This technique is based on the so-called piezoresistive effect, i.e., the stress-dependence of electric conductivity. Previous experimental studies were conducted on excessively peened (Almen 10-16A peening intensity levels) nickel-base superalloy specimens that exhibited harmful cold work in excess of 30% plastic strain. The main reason for choosing peening intensities above recommended normal levels was that the eddy current penetration depth could not be decreased below 0.2 mm without conducting accurate measurements above 10 MHz, which is beyond the operational range of most commercially available eddy current instruments. In this paper we report the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz with a single probe coil. In addition, the new system offers better reproducibility, accuracy, and measurement speed than the previously used conventional system.

  7. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  8. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  9. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D. (Reno, NV); Sulchek, Todd A. (Oakland, CA); Feigin, Stuart C. (Reno, NV)

    2012-07-10T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  10. Cantilevered probe detector with piezoelectric element

    DOE Patents [OSTI]

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06T23:59:59.000Z

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  11. Handheld force-controlled ultrasound probe

    E-Print Network [OSTI]

    Gilbertson, Matthew Wright

    2010-01-01T23:59:59.000Z

    An hand-held force controlled ultrasound probe has been developed. The controller maintains a prescribed contact force between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand ...

  12. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    SciTech Connect (OSTI)

    Benjamin Michael Meyer

    2003-05-31T23:59:59.000Z

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution of activation energies (DAE) to calculate the corresponding conductivity and relaxation rates as a function of temperature and frequency?

  13. Electron probe microanalysis in geoscience: a tutorial

    SciTech Connect (OSTI)

    Gooley, R.

    1981-01-01T23:59:59.000Z

    A tutorial on the history, theory and use of electron probe microanalysis in the geosciences is presented. (ACR)

  14. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Surface Enhanced Raman Scattering Fluctuation Dynamics using Correalted AFM and Confocal Ultramicroscopy. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation...

  15. The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Liu, G.; Zheng, H.; Kim, S.; Deng, Y.; Minor, A.M.; Song, X.; Battaglia, V.S.

    2008-08-07T23:59:59.000Z

    Fundamental electrochemical methods, cell performance tests, and physical characterization tests such as electron microscopy were used to study the effects of levels of the inert materials (acetylene black (AB), a nano-conductive additive, and polyvinylidene difluoride (PVDF), a polymer binder) on the power performance of lithium-ion composite cathodes. The electronic conductivity of the AB/PVDF composites at different compositions was measured with a four-point probe direct current method. The electronic conductivity was found to increase rapidly and plateau at a AB:PVDF ratio 0.2:1 (by weight), with 0.8:1 being the highest conductivity composition. AB:PVDF compositions along the plateau of 0.2:1, 0.4:1, 0.6:1 and 0.8:1 were investigated. Electrodes of each of those compositions were fabricated with different fractions of AB/PVDF to active material. It was found that at the 0.8:1 AB:PVDF, the rate performance improved with increases in the AB/PVDF loading, whereas at the 0.2:1 AB:PVDF, the rate performance improved with decreases in the AB/PVDF loading. The impedance of electrodes made with 0.6:1 AB:PVDF was low and relatively invariant.

  16. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  17. Thermal Conductivity of Coated Paper

    SciTech Connect (OSTI)

    Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH

    2009-01-01T23:59:59.000Z

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  18. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  19. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  20. Method and apparatus for probing relative volume fractions

    DOE Patents [OSTI]

    Jandrasits, W.G.; Kikta, T.J.

    1998-03-17T23:59:59.000Z

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.

  1. Method and apparatus for probing relative volume fractions

    DOE Patents [OSTI]

    Jandrasits, Walter G. (Pittsburgh, PA); Kikta, Thomas J. (Upper St. Clair, PA)

    1998-01-01T23:59:59.000Z

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  2. Optical probe with reference fiber

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

    2006-03-14T23:59:59.000Z

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  3. pH Meter probe assembly

    DOE Patents [OSTI]

    Hale, C.J.

    1983-11-15T23:59:59.000Z

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  4. STANDING WAVE PROBES FOR DIMENSIONAL METROLOGY OF LOW DENSITY FOAMS

    SciTech Connect (OSTI)

    Seugling, R M; Woody, S C; Bauza, M B

    2010-03-23T23:59:59.000Z

    Typically, parts and geometries of interest to LLNL are made from a combination of complex geometries and a wide array of different materials ranging from metals and ceramics to low density foams and plastic foils. These parts are combined to develop physics experiments for studying material properties, equation of state (EOS) and radiation transport. Understanding the dimensional uncertainty of the parts contained within an experiment is critical to the physical understanding of the phenomena being observed and represents the motivation for developing probe metrology capability that can address LLNL's unique problems. Standing wave probes were developed for measuring high aspect ratio, micrometer scaled features with nanometer resolution. Originally conceived of for the use in the automotive industry for characterizing fuel injector bores and similar geometries, this concept was investigated and improved for use on geometries and materials important to LLNL needs within target fabrication. As part of the original project, detailed understanding of the probe dynamics and interactions with the surface of the sample was investigated. In addition, the upgraded system was utilized for measuring fuel injector bores and micro-lenses as a means of demonstrating capability. This report discusses the use of the standing wave probe for measuring features in low density foams, 55 mg/cc SiO{sub 2} and 982 mg/cc (%6 relative density) copper foam respectively. These two foam materials represent a difficult metrology challenge because of their material properties and surface topography. Traditional non-contact metrology systems such as normal incident interferometry and/or confocal microscopy have difficulty obtaining a signal from the relatively absorptive characteristics of these materials. In addition to the foam samples, a solid copper and plastic (Rexolite{trademark}) sample of similar geometry was measured with the standing wave probe as a reference for both conductive and dielectric materials.

  5. Laboratory Experiments and Hydrodynamic Modeling of a Bed Leveler Used to Level the Bottom of Ship Channels after Dredging

    E-Print Network [OSTI]

    Paul, Ephraim Udo

    2011-02-22T23:59:59.000Z

    This study was conducted to ascertain the impacts of bed leveling, following ship channel dredging operations, and to also investigate the hydrodynamic flow field around box bed levelers. Laboratory experiments were conducted with bed levelers...

  6. An efficient probe of the cosmological CPT violation

    E-Print Network [OSTI]

    Zhao, Gong-Bo; Xia, Jun-Qing; Li, Mingzhe; Zhang, Xinmin

    2015-01-01T23:59:59.000Z

    We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at $2.3\\sigma$ confidence level, ie, $\\Delta\\alpha=-3.3 \\pm1.4$ deg (68% CL) with systematics included.

  7. Optical Conductivity with Holographic Lattices

    E-Print Network [OSTI]

    Gary T. Horowitz; Jorge E. Santos; David Tong

    2012-08-03T23:59:59.000Z

    We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

  8. Appendix C Conducting Structured Walkthroughs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21T23:59:59.000Z

    This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

  9. Enhancement of Topological Insulators Surface Conduction

    E-Print Network [OSTI]

    Yu, Xinxin

    2012-01-01T23:59:59.000Z

    Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

  10. Entangled quantum probes for dynamical environmental noise

    E-Print Network [OSTI]

    Matteo A. C. Rossi; Matteo G. A. Paris

    2015-03-11T23:59:59.000Z

    We address the use of entangled qubits as quantum probes to characterize the dynamical noise induced by complex environments. In particular, we show that entangled probes improve estimation of the correlation time for a broad class of environmental noises compared to any sequential strategy involving single qubit preparation. The effect is present when the noise is faster than a threshold value, a regime which may always be achieved by tuning the coupling between the quantum probe and the environment inducing the noise. Our scheme exploits time-dependent sensitivity of quantum systems to decoherence and does not require dynamical control on the probes. We derive the optimal interaction time and the optimal probe preparation, showing that it corresponds to multiqubit GHZ states when entanglement is useful. We also show robustness of the scheme against depolarization or dephasing of the probe, and discuss simple measurements approaching optimal precision.

  11. Conductive polymer-based material

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI); Dourado, Sunil K. (Ann Arbor, MI); Dulebohn, Joel I. (Lansing, MI); Hanchar, Robert J. (Charlotte, MI)

    2007-04-17T23:59:59.000Z

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  12. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect (OSTI)

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa [IDMEC, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Santos, Jorge dos [GKSS, Max-Planck-Street 1, D-21502 Geesthacht (Germany); Rosado, Luis [IST, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-02-22T23:59:59.000Z

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  13. Club Sports Coach/Volunteer Code of Conduct

    E-Print Network [OSTI]

    Holland, Jeffrey

    Club Sports Coach/Volunteer Code of Conduct Agreement Form I that this position holds a high level of responsibility and I agree to the following Code for Club Sports, and other University officials as may be required. · I

  14. Eddy current probe and method for flaw detection in metals

    DOE Patents [OSTI]

    Watjen, J.P.

    1987-06-23T23:59:59.000Z

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner. 9 figs.

  15. Eddy current probe and method for flaw detection in metals

    DOE Patents [OSTI]

    Watjen, John P. (Sunnyvale, CA)

    1987-06-23T23:59:59.000Z

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  16. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  17. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  18. METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Revised ms METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS A in laboratory on silicate melts are used to interpret magnetotelluric anomalies. On the basis of two- and four to small chemical and physical changes, it represents a subtle probe for studying silicate melts properties

  19. Experimental thermal conductivity and contact conductance of graphite composites 

    E-Print Network [OSTI]

    Jackson, Marian Christine

    1998-01-01T23:59:59.000Z

    Graphite fiber organic matrix composites were reviewed ics. for potential heat sink applications in the electronics packaging determined the effective transverse and longitudinal thermal industry. This experimental investigation conductivity...

  20. Experimental thermal conductivity and contact conductance of graphite composites

    E-Print Network [OSTI]

    Jackson, Marian Christine

    1998-01-01T23:59:59.000Z

    Graphite fiber organic matrix composites were reviewed ics. for potential heat sink applications in the electronics packaging determined the effective transverse and longitudinal thermal industry. This experimental investigation conductivity...

  1. An analysis of salt and moisture deposition on the air sampling probes in the exhaust shaft of the waste isolation pilot plant

    E-Print Network [OSTI]

    Weaver, Gregg Shelton

    1996-01-01T23:59:59.000Z

    at the top of the exhaust shaft. The salt encrustations could potentially interfere with the operation of the air sampling probes. The formation of the salt was not uniform with time or location on the probe surface. Previous studies (Westinghouse Electric... becomes entrained once the gas velocities increase above about 15 m/s. Westinghouse Electric Corporation (1994) detailed a study of the probes conducted from April, 1993 to May, 1994. The probes suspended from Stations A-l, A-2, and A-3 were removed...

  2. Mössbauer study of conductive oxide glass

    SciTech Connect (OSTI)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27T23:59:59.000Z

    Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  3. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01T23:59:59.000Z

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  4. CONDUCTANCE OF NANOSYSTEMS WITH INTERACTION

    E-Print Network [OSTI]

    Ramsak, Anton

    -beam lithography or small metallic grains,[1] semiconductor quantum dots,[2] or a single large molecule of an atomic-size bridge that forms in the break,[3] or even measure the conductance of a single hydrogen

  5. Continuous production of conducting polymer

    E-Print Network [OSTI]

    Gaige, Terry A. (Terry Alden), 1981-

    2004-01-01T23:59:59.000Z

    A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

  6. MERIT Pump/Probe Data OutlineOutline

    E-Print Network [OSTI]

    McDonald, Kirk

    MERIT Pump/Probe Data Analysis OutlineOutline The pump/probe program Particle detector response correction Pump/probe analysis results NFMCC Collaboration Meeting , LBNL, January 26, 2009 Ilias Efthymiopoulos - CERN #12;The pump/probe program #12;The pump/probe program Use of the CERN PS flexibility

  7. Selection of liquid-level monitoring method for the Oak Ridge National Laboratory inactive liquid low-level waste tanks, remedial investigation/feasibility study

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    Several of the inactive liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory contain residual wastes in liquid or solid (sludge) form or both. A plan of action has been developed to ensure that potential environmental impacts from the waste remaining in the inactive LLLW tank systems are minimized. This document describes the evaluation and selection of a methodology for monitoring the level of the liquid in inactive LLLW tanks. Criteria are established for comparison of existing level monitoring and leak testing methods; a preferred method is selected and a decision methodology for monitoring the level of the liquid in the tanks is presented for implementation. The methodology selected can be used to continuously monitor the tanks pending disposition of the wastes for treatment and disposal. Tanks that are empty, are scheduled to be emptied in the near future, or have liquid contents that are very low risk to the environment were not considered to be candidates for installing level monitoring. Tanks requiring new monitoring equipment were provided with conductivity probes; tanks with existing level monitoring instrumentation were not modified. The resulting data will be analyzed to determine inactive LLLW tank liquid level trends as a function of time.

  8. Plasma conductivity at finite coupling

    E-Print Network [OSTI]

    Babiker Hassanain; Martin Schvellinger

    2011-08-31T23:59:59.000Z

    By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

  9. In-situ spectrophotometric probe

    DOE Patents [OSTI]

    Prather, W.S.

    1992-12-15T23:59:59.000Z

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  10. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

    1991-01-01T23:59:59.000Z

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  11. Mixed Conduction in Rare-Earth Phosphates

    E-Print Network [OSTI]

    Ray, Hannah Leung

    2012-01-01T23:59:59.000Z

    Conduction  in  Rare-­Earth  Phosphates   by   Hannah  Conduction  in  Rare-­?Earth  Phosphates   by   Hannah  conduction  in  rare  earth  phosphates.  Specifically,  

  12. Thermodynamics of D-brane Probes

    E-Print Network [OSTI]

    E. Kiritsis; T. R. Taylor

    1999-06-05T23:59:59.000Z

    We discuss the dynamics and thermodynamics of particle and D-brane probes moving in non-extremal black hole/brane backgrounds. When a probe falls from asymptotic infinity to the horizon, it transforms its potential energy into heat, $TdS$, which is absorbed by the black hole in a way consistent with the first law of thermodynamics. We show that the same remains true in the near-horizon limit, for BPS probes only, with the BPS probe moving from AdS infinity to the horizon. This is a quantitative indication that the brane-probe reaching the horizon corresponds to thermalization in gauge theory. It is shown that this relation provides a way to reliably compute the entropy away from the extremal limit (towards the Schwarzschild limit).

  13. Protective shield for an instrument probe

    DOE Patents [OSTI]

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26T23:59:59.000Z

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  14. Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules

    SciTech Connect (OSTI)

    Aburaya, Yoshihiro; Nomura, Hikaru; Kageshima, Masami; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro [Department of Applied Physics, Graduate School of Engineering, Osaka University 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-03-15T23:59:59.000Z

    An attempt to develop an atomic force microscopy (AFM) probe with optically switchable polarization is described. Modification with a single molecular layer of photochromic molecules was attempted onto a Si substrate that is a prototype for a probe surface. Polarization switching caused by alternate irradiation of UV and visible lights were detected using the electrostatic force?>spectroscopy (EFS) technique. Si substrates modified with spiropyran and azobenzene exhibited reversible polarization switching that caused changes in CPD of about 100 and 50 mV, respectively. Modification with spiropyran was also attempted onto a Si probe and resulted in a CPD change of about 100 mV. It was confirmed that modification of an AFM probe or substrate with a single molecular layer of photochromic molecules can generate surface polarization switching of a mechanically detectable level.

  15. Assessment of the 296-S-21 Stack Sampling Probe Location

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2006-09-08T23:59:59.000Z

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

  16. Code of Conduct Regarding Holiday Gifts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,Cobalt discoveryCode of Conduct

  17. Electrically Conductive Bacterial Nanowires Produced by Shewanella...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

  18. Optical conductivity of curved graphene

    E-Print Network [OSTI]

    A. J. Chaves; T. Frederico; O. Oliveira; W. de Paula; M. C. Santos

    2014-05-01T23:59:59.000Z

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far and mid infrared frequencies for periodicities $\\sim100\\,$nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthemore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  19. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  20. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  1. Electroosmosis in conducting nanofluidic channels

    E-Print Network [OSTI]

    Zhao, Cunlu

    2010-01-01T23:59:59.000Z

    Theoretical modeling of electroosmosis through conducting (ideally polarizable) nanochannels is reported. Based on the theory of induced charge electrokinetics, a novel nanofluidic system which possesses both adjustable ion selective characteristics and flexible flow control is proposed. Such nanofluidic devices operate only with very low gate control voltage applied on the conductive walls of nanochannels, and thus even can be energized by normal batteries. We believe that it is possible to use such metal-electrolyte configurations to overcome the difficulties met with conventional metal-isolator-electrolyte systems for nanofluidic applications.

  2. AVTA: Clipper Creek AC Level 2 Charging System Testing Results...

    Broader source: Energy.gov (indexed) [DOE]

    electric vehicles. This research was conducted by Idaho National Laboratory. Clipper Creek AC Level 2 - February 2012 More Documents & Publications AVTA: Aerovironment AC Level...

  3. Qualitative determination of H2S crossover rates in nation membranes using ion-probe techniques

    SciTech Connect (OSTI)

    Brosha, Eric L [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Uribe, Francisco A [Los Alamos National Laboratory; Garzon, Fernando H [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H2S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. The H2S permeability through dry and humidified Nafion PEMFC membranes was studied using ion probe techniques. A sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H2S that permeated through 50 cm2samples of Nafion 117 and 212 membranes using a partial pressure difference up to I030ppm at room temperature. Experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(N03)2. The rate of H2S crossover for dry 117 and 212 were identical at 1.2e-7 g/min. Humidification increased the crossover rate to 5.ge-7 glmin and 1.8e-6 glmin for 117 and 212 respectively. Although the data collected in this work show that the rate of H2S crossover increases with water content and reduced membrane thickness, an accurate determination of permeation constants from this work was not possible because the H2S partial pressure was not constant throughout the experiment.

  4. In-Situ Transmission Electron Microscopy Probing of Native Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial...

  5. Quantitatively Probing the Al Distribution in Zeolites. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitatively Probing the Al Distribution in Zeolites. Quantitatively Probing the Al Distribution in Zeolites. Abstract: The degree of substitution of Si4+ by Al3+ in the...

  6. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

  7. Scanning Probe Direct-Write of Germanium Nanostructures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe Direct-Write of Germanium Nanostructures. Scanning Probe Direct-Write of Germanium Nanostructures. Abstract: Bottom-up nanostructure synthesis has played a pivotal role in...

  8. Epistemic levels

    E-Print Network [OSTI]

    Greco, Daniel (Daniel Louis)

    2012-01-01T23:59:59.000Z

    In this dissertation I defend some controversial "level-bridging" principles in epistemology. In the first chapter, I defend the KK principle-the principle that if one knows that P, then one knows that one knows that P. I ...

  9. Characterization of Fiber Optic CMM Probe System

    SciTech Connect (OSTI)

    K.W.Swallow

    2007-05-15T23:59:59.000Z

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  10. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, T.E.; Spieker, D.A.

    1983-12-08T23:59:59.000Z

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  11. Conducting Your Own Energy Audit

    E-Print Network [OSTI]

    Phillips, J.

    2008-01-01T23:59:59.000Z

    Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a company’s profit every minute...

  12. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, Thomas E. (Grandview, MO); Spieker, David A. (Olathe, KS)

    1985-03-19T23:59:59.000Z

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  13. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  14. Neural probe design & MEMS technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeural probe design accelerated with

  15. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange . .Probing

  16. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange .TechniquesProbing

  17. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPoints ofJanoschekProbing

  18. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPointsProbing Core-Hole

  19. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPointsProbing

  20. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPointsProbingplantProbing

  1. Probing Strain-Induced Changes in Electronic Structure with XMCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43Probing

  2. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11T23:59:59.000Z

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  3. Self-referencing remote optical probe

    DOE Patents [OSTI]

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1991-08-13T23:59:59.000Z

    A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

  4. Surface sampling concentration and reaction probe

    DOE Patents [OSTI]

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16T23:59:59.000Z

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  5. Catheter based magnetic resonance compatible perfusion probe

    E-Print Network [OSTI]

    Toretta, Cara Lynne

    2007-01-01T23:59:59.000Z

    Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

  6. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a dye-sensitization system,... Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2 Nanoparticles. The correlated metallic tip-enhanced Raman spectroscopy...

  7. Single Molecule Probes of Lipid Membrane Structure

    E-Print Network [OSTI]

    Livanec, Philip W.

    2009-12-14T23:59:59.000Z

    Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein ...

  8. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly,more »in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  9. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J. [Yale Univ., New Haven, CT (United States); Malashevich, Andrei [Yale Univ., New Haven, CT (United States); Disa, Ankit S. [Yale Univ., New Haven, CT (United States); Han, Myung-Guen [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Hanghui [Yale Univ., New Haven, CT (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Ismail-Beigi, Sohrab [Yale Univ., New Haven, CT (United States); Walker, Frederick J. [Yale Univ., New Haven, CT (United States); Ahn, Charles H. [Yale Univ., New Haven, CT (United States);

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  10. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1995-01-01T23:59:59.000Z

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  11. Fiber optic probe for light scattering measurements

    DOE Patents [OSTI]

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01T23:59:59.000Z

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  12. Design and expression of a short peptide as an HIV detection probe

    SciTech Connect (OSTI)

    Lines, Jamie A.; Yu, Zhiqiang; Dedkova, Larisa M.; Chen, Shengxi, E-mail: shengxi.chen.1@asu.edu

    2014-01-03T23:59:59.000Z

    Highlights: •We designed a short fusion peptide (FP-50) for in vivo expression. •This peptide is a very promising component for detection of gp120 protein. •The detectable level is about 20–200 times lower than previously published methods. •It is a novel probe to detect HIV-1 gp120 during early stages of HIV infection. -- Abstract: To explore a low-cost novel probe for HIV detection, we designed and prepared a 50-amino acid-length short fusion peptide (FP-50) via Escherichia coli in vivo expression. It was employed as a novel probe to detect HIV-1 gp120 protein. The detectable level of gp120 protein using the FP-50 peptide was approximately 20–200 times lower than previously published methods that used a pair of monoclonal antibodies. Thus, this short peptide is a very promising component for detection of gp120 protein during early stages of HIV infection.

  13. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  14. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  15. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  16. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  17. Probing SZ Source Detection with Gasdynamical Simulations

    E-Print Network [OSTI]

    J. Richard Bond; Marcelo I. Ruetalo; James W. Wadsley; Michael D. Gladders

    2002-05-30T23:59:59.000Z

    The huge worldwide investment in CMB experiments should make the Sunyaev-Zeldovich (SZ) effect a key probe of the cosmic web in the near future. For the promise to be realized, substantial development of simulation and analysis tools to relate observation to theory is needed. The high nonlinearity and dissipative/feedback gas physics lead to highly non-Gaussian patterns that are much more difficult to analyze than Gaussian primary anisotropies for which the procedures are reasonably well developed. Historical forecasts for what CMB experiments might see used semi-analytic tools, including large scale map constructions, with localized and simplified pressure structures distributed on a point process of (clustered) sources. Hydro studies beyond individual cluster/supercluster systems were inadequate, but now large-volume simulations with high resolution are beginning to shift the balance. We illustrate this by applying ``Gasoline'' (parallelized Tree+SPH) computations to construct SZ maps and derive statistical measures. We believe rapid Monte Carlo simulations using parameterized templates centered on point processes informed by optical and other means on the observational side, and by hydro simulations on the theory side, should play an important role in pipelines to analyze the new SZ field data. We show that localized sources should dominate upcoming SZ experiments, identify sources in the maps under filtering and noise levels expected for these experiments, use the RCS photometric optical survey as an example of redshift localization, and discuss whether cosmic web patterns such as superclusters can be enhanced when such extra source information is supplied.

  18. Evaluation of probes used to detect alpha radiation

    E-Print Network [OSTI]

    Sackett, Gregory Duane

    1995-01-01T23:59:59.000Z

    such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served...

  19. Evaluation of probes used to detect alpha radiation 

    E-Print Network [OSTI]

    Sackett, Gregory Duane

    1995-01-01T23:59:59.000Z

    such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served...

  20. Nonequilibrium Spintronic Transport through an Artificial Kondo Impurity: Conductance, Magnetoresistance, and Shot Noise

    E-Print Network [OSTI]

    Sánchez, David

    Nonequilibrium Spintronic Transport through an Artificial Kondo Impurity: Conductance processes lift the level degeneracy, yielding "0 R, where R is a phenomenological spin flip scatter- ing

  1. Using electrical resistance probes for moisture determination in switchgrass windrows

    SciTech Connect (OSTI)

    Chesser Jr., G. D.; Davis, J. D.; Purswell, J. L.; Lemus, R.

    2011-08-01T23:59:59.000Z

    Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies needed to measure MC in switchgrass using electrical resistance meters, ii) to determine the effects of pressure and probe orientation on MC measurement and iii) to generate MC calibration equations for electrical resistance meters using switchgrass in the senescence growth stage. Two meters (Meter 1, Farmex HT-PRO; Meter 2, Delmhorst F-2000) were selected based on commercial availability. A forage compression apparatus was designed and constructed with on-farm materials and methods to provide a simple system of applying pressure achievable by any forage producer or researcher in the field. Two trials were performed to test four levels of moisture contents (10, 20, 30, and 40%), five pressures (0, 1.68, 3.11, 4.55, 6.22 kN/m 2; 0, 35, 65, 95, 130 lb/ft 2), and two probe orientations (axial and transverse) in a 4x5x2 factorial design. Results indicated that meter accuracy increased as pressure increased. Regression models accounted for 91% and 81% of the variation for Meter 1 and Meter 2 at a pressure of 4.55 kN/m 2 (95 lb/ft 2) and a transverse probe orientation. Calibration equations were developed for both meters to improve moisture measurement accuracy for farmers and researchers in the field.

  2. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements

    SciTech Connect (OSTI)

    Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram; Baldocchi, Dennis

    2012-09-13T23:59:59.000Z

    The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for the calibration of existing heat ratio sap flow systems at other sites. It is especially useful when an alternative transpiration calibration device, such as a lysimeter, is not available.

  3. Neutron and Gamma Probe Application to Hanford Tank 241-SY-101

    SciTech Connect (OSTI)

    CANNON, N.S.

    2000-02-01T23:59:59.000Z

    A neutron (moisture-sensitive) and gamma (in-situ radiation) probe technique has been utilized at a number of Hanford radioactive waste tanks for many years. This technology has been adapted for use in tank 241-SY-101's two Multifunction Instrument Trees (MITs) which have a hollow dry-well center opening two inches (51 cm) in diameter. These probes provide scans starting within a few inches of the tank bottom and traversing up through the top of the tank revealing a variety of waste features as a function of tank elevation. These features have been correlated with void fraction data obtained independently from two other devices, the Retained Gas Sampler (RGS) and the Void Fraction Instrument (VFI). The MIT probes offer the advantage of nearly continuous count-rate versus elevation scans and they can be operated significantly more often and at lower cost than temperature probes or the RGS or VFI devices while providing better depth resolution. The waste level in tank 241-SY-101 had been rising at higher rates than expected during 1998 and early 1999 indicating an increasing amount of trapped gas in the waste. The use of the MIT probes has assisted in evaluating changes in crust thickness and level and also in estimating relative changes in gas stored in the crust. This information is important in assuring that the tank remains in a safe configuration and will support safe waste transfer when those operations take place.

  4. Holographic backgrounds from D-brane probes

    E-Print Network [OSTI]

    Micha Moskovic

    2015-01-09T23:59:59.000Z

    This thesis focuses on the derivation of holographic backgrounds from the field theory side, without using any supergravity equations of motion. Instead, we rely on the addition of probe D-branes to the stack of D-branes generating the background. From the field theory description of the probe branes, one can compute an effective action for the probes (in a suitable low-energy/near-horizon limit) by integrating out the background branes. Comparing this action with the generic probe D-brane action then allows to determine the holographic background dual to the considered field theory vacuum. In the first part, the required pre-requisites of field and string theory are recalled and this strategy to derive holographic backgrounds is explained in more detail on the basic case of D3-branes in flat space probed by a small number of D-instantons. The second part contains our original results, which have already appeared in arXiv:1301.3738, arXiv:1301.7062 and arXiv:1312.0621. We first derive the duals to three continuous deformations (Coulomb branch, $\\beta$ and non-commutative deformations) of N=4 super-Yang-Mills. We then derive the enhan\\c{c}on mechanism in a simple N=2 quiver gauge theory setup by using a fractional D-instanton as a probe and exploiting recent exact results on the Coulomb branch of N=2 quivers. Finally, we obtain the near-horizon D4-brane geometry by probing the D4-branes with a small number of D0-branes.

  5. Corrosion monitoring with hydrogen probes in the oilfield

    SciTech Connect (OSTI)

    Thomason, W.H.

    1984-05-01T23:59:59.000Z

    An overview of the application of hydrogen probes for corrosion monitoring in the oilfield is presented. The three basic types of hydrogen probes are described and their relative merits discussed. The construction and installation of a simple and inexpensive electrochemical hydrogen probe is described. Experiences with hydrogen probes in oilfield operations are discussed, and it is concluded from these experiences that production systems where hydrogen probes can provide useful corrosion data are limited.

  6. Precise Application of Transparent Conductive Oxide Coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide (TCO)...

  7. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, M.

    1988-02-12T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  8. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1989-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  9. Advances in inherently conducting polymers

    SciTech Connect (OSTI)

    Aldissi, M.

    1987-09-01T23:59:59.000Z

    The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

  10. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  11. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from ENSDF

  12. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from

  13. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2 O

  14. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2 O3

  15. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2 O3Be

  16. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2

  17. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2B

  18. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2BBe

  19. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li from2BBeNe

  20. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4Li

  1. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB from

  2. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB fromC

  3. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB fromCNe

  4. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB fromCNe9

  5. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB fromCNe9C

  6. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiB

  7. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from

  8. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from5 H

  9. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from5 H6

  10. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from5

  11. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from58 C

  12. Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210 Available in4LiBN from58

  13. Transparent conducting thin films for spacecraft applications

    SciTech Connect (OSTI)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.; Rutledge, S.K.; Roig, D.; Degroh, K.K.; Hung, C.

    1994-01-01T23:59:59.000Z

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  14. Potential variations around grain boundaries in impurity-doped BaSi? epitaxial films evaluated by Kelvin probe force microscopy

    SciTech Connect (OSTI)

    Tsukahara, D.; Baba, M.; Honda, S.; Toko, K. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Imai, Y. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); AIST, Tsukuba, Ibaraki 305-8565 (Japan); Hara, K. O.; Usami, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Werner, J. H. [Institute for Photovoltaics, University of Stuttgart, Stuttgart 70569 (Germany); Suemasu, T. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Institute for Photovoltaics, University of Stuttgart, Stuttgart 70569 (Germany)

    2014-09-28T23:59:59.000Z

    Potential variations around the grain boundaries (GBs) in antimony (Sb)-doped n-type and boron (B)-doped p-type BaSi? epitaxial films on Si(111) were evaluated by Kelvin probe force microscopy. Sb-doped n-BaSi? films exhibited positively charged GBs with a downward band bending at the GBs. The average barrier height for holes was approximately 10 meV for an electron concentration n ? 10¹? cm?³. This downward band bending changed to upward band bending when n was increased to n = 1.8 × 10¹?cm?³. In the B-doped p-BaSi? films, the upward band bending was observed for a hole concentration p ? 10¹?cm?³. The average barrier height for electrons decreased from approximately 25 to 15 meV when p was increased from p = 2.7 × 10¹? to p = 4.0 × 10¹? cm?³. These results are explained under the assumption that the position of the Fermi level E{sub f} at GBs depends on the degree of occupancy of defect states at the GBs, while E{sub f} approached the bottom of the conduction band or the top of the valence band in the BaSi? grain interiors with increasing impurity concentrations. In both cases, such small barrier heights may not deteriorate the carrier transport properties. The electronic structures of impurity-doped BaSi? are also discussed using first-principles pseudopotential method to discuss the insertion sites of impurity atoms and clarify the reason for the observed n-type conduction in the Sb-doped BaSi? and p-type conduction in the B-doped BaSi?.

  15. SUSS PM 5 Analytic Probe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n uSTEM-A SANCHEZSUSS PM 5 Analytic

  16. IBEX probe glimpses interstellar neighborhood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall CIn thisTH/P8-43IBEX

  17. Multi-Probe Diagnostic Hall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174More DocumentsofNOV 0 1 2013MAR

  18. Gamma-ray blind beta particle probe

    DOE Patents [OSTI]

    Weisenberger, Andrew G. (Grafton, VA)

    2001-01-01T23:59:59.000Z

    An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

  19. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E. (Hurt, VA); Blasi, Raymond J. (Harrison City, PA); Archer, William B. (Bethel Park, PA)

    1999-01-01T23:59:59.000Z

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  20. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  1. Scintillation probe with photomultiplier tube saturation indicator

    DOE Patents [OSTI]

    Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

    1996-01-01T23:59:59.000Z

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  2. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect (OSTI)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01T23:59:59.000Z

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  3. High temperature liquid level sensor

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  4. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect (OSTI)

    Zhang, Z. Fred

    2014-01-01T23:59:59.000Z

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  5. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect (OSTI)

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01T23:59:59.000Z

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  6. RESULTS OF THE EXAMINATION OF ELECTROCHEMICAL NOISE PROBE SPECIMENS REMOVED FROM TANK 241-AN-107 JUNE 2010

    SciTech Connect (OSTI)

    COOKE GA; WYRWAS RB; DUNCAN JB

    2010-11-11T23:59:59.000Z

    An Integrated Multi-function Corrosion Probe (IMCP) was installed in Tank 241-AN-107 on September 20, 2006. A portion of the probe was retrieved on June 8, 2010 and the sections holding the detectors were delivered to the 222-S Laboratory for analysis. The examination and disassembly of the probe sections encountered a number of challenges. However, disassembly and relevant analyses were successfully completed. The following summarizes our observations. Brittle failure of the fiberglass probe in the middle of detector 2 resulted in the recovery of only three vapor space C-rings and six supernatant bullet specimens. The design of the bullets and how they were attached to the probe made the recovery of the components more difficult. The use of glue/epoxy on the bullets and the attachment of the flat bottom of the bullets to the curved surface of the fiberglass probe body meant that weight loss on cleaning and surface area of the specimens could not be determined with acceptable accuracy. Macrophotography of all specimens reveals that corrosion was slight in the vapor space and extremely slight in the supernatant. The one pre-cracked C-ring recovered from the vapor space still had the stress bulge visible on the polished surface, indicating that crack propagation had not occurred in the tank. No photographs were taken of the C-ring before deployment. No further analysis was conducted on this specimen. A detailed discussion and photographic documentation are provided in this report.

  7. Probing nuclear matter with jet conversions

    E-Print Network [OSTI]

    Liu, W.; Fries, Rainer J.

    2008-01-01T23:59:59.000Z

    We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum PT. In particular...

  8. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19T23:59:59.000Z

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  9. Probe and method for DNA detection

    SciTech Connect (OSTI)

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02T23:59:59.000Z

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  10. Astrophysikalisches Institut Potsdam Probes of Dark Energy

    E-Print Network [OSTI]

    Astrophysikalisches Institut Potsdam Probes of Dark Energy using Cosmological Simulations Nonlinear component, called dark energy. This unknown energy causes the expansion of the universe to accelerate theoretical model of dark energy has been developed. Instead a number of models have been proposed that range

  11. Standards of Ethical Conduct Purpose

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:California  Standards of

  12. Planning and Conducting Readiness Reviews

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.Work Plan for FY 2013 A list of3006-2010

  13. Optical Modulation of Molecular Conductance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperationalOpportunities forOptical

  14. Procedure for Planning and Conducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority FirmTech Transfer SuccessLift

  15. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2002-01-01T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  16. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2004-03-02T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  17. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2012-10-16T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  18. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-06T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  19. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Marcel (Newark, CA); Alivisatos, Paul (Oakland, CA)

    2011-12-20T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  20. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  1. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  2. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28T23:59:59.000Z

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  3. Ultrafast pump-probe force microscopy with nanoscale resolution

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Cerullo, “Confocal ultrafast pump-probe spectroscopy: A newand H. J. Maris, “Time-resolved pump-probe experiments withand U. Keller, “Femtosecond pump-porbe near-field optical

  4. acceleration probe studying: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae Astrophysics (arXiv) Summary: The Supernova Acceleration Probe...

  5. Electronically conductive polymer composites and microstructures

    SciTech Connect (OSTI)

    Van Dyke, L.S.

    1993-01-01T23:59:59.000Z

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  6. Probing Single-Molecule Protein Conformational Dynamics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Molecule Protein Conformational Dynamics. Probing Single-Molecule Protein Conformational Dynamics. Abstract: Protein conformational fluctuations and dynamics, often...

  7. Test probe for surface mounted leadless chip carrier

    DOE Patents [OSTI]

    Meyer, Kerry L. (Raytown, MO); Topolewski, John (Lenexa, KS)

    1989-05-23T23:59:59.000Z

    A test probe for a surface mounted leadless chip carrier is disclosed. The probed includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe.

  8. CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS

    E-Print Network [OSTI]

    Collins, Gary S.

    CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS Catherine Smith, Brooks Lively, Wei of polymers. Emerging technologies have demonstrated the crucial need for highly conductive polymer combination between polycarbonate (PC) and hybrid concentrations of CNT and GNP nanofillers was investigated

  9. Subsurface contaminant monitoring by laser fluorescence excitation-emission spectroscopy in a cone penetrometer probe

    SciTech Connect (OSTI)

    Lin, J.; Hart, S.J.; Wang, W.; Namytchkine, D.; Kenny, J.E. [Tufts Univ., Medford, MA (United States). Dept. of Chemistry

    1995-12-31T23:59:59.000Z

    A laser-induced fluorescence (LIF) excitation-emission matrix (EEM) probe has been developed for subsurface monitoring of fluorescent organic contaminants. The fourth harmonic of a flashlamp-pumped Nd:YAG laser (at 266 nm) is used to pump a Raman shifter. Up to ten laser beams (in the wavelength region of 258 to 379 nm) from the Raman shifter are launched into optical fibers that conduct the light to the probe near the tip of the cone penetrometer. The fluorescence emission is excited through ten separate sapphire windows and collected by ten collection fibers that conduct the fluorescence to a spectrograph/CCD detection system. This probe allows real-time collection of LIF-EEMs of contaminants adsorbed on solids or dissolved in groundwater. LIF-EEMs provide a substantial amount of spectral information that can be used to determine the composition and quantity of contaminants in soils. The system was tested and calibrated in the laboratory. Spectra of different organic contaminants were measured in aqueous solutions, in organic solvents, and in different types of soils.

  10. WIRELESS EDDY CURRENT PROBE FOR ENGINE HEALTH , B. Graubard1

    E-Print Network [OSTI]

    Dickerson, Julie A.

    WIRELESS EDDY CURRENT PROBE FOR ENGINE HEALTH MONITORING M. Reid1 , B. Graubard1 , R. J. Weber1 , J. The first prototype wireless eddy current (EC) probe for on-wing inspection was demonstrated in a F100 PW of safety significant propulsion system malfunctions. Data from 2 MHz Eddy Current probes was transmitted

  11. Can a Pump-probe Experiment be Simulated Efficiently?

    E-Print Network [OSTI]

    Kosloff, Ronnie

    Can a Pump-probe Experiment be Simulated Efficiently? Thesis Submitted for the Degree Doctor things in the world. #12;i ABSTRACT Measuring a quantum system disturbs its evolution. A pump-probe exper measurements. Modeling the evolution of observables in the pump-probe experiment is an essential ingredient

  12. Influence of probe sampling on reacting species measurement in diluted combustion

    SciTech Connect (OSTI)

    Lupant, D.; Pesenti, B.; Lybaert, P. [UMONS - University of Mons, Faculty of Engineering, Department of Thermal Engineering and Combustion, Rue de l'epargne 56, B-7000 Mons (Belgium)

    2010-07-15T23:59:59.000Z

    In-flame measurements of temperature and major species are realized with intrusive probes in a laboratory scale furnace working in diluted combustion. The shape and the position of the reaction zone are experimentally identified from the distribution of temperature and carbon monoxide in a particular symmetry plane. For this purpose, two probes were designed: the sampling probe, to measure species content of the gas sample and the suction pyrometer, for the temperature. The first is completely cooled to quench the reaction, but the second is just partly cooled for handling. However, as both probes take gas sample, the species content is available in either case. Consequently the suction pyrometer can be used to measure simultaneously temperature and species, reducing by half the length of the experimental campaign. Comparing species contents on a non-reactive mixture, it has been observed that the spatial averaging is the same with both probes. The perturbation of the flow is assessed thanks to a CFD modeling of the furnace including the probe. Even if it is significant - the differences between the computed values and the measurements are about 3-4 times the measurement error - the position and the value of the maximum is well captured as well as the opening of the jet. However, the species contents measured within a reactive mixture differ significantly. For a stable regime, the levels and the distribution of CO are similar with both probes, but the gradients at the border of the reaction zone are sharper with the suction pyrometer. For another regime, for which the reaction zone is lifted and less stable, the fields of species are completely different following the probe used. A chemical kinetic modeling has shown that the reaction inside the non-cooled part of the suction pyrometer is promoted when it is placed in particular region. The use of the suction pyrometer as sampling probe inside a reaction zone should therefore be avoided even in diluted combustion. The error made on the fields of species cannot be quantified to be taken into account a posteriori, because in certain conditions the results are completely unrealistic. (author)

  13. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01T23:59:59.000Z

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  14. WHAT DO THREAT LEVELS AND RESPONSE LEVELS MEAN? THREAT LEVELS

    E-Print Network [OSTI]

    Edinburgh, University of

    WHAT DO THREAT LEVELS AND RESPONSE LEVELS MEAN? THREAT LEVELS: The UK Threat Level is decided by the Government's Joint Terrorism Analysis Centre (JTAC). It is the system to assess the threat to the UK from Threat Levels: Low - an attack is unlikely Moderate - an attack is possible, but not likely Substantial

  15. Using Chandra/LETG spectra to probe stellar coronae

    E-Print Network [OSTI]

    Gaitee A. J. Hussain; Nancy Brickhouse; Andrea K. Dupree; Adriaan A. van Ballegooijen; Andrew Collier Cameron; Moira Jardine; Jean-Francois Donati

    2004-03-09T23:59:59.000Z

    We probe the relationship between surface magnetic fields and the X-ray emitting corona in the rapidly rotating star AB Dor. Circularly polarised spectra have been inverted to produce a surface (photospheric) magnetic field map. This surface map has been extrapolated to model AB Dor's coronal field topology and X-ray light curve. Chandra/LETG light curves of AB Dor from the same epoch show intrinsic variability at the 30% level. Period analysis indicates a fraction of this is due to rotational modulation. We measure velocity shifts in emission line centroids as a function of rotation period and find evidence of rotational modulation (max. vel. ~40+/- 13km/s). This modulation may indicate the presence of a localised X-ray emitting region at mid-to-high latitudes.

  16. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect (OSTI)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-02-15T23:59:59.000Z

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  17. Probing Nano-Mechanical QED Effects

    E-Print Network [OSTI]

    Y. B. Gao; S. Yang; Yu-xi Liu; C. P. Sun; Franco Nori

    2009-02-15T23:59:59.000Z

    We propose and study an "intrinsic probing" approach, without introducing any external detector, to mimic cavity QED effects in a qubit-nanomechanical resonator system. This metallic nanomechanical resonator can act as an intrinsic detector when a weak driving current passes through it. The nanomechanical resonator acts as both the cavity and the detector. A cavity QED-like effect is demonstrated by the correlation spectrum of the electromotive force between the two ends of the nanomechanical resonator. Using the quantum regression theorem and perturbation theory, we analytically calculate the correlation spectrum. In the weak driving limit, we study the effect on the vacuum Rabi splitting of both the strength of the driving as well as the frequency-detuning between the charge qubit and the nanomechanical resonator. Numerical calculations confirm the validity of our intrinsic probing approach.

  18. Non-Contact Gaging with Laser Probe

    SciTech Connect (OSTI)

    Clinesmith, Mike

    2009-03-20T23:59:59.000Z

    A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

  19. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22T23:59:59.000Z

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  20. Dielectric covered hairpin probe for its application in reactive plasmas

    SciTech Connect (OSTI)

    Gogna, G. S.; Gaman, C.; Turner, M. M. [NCPST, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Karkari, S. K. [Institute for Plasma Research Center, Bhat Gandhinagar, Gujarat 382428 (India)

    2012-07-23T23:59:59.000Z

    The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

  1. Closed-field capacitive liquid level sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01T23:59:59.000Z

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  2. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect (OSTI)

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16T23:59:59.000Z

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose effects on conducting polymers must be fully understood before these materials can be used

  3. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect (OSTI)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15T23:59:59.000Z

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  4. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect (OSTI)

    Luis Mercado

    2012-05-31T23:59:59.000Z

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Je#11;erson National Accelerator Facil- ity. For both, the weak neutral current interaction (WNC, mediated by the Z{sup 0} boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o#11; unpolarized target hadrons. HAPPEx-III, con- ducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q{sup 2} = 0.62 GeV{sup 2}. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (G{sup s}{sub E,M} ) to the nucleon electromagnetic form factors. A value of A{sub PV} = -23.803{+-}#6; 0.778 (stat){+-}#6; 0.359 (syst) ppm resulted in G{sup s}{sub E} + 0:517G{sup s}{sub M} = 0.003{+-} 0.010 (stat){+-} #6;0.004 (syst){+-}#6; #6;0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q{sup 2} = 0.009 GeV{sup 2}. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the {sup 208}Pb nucleus. The Z{sup 0} boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for #12;nding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the ex- perimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  5. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1?x}O alloys

    SciTech Connect (OSTI)

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Battaglia, Corsin; Javey, Ali [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Denlinger, Jonathan D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lim, Sunnie H. N. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Anders, André [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, Kin M.; Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-06-21T23:59:59.000Z

    We have measured the band edge energies of Cd{sub x}Zn{sub 1?x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  6. Sampling probe for microarray read out using electrospray mass spectrometry

    DOE Patents [OSTI]

    Van Berkel, Gary J.

    2004-10-12T23:59:59.000Z

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  7. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOE Patents [OSTI]

    Kyle, Kevin R. (Brentwood, CA); Brown, Steven B. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  8. Degenerate four-photon probing of the kinetics of a nonlinear response of high-temperature superconductors in pump-probe spectroscopy

    SciTech Connect (OSTI)

    Bobyrev, Yu V; Petnikova, V M; Rudenko, K V; Shuvalov, Vladimir V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-08-31T23:59:59.000Z

    It is shown that the spectral-temporal and temperature 'anomalies' of the kinetics of reflection and transmission coefficients of high-temperatures superconductors (HTSCs) at high 'impact' excitation levels have direct analogies also in the case when the instant state of samples is probed by using the self-diffraction of probe pulses made coincident in time and propagating at an angle to each other. The possibility of using the transient modification of the method of degenerate four-photon spectroscopy for the HTSC diagnostics substantially expands the scope of experiments that can confirm or refute the correctness of the model based on the consideration of the contribution of interband electronic transitions to the response of an excited HTSC film with the 'frozen' energy gap. (nonlinear optical phenomena)

  9. Use of Ultrafast Dispersed Pump-Dump-Probe and Pump-Repump-Probe Spectroscopies to Explore the Light-Induced Dynamics of Peridinin in Solution

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Use of Ultrafast Dispersed Pump-Dump-Probe and Pump-Repump-Probe Spectroscopies to Explore Form: NoVember 14, 2005 Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption

  10. Visual probes and methods for placing visual probes into subsurface areas

    DOE Patents [OSTI]

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23T23:59:59.000Z

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  11. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2008-01-01T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  12. Holographic conductivity of zero temperature superconductors

    E-Print Network [OSTI]

    R. A. Konoplya; A. Zhidenko

    2010-02-15T23:59:59.000Z

    Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.

  13. Thermal conductivity and heat transfer in superlattices

    SciTech Connect (OSTI)

    Chen, G.; Neagu, M.; Borca-Tasciuc, T.

    1997-07-01T23:59:59.000Z

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  14. Sandia National Laboratories: electronic conducting transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronic conducting transition metal oxides Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory,...

  15. Conducting polymer actuator enhancement through microstructuring

    E-Print Network [OSTI]

    Pillai, Priam Vasudevan

    2007-01-01T23:59:59.000Z

    Electroactive conducting polymers, such as polypyrrole, polyaniline, and polythiophenes are currently studied as novel biologically inspired actuators. The actuation mechanisms in these materials are based on the diffusion ...

  16. Fabrication and characterization of conducting polymer microwires

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2009-01-01T23:59:59.000Z

    Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

  17. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

    2008-08-19T23:59:59.000Z

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  18. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01T23:59:59.000Z

    of Electronically Conductive Polymer Nanostructures,” Acc.et al. , “Conjugated-Polymer Micro- and Milliactuators for3. Y. Berdichevsky, Y. -H. Lo, “Polymer Microvalve Based on

  19. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  20. EPA -- Addressing Children's Health through Reviews Conducted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

  1. Site-Specific DNA Structural and Dynamic Features Revealed by Nucleotide-Independent Nitroxide Probes

    SciTech Connect (OSTI)

    Popova, Anna; Kalai, Tamas; Hideg, Kalman; Qin, Peter Z.

    2009-09-15T23:59:59.000Z

    In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to “scan” a given DNA molecule in order to interrogate its local structural and dynamic features.

  2. Single-Wall Carbon Nanotube Conducting Probe Tips Neil R. Wilson, David H. Cobden,, and Julie V. Macpherson*,

    E-Print Network [OSTI]

    Cobden, David

    , deep pore structures or through a membrane with little disruption. To date, however, there has been of applied bias voltage and immersion depth. This allows assessment of the magnitude and stability

  3. Duality of the Interfacial Thermal Conductance in Graphene-based Nanocomposites

    SciTech Connect (OSTI)

    Liu, Ying [Clemson University] [Clemson University; Huang, Jingsong [ORNL] [ORNL; Yang, Bao [University of Maryland] [University of Maryland; Sumpter, Bobby G [ORNL] [ORNL; Qiao, Rui [Clemson University] [Clemson University

    2014-01-01T23:59:59.000Z

    The thermal conductance of graphene-matrix interfaces plays a key role in controlling the thermal transport properties of graphene-based nanocomposites. Using classical molecular dynamics simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at the graphene-matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves the graphene through the other side, the corresponding interfacial thermal conductance, G(across), is large; if heat enters graphene from both sides of its basal plane and leaves the graphene at a position far away on its basal plane, the corresponding interfacial thermal conductance, G(non-across), is small. For a single-layer graphene immersed in liquid octane, G(across) is ~150 MW/m2K while Gnon-across is ~5 MW/m2K. G(across) decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100 MW/m2K for 7-layer graphenes. G(non-across) increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as experimental measurement of thermal conductivity of graphene and the design of graphene-based thermal nanocomposites are discussed.

  4. Probing New Physics with Astrophysical Neutrinos

    E-Print Network [OSTI]

    Nicole F. Bell

    2008-11-06T23:59:59.000Z

    We review the prospects for probing new physics with neutrino astrophysics. High energy neutrinos provide an important means of accessing physics beyond the electroweak scale. Neutrinos have a number of advantages over conventional astronomy and, in particular, carry information encoded in their flavor degree of freedom which could reveal a variety of exotic neutrino properties. We also outline ways in which neutrino astrophysics can be used to constrain dark matter properties, and explain how neutrino-based limits lead to a strong general bound on the dark matter total annihilation cross-section.

  5. Tao Probing the End of the World

    E-Print Network [OSTI]

    Sung-Soo Kim; Masato Taki; Futoshi Yagi

    2015-06-25T23:59:59.000Z

    We introduce a new IIB 5-brane description for the E-string theory which is the world-volume theory on M5-brane probing the end of the world M9-brane. The E- string in the new realization is depicted as spiral 5-branes web equipped with the cyclic structure which is a key to uplifting to 6 dimensions. Utilizing the topological vertex to the 5-brane web configuration enables us to write down a combinatorial formula for the generating function of the E-string elliptic genera, namely the full partition function of topological strings on local 1/2 K3 surface.

  6. Tao Probing the End of the World

    E-Print Network [OSTI]

    Sung-Soo Kim; Masato Taki; Futoshi Yagi

    2015-04-14T23:59:59.000Z

    We introduce a new IIB 5-brane description for the E-string theory which is the world-volume theory on M5-brane probing the end of the world M9-brane. The E- string in the new realization is depicted as spiral 5-branes web equipped with the cyclic structure which is a key to uplifting to 6 dimensions. Utilizing the topological vertex to the 5-brane web configuration enables us to write down a combinatorial formula for the generating function of the E-string elliptic genera, namely the full partition function of topological strings on local 1/2 K3 surface.

  7. Probing the time dependence of dark energy

    SciTech Connect (OSTI)

    Barboza Edésio Jr, M. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Rua Professor Antônio Campos s/n, Mossoró (Brazil); Alcaniz, J.S., E-mail: edesiobarboza@uern.br, E-mail: alcaniz@on.br [Departamento de Astronomia, Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro (Brazil)

    2012-02-01T23:59:59.000Z

    A new method to investigate a possible time-dependence of the dark energy equation of state w is proposed. We apply this methodology to a combination of data involving one of the most recent type Ia supernova sample (SNLS3) along with the current baryon acoustic oscillation and H(z) measurements. We show that current observations cannot rule out a non-evolving dark energy component (dw/dz = 0). The approach developed here reduces considerably the so-called smearing effect on w determinations and may be useful to probe a possible evolving dark energy component when applied to upcoming observational data.

  8. Probes for anionic cell surface detection

    DOE Patents [OSTI]

    Smith, Bradley D.

    2013-03-05T23:59:59.000Z

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  9. Ionization probes of molecular structure and chemistry

    SciTech Connect (OSTI)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01T23:59:59.000Z

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  10. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30T23:59:59.000Z

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  11. 2-M Probe Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M ProbeCoso(Redirected

  12. MJC Probe Inc MPI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDL JumpMJMJC Probe Inc

  13. Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories

    E-Print Network [OSTI]

    - static stress).1 For isotropic materials, the speed of sound change with stress levels allows onePump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories J. Rivie`re,1,a) G. Renaud,2 R. A. Guyer,1,b) and P. A. Johnson1 1 Earth

  14. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  15. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  16. Flexible moldable conductive current-limiting materials

    SciTech Connect (OSTI)

    Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

    2002-01-01T23:59:59.000Z

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  17. NUMBER: 1530 TITLE: Code of Student Conduct

    E-Print Network [OSTI]

    . For the purposes of this Code, the term "University Official" is inclusive of "Faculty Member" as defined in IV 1530 1 NUMBER: 1530 TITLE: Code of Student Conduct APPROVED: August 27, 1970; Revised June 14, 2012 I. BASIS AND RATIONALE FOR A CODE OF STUDENT CONDUCT Old Dominion University

  18. The Generalized Switched Accounting or Conduction

    E-Print Network [OSTI]

    The Generalized Switched Accounting or Conduction Isaac Zafrany1 1 Technical Support Avant modeling and simulation of PWM converters was extended to include conduction losses. The method covers losses due to the inductor's resistance and due to the voltage drops across the switch and the diode

  19. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06T23:59:59.000Z

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  20. The Organic Chemistry of Conducting Polymers

    SciTech Connect (OSTI)

    Tolbert, Laren Malcolm [Georgia Institute of Technology

    2014-12-01T23:59:59.000Z

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  1. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24T23:59:59.000Z

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  2. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect (OSTI)

    Sun, Haiyan

    2005-05-01T23:59:59.000Z

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  3. Use of a fiber optic probe for organic species determination

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-12-10T23:59:59.000Z

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  4. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime [Renault Technocentre, 78288 Guyancourt Cedex (France); Bellenoue, Marc; Labuda, Sergei; Sotton, Julien [Laboratoire de Combustion et de Detonique, CNRS, 86961 Futuroscope Chasseneuil (France)

    2010-02-15T23:59:59.000Z

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  5. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    1999-01-01T23:59:59.000Z

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  6. Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal

    E-Print Network [OSTI]

    Shaikh, Samina

    2007-01-01T23:59:59.000Z

    The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

  7. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  8. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect (OSTI)

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25T23:59:59.000Z

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  9. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOE Patents [OSTI]

    Miles, Robin R. (Danville, CA); Belgrader, Phillip (Severna Park, MD); Fuller, Christopher D. (Oakland, CA)

    2007-01-02T23:59:59.000Z

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  10. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  11. Constraining torsion with Gravity Probe B

    SciTech Connect (OSTI)

    Mao Yi; Guth, Alan H.; Cabi, Serkan [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tegmark, Max [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, Massachusetts 02139 (United States)

    2007-11-15T23:59:59.000Z

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.

  12. Three-axis particle impact probe

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  13. New Atomic Force Microscope Spectroscopy Probes Local Elasticity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization New Atomic Force Microscope Spectroscopy Probes Local Elasticity March 04, 2015 Shown is a contact resonance frequency image after nano-oxidation of a...

  14. Fiber delivered probe for efficient CARS imaging of tissues

    E-Print Network [OSTI]

    Balu, Mihaela; Liu, Gangjun; Chen, Zhongping; Tromberg, Bruce J; Potma, Eric O

    2010-01-01T23:59:59.000Z

    probe based on microelectromechanical system mirror forbased on a microelectromechanical systems scanning mirror,”based on a microelectromechanical systems two-dimensional

  15. Probing the Dynamics of a Protein Hydrophobic Core by Deutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics of a Protein Hydrophobic Core by Deutron Solid-State Nuclear Magnetic Resonance Spectroscopy . Probing the Dynamics of a Protein Hydrophobic Core by Deutron Solid-State...

  16. Probing Ultrafast Solvation Dynamics with High Repetition-Rate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast X-Ray Spectroscopy as a Probe of Nonequilibrium Dynamics in Ruthenium Complexes The Electronic Origin of Photoinduced Strain Modifying Proteins to Combat Disease Higher...

  17. anisotropy probe wmap1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  18. anisotropy probe wmapobservations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  19. anisotropy probe 5-yr: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These...

  20. Advanced Imaging and Ultra-fast Material Probing With Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging and Ultra-fast Material Probing With Inverse Compton Scattering A proposal to the Brookhaven Accelerator Test Facility Gerard Andonian, Alberto Bacci, Ubaldo...

  1. Probing Emissions of Military Cargo Aircraft: Description of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Strategic Environmental Research and Probing Emissions of Military Cargo Aircraft: Description of a...

  2. New probe at EMSL observes interface kinetics | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyze electrode surfaces and shuttle electrons externally, as in a microbial fuel cell. The E probe is available at EMSL. Read more from the PNNL Fundamental and...

  3. Probing the Degradation Mechanisms in Electrolyte Solutions for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

  4. Probing attosecond electron dynamics at solid surfaces | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing attosecond electron dynamics at solid surfaces Wednesday, May 13, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Jrg Osterwalder, Department of Physics,...

  5. atom probe study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using both APT and correlative microscopy techniques, a more complete understanding... Bennett, Samantha 2011-02-08 2 ATOM-PROBE TOMOGRAPHIC STUDY OF THE THREE-DIMENSIONAL...

  6. atom probe investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction...

  7. Test probe for surface mounted leadless chip carrier

    DOE Patents [OSTI]

    Meyer, K.L.; Topolewski, J.

    1987-10-02T23:59:59.000Z

    A test probe for a surface mounted leadless chip carrier is disclosed. The probe includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe. 1 fig.

  8. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01T23:59:59.000Z

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  9. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

    2008-11-25T23:59:59.000Z

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  10. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  11. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13T23:59:59.000Z

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  12. Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor

    E-Print Network [OSTI]

    Schmid, Bryan D. (Bryan David), 1981-

    2005-01-01T23:59:59.000Z

    Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

  13. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    SciTech Connect (OSTI)

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F. [Instituto de Fisica 'Gleb Wataghin,' Unicamp, Campinas, 13083-859 Sao Paulo (Brazil); Verissimo, C.; Moshkalev, S. A. [Centro de Componentes Semicondutores, Unicamp, Campinas, 13083-870 Sao Paulo (Brazil)

    2013-07-14T23:59:59.000Z

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency of the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.

  14. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level

    E-Print Network [OSTI]

    Chen, Peng

    electricity from solar or fuel cells.16,20,21,32­38 The modern nanocatalysts, especially for solar and fuel cells, are still far from optimal for sustainable applications, however.39 Intense efforts have thus

  15. Thirteen pump-probe resonances of the sodium D1 line Vincent Wong,* Robert W. Boyd, C. R. Stroud, Jr., Ryan S. Bennink, and Alberto M. Marino

    E-Print Network [OSTI]

    Stroud, Carlos R.

    four-wave mixing in a three-level V system, electromagnetically induced transparency and optical. A Burleigh WA4500 wavemeter monitors the wavelengths of the fields. The pump and probe fi-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate

  16. M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 1 Steady Heat Conduction

    E-Print Network [OSTI]

    Bahrami, Majid

    of the material. In the limiting case where x0, the equation above reduces to the differential form: W dx dT k is the only energy interaction; the energy balance for the wall can be expressed: dt dE QQ wall outin). Thermal Conductivity Thermal conductivity k [W/mK] is a measure of a material's ability to conduct heat

  17. Modeling tensorial conductivity of particle suspension networks

    E-Print Network [OSTI]

    Tyler Olsen; Ken Kamrin

    2015-01-13T23:59:59.000Z

    Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

  18. Synthesis and characterization of conducting polymer actuators

    E-Print Network [OSTI]

    Vandesteeg, Nathan A. (Nathan Alan)

    2007-01-01T23:59:59.000Z

    Conducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms ...

  19. LE JOURNAL DE PHYSIQUE LA CONDUCTION LECTRIQUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LE JOURNAL DE PHYSIQUE ET LE RADIUM LA CONDUCTION ÉLECTRIQUE DES HYDROCARBURES LIQUIDES EN COUCHES hydrocarbures liquides en couches minces, signalé dans un précédent mémoire. Les expériences, faites dans des

  20. November 15, 2012 Conducting and managing documents

    E-Print Network [OSTI]

    Kaji, Hajime

    1 November 15, 2012 Conducting and managing documents #12;2 Agenda 1. Basics of copyright 2. Necessary information for citing materials 3. Citation Manager #12;1.Basics of copyright 3 #12;Definitions

  1. Large displacement fast conducting polymer actuators

    E-Print Network [OSTI]

    Chen, Angela Y. (Angela Ying-Ju), 1982-

    2006-01-01T23:59:59.000Z

    Conducting polymers are a promising class of electroactive materials that undergo volumetric changes under applied potentials, which make them particularly useful for many actuation applications. Polypyrrole , is one of ...

  2. Electrical conductivity of segregated network polymer nanocomposites 

    E-Print Network [OSTI]

    Kim, Yeon Seok

    2009-06-02T23:59:59.000Z

    . The composites made using the emulsion with higher modulus show lower percolation threshold and higher conductivity. Higher modulus causes tighter packing of carbon black between the polymer particles. When the drying temperature was increased to 80°C...

  3. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01T23:59:59.000Z

    Synthesis and characterization of conducting copolymer nanofibrils of pyrrolepolypyrrole synthesis was 0.1 M pyrrole monomer dissolved insynthesis Polypyrrole was electropolymerized from a solution of 0.1 M pyrrole (

  4. Development and characterization of conducting polymer actuators

    E-Print Network [OSTI]

    Pillai, Priam Vasudevan

    2011-01-01T23:59:59.000Z

    Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out ...

  5. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

  6. Nanopatterned Electrically Conductive Films of Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Mentzel, Tamar

    We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals ...

  7. Finite Heat conduction in 2D Lattices

    E-Print Network [OSTI]

    Lei Yang; Yang Kongqing

    2001-07-30T23:59:59.000Z

    This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

  8. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  9. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  10. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28T23:59:59.000Z

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  11. Conductive polymeric compositions for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2009-03-17T23:59:59.000Z

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  12. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14T23:59:59.000Z

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  13. Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

    SciTech Connect (OSTI)

    Bobrinetskiy, I. I.; Emelianov, A. V.; Nevolin, V. K., E-mail: vkn@miee.ru; Romashkin, A. V. [National Research University “Moscow Institute of Electronic Technology” (MIET) (Russian Federation)

    2014-12-15T23:59:59.000Z

    It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The I–V characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is.

  14. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    SciTech Connect (OSTI)

    Cabella, Paolo; Silk, Joseph [University of Oxford, Astrophysics, Keble Road, Oxford, OX1 3RH (United Kingdom); Natoli, Paolo [Dipartimento di Fisica e sezione INFN, Universita di Roma 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome (Italy)

    2007-12-15T23:59:59.000Z

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle {delta}{alpha}=-2.5{+-}3.0 ({delta}{alpha}=-2.5{+-}6.0) at the one (two) {sigma} level, consistent with a null detection.

  15. Initial Results in Power System Identification from Injected Probing Signals Using a Subspace Method

    SciTech Connect (OSTI)

    Zhou, Ning; Pierre, John W.; Hauer, John F.

    2006-08-01T23:59:59.000Z

    In this paper, the authors use the Numerical algorithm for Subspace State Space System IDentification (N4SID) to extract dynamic parameters from phasor measurements collected on the western North American Power Grid. The data were obtained during tests on June 7, 2000, and they represent wide area response to several kinds of probing signals including Low-Level Pseudo-Random Noise (LLPRN) and Single-Mode Square Wave (SMSW) injected at the Celilo terminal of the Pacific HVDC In-tertie (PDCI). An identified model is validated using a cross vali-dation method. Also, the obtained electromechanical modes are compared with the results from Prony analysis of a ringdown and with signal analysis of ambient data measured under similar op-erating conditions. The consistent results show that methods in this class can be highly effective even when the probing signal is small.

  16. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05T23:59:59.000Z

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  17. Probing neutrinoless double beta decay with SNO+

    E-Print Network [OSTI]

    Evelina Arushanova; Ashley R. Back

    2015-05-01T23:59:59.000Z

    Probing neutrinoless double beta decay is one of the primary goals for SNO+, SNOLAB's multi-purpose neutrino detector. In order to achieve this goal the SNO detector has been adapted so that it can be filled with Te-loaded liquid scintillator. During the initial double beta phase the target loading is 0.3% natural Te, which equates to $\\sim790$ kg of double beta isotope. Estimating the sensitivity to neutrinoless double beta decay requires a well understood background model. For SNO+ this is provided by a comprehensive study considering all possible background contributions, whether they originate from within the liquid scintillator cocktail, the surrounding parts of the detector or other irreducible backgrounds. Given these considerations, for five years running in the initial phase, the expected sensitivity is $T_{1/2}^{0\

  18. Probing neutrinoless double beta decay with SNO+

    E-Print Network [OSTI]

    Arushanova, Evelina

    2015-01-01T23:59:59.000Z

    Probing neutrinoless double beta decay is one of the primary goals for SNO+, SNOLAB's multi-purpose neutrino detector. In order to achieve this goal the SNO detector has been adapted so that it can be filled with Te-loaded liquid scintillator. During the initial double beta phase the target loading is 0.3% natural Te, which equates to $\\sim790$ kg of double beta isotope. Estimating the sensitivity to neutrinoless double beta decay requires a well understood background model. For SNO+ this is provided by a comprehensive study considering all possible background contributions, whether they originate from within the liquid scintillator cocktail, the surrounding parts of the detector or other irreducible backgrounds. Given these considerations, for five years running in the initial phase, the expected sensitivity is $T_{1/2}^{0\

  19. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05T23:59:59.000Z

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  20. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    SciTech Connect (OSTI)

    Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2002-01-01T23:59:59.000Z

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  1. Intersecting Philosophies: A Qualitative Study of Student Conduct Administrators and Their Decision Making Utilizing the Concepts of Justice and Care

    E-Print Network [OSTI]

    Waller, Jennifer

    2013-07-31T23:59:59.000Z

    , and federal laws and their impact on the institution. Student conduct administrators (SCA) are charged by colleges and universities to make decisions about whether students have violated university rules and policies, which are sometimes simultaneously... range in position level from a Dean of Students to an entry-level SCA. The report is read and evaluated to determine whether there may have been a violation of the student code of conduct. Based on the conduct process at the institution, the SCA may...

  2. Novel rotating field probe for inspection of tubes

    SciTech Connect (OSTI)

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S. [Nondestructive Evaluation Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824 (United States)

    2012-05-17T23:59:59.000Z

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  3. Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1*

    E-Print Network [OSTI]

    Andersen, Richard

    Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1* , Changlin Pang1 , Yu-Chong Tai1 electrodes. Keywords - parylene cable; neural prosthesis; silicon probe I. INTRODUCTION An important component of silicon neural prosthesis is the electrode array capable of recording neural activity from

  4. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  5. Using relational databases to analyze Microarray probes and single nucleotide

    E-Print Network [OSTI]

    Rouchka, Eric

    Using relational databases to analyze Microarray probes and single nucleotide Polymorphisms Abhijit probes and sin- gle nucleotide polymorphisms Abhijit W. Phatak1 , and Eric C. Rouchka1,* 1 Department valuable in the study of single nucleotide polymor- phisms (SNPs). Aside from the physical use

  6. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe Kenneth Cavitation MBSL Plasma a b s t r a c t We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble

  7. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    REPORTS Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica. The structural dynamics, as reported on by a carbonyl stretch vibration of the surface-bound complex, have

  8. Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate

    SciTech Connect (OSTI)

    Fangwei Fu

    2006-08-09T23:59:59.000Z

    Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the transient eddy currents in a conductive plate. The crack response is found using the reciprocity theorem. Good agreement is observed between the predictions of the magnetic field due to the crack and experimental measurements.

  9. A Novel Flexible Sinusoidal Probe for Chronic Extracellular Brain Recording

    E-Print Network [OSTI]

    Sohal, Harbaljit S; Jackson, Andrew; Baker, Stuart N; O'Neill, Anthony

    2015-01-01T23:59:59.000Z

    Current microelectrodes designed to record chronic neural activity suffer from recording instabilities due to the modulus mismatch between the electrode materials and the brain. We sought to address this by microfabricating a novel flexible neural probe. Our probe was fabricated from parylene-C with a WTi metal, using contact photolithography and reactive ion etching, with three design features to address this modulus mismatch: a sinusoidal shaft, a rounded tip and a polyimide anchoring ball. The anchor restricts movement of the electrode recording sites and the shaft accommodates the brain motion. We successfully patterned thick metal and parylene-C layers, with a reliable device release process leading to high functional yield and were able to sample stable neural activity for over 2 years with this probe. We have successfully optimized the fabrication process to produce a reliable probe with high functional yield. This novel reliably microfabricated probe can record stable neural activity for up to two yea...

  10. Shelving and Probe Efficiency in Trapped Ion Experiments

    E-Print Network [OSTI]

    Schacht, M

    2014-01-01T23:59:59.000Z

    A generalized probe sequence typical of trapped ion experiments using shelving is studied. Detection efficiency is analyzed for finite shelved state lifetimes and using multi-modal count distributions. Multi-modal distributions are more appropriate for measurements that use a small number of ions than the simple Poisson counting statistics usually considered and have a larger variance that may be significant in determining uncertainties and in making weighted fits. Optimal probe times and the resulting state detection efficiency and sensitivity are determined for arbitrary cooling rates, initial states and shelved state lifetimes, in terms of a probe coherence time {\\tau}p. A universal optimal probe time of tp ~ 0.43{\\tau}p is shown to give an almost optimal probe sensitivity for most systems.

  11. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline [Sandia National Laboratories, Albuquerque, NM; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T. [Sandia National Laboratories, Albuquerque, NM; Van Gough, D.; Lambert, Timothy N. [Sandia National Laboratories, Albuquerque, NM; Rodriguez, Mark A. [Sandia National Laboratories, Albuquerque, NM; Spoerke, Erik David [Sandia National Laboratories, Albuquerque, NM; Wheeler, David R. [Sandia National Laboratories, Albuquerque, NM; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.

    2014-09-01T23:59:59.000Z

    Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as %22Molecule%40MOF%22 to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.

  12. Method and apparatus for synthesis of arrays of DNA probes

    DOE Patents [OSTI]

    Cerrina, Francesco (Madison, WI); Sussman, Michael R. (Madison, WI); Blattner, Frederick R. (Madison, WI); Singh-Gasson, Sangeet (Madison, WI); Green, Roland (Madison, WI)

    2002-04-23T23:59:59.000Z

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  13. Guaranteed Verification of Finite Element Solutions of Heat Conduction

    E-Print Network [OSTI]

    Wang, Delin

    2012-07-16T23:59:59.000Z

    Engineering iii ABSTRACT Guaranteed Verification of Finite Element Solutions of Heat Conduction. (May 2011) Delin Wang, B.E., Qingdao University of Science & Technology, China; M.S., Jilin University, China; M.E., Texas A&M University Chair of Advisory... level and ? ky kx is the characteristic thickness of the boundary layer. . . . . 37 3.5 Model problem with interface layer. The relative value of the energy norm of the error ErelU = ||eSp?h ||U / ||uEX||U? 100% versus #15; for n = 1, 2, 3...

  14. LANL Conducts Watusi Experiment | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministration Field Officerelocates||01-17Conducts

  15. 29 Nov 2001 A. Bacchetta -Fragmentation to probe transversity 41 Two-pion fragmentation

    E-Print Network [OSTI]

    1 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 41 Two-pion fragmentation M -- -- ++ 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 42 Interference Nov 2001 A. Bacchetta - Fragmentation to probe transversity 43 Asymmetry for interference

  16. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    E-Print Network [OSTI]

    Zeng, Hui

    2012-01-01T23:59:59.000Z

    eds. ), Zeng et al. : Data mining for probes Excerpta330. Zeng et al. : Data mining for probes 31. Fung J, WeierZeng et al. : Data mining for probes Data Mining Empowers

  17. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  18. Acetonitrile Drastically Boosts Conductivity of Ionic Liquids

    E-Print Network [OSTI]

    Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-01-01T23:59:59.000Z

    We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

  19. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  20. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect (OSTI)

    Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn

    2013-12-15T23:59:59.000Z

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  1. Thermal Conductivity of Ordered Molecular Water

    SciTech Connect (OSTI)

    W Evans; J Fish; P Keblinski

    2006-02-16T23:59:59.000Z

    We use molecular dynamics simulation to investigate thermal transport characteristics of water with various degree of orientational and translational order induced by the application of an electric field. We observe that orientational ordering of the water dipole moments has a minor effect on the thermal conductivity. However, electric-field induced crystallization and associated translational order results in approximately a 3-fold increase of thermal conductivity with respect to the base water, i.e., to values comparable with those characterizing ice crystal structures.

  2. Thermoelectric DC conductivities from black hole horizons

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2014-10-14T23:59:59.000Z

    An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.

  3. Electrically conductive connection for an electrode

    DOE Patents [OSTI]

    Hornack, T.R.; Chilko, R.J.

    1986-09-02T23:59:59.000Z

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  4. Development of a Scanning Probe Microscope and Studies of Graphene Grown on Copper

    E-Print Network [OSTI]

    Rasool, Haider Imad

    2012-01-01T23:59:59.000Z

    1: INTRODUCTION 1.1. BRIEF DISCUSSION OF SCANNING PROBEhighly stable electrochemical scanning probe microscope forincorporated it into a scanning probe microscope, performed

  5. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect (OSTI)

    Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1998-01-01T23:59:59.000Z

    To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

  6. Extremal structures of multiphase heat conducting composites

    E-Print Network [OSTI]

    Cherkaev, Andrej

    Extremal structures of multiphase heat conducting composites A.V. Cherkaev \\Lambda L.V. Gibiansky y April 19, 1995 Abstract In this paper we construct microstructures of multiphase composites with un be easily gen­ eralized for the three­dimensional composites with arbitrary number of phases. 1 Introduction

  7. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09T23:59:59.000Z

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  8. Code of Conduct Etiquette at Utrecht University

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Code of Conduct Etiquette at Utrecht University What principles underpin our behaviour of Utrecht University. The Code describes the values that govern the way people work and study for sanctions. How is Utrecht University different from other universities? What do we wish to achieve? MISSION

  9. How to Conduct an Energy Efficiency Study

    E-Print Network [OSTI]

    Biles, J. E.

    1979-01-01T23:59:59.000Z

    This paper describes how to organize a team of specialists in order to conduct an energy efficiency study in a totally unfamiliar plant. In-plant data gathering techniques are presented as well as methods for obtaining ideas and information from...

  10. Faculty and Staff Commute Report Conducted by

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Faculty and Staff Commute Report July 2008 Conducted by #12;Executive Summary The price of gasoline at Austin is $91.35 per month. With no relief in sight to rising gasoline prices, employees are increasingly there was no correlation between average work commute and salary, considering the price of gas, getting to work can

  11. Heat conductivity of a pion gas

    E-Print Network [OSTI]

    Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

    2007-02-13T23:59:59.000Z

    We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

  12. Conducting a Wildland Visual Resources Inventory1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Conducting a Wildland Visual Resources Inventory1 James F. Palmer 2/ 1/ Submitted to the National of Massachusetts, Amherst, MA 01003. Abstract: This paper describes a procedure for system- atically inventorying- tion and description of each inventoried scene are recorded on U.S. Geological Survey topographic maps

  13. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  14. Application of conducting polymers to electroanalysis

    SciTech Connect (OSTI)

    Josowicz, M.A.

    1994-04-01T23:59:59.000Z

    Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

  15. Code of Official Conduct Student Government Association

    E-Print Network [OSTI]

    Long, Nicholas

    Code of Official Conduct Student Government Association Stephen F. Austin State University Section, the Student Government Association of Stephen F. Austin State University has adopted this Code of Official Association officials who may be elected, appointed, or employed comply with both the Letter and the Spirit

  16. Constraining Torsion with Gravity Probe B

    E-Print Network [OSTI]

    Yi Mao; Max Tegmark; Alan Guth; Serkan Cabi

    2007-10-05T23:59:59.000Z

    It is well-entrenched folklore that torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope should also feel torsion. Using symmetry arguments, we show that to lowest order, the torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the PPN formalism and provide a concrete framework for further testing GR. We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi- Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B (GPB) is an ideal experiment for further constraining torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters

  17. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  18. LISA as a dark energy probe

    E-Print Network [OSTI]

    K G Arun; Chandra Kant Mishra; Chris Van Den Broeck; B R Iyer; B S Sathyaprakash; Siddhartha Sinha

    2009-04-20T23:59:59.000Z

    Recently it was shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in parameter estimation with the Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter $w=p_{\\rm DE}/\\rho_{\\rm DE}$ of dark energy. With a single binary SMBH event at $z < 1$ having appropriate masses and orientation, one would be able to constrain $w$ to within a few percent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on $w$ goes down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in using LISA as a dark energy probe.

  19. Methods of and apparatus for levitating an eddy current probe

    DOE Patents [OSTI]

    Stone, William J. (Kansas City, MO)

    1988-05-03T23:59:59.000Z

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  20. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Dürr, Hermann A.; Parkin, Stuart S. P.; Gühr, Markus

    2015-01-01T23:59:59.000Z

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  1. Development progress of the Materials Analysis and Particle Probe

    SciTech Connect (OSTI)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St. [Princeton Plasma Physics Laboratory (PPPL), Princeton, New Jersey 08543 (United States); Bedoya, F.; Allain, J. P. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois 61801 (United States)

    2014-11-15T23:59:59.000Z

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  2. Pressure effect on ionic conductivity in yttrium-oxide-doped single-crystal zirconium oxide

    SciTech Connect (OSTI)

    Park, E.T.; Park, J.H.

    1998-06-01T23:59:59.000Z

    In this study, the authors investigated the effect of pressure on the ionic conductivity of a 9.5 mol% yttria-stabilized zirconia (YSZ) single crystal. The experiment was conducted in the elastic region, and the oxygen ion transport number was unity (t{sub ion} > 0.99999). A conventional four-probe DC method was used to measure the ionic conductivity of the rectangular-shaped sample under uniaxial pressures up to 600 atm at 750 C in air. Measured ionic conductivity decreased as applied pressure increased. Based on henry Eyring`s absolute reaction rate theory, which states that the calculated activation volume has a positive value ({Delta}V{sup 2} = 2.08 cm{sup 3}/mol of O{sup {minus}2}) for oxygen ion transport in the fluoride cubic lattice, they concluded that the results they obtained could be explained by an oxygen ion transport mechanism. This mechanism can explain the fact that the interionic distance increases during oxygen ion transport from one unit cell to neighboring unit cells.

  3. Carbon Nanotube Assemblies for Transparent Conducting Electrodes

    SciTech Connect (OSTI)

    Garrett, Matthew P [ORNL] [ORNL; Gerhardt, Rosario [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The goal of this chapter is to introduce readers to the fundamental and practical aspects of nanotube assemblies made into transparent conducting networks and discuss some practical aspects of their characterization. Transparent conducting coatings (TCC) are an essential part of electro-optical devices, from photovoltaics and light emitting devices to electromagnetic shielding and electrochromic widows. The market for organic materials (including nanomaterials and polymers) based TCCs is expected to show a growth rate of 56.9% to reach nearly 20.3billionin2015,whilethemarketfortraditionalinorganictransparentelectronicswillexperiencegrowthwithratesof6.7103 billion in 2015. Emerging flexible electronic applications have brought additional requirements of flexibility and low cost for TCC. However, the price of indium (the major component in indium tin oxide TCC) continues to increase. On the other hand, the price of nanomaterials has continued to decrease due to development of high volume, quality production processes. Additional benefits come from the low cost, nonvacuum deposition of nanomaterials based TCC, compared to traditional coatings requiring energy intensive vacuum deposition. Among the materials actively researched as alternative TCC are nanoparticles, nanowires, and nanotubes with high aspect ratio as well as their composites. The figure of merit (FOM) can be used to compare TCCs made from dissimilar materials and with different transmittance and conductivity values. In the first part of this manuscript, we will discuss the seven FOM parameters that have been proposed, including one specifically intended for flexible applications. The approach for how to measure TCE electrical properties, including frequency dependence, will also be discussed. We will relate the macroscale electrical characteristics of TCCs to the nanoscale parameters of conducting networks. The fundamental aspects of nanomaterial assemblies in conducting networks will also be addressed. We will review recent literature on TCCs composed of carbon nanotubes of different types in terms of the FOM.

  4. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect (OSTI)

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06T23:59:59.000Z

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  5. The Science of Level Design Kenneth Hullett

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    elements and gameplay. The next step is to validate this theory with a series of experiments that test]: Human factors, K.8.0 [Personal Computing]: Games General Terms Design, Human Factors Keywords level propose to conduct a series of experiments. A combination of qualitative and quantitative assessments

  6. Probing the Electronic Structures of Low Oxidation-State Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluoride Molecules UFx- (x2-4). Probing the Electronic Structures of Low Oxidation-State Uranium Fluoride Molecules UFx- (x2-4). Abstract: We report the experimental observation...

  7. Probing the electronic structures of low oxidation-state uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecules UFx- (x2-4) . Probing the electronic structures of low oxidation-state uranium fluoride molecules UFx- (x2-4) . Abstract: We report the experimental observation...

  8. Scanning probe microscopy with inherent disturbance suppression using micromechanical systems

    E-Print Network [OSTI]

    Sparks, Andrew William, 1977-

    2005-01-01T23:59:59.000Z

    All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

  9. Probing Valance and Core Excitons in Molecules by Coherent Multidimens...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are simulated. Time-domain experiments that employ sequences of attosecond x-ray pulses in order to probe electronic and nuclear dynamics in molecules are made possible by...

  10. Application of FRET probes in the analysis of neuronal plasticity

    E-Print Network [OSTI]

    Ueda, Yoshibumi

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular ...

  11. Dynamic study of tunable stiffness scanning microscope probe

    E-Print Network [OSTI]

    Vega González, Myraida Angélica

    2005-01-01T23:59:59.000Z

    This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for ...

  12. Multi-probe robotic positioner for cryoablation in MRI

    E-Print Network [OSTI]

    Wu, Faye Y

    2012-01-01T23:59:59.000Z

    This thesis describes the design of a guidance device for faster and more accurate targeting of multiple probes during cryoablation and other percutaneous interventions performed in closed bore magnetic resonance (MR) ...

  13. Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: NANOSCALE MANIPULATION, PROBING, AND ASSEMBLY USING MICROFLUIDIC FLOW along the wire. Together, these experiments illustrate the versatility of microfluidics MICROFLUIDIC FLOW CONTROL By Chad Ropp Dissertation submitted to the Faculty of the Graduate School

  14. Weak lensing flexion as a probe of galaxy cluster substructure

    E-Print Network [OSTI]

    Cain, Benjamin Martin

    2011-01-01T23:59:59.000Z

    Measuring galaxy cluster total masses and the amount of dark matter substructure within galaxy cluster haloes is a fundamental probe of the ACDM model of structure formation, as well as the interactions between baryonic ...

  15. Neural network calibration for miniature multi-hole pressure probes

    E-Print Network [OSTI]

    Vijayagopal, Rajesh

    1998-01-01T23:59:59.000Z

    A robust and accurate neural network based algorithm phics. for the calibration of miniature multi-hole pressure probes has been developed and a detailed description of its features and use is presented. The code that was developed was intended...

  16. Probing the size and environment induced phase transformation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the size and environment induced phase transformation in CdSe quantum dots. Probing the size and environment induced phase transformation in CdSe quantum dots. Abstract: The...

  17. Magnetic nanowire based high resolution magnetic force microscope probes

    E-Print Network [OSTI]

    Qin, Lu-Chang

    -resolution magnetic force microscope probes using preformed magnetic nanowires. Nickel and cobalt nanowires produced by electrodeposition were directly assembled onto the tip of a commercial atomic force microscope cantilever

  18. Development of Micromachined Probes for Bio-Nano Applications 

    E-Print Network [OSTI]

    Yapici, Murat K.

    2010-01-14T23:59:59.000Z

    of providing very fine, micro/nano scale interaction with matter; along with a broad range of applications made possible by incorporating MEMS sensing and actuation techniques. Micromachined probes consist of a well-defined tip structure that determines...

  19. Microfabricated Optical Sensor Probe for the Detection of Esophageal Cancer 

    E-Print Network [OSTI]

    Chinna Balareddy, Karthik Reddy

    2012-10-19T23:59:59.000Z

    spectrometry. The sensor probe consists of a lithographically patterned polymer waveguides chip and three micromachined positioning substrates and source/collection fibers to achieve 45 degree light incidence and collection of spatially resolved diffuse...

  20. Standard Quantum Limit for Probing Mechanical Energy Quantization

    E-Print Network [OSTI]

    Corbitt, Thomas R.

    We derive a standard quantum limit for probing mechanical energy quantization in a class of systems with mechanical modes parametrically coupled to external degrees of freedom. To resolve a single mechanical quantum, it ...

  1. Nuclear fission as resonance-mediated conductance

    E-Print Network [OSTI]

    G. F. Bertsch

    2014-12-18T23:59:59.000Z

    For 75 years the theory of nuclear fission has been based on the existence of a collective coordinate associated with the nuclear shape, an assumption required by the Bohr-Wheeler formula as well as by the R-matrix theory of fission. We show that it is also possible to formulate the theory without the help of collective coordinates. In the new formulation, fission is facilitated by individual states in the barrier region rather than channels over the barrier. In a certain limit the theory reduces to a formula closely related to the formula for electronic conductance through resonant tunneling states. In contrast, conduction through channels gives rise to a staircase excitation function that is well-known in nanoscale electronics but has never been seen in nuclear fission.

  2. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  3. Micro-machined thermo-conductivity detector

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01T23:59:59.000Z

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  4. Multiterminal Conductance of a Floquet Topological Insulator

    E-Print Network [OSTI]

    L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj

    2014-09-08T23:59:59.000Z

    We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.

  5. Free vibrations of U-shaped atomic force microscope probes

    SciTech Connect (OSTI)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, W342 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2014-05-07T23:59:59.000Z

    Contact resonance atomic force microscope (AFM) methods have been used to quantify the elastic and viscoelastic properties of a variety of materials such as polymers, ceramics, biological materials, and metals with spatial resolution on the order of tens of nanometers. This approach involves measurement of the resonant frequencies of the AFM probe both for the free case and the case for which the tip is in contact with a sample. Vibration models of the probe and tip-sample contact models are then used to determine the sample properties from the frequency behavior and to create images of the sample properties. This work has been primarily focused on rectangular, single-beam probes for which the vibration models are relatively simple. Recently, U-shaped AFM probes have been developed to allow local heating of samples and the resonances of these probes are much more complex. In this article, a simplified analytical model of these U-shaped probes is described. This three beam model includes two beams clamped at one end and connected with a perpendicular cross beam at the other end. The beams are assumed only to bend in flexure and twist but their coupling allows a wide range of possible dynamic behavior. Results are presented for the first ten modes and the mode shapes are shown to have complex coupling between the flexure and twisting of the beams, particularly for the higher modes. All resonant frequency results are in good agreement with finite element results for the three probe designs and two values of thickness considered (all wavenumbers are within 3.0%). This work is anticipated to allow U-shaped probes to be used eventually for quantitative measurements of sample material properties during heating using a contact resonance approach.

  6. Probing Compositeness with Higgs Boson Decays at the LHC

    E-Print Network [OSTI]

    Maria Hoffmann; Anna Kaminska; Rosy Nicolaidou; Stathes Paganis

    2014-10-28T23:59:59.000Z

    A method is proposed to directly probe the Higgs boson compositeness using the unique characteristics of a boosted Higgs boson produced in association with a weak gauge boson ($W^{\\pm},Z$). The discovery potential for the upcoming LHC running is presented, showing that compositeness scales up to 3 TeV can be probed at the LHC with an integrated luminosity of $\\mathcal{L}=3000$ fb$^{-1}$ collected at $\\sqrt{s}=13$ TeV.

  7. Complex quantum networks as structured environments: engineering and probing

    E-Print Network [OSTI]

    Johannes Nokkala; Fernando Galve; Roberta Zambrini; Sabrina Maniscalco; Jyrki Piilo

    2015-03-16T23:59:59.000Z

    We consider structured environments modeled by bosonic quantum networks and investigate the control and probing of their spectral density. We demonstrate how to engineer a desired spectral density by changing the network structure. We show that the spectral density can be very accurately detected via a locally immersed probe system for virtually any network configuration. We illustrate our findings presenting examples of spectral densities for networks of genuine complexity.

  8. Fracture Conductivity of the Eagle Ford Shale

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25T23:59:59.000Z

    , and rock geomechanical properties. Therefore, optimizing conductivity by tailoring a well’s fracturing treatment to local reservoir characteristics is important to the oil and gas industry for economic reasons. The roots of hydraulic fracturing can... of the formation. Sahoo et al. (2013) identified that mineralogy, hydrocarbon filled porosity, and total organic content are most prominent parameters that control Eagle Ford well productivity. Mineral composition determines several geomechanical properties...

  9. Status of surface conduction in topological insulators

    SciTech Connect (OSTI)

    Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-01-15T23:59:59.000Z

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.

  10. Conductive Thermal Interaction in Evaporative Cooling Process

    E-Print Network [OSTI]

    Kim, B. S.; Degelman, L. O.

    1990-01-01T23:59:59.000Z

    from the evaporative cooler would often be more than 6.5'F lower than that of a conventional evaporative cooling system due to thermal conduction between water and entering air. - Figure 1 Pad type evaporative cooler. DIRECT EVAPORATIVE COOLER... There are several types of direct evaporative cooler configurations available. Two popular system types are pad type unit and rotary type unit. A number of window mounted units are pad type evaporative coolers (Figure 1). In a pad type cooler, water...

  11. Nonlinear optical and conductive polymeric material

    DOE Patents [OSTI]

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19T23:59:59.000Z

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  12. Method of synthesis of proton conducting materials

    DOE Patents [OSTI]

    Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary

    2010-06-15T23:59:59.000Z

    A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.

  13. Transparent conducting oxides: A -doped superlattice approach

    SciTech Connect (OSTI)

    Cooper, Valentino R [ORNL; Seo, Sung Seok A. [University of Kentucky, Lexington; Lee, Suyoun [ORNL; Kim, Jun Sung [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Choi, Woo Seok [ORNL; Okamoto, Satoshi [ORNL; Lee, Ho Nyung [ORNL

    2014-01-01T23:59:59.000Z

    Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

  14. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  15. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  16. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOE Patents [OSTI]

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18T23:59:59.000Z

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  17. Filename: FVB Invo2 Forced 121061.CHP Probe Array Type: MG_U74Av2

    E-Print Network [OSTI]

    Betz, William J.

    121061.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8 Controls: Antisense.13 ______________________________________________________________________ ______________________________________________________________________ Filename: FVB Invo2 Forced 121062.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8

  18. Effective hydraulic conductivity of bounded, strongly heterogeneous porous media

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    Effective hydraulic conductivity of bounded, strongly heterogeneous porous media Evangelos K of Arizona, Tucson Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke boundaries. The log hydraulic conductivity Y forms a Gaussian, statistically homogeneous and anisotropic

  19. Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

    E-Print Network [OSTI]

    Romero Lugo, Jose 1985-

    2012-10-24T23:59:59.000Z

    deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture...

  20. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    SciTech Connect (OSTI)

    WYRWAS RB; PAGE JS; COOKE GS

    2012-04-19T23:59:59.000Z

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  1. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2008-10-10T23:59:59.000Z

    conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries... different or special methods for completion, stimulation, and/or production techniques to retrieve the resource. Natural gas from coal or coal bed methane, tight gas sands, shale gas, and gas hydrates are all examples of unconventional gas reservoirs...

  2. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2009-05-15T23:59:59.000Z

    ) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

  3. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-01T23:59:59.000Z

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore »and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  4. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J. [Plasma Science and Fusion Center and Massachusetts Institute of Technology, Cambridge, MA (United States); Li, C. K. [Plasma Science and Fusion Center and Massachusetts Institute of Technology, Cambridge, MA (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)] (ORCID:000000016289858X); Igumenshchev, I. [University of Rochester, NY (United States). Laboratory for Laser Energetics; Seguin, F. H. [Plasma Science and Fusion Center and Massachusetts Institute of Technology, Cambridge, MA (United States); Town, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [Plasma Science and Fusion Center and Massachusetts Institute of Technology, Cambridge, MA (United States)] (ORCID:0000000168460378); Stoeckl, C. [University of Rochester, NY (United States). Laboratory for Laser Energetics; Glebov, V. [University of Rochester, NY (United States). Laboratory for Laser Energetics; Petrasso, R. D. [Plasma Science and Fusion Center and Massachusetts Institute of Technology, Cambridge, MA (United States)] (ORCID:0000000258834054)

    2015-04-01T23:59:59.000Z

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ?~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  5. Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species

    SciTech Connect (OSTI)

    Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

  6. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Li, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA] (ORCID:000000016289858X); Igumenshchev, I. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; S??guin, F. H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Town, R. P. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA] (ORCID:0000000168460378); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA] (ORCID:0000000258834054)

    2015-04-01T23:59:59.000Z

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in ß~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  7. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20T23:59:59.000Z

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  8. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect (OSTI)

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01T23:59:59.000Z

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  9. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  10. Conductivity maximum in a charged colloidal suspension

    SciTech Connect (OSTI)

    Bastea, S

    2009-01-27T23:59:59.000Z

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  11. Lead Sulphide Nanocrystal: Conducting Polymer Solar Cells

    E-Print Network [OSTI]

    Andrew A. R. Watt; David Blake; Jamie H. Warner; Elizabeth A. Thomsen; Eric L. Tavenner; Halina Rubinsztein-Dunlop; Paul Meredith

    2004-12-13T23:59:59.000Z

    In this paper we report photovoltaic devices fabricated from PbS nanocrystals and the conducting polymer poly MEH-PPV. This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n=1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.

  12. Nanostructured Transparent Conducting Oxides via Blockcopolymer Patterning

    E-Print Network [OSTI]

    Kim, Joung Youn Ellie

    2014-05-27T23:59:59.000Z

    . This can lead to new device designs of organic light emitting diodes (OLEDS), fuel cells, displays and solar cells. Moreover, the ability to incorporate other various functional materials to form a hybrid with the nanostructured TCO allows possibilities... cell work and the XPS measurements as well as other scientific insights. I am grateful to Dr. K.K. Banger for the help with conductivity measurements as well as the collaborative work on the amorphous TCO. His insights on sol-gel chemistry as well...

  13. Synthesis of transparent conducting oxide coatings

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04T23:59:59.000Z

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  14. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  15. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-04-16T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  16. Conductive Plays - Basement | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open EnergyInformationConductive Plays - Basement

  17. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  18. Study hints at conduction secrets in bacteria nanowires | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the team used a non-conducting fiber from Gonorrhea to model how electrically conducting proteins might work. They overlaid multiple Geobacter pilin proteins on Gonorrhea's fiber...

  19. EM Conducts Third Annual Spanish Language Training with Record...

    Office of Environmental Management (EM)

    EM Conducts Third Annual Spanish Language Training with Record Participation EM Conducts Third Annual Spanish Language Training with Record Participation March 30, 2015 - 12:00pm...

  20. Possible Dynamically Gated Conductance along Heme Wires in Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes. Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme...