National Library of Energy BETA

Sample records for lesotho gy guyana

  1. Guyana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guyana Population 747,884 GDP 2,788,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GY 3-letter ISO code GUY Numeric ISO...

  2. Preparing Guyana's REDD+ Participation: Developing Capacities...

    Open Energy Info (EERE)

    Workshop, Guidemanual Website http:unfccc.intfilesmethod Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation1...

  3. Guyana's Low Carbon Development Strategy | Open Energy Information

    Open Energy Info (EERE)

    Guyana's Low Carbon Development Strategy Jump to: navigation, search Tool Summary Name: Guyana's Low Carbon Development Strategy AgencyCompany Organization: Guyana Office of...

  4. Guyana REDD+ Investment Fund (GRIF) | Open Energy Information

    Open Energy Info (EERE)

    Guyana REDD+ Investment Fund (GRIF) Jump to: navigation, search Name Guyana REDD+ Investment Fund (GRIF) AgencyCompany Organization Government of Norway, Government of Guyana...

  5. Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  6. Lesotho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Lesotho Population 2,031,348 GDP 2,616,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LS 3-letter ISO code LSO Numeric ISO...

  7. Guyana-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name Guyana-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  8. RenGyS | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: RenGyS is an independent renewable energy developer focused on the Chinese energy market. Coordinates: 31.247709, 121.472618 Show Map Loading map......

  9. 70 Gy Versus 80 Gy in Localized Prostate Cancer: 5-Year Results of GETUG 06 Randomized Trial;Prostate cancer; Dose escalation; Conformal radiotherapy; Randomized trial

    SciTech Connect (OSTI)

    Beckendorf, Veronique; Guerif, Stephane; Le Prise, Elisabeth; Cosset, Jean-Marc; Bougnoux, Agnes; Chauvet, Bruno; Salem, Naji; Chapet, Olivier; Bourdain, Sylvain; Bachaud, Jean-Marc; Maingon, Philippe; Hannoun-Levi, Jean-Michel; Malissard, Luc; Simon, Jean-Marc; Pommier, Pascal; Hay, Men; Dubray, Bernard; Lagrange, Jean-Leon; Luporsi, Elisabeth; Bey, Pierre

    2011-07-15

    Purpose: To perform a randomized trial comparing 70 and 80 Gy radiotherapy for prostate cancer. Patients and Methods: A total of 306 patients with localized prostate cancer were randomized. No androgen deprivation was allowed. The primary endpoint was biochemical relapse according to the modified 1997-American Society for Therapeutic Radiology and Oncology and Phoenix definitions. Toxicity was graded using the Radiation Therapy Oncology Group 1991 criteria and the late effects on normal tissues-subjective, objective, management, analytic scales (LENT-SOMA) scales. The patients' quality of life was scored using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire 30-item cancer-specific and 25-item prostate-specific modules. Results: The median follow-up was 61 months. According to the 1997-American Society for Therapeutic Radiology and Oncology definition, the 5-year biochemical relapse rate was 39% and 28% in the 70- and 80-Gy arms, respectively (p = .036). Using the Phoenix definition, the 5-year biochemical relapse rate was 32% and 23.5%, respectively (p = .09). The subgroup analysis showed a better biochemical outcome for the higher dose group with an initial prostate-specific antigen level >15 ng/mL. At the last follow-up date, 26 patients had died, 10 of their disease and none of toxicity, with no differences between the two arms. According to the Radiation Therapy Oncology Group scale, the Grade 2 or greater rectal toxicity rate was 14% and 19.5% for the 70- and 80-Gy arms (p = .22), respectively. The Grade 2 or greater urinary toxicity was 10% at 70 Gy and 17.5% at 80 Gy (p = .046). Similar results were observed using the LENT-SOMA scale. Bladder toxicity was more frequent at 80 Gy than at 70 Gy (p = .039). The quality-of-life questionnaire results before and 5 years after treatment were available for 103 patients with no differences found between the 70- and 80-Gy arms. Conclusion: High-dose radiotherapy provided a

  10. MEMORANDUM GY

    Office of Legacy Management (LM)

    AT SITE : 'I---...---... Control q AECtlED managed operations 3' Health Physics Protection . (3 Little or None G AECt-lED responsible for accountability ' , PAEC...

  11. Escalation of radiation dose beyond 30 Gy in 10 fractions for metastatic spinal cord compression

    SciTech Connect (OSTI)

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Karstens, Johann H.; Hoskin, Peter J.; Rudat, Volker; Veninga, Theo; Schild, Steven E.; Dunst, Juergen

    2007-02-01

    Purpose: In many centers worldwide, radiotherapy for metastatic spinal cord compression (MSCC) is performed with 30 Gy in 10 fractions. This study investigated the potential benefit of dose escalation. Methods and Materials: Data from 922 patients with carcinomas causing MSCC were retrospectively evaluated. The outcome of 345 patients treated with 10 fractions of 3 Gy in 2 weeks was compared with the outcomes of 577 patients treated with 37.5 Gy in 15 fractions within 3 weeks or 40 Gy in 20 fractions within 4 weeks. Additionally, 10 potential prognostic factors were investigated: age, gender, performance status, tumor type, interval between cancer diagnosis and MSCC, number of involved vertebrae, other bone and visceral metastases, ambulatory status, and the interval to the development of motor deficits before radiotherapy. Results: Motor function improved in 19% of patients after 30 Gy in 10 fractions and in 22% after greater doses (p = 0.31). The local control (p = 0.28) and survival (p = 0.85) rates were not significantly different with doses >30 Gy. Better functional outcome was associated with the absence of visceral metastases, an interval between tumor diagnosis and MSCC of >12 months, ambulatory status, and an interval to the development of motor deficits of >7 days. Improved local control was significantly associated with no visceral metastases, improved survival with favorable histologic features (breast or prostate cancer), no visceral metastases, ambulatory status, an interval between cancer diagnosis and MSCC of >12 months, and an interval to the development of motor deficits of >7days. Conclusion: Escalation of the radiation dose to >30 Gy in 10 fractions did not improve the outcomes in terms of motor function, local control, or survival but did increase the treatment time for these frequently debilitated patients. Therefore, doses >30 Gy in 10 fractions are not recommended.

  12. Low-Dose Radiation Therapy (2 Gy 2) in the Treatment of Orbital Lymphoma

    SciTech Connect (OSTI)

    Fasola, Carolina E.; Jones, Jennifer C.; Huang, Derek D.; Le, Quynh-Thu; Hoppe, Richard T.; Donaldson, Sarah S.

    2013-08-01

    Purpose: Low-dose radiation has become increasingly used in the management of indolent non-Hodgkin lymphoma (NHL), but has not been studied specifically for cases of ocular adnexal involvement. The objective of this study is to investigate the effectiveness of low-dose radiation in the treatment of NHL of the ocular adnexa. Methods and Materials: We reviewed the records of 20 NHL patients with 27 sites of ocular adnexal involvement treated with low-dose radiation consisting of 2 successive fractions of 2 Gy at our institution between 2005 and 2011. The primary endpoint of this study is freedom from local relapse (FFLR). Results: At a median follow-up time of 26 months (range 7-92), the overall response rate for the 27 treated sites was 96%, with a complete response (CR) rate of 85% (n=23) and a partial response rate of 11% (n=3). Among all treated sites with CR, the 2-year FFLR was 100%, with no in-treatment field relapses. The 2-year freedom from regional relapse rate was 96% with 1 case of relapse within the ipsilateral orbit (outside of the treatment field). This patient underwent additional treatment with low-dose radiation of 4 Gy to the area of relapse achieving a CR and no evidence of disease at an additional 42 months of follow-up. Orbital radiation was well tolerated with only mild acute side effects (dry eye, conjunctivitis, transient periorbital edema) in 30% of treated sites without any reports of long-term toxicity. Conclusions: Low-dose radiation with 2 Gy 2 is effective and well tolerated in the treatment of indolent NHL of the ocular adnexa with high response rates and durable local control with the option of reirradiation in the case of locoregional relapse.

  13. eGY-Africa: Addressing the Digital Divide for Science in Africa

    SciTech Connect (OSTI)

    Barton, C.E.; Amory-Mazaudier, C.; Barry, B.; Chukwuma; Cottrell, R.L.; Kalim, U.; Mebrahtu, A.; Petitdidier, M.; Rabiu, B.; Reeves, C.; /Earthworks bv, Delft

    2010-06-16

    Adoption of information and communication technologies and access to the Internet is expanding in Africa, but because of the rapid growth elsewhere, a Digital Divide between Africa and the rest of the world exists, and the gap is growing. In many sub-Saharan African countries, education and research sector suffers some of the worst deficiencies in access to the Internet, despite progress in development of NRENs - National Research and Education (cyber) Networks. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that strength in this very sector provides the key to meeting and sustaining Millennium Development Goals. Developed countries with effective cyber-capabilities proclaim the benefits to rich and poor alike arising from the Information Revolution. This is but a dream for many scientists in African institutions. As the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this Digital Divide by a campaign of advocacy for better institutional facilities. Four approaches are being taken. The present status of Internet services, problems, and plans are being mapped via a combination of direct measurement of Internet performance (the PingER Project) and a questionnaire-based survey. Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide, which can be used for arguing the case for better Internet facilities. Groups of concerned scientists are being formed at the national, regional levels in Africa, building on existing networks as much as possible. Opinion in the international science community is being mobilized. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide - either as a direct policy

  14. eGY-Africa: Addressing the Digital Divide for Science in Africa

    SciTech Connect (OSTI)

    Barton, C. E.

    2010-05-25

    Adoption of information and communication technologies and access to the Internet is expanding in Africa, but because of the rapid growth elsewhere, a Digital Divide between Africa and the rest of the world exists, and the gap is growing. In many sub-Saharan African countries, education and research sector suffer some of the worst deficiencies in access to the Internet, despite progress in development of NRENs National Research and Education (cyber) Networks. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that strength in this very sector provides the key to meeting and sustaining Millennium Development Goals. Developed countries with effective cyber-capabilities proclaim the benefits to rich and poor alike arising from the Information Revolution. This is but a dream for many scientists in African institutions. As the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this Digital Divide by a campaign of advocacy for better institutional facilities. Four approaches are being taken. The present status of Internet services, problems, and plans are being mapped via a combination of direct measurement of Internet performance (the PingER Project) and a questionnaire-based survey. Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide, which can be used for arguing the case for better Internet facilities. Groups of concerned scientists are being formed at the national, regional levels in Africa, building on existing networks as much as possible. Opinion in the international science community is being mobilized. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide either as a direct policy objective

  15. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer

    SciTech Connect (OSTI)

    Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun; Kang, Han-Sung; Lee, Eun Sook; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Lee, Nam Kwon; Shin, Kyung Hwan

    2013-12-01

    Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery.

  16. Thermoluminescence (TL) Analysis and Fading Studies of Naturally Occurring Salt Irradiated by 500 mGy Gamma Rays

    SciTech Connect (OSTI)

    Tiwari, Ramesh Chandra; Pau, Kham Suan

    2011-10-20

    The aim of the present study was to investigate the potential of the naturally occurring salt for the dosimetry purposes, using TL. The fine powder samples (20 mg) were irradiated by {gamma}- rays from 500 mGy to 2500 mGy by using Theratron-780C Cobalt-60 source, however, this paper discusses about 500 mGy only. The TL glow curve peak parameters were studied by using Chen's peak shape equation. TL glow curves were compared with fitted curves using glow curve deconvolution (GCD) method by using Kitis expression. The kinetic parameter values (E, b and s) so calculated, are in good agreement with those available in literature. The calculated energy values were also verified by using various heating rate (VHR) method. {chi}{sup 2} test and figure of merit (FOM) calculation was done to accept the goodness of fit between the curves. Fading studies of the sample showed a good fitting between the curves. The analysis suggests that natural salt should be considered for dosimetry purposes.

  17. Standard (60 Gy) or Short-Course (40 Gy) Irradiation Plus Concomitant and Adjuvant Temozolomide for Elderly Patients With Glioblastoma: A Propensity-Matched Analysis

    SciTech Connect (OSTI)

    Minniti, Giuseppe; Scaringi, Claudia; Lanzetta, Gaetano; Terrenato, Irene; Esposito, Vincenzo; Arcella, Antonella; Pace, Andrea; Giangaspero, Felice; Bozzao, Alessandro; Enrici, Riccardo Maurizi

    2015-01-01

    Purpose: To evaluate 2 specific radiation schedules, each combined with temozolomide (TMZ), assessing their efficacy and safety in patients aged ≥65 years with newly diagnosed glioblastoma (GBM). Methods and Materials: Patients aged ≥65 years with Karnofsky performance status (KPS) ≥60 who received either standard (60 Gy) or short-course (40 Gy) radiation therapy (RT) with concomitant and adjuvant TMZ between June 2004 and October 2013 were retrospectively analyzed. A propensity score analysis was executed for a balanced comparison of treatment outcomes. Results: A total of 127 patients received standard RT-TMZ, whereas 116 patients underwent short-course RT-TMZ. Median overall survival and progression-free survival times were similar: 12 months and 5.6 months for the standard RT-TMZ group and 12.5 months and 6.7 months for the short-course RT-TMZ group, respectively. Radiation schedule was associated with similar survival outcomes in either unadjusted or adjusted analysis. O{sup 6}-methylguanine-DNA methyltransferase promoter methylation was the most favorable prognostic factor (P=.0001). Standard RT-TMZ therapy was associated with a significant rise in grade 2 and 3 neurologic toxicity (P=.01), lowering of KPS scores during the study (P=.01), and higher posttreatment dosing of corticosteroid (P=.02). Conclusions: In older adults with GBM, survival outcomes of standard and short-course RT-TMZ were similar. An abbreviated course of RT plus TMZ may represent a reasonable therapeutic approach for these patients, without loss of survival benefit and acceptable toxicity.

  18. Multidose Stereotactic Radiosurgery (9 Gy × 3) of the Postoperative Resection Cavity for Treatment of Large Brain Metastases

    SciTech Connect (OSTI)

    Minniti, Giuseppe; Esposito, Vincenzo; Clarke, Enrico; Scaringi, Claudia; Lanzetta, Gaetano; Salvati, Maurizio; Raco, Antonino; Bozzao, Alessandro; Maurizi Enrici, Riccardo

    2013-07-15

    Purpose: To evaluate the clinical outcomes with linear accelerator-based multidose stereotactic radiosurgery (SRS) to large postoperative resection cavities in patients with large brain metastases. Methods and Materials: Between March 2005 to May 2012, 101 patients with a single brain metastasis were treated with surgery and multidose SRS (9 Gy × 3) for large resection cavities (>3 cm). The target volume was the resection cavity with the inclusion of a 2-mm margin. The median cavity volume was 17.5 cm{sup 3} (range, 12.6-35.7 cm{sup 3}). The primary endpoint was local control. Secondary endpoints were survival and distant failure rates, cause of death, performance measurements, and toxicity of treatment. Results: With a median follow-up of 16 months (range, 6-44 months), the 1-year and 2-year actuarial survival rates were 69% and 34%, respectively. The 1-year and 2-year local control rates were 93% and 84%, with respective incidences of new distant brain metastases of 50% and 66%. Local control was similar for radiosensitive (non-small cell lung cancer and breast cancer) and radioresistant (melanoma and renal cell cancer) brain metastases. On multivariate Cox analysis stable extracranial disease, breast cancer histology, and Karnofsky performance status >70 were associated with significant survival benefit. Brain radionecrosis occurred in 9 patients (9%), being symptomatic in 5 patients (5%). Conclusions: Adjuvant multidose SRS to resection cavity represents an effective treatment option that achieves excellent local control and defers the use of whole-brain radiation therapy in selected patients with large brain metastases.

  19. From nGy to MGy - New dosimetry with LiF:Mg,Cu,P thermoluminescence detectors

    SciTech Connect (OSTI)

    Obryk, Barbara

    2013-05-06

    One of the well known advantages of thermoluminescence (TL) detectors made of lithium fluoride doped with magnesium, copper and phosphorus (LiF:Mg,Cu,P) is their very high sensitivity to ionizing radiation. LiF:Mg,Cu,P detectors enable measurements of radiation doses from tens of nanograys up to a few kilograys, when the total saturation of the signal of the so-called main dosimetric peak occurs. Only recently, unprecedented high-temperature emission of LiF detectors heated to temperatures up to 600 Degree-Sign C, was observed after exposures to radiation doses ranging from 1 kGy to 1 MGy. For quantification of the glow-curve shape changes of LiF:Mg,Cu,P detectors in this range of doses and determination of the absorbed dose, the Ultra-High Temperature Ratio coefficient (UHTR) was defined. This newly established dosimetric method was tested in a range of radiation qualities, such as gamma radiation, electron and proton beams, thermal neutron fields and high-energy mixed fields around the SPS and PS accelerators at CERN. The new method for ultra-high dose range monitoring with a single LiF:Mg,Cu,P detector, which is capable of covering at least twelve orders of magnitude of doses, can be used for dosimetry at high energy accelerators, thermonuclear fusion technology facilities and has great potential for accident dosimetry in particular. A number of dosimetric sets with LiF:Mg,Cu,P detectors are currently installed around the LHC at CERN.

  20. Hyperfractionated Accelerated Radiation Therapy (HART) of 70.6 Gy With Concurrent 5-FU/Mitomycin C Is Superior to HART of 77.6 Gy Alone in Locally Advanced Head and Neck Cancer: Long-term Results of the ARO 95-06 Randomized Phase III Trial

    SciTech Connect (OSTI)

    Budach, Volker; Stromberger, Carmen; Poettgen, Christoph; Baumann, Michael; Budach, Wilfried; Grabenbauer, Gerhard; Marnitz, Simone; Olze, Heidi; Wernecke, Klaus-Dieter; Ghadjar, Pirus

    2015-04-01

    Purpose: To report the long-term results of the ARO 95-06 randomized trial comparing hyperfractionated accelerated chemoradiation with mitomycin C/5-fluorouracil (C-HART) with hyperfractionated accelerated radiation therapy (HART) alone in locally advanced head and neck cancer. Patients and Methods: The primary endpoint was locoregional control (LRC). Three hundred eighty-four patients with stage III (6%) and IV (94%) oropharyngeal (59.4%), hypopharyngeal (32.3%), and oral cavity (8.3%) cancer were randomly assigned to 30 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total of 70.6 Gy concurrently with mitomycin C/5-FU (C-HART) or 16 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total dose of 77.6 Gy alone (HART). Statistical analyses were done with the log-rank test and univariate and multivariate Cox regression analyses. Results: The median follow-up time was 8.7 years (95% confidence interval [CI]: 7.8-9.7 years). At 10 years, the LRC rates were 38.0% (C-HART) versus 26.0% (HART, P=.002). The cancer-specific survival and overall survival rates were 39% and 10% (C-HART) versus 30.0% and 9% (HART, P=.042 and P=.049), respectively. According to multivariate Cox regression analysis, the combined treatment was associated with improved LRC (hazard ratio [HR]: 0.6 [95% CI: 0.5-0.8; P=.002]). The association between combined treatment arm and increased LRC appeared to be limited to oropharyngeal cancer (P=.003) as compared with hypopharyngeal or oral cavity cancer (P=.264). Conclusions: C-HART remains superior to HART in terms of LRC. However, this effect may be limited to oropharyngeal cancer patients.

  1. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect (OSTI)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  2. MFISH Measurements of Chromosomal Aberrations Individuals Exposed in Utero to Gamma-ray Doses from 5 to 20 cGy

    SciTech Connect (OSTI)

    Brenner, David J.

    2009-11-17

    Our plan was to identify and obtain blood from 36 individuals from the Mayak-in-utero exposed cohort who were exposed in utero only to gamma ray does doses fro 5 to 20 cGy. Our goal is to do mFISH and in a new development, single-arm mFISH on these samples to measure stable chromosome aberrations in these now adult individuals. The results were compared with matched control individuals (same age, same gender) available from the large control population which we are studying in the context of our plutonium worker study. The long term goal was to assess the results both in terms of the sensitivity of the developing embryo/fetus to low doses of ionizing radiation, and in terms of different potential mechanisms (expanded clonal origin vs. induced instability) for an increased risk.

  3. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

    SciTech Connect (OSTI)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; Komorowski, Richard; Fish, Brian L.; Migrino, Raymond Q.; Harmann, Leanne; Hopewell, John W.; Kronenberg, Amy; Patel, Shailendra; Moulder, John E.; Baker, John E.

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.

  4. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; Komorowski, Richard; Fish, Brian L.; Migrino, Raymond Q.; Harmann, Leanne; Hopewell, John W.; Kronenberg, Amy; Patel, Shailendra; et al

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9more » days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.« less

  5. Lesotho-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  6. Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities

    SciTech Connect (OSTI)

    Pouliliou, Stamatia E.; Dimitriou, Thespis; Giatromanolaki, Alexandra; Papazoglou, Dimitrios; Pappa, Aglaia; Pistevou, Kyriaki

    2015-07-01

    Purpose: Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. Methods and Materials: SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2{sub [4h]}) and 24 hours (SF2{sub [24h]}) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. Results: The SF2{sub (4h)} was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio{sub (30min)} (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio{sub (4h)}/γH2AX-ratio{sub (30min)}) showed a significant direct association with high toxicity grade (P=.01). Conclusions: Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with

  7. KGK-2-type detector of gamma-radiation power for diagnosis of nuclear reactor radiation fields within the range from 1 µGy/s to 100 Gy/s

    SciTech Connect (OSTI)

    Koshelev, A. S. Dovbysh, L. Ye.; Khoruzhy, V. Kh.; Chuklyaev, S. V.

    2015-12-15

    The construction of the KGK-2-type detector of γ-radiation power is briefly described. The diagnostic possibilities of the detector are shown by the example of results of the dose rate measurement in the energy start-ups of the BR-K1 and BR-1M reactors implemented in the mode of generating fission pulses on delayed neutrons. The possibilities of using the KGK-2 detector for postpulse γ diagnostics are demonstrated by the example of results of measurements in the fission pulse on prompt neutrons of the BR-1M reactor.

  8. QUARTER SH OR T-T ER M EN ER GY OU TL OO K QUAR TERL Y PROJ

    Gasoline and Diesel Fuel Update (EIA)

    ... World Oil PricesInternational Petroleum Michael Grillot Macroeconomic ...... Kay A. Smith Energy Product Prices ...... Neil Gamson Petroleum Demands ...

  9. OLADE-Latin American and Caribbean Energy Efficiency Seminar...

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  10. Energy-Economic Information System (SIEE) | Open Energy Information

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  11. OLADE Sustainable Energy Planning Manual | Open Energy Information

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  12. Legal Energy Information System (SIEL) Database | Open Energy...

    Open Energy Info (EERE)

    Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica,...

  13. National Action Programmes on Desertification | Open Energy Informatio...

    Open Energy Info (EERE)

    Faso, Burundi, Cameroon, Cape Verde, Chad, Democratic Republic of Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho,...

  14. WWS_LorrieC157L_0915

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ireland Italy Japan Kenya Latvia Lesotho Libya Lithuania Madagascar Malawi Malaysia Mauritius Mexico Mozambique Nepal The Netherlands New Zealand Nicaragua Nigeria Norway ...

  15. REDD+ Country Readiness Preparation Proposals | Open Energy Informatio...

    Open Energy Info (EERE)

    getting-ready Country: Democratic Republic of Congo, Ghana, Guyana, Indonesia, Madagascar, Mexico, Suriname, Panama Middle Africa, Western Africa, South America,...

  16. Voltalia Guyane | Open Energy Information

    Open Energy Info (EERE)

    Guyana Sector: Renewable Energy Product: French developer and operator of renewable plants References: Voltalia Guyane1 This article is a stub. You can help OpenEI by...

  17. A Review of the World Bank Forest Carbon Partnership Facility...

    Open Energy Info (EERE)

    submitted by Democratic Republic of Congo, Ghana, Guyana, Indonesia, Madagascar, Mexico, Panama and Suriname can be accessed online at: http:www.wri.orggfi ." To access...

  18. Category:LEDS Example | Open Energy Information

    Open Energy Info (EERE)

    on Climate Change (PNMC) C China's National Climate Change Programme G Guyana's Low Carbon Development Strategy I India National Action Plan on Climate Change Indonesia National...

  19. Category:Latin America Region | Open Energy Information

    Open Energy Info (EERE)

    Guatemala Guyana H Haiti Honduras J Jamaica M Martinique Mexico N Nicaragua P Panama Paraguay Peru S Saint Barthlemy Saint Kitts and Nevis Saint Lucia Saint Vincent and the...

  20. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

  1. CRC handbook of agricultural energy potential of developing countries. Volume I

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction, Argentina, Bangladesh, Benin, Bolivia, Botswana, Bourkina (Upper Volta), Brazil, Burma, Burundi, Cameroon, Chad, Chile, Columbia, Costa Rica, Djibouti, Dominican Republic, Ecuador, El Salvador, Ethiopia, French Guiana, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jamaica, Appendix I. Conventional and Energetic Yields, Appendix II, Phytomass Files, and References.

  2. Early Internal and External Dose Magnitude Estimation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    slight drop in lymphocytes later (near 1 Gy) > 100 rads, > 1Gy Hematopoietic Anorexia, nausea, vomiting, initial granulocytosis and lymphocytopenia > 6-800 rads, > 6-8 Gy...

  3. South America, Central America, the Caribbean, and Mexico

    SciTech Connect (OSTI)

    Deal, C.

    1981-10-01

    Summaries of oil and gas drillings, well completions, production, exploratory wells, exploration activity and wildcat drilling were given for South America, Central America, the Caribbean, and Mexico. The countries, islands, etc. included Argentina, Bahamas, Barbados, Belize, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, French Guiana, Guatemala, Guyana, Haiti, Honduras, Jamaica, Leeward and Windward Islands, Mexico, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, El Salvador, Surinam, Trinidad and Venezuela. 16 figures, 120 tables. (DP)

  4. South America: everybody is drilling almost everywhere

    SciTech Connect (OSTI)

    Not Available

    1980-08-15

    A group of studies describes accomplishments in 1980 in South America drilling and producing. There may be 3285 wells drilled during 1980, with the majority in Venezuela, Argentina and Peru, compared with a 2934 total for all countries on the continent in 1979. Reserves at the end of 1979 in South America exceeded 27 billion bbl, and production averaged 3.8 million bpd. Individual country reports are given for Venezuela, Argentina, Brazil, Trinidad, Peru, Ecuador, Colombia, Chile, Bolivia, Paraguay, Urauguay, and Guyana.

  5. Energy resources in southern Africa: a select bibliography

    SciTech Connect (OSTI)

    Cavan, A.

    1981-01-01

    The aims, progress, and possibilities involved in Southern Africa's energy development are the subject of this 473-item bibliography. The primary items of information described in this document are relatively recent (1975-81), originate from both indigenous and international sources, and are mostly in English, although a few are in French and Portuguese. The presented information focuses on the African continent, the Southern African region, and the nations of Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, Swaziland, South Africa, Tanzania, Zambia, and Zimbabwe. The energy source topics include alcohol, coal, gas, oil, solar, uranium, water, wind, and wood; as well as a general energy-development category.

  6. Solar radiation on variously oriented sloping surfaces

    SciTech Connect (OSTI)

    Gopinathan, K.K. )

    1991-01-01

    Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

  7. Employee Spotlight: Laura McClellan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laura McClellan August 23, 2016 Lending a helping hammer Under a soaring blue African sky, Laura McClellan of the Manager of Functions division office (MOF-DO) stood with other Habitat for Humanity volunteers in a line like a bucket brigade, passing along cement blocks to the skilled local masons raising the walls of a new house. When she could spare a moment, Laura would soak up the view of backcountry Lesotho, a nation landlocked by South Africa. Mesas and canyons stretched into the distance

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (RT) (54 Gy locally advanced and 45 Gy postsurgery) and concomitant continuous-infusion 5-fluorouracil (5FU) (200 mgmsup 2d throughout RT). After 4 weeks, patients...

  9. Spinal reirradiation after short-course RT for metastatic spinal cord compression

    SciTech Connect (OSTI)

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Stalpers, Lukas J.A.; Veninga, Theo; Hoskin, Peter J.

    2005-11-01

    Purpose: To investigate the feasibility and effectiveness of reirradiation (re-RT) for in-field recurrence of metastatic spinal cord compression after primary RT with 1 x 8 Gy or 5 x 4 Gy. Methods and Materials: A total of 62 patients, treated with 1 x 8 Gy (n = 34) or 5 x 4 Gy (n = 28) between January 1995 and August 2003, received re-RT for in-field recurrence of metastatic spinal cord compression. The median time to recurrence was 6 months (range, 2-40 months). Re-RT was performed with 1 x 8 Gy (after 1 x 8 Gy or 5 x 4 Gy, n = 34), 5 x 3 Gy (after 1 x 8 Gy or 5 x 4 Gy, n = 15), or 5 x 4 Gy (after 1 x 8 Gy, n = 13). The cumulative biologically effective dose (primary RT plus re-RT) was 80-100 Gy{sub 2}. The median follow-up after re-RT was 8 months (range, 2-42 months). Motor function was evaluated up to 6 months after re-RT. Results: After re-RT, 25 patients (40%) showed improvement of motor function, 28 (45%) had no change, and 9 (15%) had deterioration. Of the 16 previously nonambulatory patients, 6 (38%) regained the ability to walk. No second in-field recurrence in the same spinal region was observed after re-RT. The outcome was not significantly influenced by the radiation schedule. Radiation myelopathy was not observed. Conclusions: Spinal re-RT with 1 x 8 Gy, 5 x 3 Gy, or 5 x 4 Gy for in-field recurrence of metastatic spinal cord compression appears safe and effective. Myelopathy seems unlikely, if the cumulative biologically effective dose is {<=}100 Gy{sub 2}.

  10. Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Rainwater, L. J.; Havens, W. W. Jr.

    1945-02-28

    A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

  11. A Phase II Study of High-Dose-Rate Afterloading Brachytherapy as Monotherapy for the Treatment of Localized Prostate Cancer

    SciTech Connect (OSTI)

    Corner, Carie Rojas, Ana Maria; Bryant, Linda; Ostler, Peter; Hoskin, Peter

    2008-10-01

    Purpose: A Phase II dose escalation study has been undertaken to evaluate high-dose-rate brachytherapy (HDRBT) monotherapy for prostate cancer. Methods and Materials: A total of 110 patients have been entered, all with locally advanced cancer. Three dose levels have been used; 34 Gy in four fractions, 36 Gy in four fractions, and 31.5 Gy in three fractions. These equate to 226Gy{sub 1.5}, 252Gy{sub 1.5}, and 252Gy{sub 1.5}, respectively. Thirty patients have received 34 Gy, 25 received 36 Gy, and 55 patients received 31.5 Gy. Acute and late toxicity was analyzed using the International Prostate Symptom Score, and urologic and rectal events were scored using the Radiation Therapy Oncology Group/Common Terminology Criteria scoring systems. Results: Seven patients required urethral catheterization at 2 weeks; 3 receiving 34 Gy, 1 receiving 36 Gy, and 3 receiving 31.5 Gy. Only 3 patients remained catheterized at 12 weeks. Radiation Therapy Oncology Group 1 and 2 gastrointestinal toxicity at 2 weeks was seen in 61%, 68%, and 77%, respectively. Grade 3 bladder toxicity was seen in 2 patients at 6 months, 1 each from the 36 Gy and 31.5 Gy arms. One patient from the 31.5-Gy cohort reported Grade 2 bowel toxicity at 6 months. Prostate-specific antigen (PSA), stratified for androgen deprivation therapy (ADT) and no-ADT patients ranged from 16.1-22.9 {mu}g/L and 11.1-12.5 {mu}g/L, respectively. This fell at 12 months to 0.2-0.6 {mu}g/L and 0.5-1.4 {mu}g/L, respectively. No PSA relapses have yet been seen with a median follow-up of 30 months (34 Gy), 18 months (36 Gy), and 11.8 months (31.5 Gy). Conclusions: Early results suggest an excellent biochemical response with no differences seen in acute and late toxicity between doses of 34 Gy/four fractions, 36 Gy/four fractions, or 31.5 Gy/three fractions.

  12. Economic viability of photovoltaic power for development assistance applications

    SciTech Connect (OSTI)

    Bifano, W.J.

    1982-09-01

    This paper briefly discusses the development assistance market and examines a number of specific PV development assistance field tests including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  13. Southern Colombia's Putumayo basin deserves renewed attention

    SciTech Connect (OSTI)

    Matthews, A.J. ); Portilla, O. )

    1994-05-23

    The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

  14. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect (OSTI)

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  15. Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs

    SciTech Connect (OSTI)

    Sathaye, Jayant; Andrasko, Ken; Chan, Peter

    2011-04-11

    Greenhouse gas emissions from the forestry sector are estimated to be 8.4 GtCO2-eq./year or about 17percent of the global emissions. We estimate that the cost forreducing deforestation is low in Africa and several times higher in Latin America and Southeast Asia. These cost estimates are sensitive to the uncertainties of how muchunsustainable high-revenue logging occurs, little understood transaction and program implementation costs, and barriers to implementation including governance issues. Due to lack of capacity in the affected countries, achieving reduction or avoidance of carbon emissions will require extensive REDD-plus programs. Preliminary REDD-plus Readiness cost estimates and program descriptions for Indonesia, Democratic Republic of the Congo, Ghana, Guyana and Mexico show that roughly one-third of potential REDD-plus mitigation benefits might come from avoided deforestation and the rest from avoided forest degradation and other REDD-plus activities.

  16. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect (OSTI)

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K [University of Science and Technology, Daejeon (Korea, Republic of); Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Choi, S; Park, S; Yoo, H [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yi, C [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ?780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  17. IRAS sources associated with nebulosities resembling Herbig-Haro objects

    SciTech Connect (OSTI)

    Persi, P.; Ferrari-Toniolo, M.; Busso, M.; Robberto, M.; Scaltriti, F.

    1988-04-01

    The IRAS Survey has been used to search 22 nebulosities resembling Herbig-Haro objects for evidence of newly forming stars. Half the peculiar nebulae are found to have associated IRAS sources. From a study of the energy distributions, obtained from JHKL photometry and IRAS flux densities, the physical characteristics of the sources have been derived. The IRAS sources 04073 + 3800(GY 10), 05173-0555(GY 14), and 05439 + 3035(GY 18) have been identified as possible low-mass protostars, while the sources 03134 + 5958(GY 5) and 21004 + 7811(GY 21) are T Tauri stars with nebular disks and surrounding dust envelopes of residual infall. Finally, the IRAS source 04591-0856, associated with the nebula GY 13, could be in an evolutionary stage intermediate between a protostar in the pure infall phase and that of an obscured T Tauri. 26 references.

  18. Shanghai, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Linde LienHwa LLH RenGyS Renaissance Carbon Investment Ltd SNERDI Shanghai Nuclear Engineering Research and Design Institute Shanghai TL Chemical Company References...

  19. Shikun Binui Arison Group | Open Energy Information

    Open Energy Info (EERE)

    Ramat Gan, Israel Zip: 55215 Product: String representation "Shikun & Binui ... gy and ecology." is too long. References: Shikun & Binui Arison Group1 This article is a stub. You...

  20. Waste-to-Energy and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cell Products Currently on the Market are Configured to Operate on Natural Gas UTC Power, Inc. ... commercial technology. gy * Integration of stationary fuel cells ...

  1. Guernsey Renewable Energy Commission GREC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Commission GREC Jump to: navigation, search Name: Guernsey Renewable Energy Commission (GREC) Place: St. Martin, Guernsey, Channel Islands, United Kingdom Zip: GY1...

  2. Alderney Renewable Energy ARE | Open Energy Information

    Open Energy Info (EERE)

    Alderney Renewable Energy ARE Jump to: navigation, search Name: Alderney Renewable Energy (ARE) Place: Alderney, Channel Islands, United Kingdom Zip: GY9 3XY Product: AREl develops...

  3. Washington, DC.20585

    Office of Legacy Management (LM)

    Department of ,En&gy Washington, DC.20585 , ' . The Honorable Thomas, Murphy : ,, 414 Grant.Street Pittsburgh, Pennsylvania 15219 Dear Rayor Murphy:. Secretary of Energy ...

  4. OF THE ADMINISTRATOR OF THE BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public-owned distribution agencies, Government agencies and private utility enterprises. The ene1gy of the two great dams on the Columbia river-Grand Coulee and...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gy-electricity-consumption-and-efficiency Download Alternative Energy Sources- An Interdisciplinary Module for Energy Education Find activities focused on renewable energy sources...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gy-electricity-consumption-and-efficiency Current search Search found 1 item Water Remove Water filter Bioenergy Remove Bioenergy filter Filter by Resource Type All Results (1)...

  7. SU-D-BRB-06: Treating Glioblastoma Multiforme (GBM) as a Chronic...

    Office of Scientific and Technical Information (OSTI)

    7, while maintaining normal tissue biological effective dose (BED) of 100Gy resulted ... to the entire tumor or CSC targeted killing is needed to achieve total tumor control. ...

  8. U.S. Department of Energy Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... goals of: * reducing petroleum use * reducing greenhouse gas emissions, and air pollution * developing g a more diverse and efficient energy gy infrastructure * creating ...

  9. Fractionated External Beam Radiotherapy as a Suitable Preparative Regimen for Hepatocyte Transplantation After Partial Hepatectomy

    SciTech Connect (OSTI)

    Krause, Petra; Wolff, Hendrik A.; Rave-Frank, Margret; Schmidberger, Heinz; Becker, Heinz; Hess, Clemens Friedrich; Christiansen, Hans; Koenig, Sarah

    2011-07-15

    Purpose: Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. Methods and Material: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 x 5 Gy or 5 x 2 Gy. Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV{sup +}) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. Results: Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 x 25 Gy and 5 x 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 x 25 Gy, fractionation with 5 x 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 x 5 Gy, 1 x 8 Gy, and 5 x 2 Gy were significantly less effective with p < 0.05. Conclusion: This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte transplantation

  10. SU-E-T-489: Plan Comparisons of Re-Irradiation Treatment of Three Intensity Modulated Techniques

    SciTech Connect (OSTI)

    Lian, J; Tang, X; Liu, R

    2014-06-01

    Purpose: There have been controversial reports on the comparison of dosimetric quality of TomoTherapy (Tomo), VMAT and IMRT. One of the main reasons is the sampled cases are often not dosimetrically challenging enough to test the limit of optimization/delivery modalities. We chose difficult re-irradiation cases when certain organ at risk (OAR) requires extremely low dose to examine the ability of OAR sparing of three main intensity modulated techniques. Methods: Three previous treated patients with disease site on head and neck (HN), brain and lung are planned for reirradiation treatment. The Tomo planning used jaw 2.5cm and pitch 0.3. VMAT and IMRT were planned on Pinnacle for a Varian 21iX Linac with MLC leaf width 5mm. VMAT plan used 2 Arcs and IMRT plan had beams 11–13. The dosimetric endpoints and treatment time were compared for each technique of each patient. Results: Plans of three techniques cover PTV similarly. The HN case requires PTV dose 60Gy but to limit dose of cord which is 8mm away <12Gy. The cord dose of Tomo, VMAT and IMRT plan is 11.6Gy, 11.3Gy and 11.0Gy, respectively. The brain case has PTV prescription 50.4 Gy while requiring the dose of brainstem < 28Gy. Tomo, VMAT and IMRT plan generate brainstem dose 27.6Gy, 27.6Gy and 27.1Gy respectively. For the lung case, PTV was prescribed 42.5Gy but cord dose constraint was 22.5Gy. The cord dose is optimized to 22.3Gy, 20.8Gy and 21.4Gy by Tomo, VMAT and IMRT, respectively. The delivery time if normalized to Tomo is 47.0%/145.6% (VMAT/IMRT), 33.3%/106.3% and 74.1%/245.4% for HN, brain and lung case, respectively. Conclusion: Difficult re-irradiation cases were used to test the limit of three intensity modulated techniques. Tomo, VMAT and IMRT show similar dosimetry while VMAT is the most efficient one and IMRT is the least.

  11. SU-F-BRF-07: Impact of Different Patient Setup Strategies in Adaptive Radiation Therapy with Simultaneous Integrated Volume-Adapted Boost of NSCLC

    SciTech Connect (OSTI)

    Balik, S; Weiss, E; Sleeman, W; Wu, Y; Hugo, G; Dogan, N; Fatyga, M

    2014-06-15

    Purpose: To evaluate the potential impact of several setup error correction strategies on a proposed image-guided adaptive radiotherapy strategy for locally advanced lung cancer. Methods: Daily 4D cone-beam CT and weekly 4D fan-beam CT images were acquired from 9 lung cancer patients undergoing concurrent chemoradiation therapy. Initial planning CT was deformably registered to daily CBCT images to generate synthetic treatment courses. An adaptive radiation therapy course was simulated using the weekly CT images with replanning twice and a hypofractionated, simultaneous integrated boost to a total dose of 66 Gy to the original PTV and either a 66 Gy (no boost) or 82 Gy (boost) dose to the boost PTV (ITV + 3mm) in 33 fractions with IMRT or VMAT. Lymph nodes (LN) were not boosted (prescribed to 66 Gy in both plans). Synthetic images were rigidly, bony (BN) or tumor and carina (TC), registered to the corresponding plan CT, dose was computed on these from adaptive replans (PLAN) and deformably accumulated back to the original planning CT. Cumulative D98% of CTV of PT (ITV for 82Gy) and LN, and normal tissue dose changes were analyzed. Results: Two patients were removed from the study due to large registration errors. For the remaining 7 patients, D98% for CTV-PT (ITV-PT for 82 Gy) and CTV-LN was within 1 Gy of PLAN for both 66 Gy and 82 Gy plans with both setup techniques. Overall, TC based setup provided better results, especially for LN coverage (p = 0.1 for 66Gy plan and p = 0.2 for 82 Gy plan, comparison of BN and TC), though not significant. Normal tissue dose constraints violated for some patients if constraint was barely achieved in PLAN. Conclusion: The hypofractionated adaptive strategy appears to be deliverable with soft tissue alignment for the evaluated margins and planning parameters. Research was supported by NIH P01CA116602.

  12. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    SciTech Connect (OSTI)

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.

  13. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    SciTech Connect (OSTI)

    Prokic, Vesna; Wiedenmann, Nicole; Fels, Franziska; Schmucker, Marianne; Nieder, Carsten; Grosu, Anca-Ligia

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.

  14. Integration of Functional MRI and White Matter Tractography in Stereotactic Radiosurgery Clinical Practice

    SciTech Connect (OSTI)

    Pantelis, Evaggelos; Papadakis, Nikolaos; Verigos, Kosmas; Stathochristopoulou, Irene; Antypas, Christos; Lekas, Leonidas; Tzouras, Argyrios; Georgiou, Evangelos; Salvaras, Nikolaos

    2010-09-01

    Purpose: To study the efficacy of the integration of functional magnetic resonance imaging (fMRI) and diffusion tensor imaging tractography data into stereotactic radiosurgery clinical practice. Methods and Materials: fMRI and tractography data sets were acquired and fused with corresponding anatomical MR and computed tomography images of patients with arteriovenous malformation (AVM), astrocytoma, brain metastasis, or hemangioma and referred for stereotactic radiosurgery. The acquired data sets were imported into a CyberKnife stereotactic radiosurgery system and used to delineate the target, organs at risk, and nearby functional structures and fiber tracts. Treatment plans with and without the incorporation of the functional structures and the fiber tracts into the optimization process were developed and compared. Results: The nearby functional structures and fiber tracts could receive doses of >50% of the maximum dose if they were excluded from the planning process. In the AVM case, the doses received by the Broadmann-17 structure and the optic tract were reduced to 700 cGy from 1,400 cGy and to 1,200 cGy from 2,000 cGy, respectively, upon inclusion into the optimization process. In the metastasis case, the motor cortex received 850 cGy instead of 1,400 cGy; and in the hemangioma case, the pyramidal tracts received 780 cGy instead of 990 cGy. In the astrocytoma case, the dose to the motor cortex bordering the lesion was reduced to 1,900 cGy from 2,100 cGy, and therefore, the biologically equivalent dose in three fractions was delivered instead. Conclusions: Functional structures and fiber tracts could receive high doses if they were not considered during treatment planning. With the aid of fMRI and tractography images, they can be delineated and spared.

  15. Tolerance of the Spinal Cord to Stereotactic Radiosurgery: Insights From Hemangioblastomas

    SciTech Connect (OSTI)

    Daly, Megan E.; Choi, Clara Y.H.; Gibbs, Iris C.; Adler, John R.; Chang, Steven D.; Lieberson, Robert E.; Soltys, Scott G.

    2011-05-01

    Purpose: To evaluate spinal cord dose-volume effects, we present a retrospective review of stereotactic radiosurgery (SRS) treatments for spinal cord hemangioblastomas. Methods and Materials: From November 2001 to July 2008, 27 spinal hemangioblastomas were treated in 19 patients with SRS. Seventeen tumors received a single fraction with a median dose of 20 Gy (range, 18-30 Gy). Ten lesions were treated using 18-25 Gy in two to three sessions. Cord volumes receiving 8, 10, 12, 14, 16, 18, 20, 22, and 24 Gy and dose to 10, 100, 250, 500, 1000, and 2000 mm{sup 3} of cord were determined. Multisession treatments were converted to single-fraction biologically effective dose (SFBED). Results: Single-fraction median cord D{sub max} was 22.7 Gy (range, 17.8-30.9 Gy). Median V10 was 454 mm{sup 3} (range, 226-3543 mm{sup 3}). Median dose to 500 mm{sup 3} cord was 9.5 Gy (range, 5.3-22.5 Gy). Fractionated median SFBED{sub 3} cord D{sub max} was 14.1 Gy{sub 3} (range, 12.3-19.4 Gy{sub 3}). Potential toxicities included a Grade 2 unilateral foot drop 5 months after SRS and 2 cases of Grade 1 sensory deficits. The actuarial 3-year local tumor control estimate was 86%. Conclusions: Despite exceeding commonly cited spinal cord dose constraints, SRS for spinal hemangioblastomas is safe and effective. Consistent with animal experiments, these data support a partial-volume tolerance model for the human spinal cord. Because irradiated cord volumes were generally small, application of these data to other clinical scenarios should be made cautiously. Further prospective studies of spinal radiosurgery are needed.

  16. Shorter-Course Whole-Brain Radiotherapy for Brain Metastases in Elderly Patients

    SciTech Connect (OSTI)

    Rades, Dirk; Evers, Jasmin N.; Veninga, Theo; Stalpers, Lukas J.A.; Lohynska, Radka; Schild, Steven E.

    2011-11-15

    Purpose: Many patients with brain metastases receive whole-brain radiotherapy (WBRT) alone. Using 10 Multiplication-Sign 3 Gy in 2 weeks is the standard regimen in most centers. Regarding the extraordinarily poor survival prognosis of elderly patients with multiple brain metastases, a shorter WBRT regimen would be preferable. This study compared 10 Multiplication-Sign 3 Gy with 5 Multiplication-Sign 4 Gy in elderly patients ({>=}65 years). Methods and Materials: Data from 455 elderly patients who received WBRT alone for brain metastases were retrospectively analyzed. Survival and local (= intracerebral) control of 293 patients receiving 10 Multiplication-Sign 3 Gy were compared with 162 patients receiving 5 Multiplication-Sign 4 Gy. Eight additional potential prognostic factors were investigated including age, gender, Karnofsky performance score (KPS), primary tumor, number of brain metastases, interval from tumor diagnosis to WBRT, extracerebral metastases, and recursive partitioning analysis (RPA) class. Results: The 6-month overall survival rates were 29% after 5 Multiplication-Sign 4 Gy and 21% after 10 Multiplication-Sign 3 Gy (p = 0.020). The 6-month local control rates were 12% and 10%, respectively (p = 0.32). On multivariate analysis, improved overall survival was associated with KPS {>=} 70 (p < 0.001), only one to three brain metastases (p = 0.029), no extracerebral metastasis (p = 0.012), and lower RPA class (p < 0.001). Improved local control was associated with KPS {>=} 70 (p < 0.001), breast cancer (p = 0.029), and lower RPA class (p < 0.001). Conclusions: Shorter-course WBRT with 5 Multiplication-Sign 4 Gy was not inferior to 10 Multiplication-Sign 3 Gy with respect to overall survival or local control in elderly patients. 5 Multiplication-Sign 4 Gy appears preferable for the majority of these patients.

  17. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi; Boreham, Douglas R.

    2014-05-28

    There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modification of cancermore » risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less

  18. SU-E-T-322: The Evaluation of the Gafchromic EBT3 Film in Low Dose 6 MV X-Ray Beams with Different Scanning Modes

    SciTech Connect (OSTI)

    Lee, H; Sung, J; Yoon, M; Kim, D; Chung, W

    2014-06-01

    Purpose: We have evaluated the response of the Gafchromic EBT3 film in low dose for 6 MV x-ray beams with two scanning modes, the reflection scanning mode and the transmission scanning mode. Methods: We irradiated the Gafcromic EBT3 film using a 60 degree enhanced dynamic wedge (EDW) with 6 MV x-ray beams from Clinac iX Linear accelerator (Varian Medical Systems, Palo Alto, CA). The irradiated Gafchromic EBT3 film was scanned with different scanning modes, the reflection scanning mode and the transmission scanning mode. The scanned Gafchromic EBT3 film was analyzed with MATLAB. Results: When 7.2 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was 0.54 cGy with reflection scanning mode and was 0.88 cGy with transmission scanning mode. When 24 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was similar to the case of 7.2 cGy irradiation showing 0.51 cGy of uncertainty with reflection scanning mode and 0.87 cGy of uncertainty with transmission scanning mode. The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation. Conclusion: The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation.

  19. Electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons

    SciTech Connect (OSTI)

    Ding, Heyu; Huang, Yuanhe; Bai, Hongcun

    2015-07-15

    Structures, stabilities, electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons (GyNRs) with armchair and zigzag edges are investigated using the self-consistent field crystal orbital method based on density functional theory. It is found that the 1D GyNRs are more stable than the 2D 6,6,12-graphyne sheet in the view of the Gibbs free energy. The stabilities of these GyNRs decrease as their widths increase. The calculated band structures show that all these GyNRs are semiconductors and that dependence of band gaps on the ribbon width is different from different types of the GyNRs. The carrier mobility was calculated based on the deformation theory and effective mass approach. It is found that the carrier mobilities of these GyNRs can reach the order of 10{sup 5} cm{sup 2} V {sup –1}s{sup –1} at room temperature and are comparable to those of graphene NRs. Moreover, change of the mobilities with change of the ribbon width is quite different from different types of the GyNRs.

  20. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect (OSTI)

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  1. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect (OSTI)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  2. Phase II Study of High-Dose Photon/Proton Radiotherapy in the Management of Spine Sarcomas

    SciTech Connect (OSTI)

    DeLaney, Thomas F. Liebsch, Norbert J.; Pedlow, Francis X.; Adams, Judith; Dean, Susan; Yeap, Beow Y.; McManus, Patricia; Rosenberg, Andrew E.; Nielsen, G. Petur; Harmon, David C.; Spiro, Ira J.; Raskin, Kevin A.; Suit, Herman D.; Yoon, Sam S.; Hornicek, Francis J.

    2009-07-01

    Purpose: Radiotherapy (XRT) for spine sarcomas is constrained by spinal cord, nerve, and viscera tolerance. Negative surgical margins are uncommon; hence, doses of {>=}66 Gy are recommended. A Phase II clinical trial evaluated high-dose photon/proton XRT for spine sarcomas. Methods and Materials: Eligible patients had nonmetastatic, thoracic, lumbar, and/or sacral spine/paraspinal sarcomas. Treatment included pre- and/or postoperative photon/proton XRT with or without radical resection; patients with osteosarcoma and Ewing's sarcoma received chemotherapy. Shrinking fields delivered 50.4 cobalt Gray equivalent (Gy RBE) to subclinical disease, 70.2 Gy RBE to microscopic disease in the tumor bed, and 77.4 Gy RBE to gross disease at 1.8 Gy RBE qd. Doses were reduced for radiosensitive histologies, concurrent chemoradiation, or when diabetes or autoimmune disease present. Spinal cord dose was limited to 63/54 Gy RBE to surface/center. Intraoperative boost doses of 7.5 to 10 Gy could be given by dural plaque. Results: A total of 50 patients (29 chordoma, 14 chondrosarcoma, 7 other) underwent gross total (n = 25) or subtotal (n = 12) resection or biopsy (n = 13). With 48 month median follow-up, 5-year actuarial local control, recurrence-free survival, and overall survival are: 78%, 63%, and 87% respectively. Two of 36 (5.6%) patients treated for primary versus 7/14 (50%) for recurrent tumor developed local recurrence (p < 0.001). Five patients developed late radiation-associated complications; no myelopathy developed but three sacral neuropathies appeared after 77.12 to 77.4 Gy RBE. Conclusions: Local control with this treatment is high in patients radiated at the time of primary presentation. Spinal cord dose constraints appear to be safe. Sacral nerves receiving 77.12-77.4 Gy RBE are at risk for late toxicity.

  3. Stereotactic Radiosurgery for Treatment of Spinal Metastases Recurring in Close Proximity to Previously Irradiated Spinal Cord

    SciTech Connect (OSTI)

    Choi, Clara Y.H.; Adler, John R.; Gibbs, Iris C.; Chang, Steven D.; Jackson, Paul S.; Minn, A. Yuriko; Lieberson, Robert E.; Soltys, Scott G.

    2010-10-01

    Purpose: As the spinal cord tolerance often precludes reirradiation with conventional techniques, local recurrence within a previously irradiated field presents a treatment challenge. Methods and Materials: We retrospectively reviewed 51 lesions in 42 patients treated from 2002 to 2008 whose spinal metastases recurred in a previous radiation field (median previous spinal cord dose of 40 Gy) and were subsequently treated with stereotactic radiosurgery (SRS). Results: SRS was delivered to a median marginal dose of 20 Gy (range, 10-30 Gy) in 1-5 fractions (median, 2), targeting a median tumor volume of 10.3 cm{sup 3} (range, 0.2-128.6 cm{sup 3}). Converting the SRS regimens with the linear quadratic model ({alpha}/{beta} = 3), the median spinal cord maximum single-session equivalent dose (SSED) was 12.1 Gy{sub 3} (range, 4.7-19.3 Gy{sub 3}). With a median follow-up of 7 months (range, 2-47 months), the Kaplan-Meier local control and overall survival rates at 6/12 months were 87%/73% and 81%/68%, respectively. A time to retreatment of {<=}12 months and the combination of time to retreatment of {<=}12 months with an SSED of <15 Gy{sub 10} were significant predictors of local failure on univariate and multivariate analyses. In patients with a retreatment interval of <12 months, 6/12 month local control rates were 88%/58%, with a SSED of >15 Gy{sub 10}, compared to 45%/0% with <15 Gy{sub 10}, respectively. One patient (2%) experienced Grade 4 neurotoxicity. Conclusion: SRS is safe and effective in the treatment of spinal metastases recurring in previously irradiated fields. Tumor recurrence within 12 months may correlate with biologic aggressiveness and require higher SRS doses (SSED >15 Gy{sub 10}). Further research is needed to define the partial volume retreatment tolerance of the spinal cord and the optimal target dose.

  4. Short-course radiotherapy is not optimal for spinal cord compression due to myeloma

    SciTech Connect (OSTI)

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Hoskin, Peter J.; Stalpers, Lukas J.A.; Schulte, Rainer; Poortmans, Philip; Veninga, Theo; Dahm-Daphi, Jochen; Obralic, Nermina; Wildfang, Ingeborg; Bahrehmand, Roja; Engenhart-Cabilic, Rita; Schild, Steven E.

    2006-04-01

    Purpose: To investigate the suitability of short-course radiotherapy (RT) for spinal cord compression (SCC) in myeloma patients. Methods and Materials: Data for 172 myeloma patients irradiated between January 1994 and December 2004 for SCC were retrospectively evaluated. Short-course RT (1 x 8 Gy, 5 x 4 Gy, n = 61) and long-course RT (10 x 3 Gy, 15 x 2.5 Gy, 20 x 2 Gy, n = 111) were compared for functional outcome up to 24 months after RT. In addition, 10 potential prognostic factors were investigated. Results: Improvement of motor function occurred in 90 patients (52%). Forty-seven percent of nonambulatory patients regained the ability to walk. Functional outcome was significantly influenced by the time of developing motor deficits before RT. Improvement of motor function was more frequent after long-course RT than after short-course RT: 59% vs. 39% (p = 0.10) at 1 month, 67% vs. 43% (p 0.043) at 6 months, 76% vs. 40% (p = 0.003) at 12 months, 78% vs. 43% (p 0.07) at 18 months, and 83% v 54% (p = 0.33) at 24 months. A subgroup analysis of the long-course RT group demonstrated a similar functional outcome for 10 x 3 Gy when compared with 15 x 2.5 Gy and 20 x 2 Gy. Conclusions: Long-course RT is preferable for SCC in myeloma patients because it resulted in better functional outcome than short-course RT. Treatment with 10 x 3 Gy can be considered appropriate.

  5. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    SciTech Connect (OSTI)

    Brown, S.; Gaston, G.; Daniels, R.C.

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  6. GAOH Offshore | Open Energy Information

    Open Energy Info (EERE)

    GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

  7. Improved rubber nanofillers (Program Document) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    During this task, Silane functionalized TiO2 and HK3Ti4O4(SiO4)3 were sent to Goodyear (GY) for testing. These materials were characterized based on their interaction with the ...

  8. Improved rubber nanofillers (Program Document) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Improved rubber nanofillers During this task, Silane functionalized TiO2 and HK3Ti4O4(SiO4)3 were sent to Goodyear (GY) for testing. ...

  9. GenDrive Limited | Open Energy Information

    Open Energy Info (EERE)

    GenDrive Limited Jump to: navigation, search Name: GenDrive Limited Place: Cambridge, United Kingdom Zip: CB23 3GY Sector: Renewable Energy, Solar, Wind energy Product: Developing...

  10. Relative Biological Effectiveness of HZE Particles for Chromosomal...

    Office of Scientific and Technical Information (OSTI)

    ... The value of n0 which roughly corresponds to the geometric cross sectional area where ... The a, value for a linear fit was found as 0.0410.0051 Gy-1. Table 3 shows results for ...

  11. UCRL-JC- I250 M. Dreicer, USA; A. Aaricrog, Riso National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    of work sponsored by an agency of the United States Government. ... fertility, growth rate, vigour and mutation rate ... 80-100 Gy' resulting in death of pine trees (so-called ...

  12. Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open...

    Open Energy Info (EERE)

    gyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrNaturalGas"...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gy-electricity-consumption-and-efficiency Current search Search found 1 item Water Remove Water filter Homes Remove Homes filter Filter by Resource Type All Results (1) Lesson Plan...

  14. M'

    Office of Legacy Management (LM)

    ar represented by the UNITED STATES ATOMIC l3l8GY CQ4MISSfON (hereinafter referred ... Control 2. Metallographic Research 3. X-Ray Research 4. &Hhadti Property Te8t8 5. ...

  15. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  16. TO

    Office of Legacy Management (LM)

    t Reactor Materialo Bran&, ieu York DATE: Auguet 28, 1950 PROM 1 Ft. S. Pearson, L&f, Admlnlot.rativi Semioar. Branch, Pittsburgh gy .< SUBJEn: HAlERIAL YlMSFEll CRRYDICAT' B ...

  17. Low dose ionizing radiation detection using conjugated polymers

    SciTech Connect (OSTI)

    Silva, E.A.B.; Borin, J.F.; Nicolucci, P.; Graeff, C.F.O.; Netto, T. Ghilardi; Bianchi, R.F.

    2005-03-28

    In this work, the effect of gamma radiation on the optical properties of poly[2-methoxy-5-(2{sup '}-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is studied. The samples were irradiated at room temperature with different doses from 0 Gy to 152 Gy using a {sup 60}Co gamma ray source. For thin films, significant changes in the UV-visible spectra were only observed at high doses (>1 kGy). In solution, shifts in absorption peaks are observed at low doses (<10 Gy), linearly dependent on dose. The shifts are explained by conjugation reduction, and possible causes are discussed. Our results indicate that MEH-PPV solution can be used as a dosimeter adequate for medical applications.

  18. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect (OSTI)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  19. Phase I Three-Dimensional Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: Radiation Therapy Oncology Group Trial 98-03

    SciTech Connect (OSTI)

    Tsien, Christina Moughan, Jennifer; Michalski, Jeff M.; Gilbert, Mark R.; Purdy, James; Simpson, Joseph; Kresel, John J.; Curran, Walter J.; Diaz, Aidnag; Mehta, Minesh P.

    2009-03-01

    Purpose: To evaluate in a Phase I trial the feasibility and toxicity of dose-escalated three-dimensional conformal radiotherapy (3D-CRT) concurrent with chemotherapy in patients with primary supratentorial glioblastoma (GBM). Methods and Materials: A total of 209 patients were enrolled. All received 46 Gy in 2-Gy fractions to the first planning target volume (PTV{sub 1}), defined as the gross tumor volume (GTV) plus 1.8 cm. A subsequent boost was given to PTV{sub 2}, defined as GTV plus 0.3 cm. Patients were stratified into two groups (Group 1: PTV{sub 2} <75 cm{sup 3}; Group 2: PTV{sub 2} {>=}75 cm{sup 3}). Four RT dose levels were evaluated: 66, 72, 78, and 84 Gy. Carmustine 80 mg/m{sup 2} was given during RT, then every 8 weeks for 6 cycles. Pretreatment characteristics were well balanced. Results: Acute and late Grade 3/4 RT-related toxicities were no more frequent at higher RT dose or with larger tumors. There were no dose-limiting toxicities (acute Grade {>=}3 irreversible central nervous system toxicities) observed on any dose level in either group. On the basis of the absence of dose-limiting toxicities, dose was escalated to 84 Gy in both groups. Late RT necrosis was noted at 66 Gy (1 patient), 72 Gy (2 patients), 78 Gy (2 patients), and 84 Gy (3 patients) in Group 1. In Group 2, late RT necrosis was noted at 78 Gy (1 patient) and 84 Gy (2 patients). Median time to RT necrosis was 8.8 months (range, 5.1-12.5 months). Median survival in Group 1 was 11.6-19.3 months. Median survival in Group 2 was 8.2-13.9 months. Conclusions: Our study shows the feasibility of delivering higher than standard (60 Gy) RT dose with concurrent chemotherapy for primary GBM, with an acceptable risk of late central nervous system toxicity.

  20. Individualized 3D Reconstruction of Normal Tissue Dose for Patients With Long-term Follow-up: A Step Toward Understanding Dose Risk for Late Toxicity

    SciTech Connect (OSTI)

    Ng, Angela; Brock, Kristy K.; Sharpe, Michael B.; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Moseley, Joanne L.; Craig, Tim; Department of Radiation Oncology, University of Toronto, Toronto, Ontario ; Hodgson, David C.

    2012-11-15

    Purpose: Understanding the relationship between normal tissue dose and delayed radiation toxicity is an important component of developing more effective radiation therapy. Late outcome data are generally available only for patients who have undergone 2-dimensional (2D) treatment plans. The purpose of this study was to evaluate the accuracy of 3D normal tissue dosimetry derived from reconstructed 2D treatment plans in Hodgkin's lymphoma (HL) patients. Methods and Materials: Three-dimensional lung, heart, and breast volumes were reconstructed from 2D planning radiographs for HL patients who received mediastinal radiation therapy. For each organ, a reference 3D organ was modified with patient-specific structural information, using deformable image processing software. Radiation therapy plans were reconstructed by applying treatment parameters obtained from patient records to the reconstructed 3D volumes. For each reconstructed organ mean dose (D{sub mean}) and volumes covered by at least 5 Gy (V{sub 5}) and 20Gy (V{sub 20}) were calculated. This process was performed for 15 patients who had both 2D and 3D planning data available to compare the reconstructed normal tissue doses with those derived from the primary CT planning data and also for 10 historically treated patients with only 2D imaging available. Results: For patients with 3D planning data, the normal tissue doses could be reconstructed accurately using 2D planning data. Median differences in D{sub mean} between reconstructed and actual plans were 0.18 Gy (lungs), -0.15 Gy (heart), and 0.30 Gy (breasts). Median difference in V{sub 5} and V{sub 20} were less than 2% for each organ. Reconstructed 3D dosimetry was substantially higher in historical mantle-field treatments than contemporary involved-field mediastinal treatments: average D{sub mean} values were 15.2 Gy vs 10.6 Gy (lungs), 27.0 Gy vs 14.3 Gy (heart), and 8.0 Gy vs 3.2 Gy (breasts). Conclusions: Three-dimensional reconstruction of absorbed dose to

  1. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect (OSTI)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  2. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    SciTech Connect (OSTI)

    Trani, Daniela; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Maastricht Radiation Oncology Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht ; Moon, Bo-Hyun; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia ; Kallakury, Bhaskar; Hartmann, Dan P.; Datta, Kamal; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia ; Fornace, Albert J.

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  3. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect (OSTI)

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  4. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    SciTech Connect (OSTI)

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Barendsen, Gerrit W.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different

  5. Poster — Thur Eve — 64: Preliminary investigation of arc configurations for optimal sparing of normal tissue in hypofractionated stereotactic radiotherapy (HF-SRT) of multiple brain metastases using a 5mm interdigitating micro-multileaf collimator

    SciTech Connect (OSTI)

    Leavens, C; Wronski, M; Lee, YK; Ruschin, M; Soliman, H; Sahgal, A

    2014-08-15

    Purpose: To evaluate normal tissue sparing in intra-cranial HF-SRT, comparing various arc configurations with the Synergy Beam Modulator (SynBM) and Agility linacs, the latter incorporating leaf interdigitation and backup jaws. Methods: Five patients with multiple brain metastases (BMs), (5 BMs (n=2), 3 BMs (n=3)) treated with HF-SRT using 25 Gy (n=2) or 30 Gy (n=3) in 5 fractions, were investigated. Clinical treatment plans used the SynBM. Each patient was retrospectively re-planned on Agility, employing three planning strategies: (A) one isocenter and dedicated arc for each BM; (B) a single isocenter, centrally placed with respect to BMs; (C) the isocenter and arc configuration used in the SynBM plan, where closely spaced (<5cm) BMs used a dedicated isocenter and arcs. Agility plans were normalized for PTV coverage and heterogeneity. Results and Conclusion: Strategy A obtained the greatest improvements over the SynBM plan, where the maximum OAR dose, and mean dose to normal brain (averaged for all patients) were reduced by 55cGy and 25cGy, respectively. Strategy B was limited by having a single isocenter, hence less jaw shielding and increased MLC leakage. The maximum OAR dose was reduced by 13cGy, however mean dose to normal brain increased by 84cGy. Strategy C reduced the maximum OAR dose and mean dose to normal brain by 32cGy and 9cGy, respectively. The results from this study indicate that, for intra-cranial HF-SRT of multiple BMs, Agility plans are equal or better than SynBM plans. Further planning is needed to investigate dose sparing using Strategy A and the SynBM.

  6. Strategic Energy Planning Project: Santa Ynez Chumash Environmental Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TITLE Name of Presenter Str ategic Ener gy Planning Project Santa Ynez Chumash Environmental Office Cher lyn Ser uto J osh Simmons Ener gy Specialist Environmental Director Santa Ynez Band of Chumash Indians November 15, 2011 Step 1: Know Our Energy Use Casino Hotel Residences Tribal Hall and Health Clinic Employee Resource Center Restauraunt Gas Station Step 2: Envision our Energy Future Step 3: Assess our Options * Whole Building Energy Management Ø PG&E Integrated Energy Audit Ø Gas

  7. SU-E-T-371: Validation of Organ Doses Delivered During Craniospinal Irradiation with Helical Tomotherapy

    SciTech Connect (OSTI)

    Perez-Andujar, A; Chen, J; Garcia, A; Haas-Kogan, D

    2014-06-01

    Purpose: New techniques have been developed to deliver more conformal treatments to the craniospinal axis. One concern, however, is the widespread low dose delivered and implications for possible late effects. The purpose of this work is for the first time to validate the organ doses calculated by the treatment planning system (TPS), including out-of-field doses for a pediatric craniospinal treatment (CSI). Methods: A CSI plan prescribed to 23.4 Gy and a posterior fossa boost plan to 30.6 Gy (total dose 54.0 Gy) was developed for a pediatric anthropomorphic phantom representing a 13 yearold- child. For the CSI plan, the planning target volumes (PTV) consisted of the brain and spinal cord with 2 mm and 5 mm expansions, respectively. Organs at risk (OAR) were contoured and included in the plan optimization. The plans were delivered on a helical tomotherapy unit. Thermoluminescent dosimeters (TLDs) were used to measure the dose at 54 positions within the PTV and OARs. Results: For the CSI treatment, the mean percent difference between TPS dose calculations and measurements was 5% for the PTV and 10% for the OARs. For the boost, the average was 3% for the PTV. The percent difference for the OARs, which lie outside the field and received a small fraction of the prescription dose, varied from 15% to 200%. However in terms of absolute dose, the average difference between measurement and TPS per treatment Gy was 2 cGy/Gy and 3 mGy/Gy for the CSI and boost plans, respectively. Conclusion: There was good agreement between doses calculated by the TPS and measurements for the CSI treatment. Higher percent differences were observed for out-of-field doses in the boost plan, but absolute dose differences were very small compared to the prescription dose. These findings can help in the estimation of late effects after radiotherapy for pediatric patients.

  8. Microsoft PowerPoint - MartynJamesRTC-Revised DoETWG_082511.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Southern Nevada Transportation Projects in Southern Nevada U.S. Department of Energy U.S. Department of Energy p gy p gy Transportation Working Group Transportation Working Group August 25, 2011 August 25, 2011 August 25, 2011 August 25, 2011 Transportation Projects in Southern Nevada Transportation Projects in Southern Nevada RTC Responsibilities RTC Responsibilities * * Regional Regional transportation transportation planning planning * * Program Program projects projects for for

  9. Predicting age of ovarian failure after radiation to a field that includes the ovaries

    SciTech Connect (OSTI)

    Wallace, W. Hamish B. . E-mail: Hamish.Wallace@ed.ac.uk; Thomson, Angela B.; Saran, Frank; Kelsey, Tom W.

    2005-07-01

    Purpose: To predict the age at which ovarian failure is likely to develop after radiation to a field that includes the ovary in women treated for cancer. Methods and Materials: Modern computed tomography radiotherapy planning allows determination of the effective dose of radiation received by the ovaries. Together with our recent assessment of the radiosensitivity of the human oocyte, the effective surviving fraction of primordial oocytes can be determined and the age of ovarian failure, with 95% confidence limits, predicted for any given dose of radiotherapy. Results: The effective sterilizing dose (ESD: dose of fractionated radiotherapy [Gy] at which premature ovarian failure occurs immediately after treatment in 97.5% of patients) decreases with increasing age at treatment. ESD at birth is 20.3 Gy; at 10 years 18.4 Gy, at 20 years 16.5 Gy, and at 30 years 14.3 Gy. We have calculated 95% confidence limits for age at premature ovarian failure for estimated radiation doses to the ovary from 1 Gy to the ESD from birth to 50 years. Conclusions: We report the first model to reliably predict the age of ovarian failure after treatment with a known dose of radiotherapy. Clinical application of this model will enable physicians to counsel women on their reproductive potential following successful treatment.

  10. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; Wang, Angela; Limoli, Charles L.; Globus, Ruth K.

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evidentmore » at longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  11. SU-D-18A-04: Quantifying the Ability of Tumor Tracking to Spare Normal Tissue

    SciTech Connect (OSTI)

    Burger, A; Buzurovic, I; Hurwitz, M; Williams, C; Lewis, J; Mishra, P; Seco, J

    2014-06-01

    Purpose: Tumor tracking allows for smaller tissue volumes to be treated, potentially reducing normal tissue damage. However, tumor tracking is a more complex treatment and has little benefit in some scenarios. Here we quantify the benefit of tumor tracking for a range of patients by estimating the dose of radiation to organs at risk and the normal tissue complication probability (NTCP) for both standard and tracking treatment plans. This comparison is performed using both patient 4DCT data and extended Cardiac-Torso (XCAT) digital phantoms. Methods: We use 4DCT data for 10 patients. Additionally, we generate digital phantoms with motion derived from measured patient long tumor trajectories to compare standard and tracking treatment plans. The standard treatment is based on the average intensity projection (AIP) of 4DCT images taken over a breath cycle. The tracking treatment is based on doses calculated on images representing the anatomy at each time point. It is assumed that there are no errors in tracking the target. The NTCP values are calculated based on RTOG guidelines. Results: The mean reduction in the mean dose delivered was 5.5% to the lungs (from 7.3 Gy to 6.9 Gy) and 4.0% to the heart (from 12.5 Gy to 12.0 Gy). The mean reduction in the max dose delivered was 13% to the spinal cord (from 27.6 Gy to 24.0 Gy), 2.5% to the carina (from 31.7 Gy to 30.9 Gy), and 15% to the esophagus (from 69.6 Gy to 58.9 Gy). The mean reduction in the probability of 2nd degree radiation pneumonitis (RP) was 8.7% (3.1% to 2.8%) and the mean reduction in the effective volume was 6.8% (10.8% to 10.2%). Conclusions: Tumor tracking has the potential to reduce irradiation of organs at risk, and consequentially reduce the normal tissue complication probability. The benefits vary based on the clinical scenario. This study is supported by Varian Medical Systems, Inc.

  12. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    SciTech Connect (OSTI)

    Ono, T; Araki, F

    2014-06-01

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.

  13. Kilovoltage cone-beam CT imaging dose during breast radiotherapy: A dose comparison between a left and right breast setup

    SciTech Connect (OSTI)

    Quinn, Alexandra; Holloway, Lois; Begg, Jarrad; Nelson, Vinod; Metcalfe, Peter

    2014-07-01

    The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270 arc rotation clockwise 0 to 270 for the left breast setup and 270 to 180 for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast?s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.

  14. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect (OSTI)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  15. SU-E-I-49: The Evaluation of Usability of Multileaf Collimator for Diagnostic Radiation in Cephalometric Exposure

    SciTech Connect (OSTI)

    Han, S; Kim, K; Jung, H; Kim, M; Ji, Y; Park, S; Choi, S

    2014-06-01

    Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280 ?780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 Count, R2 =0.997). The range of angular dependence was from ?3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 ?Gy, 337.0 ?Gy, 323.1?Gy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3?Gy), 12.4 %(42 ?Gy), 87.1%(281.4?Gy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.

  16. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    SciTech Connect (OSTI)

    Song, Chang W.; Lee, Yoon-Jin; Griffin, Robert J.; Park, Inhwan; Koonce, Nathan A.; Hui, Susanta; Kim, Mi-Sook; Dusenbery, Kathryn E.; Sperduto, Paul W.; Cho, L. Chinsoo

    2015-09-01

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 days and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.

  17. Cervical brachytherapy utilizing ring applicator: Comparison of standard and conformal loading

    SciTech Connect (OSTI)

    Brooks, Susan; Bownes, Peter; Lowe, Gerry; Bryant, Lynda; Hoskin, Peter J. . E-mail: peterhoskin@nhs.net

    2005-11-01

    Purpose: Afterloading high-dose-rate brachytherapy (HDR) treatment of cervical cancer with cross-sectional imaging and three-dimensional (3D) reconstruction offers opportunities for individualized conformal treatment planning rather than fixed point-A dosimetry. Methods and Materials: Between June 2003 and September 2004, 15 patients with FIGO Stage 1B-4A cervical carcinoma, median age 56 years, were treated with radical external-beam radiotherapy to pelvis, including paraortic nodes if positive on staging investigations. Fourteen patients received concurrent cisplatin chemotherapy. All patients received HDR brachytherapy administered by intrauterine tube and ring applicator. Clinical target volume (CTV) and organs at risk (OAR)-rectum, bladder, and small bowel-were outlined from postinsertion CT planning scans. Planning target volume (PTV) was derived by use of 2-mm to 3-mm 3D expansion. A standard plan was produced that delivered 6 Gy to point A, and a second plan delivered 6 Gy to PTV. Constraints were defined for the OAR: bladder, 6 Gy; rectum, 5 Gy; and small bowel, 5 Gy. Dosimetric comparison was performed by use of the Baltas conformal index (COIN). Results: Mean COIN values were 0.39 for conformal plans and 0.33 for standard plans (p = 0.001); mean D95 values were 4.79 Gy and 4.50 Gy, respectively. Conclusion: The majority of patients achieved a plan closer to ideal for coverage of PTV, with minimization of radiation received by normal tissues for conformal loading measured by COIN compared with fixed point-A prescription that used the cervical ring applicator.

  18. Exploration for stratigraphic traps in a foreland basin using a sequence stratigraphic simulation: Examples from the Eocene/Oligocene of the Apure-Llanos basin, Venezuela

    SciTech Connect (OSTI)

    Reistroffer, J.; Levine, P.A.; Kendall, C.G.; Finno, A.

    1996-12-31

    Foreland basin depositional sequences provide a sensitive record of the interaction between tectonism, eustatic sea level fluctuations, and sedimentation rates. Interplay between these controlling factors creates sedimentary geometries which are unique to this tectonic setting and form excellent stratigraphic hydrocarbon traps. Incised valley fill deposits, {open_quote}forced regression{close_quote} deposits, and combination structure-stratigraphic traps are the predominant reservoir types. In an effort to extend our understanding of the development of these traps, the sequence stratigraphy of a regional seismic transact through the Apure-Llanos basin was simulated. From the Late Eocene through Oligocene, the Apure-Llanos basin was Characterized by multiple phases of compression and a southeast migrating depocenter. Sands of the Mirador and Carbonera formations, which onlap the Arauca Arch to the southeast, were shed from the Guyana craton and were Cannibalized from sediments along the deformation front to the northwest. These sands comprise the principal reservoirs in the study area. Shales of the Leon Formation, which act as a regional seal, were deposited during rapid flexural subsidence and eustatic sea level rise during the early Oligocene. The Arauca Arch acted as a focal mechanism for east and southeast migrating hydrocarbons. Simulation results predict an important stratigraphic pinchout of the Mirador Formation sands against the Arauca Arch, which correlates with the Arauca Reid in Colombia to the southwest. Also, modeling indicates that minimal Tertiary oil production In the La Victoria Field to the east is due to the lack of an adequate seal. Our results provide a conceptual model which predicts hydrocarbon reservoir and seal relationships in a foreland basin setting with limited data control.

  19. Mesozoic and cenozoic tectonic evolution of the Maranon Basin in Southeastern Columbia, Eastern Ecuador and Northeastern Peru

    SciTech Connect (OSTI)

    Aleman, A.M.; Marksteiner, M. )

    1993-02-01

    The Late Triassic to Early Jurassic in the Maranon was characterized by tectonic quiescence and carbonate shelf deposition. During Middle to Late Jurassic, a northeast-southwest extensional event occurred which is documented by the presence of northwest oriented grabens filled with red beds and volcaniclastic rocks. Cretaceous deposition commenced during the Aptian and continued to the Early Campanian within the vast South America Cretaceous Seaway (SACS) that extended from Venezuela to Central Peru. These strata comprised of shallow marine clastics sources from the Brazilian and Guyana cratons to the east. Retreat of the SACS resulted from the Late Cretaceous (Peruvian) phase of the Andean Orogeny. Deposition became largely continental with sediments derived from the west. The deformation was comtemporaneous with oblique collision and accretion of an allochthonous terrain present in Colombia and Ecuador, as well as uplift of the Putumayo, Napo, Cutucu and Cenepa (PNCC) Mountains, westward erosion of the Napo/Chonta Formations, widespread deposition of red beds, volcanic activity in the foreland and the subtle inversion of half grabens. The Middle Eocene (Inca) phase of the Andean Orogeny, correlated to a relative increase in convergence rates along the western margin of South America (SA). This orogeny was characterized by the development of folds and reverse faults within a narrow and elongated belt, the reactivation of the PNCC Uplifts, the deposition of varicolored fluviatile deposits, the renewed inversion of half grabens, and volcanic activity close to the hinterland. The three main pulses of the Late Miocene to Pliocene phase of the Andean Orogeny correlate with high rates of convergence along the SA margin. This orogenic phase was characterized by thick fluviatile deposition, reactivation of the PNCC uplifts, eastward propagation of the fold and thrust belt, renewed inversion of the half grabens and alkaline volcanism in the foreland.

  20. Is Intermediate Radiation Dose Escalation With Concurrent Chemotherapy for Stage III Non–Small-Cell Lung Cancer Beneficial? A Multi-Institutional Propensity Score Matched Analysis

    SciTech Connect (OSTI)

    Rodrigues, George; Oberije, Cary; Senan, Suresh; Tsujino, Kayoko; Wiersma, Terry; Moreno-Jimenez, Marta; Kim, Tae Hyun; Marks, Lawrence B.; Rengan, Ramesh; De Petris, Luigi; Ramella, Sara; DeRuyck, Kim; De Dios, Núria Rodriguez; Warner, Andrew; Bradley, Jeffrey D.; Palma, David A.

    2015-01-01

    Purpose: The clinical benefits and risks of dose escalation (DE) for stage III non–small-cell lung cancer (NSCLC) remain uncertain despite the results from Radiation Therapy Oncology Group (RTOG) protocol 0617. There is significant heterogeneity of practice, with many clinicians prescribing intermediate dose levels between the 0617 study arms of 60 and 74 Gy. This study investigated whether this strategy is associated with any survival benefits/risks by analyzing a large multi-institutional database. Methods and Materials: An individual patient database of stage III NSCLC patients treated with radical intent concurrent chemoradiation therapy was created (13 institutions, n=1274 patients). Patients were divided into 2 groups based on tumor Biological Effective Dose at 10 Gy (BED 10): those receiving standard dose (SD; n=552), consisting of 72Gy ≤ BED 10 ≤ 76.8 Gy (eg 60-64 Gy/30-32 fractions [fr]), and those receiving intermediate dose (ID; n=497), consisting of 76.8Gy < BED 10 < 100.8 Gy (eg >64 Gy/32 fr and <74 Gy/37 fr), with lower-dose patients (n=225) excluded from consideration. Patients were then matched using propensity scores, leading to 2 matched groups of 196 patients. Outcomes were compared using various statistics including interquartile range (IQR), Kaplan-Meier curves, and adjusted Cox regression analysis. Results: Matched groups were found to be balanced except for N stage (more N3 disease in SD), median treatment year (SD in 2003; ID in 2007), platinum and taxane chemotherapy (SD in 28%; ID in 39%), and median follow-up (SD were 89 months; ID were 40 months). Median dose fractionation was 60 Gy/30 fr in SD (BED 10 IQR: 72.0-75.5 Gy) and 66 Gy/33 fr (BED 10 IQR: 78.6-79.2 Gy) in ID. Survival curves for SD and ID matched cohorts were statistically similar (P=.27); however, a nonstatistically significant trend toward better survival for ID was observed after 15 months (median survival SD: 19.3 months; ID: 21.0

  1. SU-E-T-129: Dosimetric Evaluation of the Impact of Density Correction On Dose Calculation of Breast Cancer Treatment: A Study Based On RTOG 1005 Cases

    SciTech Connect (OSTI)

    Li, J; Yu, Y

    2014-06-01

    Purpose: RTOG 1005 requires density correction in the dose calculation of breast cancer radiation treatment. The aim of the study was to evaluate the impact of density correction on the dose calculation. Methods: Eight cases were studied, which were planned on an XiO treatment planning system with pixel-by-pixel density correction using a superposition algorithm, following RTOG 1005 protocol requirements. Four were protocol Arm 1 (standard whole breast irradiation with sequential boost) cases and four were Arm 2 (hypofractionated whole breast irradiation with concurrent boost) cases. The plans were recalculated with the same monitor units without density correction. Dose calculations with and without density correction were compared. Results: Results of Arm 1 and Arm 2 cases showed similar trends in the comparison. The average differences between the calculations with and without density correction (difference = Without - With) among all the cases were: -0.82 Gy (range: -2.65??0.18 Gy) in breast PTV Eval D95, ?0.75 Gy (range: ?1.23?0.26 Gy) in breast PTV Eval D90, ?1.00 Gy (range: ?2.46??0.29 Gy) in lumpectomy PTV Eval D95, ?0.78 Gy (range: ?1.30?0.11 Gy) in lumpectomy PTV Eval D90, ?0.43% (range: ?0.95??0.14%) in ipsilateral lung V20, ?0.81% (range: ?1.62??0.26%) in V16, ?1.95% (range: ?4.13??0.84%) in V10, ?2.64% (?5.55??1.04%) in V8, ?4.19% (range: ?6.92??1.81%) in V5, and ?4.95% (range: ?7.49??2.01%) in V4, respectively. The differences in other normal tissues were minimal. Conclusion: The effect of density correction was observed in breast target doses (an average increase of ?1 Gy in D95 and D90, compared to the calculation without density correction) and exposed ipsilateral lung volumes in low dose region (average increases of ?4% and ?5% in V5 and V4, respectively)

  2. Single-Fraction Versus 5-Fraction Radiation Therapy for Metastatic Epidural Spinal Cord Compression in Patients With Limited Survival Prognoses: Results of a Matched-Pair Analysis

    SciTech Connect (OSTI)

    Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.

    2015-10-01

    Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.

  3. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect (OSTI)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  4. Critical Combinations of Radiation Dose and Volume Predict Intelligence Quotient and Academic Achievement Scores After Craniospinal Irradiation in Children With Medulloblastoma

    SciTech Connect (OSTI)

    Merchant, Thomas E.; Schreiber, Jane E.; Wu, Shengjie; Lukose, Renin; Xiong, Xiaoping; Gajjar, Amar

    2014-11-01

    Purpose: To prospectively follow children treated with craniospinal irradiation to determine critical combinations of radiation dose and volume that would predict for cognitive effects. Methods and Materials: Between 1996 and 2003, 58 patients (median age 8.14 years, range 3.99-20.11 years) with medulloblastoma received risk-adapted craniospinal irradiation followed by dose-intense chemotherapy and were followed longitudinally with multiple cognitive evaluations (through 5 years after treatment) that included intelligence quotient (estimated intelligence quotient, full-scale, verbal, and performance) and academic achievement (math, reading, spelling) tests. Craniospinal irradiation consisted of 23.4 Gy for average-risk patients (nonmetastatic) and 36-39.6 Gy for high-risk patients (metastatic or residual disease >1.5 cm{sup 2}). The primary site was treated using conformal or intensity modulated radiation therapy using a 2-cm clinical target volume margin. The effect of clinical variables and radiation dose to different brain volumes were modeled to estimate cognitive scores after treatment. Results: A decline with time for all test scores was observed for the entire cohort. Sex, race, and cerebrospinal fluid shunt status had a significant impact on baseline scores. Age and mean radiation dose to specific brain volumes, including the temporal lobes and hippocampi, had a significant impact on longitudinal scores. Dichotomized dose distributions at 25 Gy, 35 Gy, 45 Gy, and 55 Gy were modeled to show the impact of the high-dose volume on longitudinal test scores. The 50% risk of a below-normal cognitive test score was calculated according to mean dose and dose intervals between 25 Gy and 55 Gy at 10-Gy increments according to brain volume and age. Conclusions: The ability to predict cognitive outcomes in children with medulloblastoma using dose-effects models for different brain subvolumes will improve treatment planning, guide intervention, and help

  5. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect (OSTI)

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one

  6. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    SciTech Connect (OSTI)

    Gutiérrez Castillo, J. G.; Álvarez Romero, J. T. E-mail: fisarmandotorres@gmail.com Calderón, A. Torres E-mail: fisarmandotorres@gmail.com M, V. Tovar E-mail: fisarmandotorres@gmail.com

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  7. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  8. Stereotactic Body Radiation Therapy Can Be Used Safely to Boost Residual Disease in Locally Advanced Non-Small Cell Lung Cancer: A Prospective Study

    SciTech Connect (OSTI)

    Feddock, Jonathan; Arnold, Susanne M.; Department of Medical Oncology, University of Kentucky, Lexington, Kentucky ; Shelton, Brent J.; Sinha, Partha; Conrad, Gary; Chen, Li; Rinehart, John; McGarry, Ronald C.

    2013-04-01

    Purpose: To report the results of a prospective, single-institution study evaluating the feasibility of conventional chemoradiation (CRT) followed by stereotactic body radiation therapy (SBRT) as a means of dose escalation for patients with stage II-III non-small cell lung cancer (NSCLC) with residual disease. Methods and Materials: Patients without metastatic disease and with radiologic evidence of limited residual disease (?5 cm) within the site of the primary tumor and good or complete nodal responses after standard CRT to a target dose of 60 Gy were considered eligible. The SBRT boost was done to achieve a total combined dose biological equivalent dose >100 Gy to the residual primary tumor, consisting of 10 Gy 2 fractions (20 Gy total) for peripheral tumors, and 6.5 Gy 3 fractions (19.5 Gy total) for medial tumors using the Radiation Therapy Oncology Group protocol 0813 definitions. The primary endpoint was the development of grade ?3 radiation pneumonitis (RP). Results: After a median follow-up of 13 months, 4 patients developed acute grade 3 RP, and 1 (2.9%) developed late and persistent grade 3 RP. No patients developed grade 4 or 5 RP. Mean lung dose, V2.5, V5, V10, and V20 values were calculated for the SBRT boost, and none were found to significantly predict for RP. Only advancing age (P=.0147), previous smoking status (P=.0505), and high CRT mean lung dose (P=.0295) were significantly associated with RP development. At the time of analysis, the actuarial local control rate at the primary tumor site was 82.9%, with only 6 patients demonstrating recurrence. Conclusions: Linear accelerator-based SBRT for dose escalation of limited residual NSCLC after definitive CRT was feasible and did not increase the risk for toxicity above that for standard radiation therapy.

  9. Osteoradionecrosis and Radiation Dose to the Mandible in Patients With Oropharyngeal Cancer

    SciTech Connect (OSTI)

    Tsai, Chiaojung Jillian; Hofstede, Theresa M.; Sturgis, Erich M.; Garden, Adam S.; Lindberg, Mary E.; Wei Qingyi; Tucker, Susan L.; Dong Lei

    2013-02-01

    Purpose: To determine the association between radiation doses delivered to the mandible and the occurrence of osteoradionecrosis (ORN). Methods and Materials: We reviewed the records of 402 oropharyngeal cancer patients with stage T1 or T2 disease treated with definitive radiation between January 2000 and October 2008 for the occurrence of ORN. Demographic and treatment variables were compared between patients with ORN and those without. To examine the dosimetric relationship further, a nested case-control comparison was performed. One to 2 ORN-free patients were selected to match each ORN patient by age, sex, radiation type, treatment year, and cancer subsite. Detailed radiation treatment plans for the ORN cases and matched controls were reviewed. Mann-Whitney test and conditional logistic regression were used to compare relative volumes of the mandible exposed to doses ranging from 10 Gy-60 Gy in 10-Gy increments. Results: In 30 patients (7.5%), ORN developed during a median follow-up time of 31 months, including 6 patients with grade 4 ORN that required major surgery. The median time to develop ORN was 8 months (range, 0-71 months). Detailed radiation treatment plans were available for 25 of the 30 ORN patients and 40 matched ORN-free patients. In the matched case-control analysis, there was a statistically significant difference between the volumes of mandible in the 2 groups receiving doses between 50 Gy (V50) and 60 Gy (V60). The most notable difference was seen at V50, with a P value of .02 in the multivariate model after adjustment for the matching variables and dental status (dentate or with extraction). Conclusions: V50 and V60 saw the most significant differences between the ORN group and the comparison group. Minimizing the percent mandibular volume exposed to 50 Gy may reduce ORN risk.

  10. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    SciTech Connect (OSTI)

    Sina, S; Zeinali, B; Karimipourfard, M; Lotfalizadeh, F; Sadeghi, M; Faghihi, R

    2014-06-01

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface of Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.

  11. Hypofractionation vs Conventional Radiation Therapy for Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Matched-Cohort Analysis

    SciTech Connect (OSTI)

    Janssens, Geert O.; Jansen, Marc H.; Nowak, Peter J.; Oldenburger, Foppe R.; Bouffet, Eric; Kamphuis-van Ulzen, Karin; Lindert, Erik J. van; Schieving, Jolanda H.; Boterberg, Tom; Kaspers, Gertjan J.; Gidding, Corrie E.; Hargrave, Darren

    2013-02-01

    Purpose: Despite conventional radiation therapy, 54 Gy in single doses of 1.8 Gy (54/1.8 Gy) over 6 weeks, most children with diffuse intrinsic pontine glioma (DIPG) will die within 1 year after diagnosis. To reduce patient burden, we investigated the role of hypofractionation radiation therapy given over 3 to 4 weeks. A 1:1 matched-cohort analysis with conventional radiation therapy was performed to assess response and survival. Methods and Materials: Twenty-seven children, aged 3 to 14, were treated according to 1 of 2 hypofractionation regimens over 3 to 4 weeks (39/3 Gy, n=16 or 44.8/2.8 Gy, n=11). All patients had symptoms for {<=}3 months, {>=}2 signs of the neurologic triad (cranial nerve deficit, ataxia, long tract signs), and characteristic features of DIPG on magnetic resonance imaging. Twenty-seven patients fulfilling the same diagnostic criteria and receiving at least 50/1.8 to 2.0 Gy were eligible for the matched-cohort analysis. Results: With hypofractionation radiation therapy, the overall survival at 6, 9, and 12 months was 74%, 44%, and 22%, respectively. Progression-free survival at 3, 6, and 9 months was 77%, 43%, and 12%, respectively. Temporary discontinuation of steroids was observed in 21 of 27 (78%) patients. No significant difference in median overall survival (9.0 vs 9.4 months; P=.84) and time to progression (5.0 vs 7.6 months; P=.24) was observed between hypofractionation vs conventional radiation therapy, respectively. Conclusions: For patients with newly diagnosed DIPG, a hypofractionation regimen, given over 3 to 4 weeks, offers equal overall survival with less treatment burden compared with a conventional regimen of 6 weeks.

  12. SU-E-T-309: Tangential Modulated Arc Therapy: A Novel Technique for the Treatment of Superficial Disease

    SciTech Connect (OSTI)

    Hadsell, M; Chin, E; Li, R; Xing, L; Bush, K

    2014-06-01

    Purpose: We propose a new type of treatment that employs a modulated and sliding tangential photon field to provide superior coverage of superficial targets when compared to other commonly employed methods while drastically reducing dose to the underlying sensitive structures often present in these cases. Methods: Modulated treatment plans were formulated for a set of three representative cases. The first was a revised treatment of a scalp sarcoma, while the second was a treatment of a right posterior chest wall sarcoma. For these cases, asymmetric jaw placement, angular limitations, and central isocenter placements were used to force the optimization algorithm into finding solutions with beamlines that were not perpendicular to the body surface. The final case targeted the chest wall of a breast cancer patient, in which standard treatments were compared to the use of modulated fields with multiple isocenters along the chest wall. Results: When compared with unrestricted modulated arcs, the tangential arc scalp treatment reduced the max and mean doses delivered to the brain by 33Gy (from 55 to 22Gy) and 6Gy (from 14Gy to 8Gy), respectively. In the right posterior chest wall case, the V10 in the ipsilateral lung was kept below 5% while retaining a Rx dose (45Gy) target coverage of over 97%. For the breast case, the modulated plan achieved reductions in high dose to the ipsilateral lung and heart by a factor of 23 when compared to classic laterally opposed tangents and reduced the V5 by 40% when compared to standard modulated arcs. Conclusion: Tangential modulated arc therapy has outperformed the conventional modalities of treatment for superficial lesions used in our clinic. We hope that with the advent of digitally controlled linear accelerators, we can uncover further benefits of this new technique and extend its applicability to a wider section of the patient population.

  13. WE-D-BRE-03: Late Toxicity Following Photon Or Proton Radiotherapy in Patients with Brain Tumors

    SciTech Connect (OSTI)

    Munbodh, R; Ding, X; Yin, L; Anamalayil, S; Dorsey, J; Lustig, R; Alonso-Basanta, M

    2014-06-15

    Purpose: To identify indicators of Late Grade 3 (LG3) toxicity, late vision and hearing changes in patients treated for primary brain tumors with photon (XRT) or proton radiotherapy (PRT). Methods: We retrospectively reviewed 102 patients who received brain XRT or PRT to doses of 54 or 59.6 Gy in daily fractions of 1.8–2 Gy. Of the 80 patients (34 XRT, 39 PRT and 7 both modalities) reviewed for indicators of LG3 toxicity, 25 developed LG3 toxicity 90 to 500 days after radiotherapy completion. 55 patients had less than LG3 toxicity > 500 days after treatment. In that time, late vision and hearing changes were seen in 44 of 75 and 25 of 78 patients, respectively. The correlation between late toxicity and prescription dose, planning target volume (PTV) size, and doses to the brainstem, brain, optic chiasm, optic nerves, eyes and cochlea was evaluated. A two-tailed Fisher's exact test and Wilcoxon rank sum test were used for the statistical analysis for XRT, PRT and all patients combined. Results: Exceeding the 54 Gy-5% dose-volume brainstem constraint, but not the optic structure constraints, was significantly correlated (p < 0.05) with late vision changes in all three groups. Exceeding maximum and mean cochlear doses of 45 and 30 Gy, respectively, was a significant indicator of hearing changes (p < 0.05) in PRT patients and all patients combined. In a sub-group of 52 patients in whom the brain was contoured, the absolute brain volume receiving ≤ 50 Gy and > 60 Gy was significantly larger in patients with LG3 toxicity for all patients combined (p < 0.05). Prescription dose, brainstem dose and PTV volume were not correlated to LG3 toxicity. Conclusion: Our results indicate the importance of minimizing the brain volume irradiated, and brainstem and cochlea doses to reduce the risk of late toxicities following brain radiotherapy.

  14. Outcomes and Acute Toxicities of Proton Therapy for Pediatric Atypical Teratoid/Rhabdoid Tumor of the Central Nervous System

    SciTech Connect (OSTI)

    McGovern, Susan L.; Okcu, M. Fatih; Munsell, Mark F.; Kumbalasseriyil, Nancy; Grosshans, David R.; McAleer, Mary F.; Chintagumpala, Murali; Khatua, Soumen; Mahajan, Anita

    2014-12-01

    Purpose: Atypical teratoid/rhabdoid tumor (AT/RT) of the central nervous system is a rare cancer primarily affecting children younger than 5 years old. Because patients are young and receive intensive chemotherapy, there is concern regarding late radiation toxicity, particularly as survival rates improve. Therefore, there is interest in using proton therapy to treat these tumors. This study was undertaken to investigate outcomes and acute toxicities associated with proton therapy for AT/RT. Methods and Materials: The records of 31 patients with AT/RT treated with proton radiation from October 2008 to August 2013 were reviewed. Demographics, treatment characteristics, and outcomes were recorded and analyzed. Results: Median age at diagnosis was 19 months (range, 4-55 months), with a median age at radiation start of 24 months (range, 6-62 months). Seventeen patients received local radiation with a median dose of 50.4 GyRBE (range, 9-54 GyRBE). Fourteen patients received craniospinal radiation; half received 24 GyRBE or less, and half received 30.6 GyRBE or more. For patients receiving craniospinal radiation, the median tumor dose was 54 GyRBE (range, 43.2-55.8 GyRBE). Twenty-seven patients (87%) completed the planned radiation. With median follow-up of 24 months for all patients (range, 3-53 months), median progression-free survival was 20.8 months and median overall survival was 34.3 months. Five patients (16%) developed clinical findings and imaging changes in the brainstem 1 to 4 months after radiation, consistent with radiation reaction; all cases resolved with steroids or bevacizumab. Conclusions: This is the largest report of children with AT/RT treated with proton therapy. Preliminary survival outcomes in this young pediatric population are encouraging compared to historic results, but further study is warranted.

  15. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    SciTech Connect (OSTI)

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L.; Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M.; Curtis, Rochelle E.; Aleman, Berthe M.P.; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patients radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses.

  16. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques

    SciTech Connect (OSTI)

    Epstein, D; Shekel, E; Levin, D

    2014-06-01

    Purpose: The purpose of this work was to verify the accuracy of the dose distribution along the field junction in a half beam irradiation technique for breast cancer patients receiving radiation to the breast or chest wall (CW) and the supraclavicular LN region for both free breathing and deep inspiration breath hold (DIBH) technique. Methods: We performed in vivo measurements for nine breast cancer patients receiving radiation to the breast/CW and to the supraclavicular LN region. Six patients were treated to the left breast/CW using DIBH technique and three patients were treated to the right breast/CW in free breath. We used five microMOSFET dosimeters: three located along the field junction, one located 1 cm above the junction and the fifth microMOSFET located 1 cm below the junction. We performed consecutive measurements over several days for each patient and compared the measurements to the TPS calculation (Eclipse, Varian). Results: The calculated and measured doses along the junction were 0.970.08 Gy and 1.020.14 Gy, respectively. Above the junction calculated and measured doses were 0.910.08 Gy and 0.980.09 Gy respectively, and below the junction calculated and measured doses were 1.700.15 Gy and 1.610.09 Gy, respectively. All differences were not statistically significant. When comparing calculated and measured doses for DIBH patients only, there was still no statistically significant difference between values for all dosimeter locations. Analysis was done using the Mann-Whitney Rank-Sum Test. Conclusion: We found excellent correlation between calculated doses from the TPS and measured skin doses at the junction of several half beam fields. Even for the DIBH technique, where there is more potential for variance due to depth of breath, there is no over or underdose along the field junction. This correlation validates the TPS, as well an accurate, reproducible patient setup.

  17. RTOG 0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Carcinoma of the Anal Canal

    SciTech Connect (OSTI)

    Kachnic, Lisa A.; Winter, Kathryn; Myerson, Robert J.; Goodyear, Michael D.; Willins, John; Esthappan, Jacqueline; Haddock, Michael G.; Rotman, Marvin; Parikh, Parag J.; Safran, Howard; Willett, Christopher G.

    2013-05-01

    Purpose: A multi-institutional phase 2 trial assessed the utility of dose-painted intensity modulated radiation therapy (DP-IMRT) in reducing grade 2+ combined acute gastrointestinal and genitourinary adverse events (AEs) of 5-fluorouracil (5FU) and mitomycin-C (MMC) chemoradiation for anal cancer by at least 15% compared with the conventional radiation/5FU/MMC arm from RTOG 9811. Methods and Materials: T2-4N0-3M0 anal cancer patients received 5FU and MMC on days 1 and 29 of DP-IMRT, prescribed per stage: T2N0, 42 Gy elective nodal and 50.4 Gy anal tumor planning target volumes (PTVs) in 28 fractions; T3-4N0-3, 45 Gy elective nodal, 50.4 Gy ≤3 cm or 54 Gy >3 cm metastatic nodal and 54 Gy anal tumor PTVs in 30 fractions. The primary endpoint is described above. Planned secondary endpoints assessed all AEs and the investigator’s ability to perform DP-IMRT. Results: Of 63 accrued patients, 52 were evaluable. Tumor stage included 54% II, 25% IIIA, and 21% IIIB. In primary endpoint analysis, 77% experienced grade 2+ gastrointestinal/genitourinary acute AEs (9811 77%). There was, however, a significant reduction in acute grade 2+ hematologic, 73% (9811 85%, P=.032), grade 3+ gastrointestinal, 21% (9811 36%, P=.0082), and grade 3+ dermatologic AEs 23% (9811 49%, P<.0001) with DP-IMRT. On initial pretreatment review, 81% required DP-IMRT replanning, and final review revealed only 3 cases with normal tissue major deviations. Conclusions: Although the primary endpoint was not met, DP-IMRT was associated with significant sparing of acute grade 2+ hematologic and grade 3+ dermatologic and gastrointestinal toxicity. Although DP-IMRT proved feasible, the high pretreatment planning revision rate emphasizes the importance of real-time radiation quality assurance for IMRT trials.

  18. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana Rao, Asha; Krishnan, Sheeja; Sanjeev, Ganesh; Suresh, E. P.

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  19. Epitaxial silicon devices for dosimetry applications

    SciTech Connect (OSTI)

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  20. 131I-Tositumomab Myeloablative Radioimmunotherapy for Non-Hodgkin's Lymphoma: Radiation Dose to the Testes

    SciTech Connect (OSTI)

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.; Fisher, Darrell R.; Gooley, Ted; Pagel, John M.; Press, Oliver W.; Rajendran, Joseph G.

    2012-12-01

    To investigate radiation dose to testes delivered by radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. METHODS: We evaluated dosimetry results for 67 male patients (54 ± 11 years old) with non-Hodgkin lymphoma who underwent myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. In a subset of patients, male sex hormones were measured before and one year after the therapy. RESULTS: Absorbed dose to testes showed greater variability (range = 4.4 to 70.2 Gy) than did dose to lungs (9.5 to 28.4 Gy, p < 0.0001) or liver (6.5 to 27.2 Gy, p < 0.0001). Absorbed dose to the testes per 131I administered (1.18 ± 0.59 mGy/MBq) was not significantly different from that to the liver (1.03 ± 0.29 mGy/MBq, p = 0.08), or to the lungs (1.19 ± 0.50 mGy/MBq, p = 0.889). Pre-therapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction (4.6 ± 1.8 nmol/L (pre-RIT) vs. 3.8 ± 2.9 nmol/L (post-RIT), p < 0.05). Patients receiving higher radiation doses to the testes (≥ 25 Gy) showed a greater reduction (4.7 ± 1.6 nmol/L (pre RIT) vs. 3.3 ± 2.7 nmol/L (post-RIT), p < 0.05) than did patients receiving lower doses (< 25 Gy), who showed no significant change in total testosterone levels. CONCLUSION: The testicular radiation absorbed dose varied highly among individual patients. Patients receiving higher doses to testes were more likely to show post-RIT suppression of testosterone levels. Key Words: 131I-tositumomab, follicular lymphoma, radioimmunotherapy, radiation dosimetry, male sex hormones.  

  1. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    SciTech Connect (OSTI)

    Wang, J; Kino, A; Newman, B; Chan, F

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CT Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.

  2. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect (OSTI)

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dosevolume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  3. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    SciTech Connect (OSTI)

    Maier, Joscha; Sawall, Stefan; Kachelrie, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  4. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes

    SciTech Connect (OSTI)

    Michalski, Andrea; Atyeo, John; Cox, Jennifer; Rinks, Marianne; Morgia, Marita; Lamoury, Gillian

    2014-07-01

    Radiation therapy to the breast is a complex task, with many different techniques that can be employed to ensure adequate dose target coverage while minimizing doses to the organs at risk. This study compares the dose planning outcomes of 3 radiation treatment modalities, 3 dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and static tomotherapy, for left-sided whole-breast radiation treatment with a simultaneous integrated boost (SIB). Overall, 20 patients with left-sided breast cancer were separated into 2 cohorts, small and large, based on breast volume. Dose plans were produced for each patient using 3D-CRT, IMRT, and static tomotherapy. All patients were prescribed a dose of 45 Gy in 20 fractions to the breast with an SIB of 56 Gy in 20 fractions to the tumor bed and normalized so that D{sub 98%} > 95% of the prescription dose. Dosimetric comparisons were made between the 3 modalities and the interaction of patient size. All 3 modalities offered adequate planning target volume (PTV) coverage with D{sub 98%} > 95% and D{sub 2%} < 107%. Static tomotherapy offered significantly improved (p = 0.006) dose homogeneity to the PTV{sub boost} {sub eval} (0.079 0.011) and breast minus the SIB volume (Breast{sub SIB}) (p < 0.001, 0.15 0.03) compared with the PTV{sub boost} {sub eval} (0.085 0.008, 0.088 0.12) and Breast{sub SIB} (0.22 0.05, 0.23 0.03) for IMRT and 3D-CRT, respectively. Static tomotherapy also offered statistically significant reductions (p < 0.001) in doses to the ipsilateral lung mean dose of 6.79 2.11 Gy compared with 7.75 2.54 Gy and 8.29 2.76 Gy for IMRT and 3D-CRT, respectively, and significantly (p < 0.001) reduced heart doses (mean = 2.83 1.26 Gy) compared to both IMRT and 3D-CRT (mean = 3.70 1.44 Gy and 3.91 1.58 Gy). Static tomotherapy is the dosimetrically superior modality for the whole breast with an SIB compared with IMRT and 3D-CRT. IMRT is superior to 3D-CRT in both PTV

  5. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    SciTech Connect (OSTI)

    Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  6. SU-E-I-32: Benchmarking Head CT Doses: A Pooled Vs. Protocol Specific Analysis of Radiation Doses in Adult Head CT Examinations

    SciTech Connect (OSTI)

    Fujii, K; Bostani, M; Cagnon, C; McNitt-Gray, M

    2015-06-15

    Purpose: The aim of this study was to collect CT dose index data from adult head exams to establish benchmarks based on either: (a) values pooled from all head exams or (b) values for specific protocols. One part of this was to investigate differences in scan frequency and CT dose index data for inpatients versus outpatients. Methods: We collected CT dose index data (CTDIvol) from adult head CT examinations performed at our medical facilities from Jan 1st to Dec 31th, 2014. Four of these scanners were used for inpatients, the other five were used for outpatients. All scanners used Tube Current Modulation. We used X-ray dose management software to mine dose index data and evaluate CTDIvol for 15807 inpatients and 4263 outpatients undergoing Routine Brain, Sinus, Facial/Mandible, Temporal Bone, CTA Brain and CTA Brain-Neck protocols, and combined across all protocols. Results: For inpatients, Routine Brain series represented 84% of total scans performed. For outpatients, Sinus scans represented the largest fraction (36%). The CTDIvol (mean ± SD) across all head protocols was 39 ± 30 mGy (min-max: 3.3–540 mGy). The CTDIvol for Routine Brain was 51 ± 6.2 mGy (min-max: 36–84 mGy). The values for Sinus were 24 ± 3.2 mGy (min-max: 13–44 mGy) and for Facial/Mandible were 22 ± 4.3 mGy (min-max: 14–46 mGy). The mean CTDIvol for inpatients and outpatients was similar across protocols with one exception (CTA Brain-Neck). Conclusion: There is substantial dose variation when results from all protocols are pooled together; this is primarily a function of the differences in technical factors of the protocols themselves. When protocols are analyzed separately, there is much less variability. While analyzing pooled data affords some utility, reviewing protocols segregated by clinical indication provides greater opportunity for optimization and establishing useful benchmarks.

  7. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 1 gy y gy Buildings' Energy Use Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 2 Commercial Square Footage Projections g j 104 Plus ~38B ft. 2 new additions 72 82 66 Minus ~16B ft. 2 demolitions 66 Net-Zero Energy Commercial Building

  8. SU-E-T-125: Dosimetric Comparison of Intensity Modulated Radiation Therapy Using Robotic Versus Traditional Linac Platform in Prostate Cancer

    SciTech Connect (OSTI)

    Hayes, T; Rella, J; Yang, J; Sims, C; Fung, C

    2014-06-01

    Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width. For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant

  9. SU-E-P-06: A Novel Hybrid Planning Approach to Allow More Patients Benefited by the Intensity Modulated Proton Therapy

    SciTech Connect (OSTI)

    Jiang, S; Liao, L; Li, Y; Wang, X; Sahoo, N; Liao, Z; Grosshans, D; Frank, S; Li, H; Zhu, X; Chang, J; Zhang, X; Gillin, M; Hojo, Y; Sun, J

    2014-06-01

    Purpose: We report a hybrid scattering and scanning beam delivery approach, termed as (HimpsPT), which demonstrated that majority IMPT delivery can be potentially replaced with hybrid IMPT and PSPT delivery with similar or better plan quality. Methods: Three representative clinical cases, including head and neck (HN), skull base chordoma (CNS) and lung cancer, treated in MDACC Proton Therapy Center with IMPT were retrospectively redesigned using HimpsPT. The PSPT plans are designed with the same prescriptions as those of IMPT plans. The whole treatment can be delivered by either alternating or sequential PSPT and IMPT delivery. The dosimetric data and dose distributions of HimpsPT plans are compared with those of IMPT plans. We also performed a worst-case robust analysis for all plans. Results: The target coverages for all cases are comparable. For the HN case, the mean dose of esophagus larynx, left parotid and right submandibular, oral cavity V20, the max dose of cord is 18.0, 36.1, 23.6, 47.2, 0.1, 31.7 Gy in HimpsPT plan, and 25.5, 33.8, 24.9, 49.1, 0.2, 33.8 Gy in IMPT plan. For the lung case, the lung V5, V20, V30, mean lung dose, heart V40, esophagus V70, cord maximum dose are 50.5%, 37.0%, 31.7%, 21.3 Gy, 7.2%, 4.9%, 35.5 Gy in HimpsPT plan, and 55.4%, 36.7%, 30.1%, 21.3 Gy, 7.7%, 8.4%, 36.8Gy in IMPT plans. For the CNS case, brainstem maximum dose is 50.5 Gy in HimpsPT plan and 55.4 Gy in IMPT plan due to sharp penumbra offered by the aperture of the PSPT plan in HimpsPT technique. Conclusion: For majority disease sites, the dosimetric advantage of IMPT technique can be achieved by the hybrid PSPT and IMPT technique, which enables the centers equipped with both scattering and scanning beam facilities to treat more patients which can be benefited by the scanning beam.

  10. SU-E-P-08: Establishment of Local Diagnostic Reference Levels of Routine Abdomen Exam in Computed Tomography According to Body Weight

    SciTech Connect (OSTI)

    Wang, H; Wang, Y; Weng, H

    2015-06-15

    Purpose: The national diagnostic reference levels (NDRLs) is an efficient, concise and powerful standard for optimizing radiation protection of a patient. However, for each hospital the dose-reducing potential of focusing on establishment of local DRLs (LDRLs). A lot of study reported that Computed tomography exam contributed majority radiation dose in different medical modalities, therefore, routine abdomen CT exam was choose in initial pilot study in our study. Besides the mAs of routine abdomen CT exam was decided automatic exposure control by linear attenuation is relate to body shape of patient. In this study we would like to establish the local diagnostic reference levels of routine abdomen exam in computed tomography according to body weight of patient. Methods and Materials: There are two clinical CT scanners (a Toshiba Aquilion and a Siemens Sensation) were performed in this study. For CT examinations the basic recommended dosimetric quantity is the Computed Tomography Dose Index (CTDI). The patient sample involved 82 adult patients of both sexes and divided into three groups by their body weight (50–60 kg, 60–70 kg, 70–80 kg).Carried out the routine abdomen examinations, and all exposure parameters have been collected and the corresponding CTDIv and DLP values have been determined. The average values were compared with the European DRLs. Results: The majority of patients (75%) were between 50–70 Kg of body weight, the numbers of patient in each group of weight were 40–50:7; 50–60:29; 60–70:33; 70–80:13. The LDRLs in each group were 10.81mGy, 14.46mGy, 20.27mGy and 21.04mGy, respectively. The DLP were 477mGy, 630mGy, 887mGy and 959mGy, respectively. No matter which group the LDRLs were lower than European DRLs. Conclusions: We would like to state that this was a pioneer work in local hospital in Chiayi. We hope that this may lead the way to further developments in Taiwan.

  11. A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)

    SciTech Connect (OSTI)

    Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie

    2015-04-24

    The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.

  12. Radiosensitivity study and radiation effects on morphology characterization of grey oyster mushroom Pleurotus sajor-caju

    SciTech Connect (OSTI)

    Rashid, Rosnani Abdul; Awang, Mat Rasol; Mohamad, Azhar; Mutaat, Hassan Hamdani; Maskom, Mohd Meswan; Daud, Fauzi; Senafi, Sahidan

    2014-09-03

    Radiosensitive dosage and morphology characterization of irradiated grey oyster mushroom Pleurotus sajor-caju by gamma rays was investigated due to effects of irradiation. In order to establish the effect, mycelium of P. sajor-caju was irradiated by gamma rays at dose 0.1 to 8.0 kGy with dose rate 0.227 Gy sec{sup ?1}. The irradiation of mycelia was carried out at the radiation facility in Malaysian Nuclear Agency. The radiosensitivity study was performed by evaluating the percentage of survival irradiated mycelia. The lethal dose of the mycelium P. sajor-caju was determined at 4.0 kGy and LD{sub 50} to be equal at 2.2 kGy. The radiation effects on morphology were evaluated based on growth rate of irradiated mycelia, mycelia types, colonization period on substrate, morphology of fruit bodies and yields. The results shown growth rate of irradiated mycelium was slightly lower than the control and decreased as the dose increased. Irradiation was found can induced the primordia formation on PDA and the BE of irradiated seed is higher than to control. The irradiation is proven to be useful for generating new varieties of mushroom with commercial value to the industry.

  13. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  14. Predictors of Rectal Tolerance Observed in a Dose-Escalated Phase 1-2 Trial of Stereotactic Body Radiation Therapy for Prostate Cancer

    SciTech Connect (OSTI)

    Kim, D.W. Nathan; Cho, L. Chinsoo; Straka, Christopher; Christie, Alana; Lotan, Yair; Pistenmaa, David; Kavanagh, Brian D.; Nanda, Akash; Kueplian, Patrick; Brindle, Jeffrey; Cooley, Susan; Perkins, Alida; Raben, David; Xie, Xian-Jin; Timmerman, Robert D.

    2014-07-01

    Purpose: To convey the occurrence of isolated cases of severe rectal toxicity at the highest dose level tested in 5-fraction stereotactic body radiation therapy (SBRT) for localized prostate cancer; and to rationally test potential causal mechanisms to guide future studies and experiments to aid in mitigating or altogether avoiding such severe bowel injury. Methods and Materials: Clinical and treatment planning data were analyzed from 91 patients enrolled from 2006 to 2011 on a dose-escalation (45, 47.5, and 50 Gy in 5 fractions) phase 1/2 clinical study of SBRT for localized prostate cancer. Results: At the highest dose level, 6.6% of patients treated (6 of 91) developed high-grade rectal toxicity, 5 of whom required colostomy. Grade 3+ delayed rectal toxicity was strongly correlated with volume of rectal wall receiving 50 Gy >3 cm{sup 3} (P<.0001), and treatment of >35% circumference of rectal wall to 39 Gy (P=.003). Grade 2+ acute rectal toxicity was significantly correlated with treatment of >50% circumference of rectal wall to 24 Gy (P=.010). Conclusion: Caution is advised when considering high-dose SBRT for treatment of tumors near bowel structures, including prostate cancer. Threshold dose constraints developed from physiologic principles are defined, and if respected can minimize risk of severe rectal toxicity.

  15. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect (OSTI)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  16. sandia-brochure-final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE PA R T M ENT OF E N E R GY * * UN IT E D S T AT ES OF A M E R IC A Biofuels To learn more about Sandia's Biofuels program visit energy.sandia.gov jbei.org sandia.gov Biofuels ...

  17. Thermoluminescence of Eu activated LiF nanophosphors

    SciTech Connect (OSTI)

    Kumar, Satinder; Sharma, A. K.; Lochab, S. P.; Kumar, Ravi

    2012-06-05

    Nanocrystalline lithium fluoride (LiF) phosphors prepared by the chemical co-precipitation method at 8.00 pH value have been activated with Eu (0.01, 0.03, 0.07 and 0.1%nt;) as single dopants. The formation of nanocrystalline structure has been confirmed by X-ray diffraction. Thermolumniscence (TL) properties of LiF: Eu nano-phosphors irradiated with gamma rays at different doses of 100 Gy - 10 kGy have been further studied. There is only one main glow peak at around 122 deg. C; which shifts to higher temperature with an increase in doping concentration at all studied irradiation doses. However, the glow peak shifts to lower temperature with an increase in irradiation dose from 100 Gy to 10 kGy. The LiF nano-crystallites synthesized at 8.00 pH and activated with 0.03%nt; Eu are found to have maximum TL sensitivity at studied gamma doses.

  18. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy...

    Open Energy Info (EERE)

    gyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  19. Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  20. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J.; Lopata, Vincent J.; Havens, Stephen J.; Dorsey, George F.; Moulton, Richard J.

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  1. High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer in Patients at Moderate or High Risk of Biochemical Recurrence

    SciTech Connect (OSTI)

    Hoskin, Peter; Rojas, Ana; Lowe, Gerry; Bryant, Linda; Ostler, Peter; Hughes, Rob; Milner, Jessica; Cladd, Helen

    2012-03-15

    Purpose: To evaluate genitourinary (GU) and gastrointestinal (GI) morbidity and biochemical control of disease in patients with localized prostate adenocarcinoma treated with escalating doses per fraction of high-dose rate brachytherapy alone. Methods and Materials: A total of 197 patients were treated with 34 Gy in four fractions, 36 Gy in four fractions, 31.5 Gy in three fractions, or 26 Gy in two fractions. Median follow-up times were 60, 54, 36, and 6 months, respectively. Results: Incidence of early Grade {>=} 3 GU morbidity was 3% to 7%, and Grade 4 was 0% to 4%. During the first 12 weeks, the highest mean International Prostate Symptom Score (IPSS) value was 14, and between 6 months and 5 years it was 8. Grade 3 or 4 early GI morbidity was not observed. The 3-year actuarial rate of Grade 3 GU was 3% to 16%, and was 3% to 7% for strictures requiring surgery (4-year rate). An incidence of 1% Grade 3 GI events was seen at 3 years. Late Grade 4 GU or GI events were not observed. At 3 years, 99% of patients with intermediate-risk and 91% with high-risk disease were free of biochemical relapse (log-rank p = 0.02). Conclusions: There was no significant difference in urinary and rectal morbidity between schedules. Biochemical control of disease in patients with intermediate and high risk of relapse was good.

  2. 2014_Q1.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    W We We We el lc lc lc com om om o e e e e t to to to to t t t t th he he he he J J J J Jan an an anua ua ua uary ry ry ry y M M -M M Mar ar ar ar h ch ch ch ch 2 2 2 2 201 01 01 01 014 4 4 4 4 i is is is issu su su sue e e e f of of of of t t t t th he he he he U U U U U S S S .S .S. . D De De De Depa pa pa pa p rt rt rt rtme me me ment nt nt nt o o o of f f f f En En En Ener er er ergy gy gy gy gy ( ( ( ( ( ( O DO DO DO DO ) E) E) E) E) ) Of Of Of Offi fi fi fi ce ce ce o o of f f f L Le Le

  3. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  4. EERE Fiscal Year 2013 Website Annual Report

    Broader source: Energy.gov (indexed) [DOE]

    Saver facebook 29 Videos 32 Widgets 35 WEB HOSTING AND CONTENT mANAGEmENT SYSTEmS 28 ... EErE total EnErGy SavEr nEWS Social mEdia multimEdia WEb HoStinG and contEnt manaGEmEnt ...

  5. Neoadjuvant Chemoradiation for Distal Rectal Cancer: 5-Year Updated Results of a Randomized Phase 2 Study of Neoadjuvant Combined Modality Chemoradiation for Distal Rectal Cancer

    SciTech Connect (OSTI)

    Mohiuddin, Mohammed, E-mail: asemuddin@gmail.com [King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)] [King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Paulus, Rebecca [RTOG Statistical Department, Philadelphia, Pennsylvania (United States)] [RTOG Statistical Department, Philadelphia, Pennsylvania (United States); Mitchell, Edith [Thomas Jefferson University, Philadelphia, Pennsylvania (United States)] [Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Hanna, Nader [Department of Surgical Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States)] [Department of Surgical Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Yuen, Albert [Reading Hospital and Medical Center, Reading, Pennsylvania (United States)] [Reading Hospital and Medical Center, Reading, Pennsylvania (United States); Nichols, Romaine [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)] [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Yalavarthi, Salochna [Ingalls Memorial Hospital, Harvey, Illinois (United States)] [Ingalls Memorial Hospital, Harvey, Illinois (United States); Hayostek, Cherie [Santa Fe Cancer Center, Santa Fe, New Mexico (United States)] [Santa Fe Cancer Center, Santa Fe, New Mexico (United States); Willett, Christopher [Duke University Medical Center, Durham, North Carolina (United States)] [Duke University Medical Center, Durham, North Carolina (United States)

    2013-07-01

    Purpose: To assess the efficacy of 2 different approaches to neoadjuvant chemoradiation for distal rectal cancers. Methods and Materials: One hundred six patients with T3/T4 distal rectal cancers were randomized in a phase 2 study. Patients received either continuous venous infusion (CVI) of 5-Fluorouracil (5-FU), 225 mg/m{sup 2} per day, 7 days per week plus pelvic hyperfractionated radiation (HRT), 45.6 Gy at 1.2 Gy twice daily plus a boost of 9.6 to 14.4 Gy for T3 or T4 cancers (Arm 1), or CVI of 5-FU, 225 mg/m{sup 2} per day, Monday to Friday, plus irinotecan, 50 mg/m{sup 2} once weekly 4, plus pelvic radiation therapy (RT), 45 Gy at 1.8 Gy per day and a boost of 5.4 Gy for T3 and 9 Gy for T4 cancers (Arm 2). Surgery was performed 4 to 10 weeks later. Results: All eligible patients (n=103) are included in this analysis; 2 ineligible patients were excluded, and 1 patient withdrew consent. Ninety-eight of 103 patients (95%) underwent resection. Four patients did not undergo surgery for either disease progression or patient refusal, and 1 patient died during induction chemotherapy. The median time of follow-up was 6.4 years in Arm 1 and 7.0 years in Arm 2. The pathological complete response (pCR) rates were 30% in Arm 1 and 26% in Arm 2. Locoregional recurrence rates were 16% in Arm 1 and 17% in Arm 2. Five-year survival rates were 61% and 75% and Disease-specific survival rates were 78% and 85% for Arm1 and Arm 2, respectively. Five second primaries occurred in patients on Arm 1, and 1 second primary occurred in Arm 2. Conclusions: High rates of disease-specific survival were seen in each arm. Overall survival appears affected by the development of unrelated second cancers. The high pCR rates with 5-FU and higher dose radiation in T4 cancers provide opportunity for increased R0 resections and improved survival.

  6. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    SciTech Connect (OSTI)

    Bishop, Andrew J.; Tao, Randa; Rebueno, Neal C.; Christensen, Eva N.; Allen, Pamela K.; Wang, Xin A.; Amini, Behrang; Tannir, Nizar M.; Tatsui, Claudio E.; Rhines, Laurence D.; Li, Jing; Chang, Eric L.; Brown, Paul D.; Ghia, Amol J.

    2015-08-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  7. Uterine Artery Embolization for Leiomyomata: Optimization of the Radiation Dose to the Patient Using a Flat-Panel Detector Angiographic Suite

    SciTech Connect (OSTI)

    Sapoval, Marc Pellerin, Olivier; Rehel, Jean-Luc; Houdoux, Nicolas; Rahmoune, Ghizlaine; Aubert, Bernard; Fitton, Isabelle

    2010-10-15

    The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 {+-} 1.3 to 0.4 {+-} 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 {+-} 27,207 {mu}Gy m{sup 2} for group A to 9,515 {+-} 4,520 {mu}Gy m{sup 2} for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 {+-} 238 mGy (group A) to 83 {+-} 41 mGy (group B) and from 388 {+-} 246 mGy (group A) to 85 {+-} 39 mGy (group B), respectively. Effective doses decreased from 112 {+-} 71 mSv (group A) to 24 {+-} 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.

  8. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect (OSTI)

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  9. Biologically Effective Dose (BED) Correlation With Biochemical Control After Low-Dose Rate Prostate Brachytherapy for Clinically Low-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Miles, Edward F.; Nelson, John W.; Alkaissi, Ali K.; Das, Shiva; Clough, Robert W.; Broadwater, Gloria; Anscher, Mitchell S.; Chino, Junzo P.; Oleson, James R.

    2010-05-01

    Purpose: To assess the correlation of postimplant dosimetric quantifiers with biochemical control of prostate cancer after low-dose rate brachytherapy. Methods and Materials: The biologically effective dose (BED), dose in Gray (Gy) to 90% of prostate (D{sub 90}), and percent volume of the prostate receiving 100% of the prescription dose (V{sub 100}) were calculated from the postimplant dose-volume histogram for 140 patients undergoing low-dose rate prostate brachytherapy from 1997 to 2003 at Durham Regional Hospital and the Durham VA Medical Center (Durham, NC). Results: The median follow-up was 50 months. There was a 7% biochemical failure rate (10 of 140), and 91% of patients (127 of 140) were alive at last clinical follow-up. The median BED was 148 Gy (range, 46-218 Gy). The median D{sub 90} was 139 Gy (range, 45-203 Gy). The median V{sub 100} was 85% (range, 44-100%). The overall 5-year biochemical relapse-free survival (bRFS) rate was 90.1%. On univariate Cox proportional hazards modeling, no pretreatment characteristic (Gleason score sum, age, baseline prostate-specific antigen, or clinical stage) was predictive of bRFS. The BED, D{sub 90}, and V{sub 100} were all highly correlated (Pearson coefficients >92%), and all were strongly correlated with bRFS. Using the Youden method, we identified the following cut points for predicting freedom from biochemical failure: D{sub 90} >= 110 Gy, V{sub 100} >= 74%, and BED >= 115 Gy. None of the covariates significantly predicted overall survival. Conclusions: We observed significant correlation between BED, D{sub 90}, and V{sub 100} with bRFS. The BED is at least as predictive of bRFS as D{sub 90} or V{sub 100}. Dosimetric quantifiers that account for heterogeneity in tumor location and dose distribution, tumor repopulation, and survival probability of tumor clonogens should be investigated.

  10. SU-E-J-08: Comparison of Unintended Radiation Doses to Organs at Risk Resulting From the Out-Of-Field Therapeutic Beams and From Image-Guidance X-Ray Procedures

    SciTech Connect (OSTI)

    Ding, G; Wang, L

    2015-06-15

    Purpose: The unintended radiation dose to organs at risk (OAR) can be contributed from imaging guidance procedures as well as from leakage and scatter of therapeutic beams. This study compares the imaging dose with the unintended out-of-field therapeutic dose to patient sensitive organs. Methods: The Monte Carlo EGSnrc user codes, BEAMnrc and DOSXYZnrc, were used to simulate kV X-ray sources from imaging devices as well as the therapeutic IMRT/VMAT beams and to calculate doses to target and OARs on patient treatment planning CT images. The accuracy of the Monte Carlo simulations was benchmarked against measurements in phantoms. The dose-volume histogram was utilized in analyzing the patient organ doses. Results: The dose resulting from Standard Head kV-CBCT scans to bone and soft tissues ranges from 0.7 to 1.1 cGy and from 0.03 to 0.3 cGy, respectively. The dose resulting from Thorax scans on the chest to bone and soft tissues ranges from 1.1 to 1.8 cGy and from 0.3 to 0.6 cGy, respectively. The dose resulting from Pelvis scans on the abdomen to bone and soft tissues range from 3.2 to 4.2 cGy and from 1.2 to 2.2 cGy, respectively. The out-of-field doses to OAR are sensitive to the distance between the treated target and the OAR. For a typical Head-and-Neck IMRT/VMAT treatment the out-of-field doses to eyes are 1–3% of the target dose, or 2–6 cGy per fraction. Conclusion: The imaging doses to OAR are predictable based on the imaging protocols used when OARs are within the imaged volume and can be estimated and accounted for by using tabulated values. The unintended out-of-field doses are proportional to the target dose, strongly depend on the distance between the treated target and OAR, and are generally higher comparing to the imaging dose. This work was partially supported by Varian research grant VUMC40590.

  11. SU-E-T-11: A Dosimetric Comparison of Robotic Prostatic Radiosugery Using Multi- Leaf Collimation Vs Circular Collimators

    SciTech Connect (OSTI)

    Feng, J; Yang, J; Lamond, J; Lavere, N; Laciano, R; Ding, W; Arrigo, S; Brady, L

    2014-06-01

    Purpose: The study compared the dosimetry plans of Stereotatic Body Radiotherapy (SBRT) prostate cancer patients using the M6 Cyberknife with Multi-leaf Collimation (MLC) compared with the plans using G4 Cyberknife with circular collimators. Methods: Eight previously treated prostate cancer patients' SBRT plans using circular collimators, designed with Multiplan v3.5.3, were used as a benchmark. The CT, contours and the optimization scripts were imported into Multiplan v5.0 system and replanned with MLC. The same planning objectives were used: more than 95% of PTV received 36.25Gy, 90% of prostate received 40Gy and maximum dose <45Gy, in five fractions. For organs at risk, less than 1cc of rectum received 36Gy and less than 10cc of bladder received 37Gy. Plans were evaluated on parameters derived from dose volume. The beam number, MU and delivery time were recorded to compare the treatment efficiency. Results: The mean CTV volume was 41.3cc (27.5?57.6cc) and mean PTV volume was 76.77cc (59.1?99.7cc). The mean PTV coverage was comparable between MLC (98.87%) and cone (98.74%). MLC plans had a slightly more favorable homogeneity index (1.22) and conformity index (1.17), than the cone (1.24 and 1.15). The mean rectum volume of 36 Gy (0.52cc) of MLC plans was slightly larger than cone (0.38cc) and the mean bladder volume of 37 Gy was smaller in MLC (1.82cc) than in cone plans (3.09cc). The mean number of nodes and beams were 65.9 and 80.5 in MLC vs 65.9 and 203.6 in cone. The mean MUs were significantly less for MLC plans (24,228MUs) than cone (32,347MUs). The total delivery time (which included 5 minutes for setup) was less, 29.6min (26?32min) for MLC vs 45min (35?55min) for cone. Conclusion: While the differences in the dosimetry between the MLC and circular collimator plans were rather minor, the MLC plans were much more efficient and required significantly less treatment time.

  12. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    SciTech Connect (OSTI)

    Nimwegen, Frederika A. van; Cutter, David J.; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D.G.; Janus, Cécile P.M.; Darby, Sarah C.; Leeuwen, Flora E. van; Aleman, Berthe M.P.

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  13. SU-E-T-629: Feasibility Study of Treating Multiple Brain Tumors with Large Number of Noncoplanar IMRT Beams

    SciTech Connect (OSTI)

    Dong, P; Ma, L

    2014-06-15

    Purpose: To study the feasibility of treating multiple brain tumors withlarge number of noncoplanar IMRT beams. Methods: Thirty beams are selected from 390 deliverable beams separated by six degree in 4pi space. Beam selection optimization is based on a column generation algorithm. MLC leaf size is 2 mm. Dose matrices are calculated with collapsed cone convolution and superposition method in a 2 mm by 2mm by 2 mm grid. Twelve brain tumors of various shapes, sizes and locations are used to generate four plans treating 3, 6, 9 and 12 tumors. The radiation dose was 20 Gy prescribed to the 100% isodose line. Dose Volume Histograms for tumor and brain were compared. Results: All results are based on a 2 mm by 2 mm by 2 mm CT grid. For 3, 6, 9 and 12 tumor plans, minimum tumor doses are all 20 Gy. Mean tumor dose are 20.0, 20.1, 20.1 and 20.1 Gy. Maximum tumor dose are 23.3, 23.6, 25.4 and 25.4 Gy. Mean ventricles dose are 0.7, 1.7, 2.4 and 3.1 Gy.Mean subventricular zone dose are 0.8, 1.3, 2.2 and 3.2 Gy. Average Equivalent uniform dose (gEUD) values for tumor are 20.1, 20.1, 20.2 and 20.2 Gy. The conformity index (CI) values are close to 1 for all 4 plans. The gradient index (GI) values are 2.50, 2.05, 2.09 and 2.19. Conclusion: Compared with published Gamma Knife treatment studies, noncoplanar IMRT treatment plan is superior in terms of dose conformity. Due to maximum limit of beams per plan, Gamma knife has to treat multiple tumors separately in different plans. Noncoplanar IMRT plans theoretically can be delivered in a single plan on any modern linac with an automated couch and image guidance. This warrants further study of using noncoplanar IMRT as a viable treatment solution for multiple brain tumors.

  14. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    SciTech Connect (OSTI)

    Sun, L; Hu, W; Moyers, M; Zhao, J; Hsi, W

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beam ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.

  15. SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability

    SciTech Connect (OSTI)

    Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G

    2014-06-01

    Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with ImatriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.750.33%, 99.370.09%, 99.290.12%, 98.140.13% and 99.250.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.

  16. Duodenal Toxicity After Fractionated Chemoradiation for Unresectable Pancreatic Cancer

    SciTech Connect (OSTI)

    Kelly, Patrick; Das, Prajnan; Pinnix, Chelsea C.; Beddar, Sam; Briere, Tina; Pham, Mary; Krishnan, Sunil; Delclos, Marc E.; Crane, Christopher H.

    2013-03-01

    Purpose: Improving local control is critical to improving survival and quality of life for patients with locally advanced unresectable pancreatic cancer (LAPC). However, previous attempts at radiation dose escalation have been limited by duodenal toxicity. In order to guide future studies, we analyzed the clinical and dosimetric factors associated with duodenal toxicity in patients undergoing fractionated chemoradiation for LAPC. Methods and Materials: Medical records and treatment plans of 106 patients with LAPC who were treated with chemoradiation between July 2005 and June 2010 at our institution were reviewed. All patients received neoadjuvant and concurrent chemotherapy. Seventy-eight patients were treated with conventional radiation to 50.4 Gy in 28 fractions; 28 patients received dose-escalated radiation therapy (range, 57.5-75.4 Gy in 28-39 fractions). Treatment-related toxicity was graded according to Common Terminology Criteria for Adverse Events, version 4.0. Univariate and multivariate analyses were performed to assess prognostic influence of clinical, pathologic, and treatment-related factors by using Kaplan-Meier and Cox regression methods. Results: Twenty patients had treatment-related duodenal toxicity events, such as duodenal inflammation, ulceration, and bleeding. Four patients had grade 1 events, 8 had grade 2, 6 had grade 3, 1 had grade 4, and 1 had grade 5. On univariate analysis, a toxicity grade ≥2 was associated with tumor location, low platelet count, an absolute volume (cm{sup 3}) receiving a dose of at least 55 Gy (V{sub 55} {sub Gy} > 1 cm{sup 3}), and a maximum point dose >60 Gy. Of these factors, only V{sub 55} {sub Gy} ≥1 cm{sup 3} was associated with duodenal toxicity on multivariate analysis (hazard ratio, 6.7; range, 2.0-18.8; P=.002). Conclusions: This study demonstrates that a duodenal V{sub 55} {sub Gy} >1 cm{sup 3} is an important dosimetric predictor of grade 2 or greater duodenal toxicity and establishes it as a

  17. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    SciTech Connect (OSTI)

    Damato, Antonio L.; Bair, Ryan J.; Cormack, Robert A.; Kovacs, Arpad; Lee, Larissa J.; Lewis, John H.; Viswanathan, Akila N.

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  18. SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?

    SciTech Connect (OSTI)

    Acar, H; Altinok, A; Kucukmorkoc, E; Kucuk, N; Caglar, H

    2014-06-01

    Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of the planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is

  19. Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy

    SciTech Connect (OSTI)

    Narayan, Samir Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan

    2008-11-01

    Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.

  20. Quantification of incidental mediastinal and hilar irradiation delivered during definitive stereotactic body radiation therapy for peripheral non-small cell lung cancer

    SciTech Connect (OSTI)

    Martin, Kate L.; Gomez, Jorge; Nazareth, Daryl P.; Warren, Graham W.; Singh, Anurag K.

    2012-07-01

    To determine the amount of incidental radiation dose received by the mediastinal and hilar nodes for patients with non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). Fifty consecutive patients with NSCLC, treated using an SBRT technique, were identified. Of these patients, 38 had a prescription dose of 60 Gy in 20-Gy fractions and were eligible for analysis. For each patient, ipsilateral upper (level 2) and lower (level 4) paratracheal, and hilar (level 10) nodal regions were contoured on the planning computed tomography (CT) images. Using the clinical treatment plan, dose and volume calculations were performed retrospectively for each nodal region. SBRT to upper lobe tumors resulted in an average total ipsilateral mean dose of between 5.2 and 7.8 Gy for the most proximal paratracheal nodal stations (2R and 4R for right upper lobe lesions, 2L and 4L for left upper lobe lesions). SBRT to lower lobe tumors resulted in an average total ipsilateral mean dose of between 15.6 and 21.5 Gy for the most proximal hilar nodal stations (10R for right lower lobe lesions, 10 l for left lower lobe lesions). Doses to more distal nodes were substantially lower than 5 Gy. The often substantial incidental irradiation, delivered during SBRT for peripheral NSCLC of the lower lobes to the most proximal hilar lymph nodes may be therapeutic for low-volume, subclinical nodal disease. Treatment of peripheral upper lobe lung tumors delivers less incidental irradiation to the paratracheal lymph nodes with lower likelihood of therapeutic benefit.

  1. Individualized Radical Radiotherapy of Non-Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study

    SciTech Connect (OSTI)

    Baardwijk, Angela van Bosmans, Geert; Boersma, Liesbeth; Wanders, Stofferinus; Dekker, Andre; Dingemans, Anne Marie C.; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Simons, Jean; Lambin, Philippe; Ruysscher, Dirk de

    2008-08-01

    Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissue dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.

  2. Radiation Therapy to the Plexus Brachialis in Breast Cancer Patients: Analysis of Paresthesia in Relation to Dose and Volume

    SciTech Connect (OSTI)

    Lundstedt, Dan; Gustafsson, Magnus; Steineck, Gunnar; Sundberg, Agnetha; Wilderäng, Ulrica; Holmberg, Erik; Johansson, Karl-Axel; Karlsson, Per

    2015-06-01

    Purpose: To identify volume and dose predictors of paresthesia after irradiation of the brachial plexus among women treated for breast cancer. Methods and Materials: The women had breast surgery with axillary dissection, followed by radiation therapy with (n=192) or without irradiation (n=509) of the supraclavicular lymph nodes (SCLNs). The breast area was treated to 50 Gy in 2.0-Gy fractions, and 192 of the women also had 46 to 50 Gy to the SCLNs. We delineated the brachial plexus on 3-dimensional dose-planning computerized tomography. Three to eight years after radiation therapy the women answered a questionnaire. Irradiated volumes and doses were calculated and related to the occurrence of paresthesia in the hand. Results: After treatment with axillary dissection with radiation therapy to the SCLNs 20% of the women reported paresthesia, compared with 13% after axillary dissection without radiation therapy, resulting in a relative risk (RR) of 1.47 (95% confidence interval [CI] 1.02-2.11). Paresthesia was reported by 25% after radiation therapy to the SCLNs with a V{sub 40} {sub Gy} ≥ 13.5 cm{sup 3}, compared with 13% without radiation therapy, RR 1.83 (95% CI 1.13-2.95). Women having a maximum dose to the brachial plexus of ≥55.0 Gy had a 25% occurrence of paresthesia, with RR 1.86 (95% CI 0.68-5.07, not significant). Conclusion: Our results indicate that there is a correlation between larger irradiated volumes of the brachial plexus and an increased risk of reported paresthesia among women treated for breast cancer.

  3. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    SciTech Connect (OSTI)

    Berrington de Gonzalez, Amy; Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P.

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  4. The radiation response of the cervical spinal cord of the pig: Effects of changing the irradiated volume

    SciTech Connect (OSTI)

    Van den Aardweg, G.J.M.J.; Hopewell, J.W.; Whitehouse, E.M.

    1995-01-01

    An investigation of the field size effect for the cervical spinal cord of the pig after single doses of {gamma}-rays. In this study, clinically relevant volumes of the spinal cord were irradiated. The effects of the local irradiation of different lengths of the spinal cord (2.5 cm, 5.0 cm, and 10.0 cm) have been evaluated in mature pigs (37-43 weeks). Single doses of 25-31 Gy were given using a {sup 60}Co {gamma}-source, at a dose rate of 0.21-0.30 Gy/min. The incidence of radiation-induced paralysis was used as the endpoint. The data were analyzed using probit analysis and a normal tissue complication probability (NTCP)-model. Twenty-five animals out of a total of 53 developed paralysis, with histological evidence of parenchymal and vascular changes in their white matter. The slope of the dose-response curves decreased with the decrease in field size; however, there was no significant difference at the radiation dose associated with a 50% incidence of paralysis (ED{sub 50}) irrespective of the method of analysis. The ED{sub 50} values {+-} standard errors ({+-} SE) were 27.02 {+-} 0.36 Gy, 27.68 {+-} 0.57 Gy, and 28.28 {+-} 0.78 Gy for field lengths of 10, 5, and 2.5 cm, respectively. Analysis of the data with a normal tissue complication probability (NCTP) model gave similar results. The latent period of paralysis was 7.5-16.5 weeks with no significant differences between dose and field size. No significant field size-related differences in response were detectable in the cervical spinal cord of mature pigs after single dose irradiations, specifically at a clinically relevant level of effect (< ED{sub 10}). 21 refs., 1 fig., 1 tab.

  5. Phase II Trial of Hyperfractionated Intensity-Modulated Radiation Therapy and Concurrent Weekly Cisplatin for Stage III and IVa Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Maguire, Patrick D.; Papagikos, Michael; Hamann, Sue; Neal, Charles; Meyerson, Martin; Hayes, Neil; Ungaro, Peter; Kotz, Kenneth; Couch, Marion; Pollock, Hoke; Tepper, Joel

    2011-03-15

    Purpose: To investigate a novel chemoradiation regimen designed to maximize locoregional control (LRC) and minimize toxicity for patients with advanced head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: Patients received hyperfractionated intensity modulated radiation therapy (HIMRT) in 1.25-Gy fractions b.i.d. to 70 Gy to high-risk planning target volume (PTV). Intermediate and low-risk PTVs received 60 Gy and 50 Gy, at 1.07, and 0.89 Gy per fraction, respectively. Concurrent cisplatin 33 mg/m{sup 2}/week was started Week 1. Patients completed the Quality of Life Radiation Therapy Instrument pretreatment (PRE), at end of treatment (EOT), and at 1, 3, 6, 9, and 12 months. Overall survival (OS), progression-free (PFS), LRC, and toxicities were assessed. Results: Of 39 patients, 30 (77%) were alive without disease at median follow-up of 37.5 months. Actuarial 3-year OS, PFS, and LRC were 80%, 82%, and 87%, respectively. No failures occurred in the electively irradiated neck and there were no isolated neck failures. Head and neck QOL was significantly worse in 18 of 35 patients (51%): mean 7.8 PRE vs. 3.9 EOT. By month 1, H and N QOL returned near baseline (mean 6.2, SD = 1.7). The most common acute Grade 3+ toxicities were mucositis (38%), fatigue (28%), dysphagia (28%), and leukopenia (26%). Conclusions: Hyperfractionated IMRT with low-dose weekly cisplatin resulted in good LRC with acceptable toxicity and QOL. Lack of elective nodal failures despite very low dose per fraction has led to an attempt to further minimize toxicity by reducing elective nodal doses in our subsequent protocol.

  6. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    SciTech Connect (OSTI)

    Freedman, Gary M.; Anderson, Penny R.; Bleicher, Richard J.; Litwin, Samuel; Li Tianyu; Swaby, Ramona F.; Ma, Chang-Ming Charlie; Li Jinsheng; Sigurdson, Elin R.; Watkins-Bruner, Deborah; Morrow, Monica; Goldstein, Lori J.

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  7. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    SciTech Connect (OSTI)

    Huang, Jiayi; DeWees, Todd A.; Badiyan, Shahed N.; Speirs, Christina K.; Mullen, Daniel F.; Fergus, Sandra; Tran, David D.; Linette, Gerry; Campian, Jian L.; Chicoine, Michael R.; Kim, Albert H.; Dunn, Gavin; Simpson, Joseph R.; Robinson, Clifford G.

    2015-08-01

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine the most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.

  8. Dosimetric and Late Radiation Toxicity Comparison Between Iodine-125 Brachytherapy and Stereotactic Radiation Therapy for Juxtapapillary Choroidal Melanoma

    SciTech Connect (OSTI)

    Krema, Hatem

    2013-07-01

    Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the logrank test compared the estimates. Results: The median follow-up was 46 months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.

  9. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    SciTech Connect (OSTI)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  10. Dermatofibrosarcoma Protuberans: Long-term Outcomes of 53 Patients Treated With Conservative Surgery and Radiation Therapy

    SciTech Connect (OSTI)

    Castle, Katherine O. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guadagnolo, B. Ashleigh, E-mail: aguadagn@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsai, C. Jillian [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Feig, Barry W. [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zagars, Gunar K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-01

    Purpose: To evaluate outcomes of conservative surgery and radiation therapy (RT) treatment in patients with dermatofibrosarcoma protuberans. Methods and Materials: We retrospectively reviewed the medical records of 53 consecutive dermatofibrosarcoma protuberans patients treated with surgery and preoperative or postoperative radiation therapy between 1972 and 2010. Median tumor size was 4 cm (range, 1-25 cm). Seven patients (13%) were treated with preoperative RT (50-50.4 Gy) and 46 patients (87%) with postoperative RT (60-66 Gy). Of the 46 patients receiving postoperative radiation, 3 (7%) had gross disease, 14 (30%) positive margins, 26 (57%) negative margins, and 3 (7%) uncertain margin status. Radiation dose ranged from 50 to 66 Gy (median dose, 60 Gy). Results: At a median follow-up time of 6.5 years (range, 0.5 months-23.5 years), 2 patients (4%) had disease recurrence, and 3 patients (6%) had died. Actuarial overall survival was 98% at both 5 and 10 years. Local control was 98% and 93% at 5 and 10 years, respectively. Disease-free survival was 98% and 93% at 5 and 10 years, respectively. The presence of fibrosarcomatous change was not associated with increased risk of local or distant relapse (P=.43). One of the patients with a local recurrence had gross residual disease at the time of RT and despite RT to 65 Gy developed both an in-field recurrence and a nodal and distant recurrence 3 months after RT. The other patient with local recurrence was found to have in-field recurrence 10 years after initial treatment. Thirteen percent of patients had an RT complication at 5 and 10 years, and 9% had a moderate or severe complication at 5 and 10 years. Conclusions: Dermatofibrosarcoma protuberans is a radioresponsive disease with excellent local control after conservative surgery and radiation therapy. Adjuvant RT should be considered for patients with large or recurrent tumors or when attempts at wide surgical margins would result in significant morbidity.

  11. Clinical Application of High-Dose, Image-Guided Intensity-Modulated Radiotherapy in High-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Bayley, Andrew, E-mail: Andrew.Bayley@rmp.uhn.on.c [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Rosewall, Tara; Craig, Tim; Bristow, Rob; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada)

    2010-06-01

    Purpose: To report the feasibility and early toxicity of dose-escalated image-guided IMRT to the pelvic lymph nodes (LN), prostate (P), and seminal vesicles (SV). Methods and Materials: A total of 103 high-risk prostate cancer patients received two-phase, dose-escalated, image-guided IMRT with 3 years of androgen deprivation therapy. Clinical target volumes (CTVs) were delineated using computed tomography/magnetic resonance co-registration and included the prostate, portions of the SV, and the LN. Planning target volume margins (PTV) used were as follows: P (10 mm, 7 mm posteriorly), SV (10 mm), and LN (5 mm). Organs at risk (OaR) were the rectal and bladder walls, femoral heads, and large and small bowel. The IMRT was planned with an intended dose of 55.1 Gy in 29 fractions to all CTVs (Phase 1), with P+SV consecutive boost of 24.7 Gy in 13 fractions. Daily online image guidance was performed using bony landmarks and intraprostatic markers. Feasibility criteria included delivery of intended doses in 80% of patients, 95% of CTV displacements incorporated within PTV during Phase 1, and acute toxicity rate comparable to that of lower-dose pelvic techniques. Results: A total of 91 patients (88%) received the total prescription dose. All patients received at least 72 Gy. In Phase 1, 63 patients (61%) received the intended 55.1 Gy, whereas 87% of patients received at least 50 Gy. Dose reductions were caused by small bowel and rectal wall constraints. All CTVs received the planned dose in >95% of treatment fractions. There were no Radiation Therapy Oncology Group acute toxicities greater than Grade 3, although there were five incidences equivalent to Grade 3 within a median follow-up of 23 months. Conclusion: These results suggest that dose escalation to the PLN+P+SV using IMRT is feasible, with acceptable rates of acute toxicity.

  12. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  13. Effects of radioactive hot particles on pig skin

    SciTech Connect (OSTI)

    Kaurin, D.G.; Baum, J.W.; Schaefer, C.W.

    1997-06-01

    The purpose of these studies was to determine the incidence and severity of lesions resulting from very localized deposition of dose to skin from small (< 0.5 mm) discrete radioactive particles as produced in the work environments of nuclear reactors. Hanford mini-pigs were exposed, both on a slightly off the skin, to localized replicate doses from 0.31 to 64 Gy (averaged over 1 cm{sup 2} at 70 {mu}m depth unless noted otherwise) using Sc-46, Yb-175, Tm-170, and fissioned UC{sub 2} isotopes having maximum beta-particle energies from about 0.3 to 3 MeV. Erythema and scabs (indicating ulceration) were scored for up to 71 days post-irradiation. The responses followed normal cumulative probability distributions, and therefore, no true threshold could be defined. Hence, 10 and 50% scab incidence rates were deduced using probit analyses. The lowest dose which produced 10% incidence was about 1 Gy for Yb-175 (0.5 MeV maximum energy) beta particle exposures, and about 3 to 9 Gy for other isotopes. The histopathology of lesions was determined at several doses. Single exposures to doses as large as 1,790 Gy were also given, and results were observed for up to 144 days post-exposure. Severity of detriment was estimated by analyzing the results in terms of lesion diameter, persistence, and infection. Over 1,100 sites were exposed. Only two exposed sites became infected after doses near 5000 Gy; the lesions healed quickly on treatment. 105 refs., 145 figs., 47 tabs.

  14. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    SciTech Connect (OSTI)

    McMillan, Matthew T.; Ojerholm, Eric; Roses, Robert E.; Plastaras, John P.; Metz, James M.; Mamtani, Ronac; Stripp, Diana; Ben-Josef, Edgar; Datta, Jashodeep

    2015-10-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered.

  15. Outcomes of Patients With Revised Stage I Clear Cell Sarcoma of Kidney Treated in National Wilms Tumor Studies 1-5

    SciTech Connect (OSTI)

    Kalapurakal, John A., E-mail: j-kalapurakal@northwestern.edu [Northwestern University, Chicago, Illinois (United States); Perlman, Elizabeth J. [Northwestern University, Chicago, Illinois (United States)] [Northwestern University, Chicago, Illinois (United States); Seibel, Nita L. [Cancer Therapy and Evaluation Program, Bethesda, Maryland (United States)] [Cancer Therapy and Evaluation Program, Bethesda, Maryland (United States); Ritchey, Michael [Phoenix Children's Hospital, Phoenix, Arizona (United States)] [Phoenix Children's Hospital, Phoenix, Arizona (United States); Dome, Jeffrey S. [Children's National Medical Center, Washington, District of Columbia (United States)] [Children's National Medical Center, Washington, District of Columbia (United States); Grundy, Paul E. [University of Alberta, Edmonton, AB (Canada)] [University of Alberta, Edmonton, AB (Canada)

    2013-02-01

    Purpose: To report the clinical outcomes of children with revised stage I clear cell sarcoma of the kidney (CCSK) using the National Wilms Tumor Study Group (NWTS)-5 staging criteria after multimodality treatment on NWTS 1-5 protocols. Methods and Materials: All CCSK patients enrolled in the National Wilms Tumor Study Group protocols had their pathology slides reviewed, and only those determined to have revised stage I tumors according to the NWTS-5 staging criteria were included in the present analysis. All patients were treated with multimodality therapy according to the NWTS 1-5 protocols. Results: A total of 53 children were identified as having stage I CCSK. All patients underwent primary surgery with radical nephrectomy. The chemotherapy regimens used were as follows: regimen A, C, F, or EE in 4 children (8%); regimen DD or DD4A in 33 children (62%); regimen J in 4 children (8%); and regimen I in 12 children (22%). Forty-six patients (87%) received flank radiation therapy (RT). Seven children (13%) did not receive flank RT. The median delay between surgery and the initiation of RT was 9 days (range, 3-61). The median RT dose was 10.8 Gy (range, 10-36). The flank RT doses were as follows: 10.5 or 10.8 Gy in 25 patients (47%), 11-19.9 Gy in 2 patients (4%), 20-29.9 Gy in 9 patients (17%), and 30-40 Gy in 10 patients (19%). The median follow-up for the entire group was 17 years (range, 2-36). The relapse-free and cancer-specific survival rate was 100% at the last follow-up examination. Conclusions: The present results have demonstrated that children with revised stage I CCSK using the NWTS-5 staging criteria have excellent survival rates despite the use of varying RT doses and chemotherapy regimens in the NWTS 1-5 protocols.

  16. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    SciTech Connect (OSTI)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ? 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ? 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ? 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ? 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  17. Prognostic factors predicting functional outcomes, recurrence-free survival, and overall survival after radiotherapy for metastatic spinal cord compression in breast cancer patients

    SciTech Connect (OSTI)

    Rades, Dirk . E-mail: Rades.Dirk@gmx.net; Veninga, Theo; Stalpers, Lukas J.A.; Schulte, Rainer; Hoskin, Peter J.; Poortmans, Philip; Schild, Steven E.; Rudat, Volker

    2006-01-01

    Purpose: To identify significant prognostic factors after irradiation of metastatic spinal cord compression (MSCC) in 335 breast cancer patients. Methods and Materials: The potential prognostic factors investigated included involved vertebra, other bone metastases, visceral metastases, performance status, pretreatment ambulatory status, time until motor deficits developed before RT, radiation schedule (shorter-course RT [one fraction of 8 Gy/five fractions of 4 Gy] vs. longer-course RT [10 fractions of 3 Gy/15 fractions of 2.5 Gy/20 fractions of 2 Gy), and the response to RT. Results: On multivariate analysis, better functional outcome was associated with slower development of motor deficits (p <0.001) and being ambulatory before RT (p <0.001). The overall recurrence rate of MSCC was greater if other bone metastases were present (p <0.001) and if shorter-course RT was used (p <0.001). In-field recurrences alone were more frequent after shorter-course RT (p = 0.008). Survival was negatively affected by the presence of visceral metastases (p <0.001), deterioration of motor function after RT (p <0.001), reduced performance status (p <0.001), and the rapid development of motor deficits (p = 0.044). Conclusion: Outcomes and survival after RT for MSCC in breast cancer patients are associated with several prognostic factors. Patients with poor expected survival may be treated with shorter-course RT to keep the overall treatment time short. If survival is expected to be relatively favorable, longer-course RT appears preferable, because it is associated with fewer MSCC recurrences.

  18. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    SciTech Connect (OSTI)

    Wakai, Nobuhide; Sumida, Iori; Otani, Yuki; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Hasegawa, Masatoshi

    2015-05-15

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (?3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient index (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (V shape). The optimal leaf margins for conformity index and modified GI were ?1.1 0.3 mm (mean 1 SD) and ?0.2 0.9 mm, respectively, for 7 MV FFF compared to ?1.0 0.4 and ?0.3 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were ?0.9 0.6, ?1.1 0.8, and ?2.1 1.2 mm, respectively, for 7 MV FFF compared to ?0.9 0.6, ?1.1 0

  19. Dose-Effect Relationships for Femoral Fractures After Multimodality Limb-Sparing Therapy of Soft-Tissue Sarcomas of the Proximal Lower Extremity

    SciTech Connect (OSTI)

    Pak, Daniel; Vineberg, Karen A.; Griffith, Kent A.; Sabolch, Aaron; Chugh, Rashmi; Biermann, Janet Sybil; Feng, Mary

    2012-07-15

    Purpose: We investigated the clinical and dosimetric predictors for radiation-associated femoral fractures in patients with proximal lower extremity soft tissue sarcomas (STS). Methods and Materials: We examined 131 patients with proximal lower extremity STS who received limb-sparing surgery and external-beam radiation therapy between 1985 and 2006. Five (4%) patients sustained pathologic femoral fractures. Dosimetric analysis was limited to 4 fracture patients with full three-dimensional dose information, who were compared with 59 nonfracture patients. The mean doses and volumes of bone (V{sub d}) receiving specified doses ({>=}30 Gy, 45 Gy, 60 Gy) at the femoral body, femoral neck, intertrochanteric region, and subtrochanteric region were compared. Clinical predictive factors were also evaluated. Results: Of 4 fracture patients in our dosimetric series, there were three femoral neck fractures with a mean dose of 57.6 {+-} 8.9 Gy, V30 of 14.5 {+-} 2.3 cc, V45 of 11.8 {+-} 1.1 cc, and V60 of 7.2 {+-} 2.2 cc at the femoral neck compared with 22.9 {+-} 20.8 Gy, 4.8 {+-} 5.6 cc, 2.5 {+-} 3.9 cc, and 0.8 {+-} 2.7 cc, respectively, for nonfracture patients (p < 0.03 for all). The femoral neck fracture rate was higher than at the subtrochanteric region despite lower mean doses at these subregions. All fracture sites received mean doses greater than 40 Gy. Also, with our policy of prophylactic femoral intramedullary nailing for high-risk patients, there was no significant difference in fracture rates between patients with and without periosteal excision. There were no significant differences in age, sex, tumor size, timing of radiation therapy, and use of chemotherapy between fracture and nonfracture patients. Conclusions: These dose-volume toxicity relationships provide RT optimization goals to guide future efforts for reducing pathologic fracture rates. Prophylactic femoral intramedullary nailing may also reduce fracture risk for susceptible patients.

  20. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    SciTech Connect (OSTI)

    Papaconstadopoulos, Pavlos Hegyi, Gyorgy; Seuntjens, Jan; Devic, Slobodan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modes and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green

  1. Very late nonfatal consequences of fractionated TBI in children undergoing bone marrow transplant

    SciTech Connect (OSTI)

    Faraci, Maura; Cohen, Amnon; Lanino, Edoardo; Sacco, Oliviero; Cabria, Manlio; De Marco, Riccardo; Stella, Gilberto; Dallorso, Sandro; Vitale, Vito; Dini, Giorgio

    2005-12-01

    Purpose: To describe long-term late consequences in children who received total body irradiation (TBI) for hematopoietic stem cell transplantation 10 years earlier. Methods and Materials: A cohort of 42 children treated with TBI between 1985 and 1993, still alive at least 10 years after fractionated TBI (FTBI), was evaluated. Twenty-five patients received FTBI at 330 cGy/day for 3 days (total dose 990 cGy), whereas 17 children were administered fractions of 200 cGy twice daily for 3 days (total dose 1200 cGy). Twenty-seven patients received autologous and 16 allogeneic hematopoietic stem cell transplantation. Median age at TBI was 6.3 years, and 18.4 years at most recent follow-up. Results: Cataract was diagnosed in 78% of patients after a median of 5.7 years. Hypothyroidism was detected in 12%, whereas thyroid nodules were observed in 60% of our population after a median interval of 10.2 years. Patients treated with 990 cGy developed thyroid nodules more frequently than those treated with 1200 cGy (p = 0.0002). Thyroid carcinoma was diagnosed in 14% of the total population. Females who received FTBI after menarche more frequently developed temporary ovarian dysfunction than those treated before menarche, but cases of persistent ovarian dysfunction did not differ between the two groups. Indirect signs of germinal testicular dysfunction were detected in 87% of males. Restrictive pulmonary disease was observed in 74% of patients. Osteochondroma was found in 29% of patients after a median interval of 9.2 years. This latter complication appeared more frequently in patients irradiated before the age of 3 years (p < 0.001). Conclusions: This study shows that late effects that are likely permanent, although not fatal, are frequent in survivors 10 years after TBI. However, some of the side effects observed shortly after TBI either disappeared or remained unchanged without signs of evolution. Monitoring is recommended to pursue secondary prevention strategies and counseling

  2. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    SciTech Connect (OSTI)

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J.; Koren, S.; Doss, M.; Yu, J. Q.

    2013-08-15

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.583.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25155 Gy). Mean minimum dose to 90% of target (D90

  3. Modeling Local Control After Hypofractionated Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer: A Report From the Elekta Collaborative Lung Research Group

    SciTech Connect (OSTI)

    Ohri, Nitin; Werner-Wasik, Maria; Grills, Inga S.; Belderbos, Jose; Hope, Andrew; Yan Di; Kestin, Larry L.; Guckenberger, Matthias; Sonke, Jan-Jakob; Bissonnette, Jean-Pierre; Xiao, Ying

    2012-11-01

    Purpose: Hypofractionated stereotactic body radiation therapy (SBRT) has emerged as an effective treatment option for early-stage non-small cell lung cancer (NSCLC). Using data collected by the Elekta Lung Research Group, we generated a tumor control probability (TCP) model that predicts 2-year local control after SBRT as a function of biologically effective dose (BED) and tumor size. Methods and Materials: We formulated our TCP model as follows: TCP = e{sup [BED10-c Asterisk-Operator L-TCD50]/k} Division-Sign (1 + e{sup [BED10-c Asterisk-Operator L-TCD50]/k}), where BED10 is the biologically effective SBRT dose, c is a constant, L is the maximal tumor diameter, and TCD50 and k are parameters that define the shape of the TCP curve. Least-squares optimization with a bootstrap resampling approach was used to identify the values of c, TCD50, and k that provided the best fit with observed actuarial 2-year local control rates. Results: Data from 504 NSCLC tumors treated with a variety of SBRT schedules were available. The mean follow-up time was 18.4 months, and 26 local recurrences were observed. The optimal values for c, TCD50, and k were 10 Gy/cm, 0 Gy, and 31 Gy, respectively. Thus, size-adjusted BED (sBED) may be defined as BED minus 10 times the tumor diameter (in centimeters). Our TCP model indicates that sBED values of 44 Gy, 69 Gy, and 93 Gy provide 80%, 90%, and 95% chances of tumor control at 2 years, respectively. When patients were grouped by sBED, the model accurately characterized the relationship between sBED and actuarial 2-year local control (r=0.847, P=.008). Conclusion: We have developed a TCP model that predicts 2-year local control rate after hypofractionated SBRT for early-stage NSCLC as a function of biologically effective dose and tumor diameter. Further testing of this model with additional datasets is warranted.

  4. Stereotactic Body Radiation Therapy for Oligometastases to the Lung: A Phase 2 Study

    SciTech Connect (OSTI)

    Nuyttens, Joost J.; Voort van Zyp, Noëlle C.M.G. van der; Verhoef, Cornelis; Maat, A.; Klaveren, Robertus J. van; Holt, Bronno van der; Aerts, Joachim; Hoogeman, Mischa

    2015-02-01

    Purpose: To assess, in a phase 2 study, the efficacy and toxicity of stereotactic body radiation therapy for oligometastases to the lung in inoperable patients. Methods and Materials: Patients with lung metastases were included in this study if (1) the primary tumor was controlled; (2) patients were ineligible for or refused surgery and chemotherapy; and (3) patients had 5 or fewer metastatic lesions in no more than 2 organs. Large peripheral tumors were treated with a dose of 60 Gy (3 fractions), small peripheral tumors with 30 Gy (1 fraction), central tumors received 60 Gy (5 fractions), and mediastinal tumors or tumors close to the esophagus received 56 Gy (7 fractions). Results: Thirty patients with 57 metastatic lung tumors from various primary cancers were analyzed. The median follow-up was 36 months (range, 4-60 months). At 2 years, local control for the 11 central tumors was 100%, for the 23 peripheral tumors treated to 60 Gy it was 91%, and for the 23 tumors treated in a single 30-Gy fraction it was 74% (P=.13). This resulted in an overall local control rate at 1 year of 79%, with a 2-sided 80% confidence interval of 67% to 87%. Because the hypothesized value of 70% lies within the confidence interval, we cannot reject the hypothesis that the true local control rate at 1 year is ≤70%, and therefore we did not achieve the goal of the study: an actuarial local control of the treated lung lesions at 1 year of 90%. The 4-year overall survival rate was 38%. Grade 3 acute toxicity occurred in 5 patients. Three patients complained of chronic grade 3 toxicity, including pain, fatigue, and pneumonitis, and 3 patients had rib fractures. Conclusions: The local control was promising, and the 4-year overall survival rate was 38%. The treatment was well tolerated, even for central lesions.

  5. Precision Hypofractionated Radiation Therapy in Poor Performing Patients With Non-Small Cell Lung Cancer: Phase 1 Dose Escalation Trial

    SciTech Connect (OSTI)

    Westover, Kenneth D.; Loo, Billy W.; Gerber, David E.; Iyengar, Puneeth; Choy, Hak; Diehn, Maximilian; Hughes, Randy; Schiller, Joan; Dowell, Jonathan; Wardak, Zabi; Sher, David; Christie, Alana; Xie, Xian-Jin; Corona, Irma; Sharma, Akanksha; Wadsworth, Margaret E.; Timmerman, Robert

    2015-09-01

    Purpose: Treatment regimens for locally advanced non-small cell lung cancer (NSCLC) give suboptimal clinical outcomes. Technological advancements such as radiation therapy, the backbone of most treatment regimens, may enable more potent and effective therapies. The objective of this study was to escalate radiation therapy to a tumoricidal hypofractionated dose without exceeding the maximally tolerated dose (MTD) in patients with locally advanced NSCLC. Methods and Materials: Patients with stage II to IV or recurrent NSCLC and Eastern Cooperative Oncology Group performance status of 2 or greater and not candidates for surgical resection, stereotactic radiation, or concurrent chemoradiation were eligible. Highly conformal radiation therapy was given to treat intrathoracic disease in 15 fractions to a total of 50, 55, or 60 Gy. Results: Fifty-five patients were enrolled: 15 at the 50-Gy, 21 at the 55-Gy, and 19 at the 60-Gy dose levels. A 90-day follow-up was completed in each group without exceeding the MTD. With a median follow-up of 12.5 months, there were 93 grade ≥3 adverse events (AEs), including 39 deaths, although most AEs were considered related to factors other than radiation therapy. One patient from the 55- and 60-Gy dose groups developed grade ≥3 esophagitis, and 5, 4, and 4 patients in the respective dose groups experienced grade ≥3 dyspnea, but only 2 of these AEs were considered likely related to therapy. There was no association between fraction size and toxicity (P=.24). The median overall survival was 6 months with no significant differences between dose levels (P=.59). Conclusions: Precision hypofractionated radiation therapy consisting of 60 Gy in 15 fractions for locally advanced NSCLC is generally well tolerated. This treatment regimen could provide patients with poor performance status a potent alternative to chemoradiation. This study has implications for the cost effectiveness of lung cancer therapy. Additional studies of long

  6. Early-Stage Breast Cancer Treated With 3-Week Accelerated Whole-Breast Radiation Therapy and Concomitant Boost

    SciTech Connect (OSTI)

    Chadha, Manjeet; Woode, Rudolph; Sillanpaa, Jussi; Lucido, David; Boolbol, Susan K.; Kirstein, Laurie; Osborne, Michael P.; Feldman, Sheldon; Harrison, Louis B.

    2013-05-01

    Purpose: To report early outcomes of accelerated whole-breast radiation therapy with concomitant boost. Methods and Materials: This is a prospective, institutional review board-approved study. Eligibility included stage TisN0, T1N0, and T2N0 breast cancer. Patients receiving adjuvant chemotherapy were ineligible. The whole breast received 40.5 Gy in 2.7-Gy fractions with a concomitant lumpectomy boost of 4.5 Gy in 0.3-Gy fractions. Total dose to the lumpectomy site was 45 Gy in 15 fractions over 19 days. Results: Between October 2004 and December 2010, 160 patients were treated; stage distribution was as follows: TisN0, n=63; T1N0, n=88; and T2N0, n=9. With a median follow-up of 3.5 years (range, 1.5-7.8 years) the 5-year overall survival and disease-free survival rates were 90% (95% confidence interval [CI] 0.84-0.94) and 97% (95% CI 0.93-0.99), respectively. Five-year local relapse-free survival was 99% (95% CI 0.96-0.99). Acute National Cancer Institute/Common Toxicity Criteria grade 1 and 2 skin toxicity was observed in 70% and 5%, respectively. Among the patients with ?2-year follow-up no toxicity higher than grade 2 on the Late Effects in Normal TissuesSubjective, Objective, Management, and Analytic scale was observed. Review of the radiation therapy dosevolume histogram noted that ?95% of the prescribed dose encompassed the lumpectomy target volume in >95% of plans. The median dose received by the heart D{sub 05} was 215 cGy, and median lung V{sub 20} was 7.6%. Conclusions: The prescribed accelerated schedule of whole-breast radiation therapy with concomitant boost can be administered, achieving acceptable dose distribution. With follow-up to date, the results are encouraging and suggest minimal side effects and excellent local control.

  7. Hematologic Toxicity in RTOG 0418: A Phase 2 Study of Postoperative IMRT for Gynecologic Cancer

    SciTech Connect (OSTI)

    Klopp, Ann H.; Moughan, Jennifer; Portelance, Lorraine; Miller, Brigitte E.; Salehpour, Mohammad R.; Hildebrandt, Evangeline; Nuanjing, Jenny; D'Souza, David; Souhami, Luis; Small, William; Gaur, Rakesh; Jhingran, Anuja

    2013-05-01

    Purpose: Intensity modulated radiation therapy (IMRT), compared with conventional 4-field treatment, can reduce the volume of bone marrow irradiated. Pelvic bone marrow sparing has produced a clinically significant reduction in hematologic toxicity (HT). This analysis investigated HT in Radiation Therapy Oncology Group (RTOG) 0418, a prospective study to test the feasibility of delivering postoperative IMRT for cervical and endometrial cancer in a multiinstitutional setting. Methods and Materials: Patients in the RTOG 0418 study were treated with postoperative IMRT to 50.4 Gy to the pelvic lymphatics and vagina. Endometrial cancer patients received IMRT alone, whereas patients with cervical cancer received IMRT and weekly cisplatin (40 mg/m{sup 2}). Pelvic bone marrow was defined within the treatment field by using a computed tomography density-based autocontouring algorithm. The volume of bone marrow receiving 10, 20, 30, and 40 Gy and the median dose to bone marrow were correlated with HT, graded by Common Terminology Criteria for Adverse Events, version 3.0, criteria. Results: Eighty-three patients were eligible for analysis (43 with endometrial cancer and 40 with cervical cancer). Patients with cervical cancer treated with weekly cisplatin and pelvic IMRT had grades 1-5 HT (23%, 33%, 25%, 0%, and 0% of patients, respectively). Among patients with cervical cancer, 83% received 5 or more cycles of cisplatin, and 90% received at least 4 cycles of cisplatin. The median percentage volume of bone marrow receiving 10, 20, 30, and 40 Gy in all 83 patients, respectively, was 96%, 84%, 61%, and 37%. Among cervical cancer patients with a V40 >37%, 75% had grade 2 or higher HT compared with 40% of patients with a V40 less than or equal to 37% (P =.025). Cervical cancer patients with a median bone marrow dose of >34.2 Gy also had higher rates of grade ?2 HT than did those with a dose of ?34.2 Gy (74% vs 43%, P=.049). Conclusions: Pelvic IMRT with weekly cisplatin is

  8. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose

    SciTech Connect (OSTI)

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa’n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-10-01

    Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50 Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dose and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V{sub 20} {sub Gy}), heart volume percentage receiving at least 25 Gy (V{sub 25} {sub Gy}). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm{sup 3}) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm{sup 3}) and photon-only beams (mean = 32.2 ± 28.1 cm{sup 3}, p = 0.114). Heart V{sub 25} {sub Gy} was not statistically different among the plans (p = 0.999). Total lung V{sub 20} {sub Gy} was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon

  9. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    SciTech Connect (OSTI)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P.; Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K.

    2012-02-15

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 {mu}s duration. The duration of the electron beam has been varied from 30 ns to 2 {mu}s with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  10. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect (OSTI)

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  11. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect (OSTI)

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  12. Pure LiF nanophosphors for high exposures of gamma-rays

    SciTech Connect (OSTI)

    Sharma, A. K.; Kumar, Satinder; Dogra, R.; Lochab, S. P.; Kumar, Ravi

    2012-06-05

    Nanocrystalline lithium fluoride (LiF) phosphors have been prepared by the chemical co-precipitation method at different pH values (7.0, 8.0, 9.0 and 10.00). The formation of nanocrystalline structure has been confirmed by X-ray diffraction and transmission electron microscope. Thermoluminescence (TL) properties of LiF phosphors irradiated with gamma rays at different doses of 10 Gy - 70 kGy have been further studied. The analysis of TL glow curve revealed the existence of three well resolved glow peaks, first low temperature peak at around 82 deg. C, second at 125 deg. C and third one at higher temperature around 303 deg. C. The LiF nano-crystallites synthesized at 8.00 pH with maximum TL sensitivity at studied gamma doses ranging from threshold to high exposures are potential candidate for dosimetry applications.

  13. Thermoluminescence Characteristics of Nanocrystalline LiF Phosphors Synthesized at Different pH Values

    SciTech Connect (OSTI)

    Sharma, A. K.; Dogra, R.; Kumar, Shalendra; Mishra, S. K.; Lochab, S. P.; Kumar, Ravi

    2011-07-15

    Nanocrystalline lithium fluoride (LiF) phosphors have been prepared by the chemical co-precipitation method at different pH values (7.0, 8.0, 9.0). The formation of nanocrystalline structure has been confirmed by X-ray diffraction and transmission electron microscope. The thermolumniscence (TL) properties of LiF phosphors irradiated with gamma rays at different doses have been studied. The analysis of TL glow curve has revealed the existence of two well resolved glow peaks, one low temperature peak at around 145 deg. C and other one at higher temperature around 375 deg. C. The LiF nano-crystallites synthesized at 8.00 pH have been found to show maximum TL intensity at studied gamma doses (0.1 Gy-15 Gy).

  14. TLD linearity vs. beam energy and modality

    SciTech Connect (OSTI)

    Troncalli, Andrew J.; Chapman, Jane

    2002-12-31

    Thermoluminescent dosimetry (TLD) is considered to be a valuable dosimetric tool in determining patient dose. Lithium fluoride doped with magnesium and titanium (TLD-100) is widely used, as it does not display widely divergent energy dependence. For many years, we have known that TLD-100 shows supralinearity to dose. In a radiotherapy clinic, there are multiple energies and modality beams. This work investigates whether individual linearity corrections must be used for each beam or whether a single correction can be applied to all beams. The response of TLD as a function of dose was measured from 25 cGy to 1000 cGy on both electrons and photons from 6 to 18 MeV. This work shows that, within our measurement uncertainty, TLD-100 exhibits supralinearity at all megavoltage energies and modalities.

  15. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect (OSTI)

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugo, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  16. Poly [1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] solutions used as low dose ionizing radiation dosimeter

    SciTech Connect (OSTI)

    Bronze-Uhle, E. S.; Graeff, C. F. O.; Batagin-Neto, A.; Fernandes, D. M.; Fratoddi, I.; Russo, M. V.

    2013-06-17

    In this work, the effect of gamma radiation on the optical properties of polymetallayne poly[1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] (Pt-DEBP) in chloroform solution is studied. The samples were irradiated at room temperature with doses from 0.01 Gy to 1 Gy using a {sup 60}Co gamma ray source. A new band at 420 nm is observed in the emission spectra, in superposition to the emission maximum at 398 nm, linearly dependent on dose. We propose to use the ratio of the emission amplitude bands as the dosimetric parameter. This method proved to be robust, accurate, and can be used as a dosimeter in medical applications.

  17. Dosimetric evaluation of a new design MOSFET in vivo dosimeter

    SciTech Connect (OSTI)

    Halvorsen, Per H.

    2005-01-01

    A single-use dosimeter, designed for in vivo patient dosimetry, has been evaluated. Key dosimetric characteristics of the dosimetry system have been measured for high-energy photon and electron beams commonly used in external beam therapy. Under the measurement conditions utilized, dose accuracy was within 5% for all data points, and inter-batch uniformity was acceptable, with a standard deviation of 1.7%. Dose linearity was confirmed for doses ranging from 2 to 400 cGy. The dosimeter readings were independent of dose rate for rates ranging from 80 to 480 cGy/min. When used as instructed, the dosimeter readings were accurate across the tested range of energy and modality. These measurements show that the dosimetry system's performance may be acceptable for in vivo dosimetry of entrance d{sub max} doses.

  18. Multiphasic survival curves for cells of human tumor cell lines: Induced repair or hypersensitive subpopulation?

    SciTech Connect (OSTI)

    Lambin, P. ||; Fertil, B.; Malaise, E.P.; Joiner, M.C.

    1994-04-01

    Survival of the cells of three human tumor cell lines of differing radiosensitivity was measured after irradiation with single doses of X rays (0.05-5 Gy). At doses below 1 Gy, cells were more radiosensitive than predicted by back-extrapolating the high-dose response. This difference was more marked for cells of the radioresistant cell lines than the radiosensitive cell line so that the {open_quotes}true{close_quotes} initial slopes of the survival curves, at very low doses, were similar for the cells of the three cell lines. This phenomenon could reflect an induced radioresistance so that low doses of X rays are more effective per gray than higher doses, because only at higher doses is there sufficient damage to trigger repair systems or other radioprotective mechanisms which can then act during the time course for repair of DNA injury. 35 refs., 2 figs.

  19. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect (OSTI)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  20. Final Technical Report

    SciTech Connect (OSTI)

    W. C. Griffith

    2007-01-01

    In this project we provide an example of how to develop multi-tiered models to go across levels of biological organization to provide a framework for relating results of studies of low doses of ionizing radiation. This framework allows us to better understand how to extrapolate laboratory results to policy decisions, and to identify future studies that will increase confidence in policy decisions. In our application of the conceptual Model we were able to move across multiple levels of biological assessment for rodents going from molecular to organism level for in vitro and in vivo endpoints and to relate these to human in vivo organism level effects. We used the rich literature on the effects of ionizing radiation on the developing brain in our models. The focus of this report is on disrupted neuronal migration due to radiation exposure and the structural and functional implications of these early biological effects. The cellular mechanisms resulting in pathogenesis are most likely due to a combination of the three mechanisms mentioned. For the purposes of a computational model, quantitative studies of low dose radiation effects on migration of neuronal progenitor cells in the cerebral mantle of experimental animals were used. In this project we were able to show now results from studies of low doses of radiation can be used in a multidimensional framework to construct linked models of neurodevelopment using molecular, cellular, tissue, and organ level studies conducted both in vitro and in vivo in rodents. These models could also be linked to behavioral endpoints in rodents which can be compared to available results in humans. The available data supported modeling to 10 cGy with limited data available at 5 cGy. We observed gradual but non-linear changes as the doses decreased. For neurodevelopment it appears that the slope of the dose response decreases from 25 cGy to 10 cGy. Future studies of neurodevelopment should be able to better define the dose response in

  1. Treatment Planning Constraints to Avoid Xerostomia in Head-and-Neck Radiotherapy: An Independent Test of QUANTEC Criteria Using a Prospectively Collected Dataset

    SciTech Connect (OSTI)

    Moiseenko, Vitali, E-mail: vmoiseenko@bccancer.bc.ca [Department of Medical Physics, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Wu, Jonn [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Hovan, Allan [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Saleh, Ziad; Apte, Aditya; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Harrow, Stephen [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Rabuka, Carman; Muggli, Adam [Department of Oral Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada); Thompson, Anna [Department of Radiation Oncology, Vancouver Cancer Centre, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2012-03-01

    Purpose: The severe reduction of salivary function (xerostomia) is a common complication after radiation therapy for head-and-neck cancer. Consequently, guidelines to ensure adequate function based on parotid gland tolerance dose-volume parameters have been suggested by the QUANTEC group and by Ortholan et al. We perform a validation test of these guidelines against a prospectively collected dataset and compared with a previously published dataset. Methods and Materials: Whole-mouth stimulated salivary flow data from 66 head-and-neck cancer patients treated with radiotherapy at the British Columbia Cancer Agency (BCCA) were measured, and treatment planning data were abstracted. Flow measurements were collected from 50 patients at 3 months, and 60 patients at 12-month follow-up. Previously published data from a second institution, Washington University in St. Louis (WUSTL), were used for comparison. A logistic model was used to describe the incidence of Grade 4 xerostomia as a function of the mean dose of the spared parotid gland. The rate of correctly predicting the lack of xerostomia (negative predictive value [NPV]) was computed for both the QUANTEC constraints and Ortholan et al. recommendation to constrain the total volume of both glands receiving more than 40 Gy to less than 33%. Results: Both datasets showed a rate of xerostomia of less than 20% when the mean dose to the least-irradiated parotid gland is kept to less than 20 Gy. Logistic model parameters for the incidence of xerostomia at 12 months after therapy, based on the least-irradiated gland, were D{sub 50} = 32.4 Gy and and {gamma} = 0.97. NPVs for QUANTEC guideline were 94% (BCCA data), and 90% (WUSTL data). For Ortholan et al. guideline NPVs were 85% (BCCA) and 86% (WUSTL). Conclusion: These data confirm that the QUANTEC guideline effectively avoids xerostomia, and this is somewhat more effective than constraints on the volume receiving more than 40 Gy.

  2. Multi-Institutional Review of Repeat Irradiation of Chest Wall and Breast for Recurrent Breast Cancer

    SciTech Connect (OSTI)

    Wahl, Andrew O.; Rademaker, Alfred; Kiel, Krystyna D.; Jones, Ellen L.; Marks, Lawrence B.; Croog, Victoria; McCormick, Beryl M.; Hirsch, Arica; Karkar, Ami; Motwani, Sabin B.; Tereffe, Welela; Yu, T.-K.; Sher, David; Silverstein, Joshua; Kachnic, Lisa A.; Kesslering, Christy; Freedman, Gary M.; Small, William

    2008-02-01

    Purpose: To review the toxicity and clinical outcomes for patients who underwent repeat chest wall or breast irradiation (RT) after local recurrence. Methods and Materials: Between 1993 and 2005, 81 patients underwent repeat RT of the breast or chest wall for locally recurrent breast cancer at eight institutions. The median dose of the first course of RT was 60 Gy and was 48 Gy for the second course. The median total radiation dose was 106 Gy (range, 74.4-137.5 Gy). At the second RT course, 20% received twice-daily RT, 54% were treated with concurrent hyperthermia, and 54% received concurrent chemotherapy. Results: The median follow-up from the second RT course was 12 months (range, 1-144 months). Four patients developed late Grade 3 or 4 toxicity. However, 25 patients had follow-up >20 months, and no late Grade 3 or 4 toxicities were noted. No treatment-related deaths occurred. The development of Grade 3 or 4 late toxicity was not associated with any repeat RT variables. The overall complete response rate was 57%. No repeat RT parameters were associated with an improved complete response rate, although a trend was noted for an improved complete response with the addition of hyperthermia that was close to reaching statistical significance (67% vs. 39%, p = 0.08). The 1-year local disease-free survival rate for patients with gross disease was 53% compared with 100% for those without gross disease (p < 0.0001). Conclusions: The results of our study have shown that repeat RT of the chest wall for patients with locally recurrent breast cancer is feasible, because it is associated with acceptable acute and late morbidity and encouraging local response rates.

  3. Early Clinical Outcomes Demonstrate Preserved Cognitive Function in Children With Average-Risk Medulloblastoma When Treated With Hyperfractionated Radiation Therapy

    SciTech Connect (OSTI)

    Gupta, Tejpal; Jalali, Rakesh; Goswami, Savita; Nair, Vimoj; Moiyadi, Aliasgar; Epari, Sridhar; Sarin, Rajiv

    2012-08-01

    Purpose: To report on acute toxicity, longitudinal cognitive function, and early clinical outcomes in children with average-risk medulloblastoma. Methods and Materials: Twenty children {>=}5 years of age classified as having average-risk medulloblastoma were accrued on a prospective protocol of hyperfractionated radiation therapy (HFRT) alone. Radiotherapy was delivered with two daily fractions (1 Gy/fraction, 6 to 8 hours apart, 5 days/week), initially to the neuraxis (36 Gy/36 fractions), followed by conformal tumor bed boost (32 Gy/32 fractions) for a total tumor bed dose of 68 Gy/68 fractions over 6 to 7 weeks. Cognitive function was prospectively assessed longitudinally (pretreatment and at specified posttreatment follow-up visits) with the Wechsler Intelligence Scale for Children to give verbal quotient, performance quotient, and full-scale intelligence quotient (FSIQ). Results: The median age of the study cohort was 8 years (range, 5-14 years), representing a slightly older cohort. Acute hematologic toxicity was mild and self-limiting. Eight (40%) children had subnormal intelligence (FSIQ <85), including 3 (15%) with mild mental retardation (FSIQ 56-70) even before radiotherapy. Cognitive functioning for all tested domains was preserved in children evaluable at 3 months, 1 year, and 2 years after completion of HFRT, with no significant decline over time. Age at diagnosis or baseline FSIQ did not have a significant impact on longitudinal cognitive function. At a median follow-up time of 33 months (range, 16-58 months), 3 patients had died (2 of relapse and 1 of accidental burns), resulting in 3-year relapse-free survival and overall survival of 83.5% and 83.2%, respectively. Conclusion: HFRT without upfront chemotherapy has an acceptable acute toxicity profile, without an unduly increased risk of relapse, with preserved cognitive functioning in children with average-risk medulloblastoma.

  4. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    SciTech Connect (OSTI)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  5. Correlation of Clinical and Dosimetric Factors With Adverse Pulmonary Outcomes in Children After Lung Irradiation

    SciTech Connect (OSTI)

    Venkatramani, Rajkumar; Kamath, Sunil; Wong, Kenneth; Malvar, Jemily; Sposto, Richard; Goodarzian, Fariba; Freyer, David R.; Keens, Thomas G.; and others

    2013-08-01

    Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The following pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed

  6. Microsoft Word - S07409_2010_SER

    Office of Legacy Management (LM)

    v Measurement Abbreviations cm centimeter ft feet gpm gallons per minute kg kilogram km kilometer lb pound Lpm liters per minute m meter M gal million gallons M liters million liters mg/kg milligrams per kilogram mg/L milligrams per liter mGy/day milligray per day mrem/yr millirem per year mSv/yr millisievert per year pCi/L picocuries per liter rem roentgen equivalent man µg/L micrograms per liter

  7. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect (OSTI)

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  8. Role of Adjuvant Chemoradiation Therapy in Adenocarcinomas of the Ampulla of Vater

    SciTech Connect (OSTI)

    Krishnan, Sunil Rana, Vishal; Evans, Douglas B.; Varadhachary, Gauri; Das, Prajnan; Bhatia, Sumita; Delclos, Marc E.; Janjan, Nora A.; Wolff, Robert A.; Crane, Christopher H.; Pisters, Peter W.

    2008-03-01

    Purpose: The role of adjuvant chemoradiation therapy (CRT) in the treatment of ampullary cancers remains undefined. We retrospectively compared treatment outcomes in patients treated with pancreaticoduodenectomy alone versus those who received additional adjuvant CRT. Methods and Materials: Between May 1990 and January 2006, 54 of 96 patients with ampullary adenocarcinoma who underwent potentially curative pancreaticoduodenectomy also received adjuvant CRT. The median preoperative radiation dose was 45 Gy (range, 30-50.4 Gy) and median postoperative dose was 50.4 Gy (range, 45-55.8 Gy). Concurrent chemotherapy included primarily 5-fluorouracil (52%) and capecitabine (43%). Median follow-up was 31 months. Univariate and multivariate statistical methodologies were used to determine significant prognostic factors for local control (LC), distant control (DC), and overall survival (OS). Results: Actuarial 5-year LC, DC, and OS were 77%, 69%, and 64%, respectively. On univariate analysis, age, gender, race/ethnicity, tumor grade, use of adjuvant treatment, and sequencing of adjuvant therapy were not significantly associated with LC, DC, or OS. However, on univariate analysis, T3/T4 tumor stage was prognostic for poorer LC and OS (p = 0.02 and p < 0.001, respectively); node-positive disease was prognostic for poorer LC (p = 0.03). On multivariate analysis, T3/T4 tumor stage was independently prognostic for decreased OS (p = 0.002). Among these patients (n = 34), those who received adjuvant CRT had a trend toward improved OS (median, 35.2 vs. 16.5 months; p = 0.06). Conclusions: Ampullary cancers have a distinctly better treatment outcome than pancreatic adenocarcinomas. Higher primary tumor stage (T3/T4), an independent adverse risk factor for poorer treatment outcomes, may warrant the addition of adjuvant CRT to pancreaticoduodenectomy.

  9. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    SciTech Connect (OSTI)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  10. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  11. Boron neutron capture therapy: A guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

    SciTech Connect (OSTI)

    Morris, G.M.; Whitehouse, E.M.; Hopewell, J.W. ); Coderre, J.A.; Micca, P. )

    1994-03-30

    Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model. The neutron capture agent used was [sup 10]B-enriched sodium mercaptoundecahydro-closo-dodecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T[sub 2] was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X-rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation. The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma. The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons. 30 refs., 6 figs., 1 tab.

  12. Evaluation of the dosimetric impact of applying flattening filter-free beams in intensity-modulated radiotherapy for early-stage upper thoracic carcinoma of oesophagus

    SciTech Connect (OSTI)

    Zhang, Wuzhe; Lin, Zhixiong; Yang, Zhining; Fang, Weisheng; Lai, Peibo; Lu, Jiayang; Wu, Vincent WC

    2015-06-15

    Flattening filter-free (FFF) radiation beams have recently become clinically available on modern linear accelerators in radiation therapy. This study aimed to evaluate the dosimetric impact of using FFF beams in intensity-modulated radiotherapy (IMRT) for early-stage upper thoracic oesophageal cancer. Eleven patients with primary stage upper thoracic oesophageal cancer were recruited. For each patient, two IMRT plans were computed using conventional beams (Con-P) and FFF beams (FFF-P), respectively. Both plans employed a five-beam arrangement and were prescribed with 64 Gy to (planning target volume) PTV1 and 54 Gy to PTV2 in 32 fractions using 6 MV photons. The dose parameters of the target volumes and organs at risks (OARs), and treatment parameters including the monitor units (MU) and treatment time (TT) for Con-P and FFF-P were recorded and compared. The mean D{sub 5} of PTV1 and PTV2 were higher in FFF-P than Con-P by 0.4 Gy and 0.3 Gy, respectively. For the OARs, all the dose parameters did not show significant difference between the two plans except the mean V{sub 5} and V{sub 10} of the lung in which the FFF-P was lower (46.7% vs. 47.3% and 39.1% vs. 39.6%, respectively). FFF-P required 54% more MU but 18.4% less irradiation time when compared to Con-P. The target volume and OARs dose distributions between the two plans were comparable. However, FFF-P was more effective in sparing the lung from low dose and reduced the mean TT compared with Con-P. Long-term clinical studies are suggested to evaluate the radiobiological effects of FFF beams.

  13. Gamma irradiation effects in W films

    SciTech Connect (OSTI)

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  14. Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer

    SciTech Connect (OSTI)

    Soriani, Antonella; Landoni, Valeria; Marzi, Simona; Iaccarino, Giuseppe; Saracino, Biancamaria; Arcangeli, Giorgio; Benassi, Marcello

    2007-08-15

    The purpose of this study was to check the setup and dose delivered to the patients during intraoperative electron beam radiation therapy (IORT) for prostate cancer. Twenty eight patients underwent IORT after radical prostatectomy for prostate cancer by means of a dedicated mobile accelerator, Novac7 (by Hitesys, SpA, Italy). A 9 MeV electron beam at high dose per pulse was used. Eighteen patients received IORT at escalating doses of 16, 18, and 20 Gy at 85% isodose, six patients for each dose level. Further, ten patients received 20 Gy at 85% isodose. The electron applicator position was checked in all cases by means of two orthogonal images obtained with brilliance intensifier. Target and organ at risk doses were measured in vivo by a MOSFETs dosimetry system. MOSFETs and microMOSFET dosimeters were inserted into sterile catheters and directly positioned into the rectal lumen, for ten patients, and into the bladder to urethra anastomosis, in the last 14 cases. Verification at 0 deg. led to very few adjustments of setup while verifications at 90 deg. often suggested to bring the applicator closer to the target. In vivo dosimetry showed an absorbed dose into the rectum wall {<=}1% of the total dose. The average dose value inside the anastomosis, for the 12 patients analyzed, was 23.7 Gy with a standard deviation of {+-}7.6%, when the prescription was 20 Gy at 85% isodose. Using a C-arm mobile image intensifier, it is possible to assess if the positioning is correct and safe. Radio-opaque clips and liquid were necessary to obtain good visible images. In vivo MOSFETs dosimetry is feasible and reliable. A satisfactory agreement between measured and expected doses was found.

  15. Radiodermitis After Prostatic Artery Embolization: Case Report and Review of the Literature

    SciTech Connect (OSTI)

    Laborda, Alicia; Assis, Andre Moreira De; Ioakeim, Ignatios Sánchez-Ballestín, María; Carnevale, Francisco Cesar; Gregorio, Miguel Angel De

    2015-06-15

    Prostate artery embolization (PAE) is a technically demanding new treatment option for benign prostatic hyperplasia. We present a case of radiation-induced dermitis in a 63-year-old patient after a technically successful PAE, due to high radiation exposure (KAP: 8,023,949 mGy cm{sup 2}) and long fluoroscopy time (72 min). Anatomical and technical aspects are discussed, as well as recommendations to decrease radiation exposure in these procedures.

  16. Definitive Chemoradiation Therapy Following Surgical Resection or Radiosurgery Plus Whole-Brain Radiation Therapy in Non-Small Cell Lung Cancer Patients With Synchronous Solitary Brain Metastasis: A Curative Approach

    SciTech Connect (OSTI)

    Parlak, Cem; Mertsoylu, Hüseyin; Güler, Ozan Cem; Onal, Cem; Topkan, Erkan

    2014-03-15

    Purpose/Objectives: The aim of this study was to evaluate the impact of definitive thoracic chemoradiation therapy following surgery or stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) on the outcomes of patients with non-small cell lung cancer (NSCLC) with synchronous solitary brain metastasis (SSBM). Methods and Materials: A total of 63 NSCLC patients with SSBM were retrospectively evaluated. Patients were staged using positron emission tomography-computed tomography in addition to conventional staging tools. Thoracic radiation therapy (TRT) with a total dose of 66 Gy in 2 Gy fractions was delivered along with 2 cycles of cisplatin-based chemotherapy following either surgery plus 30 Gy of WBRT (n=33) or SRS plus 30 Gy of WBRT (n=30) for BM. Results: Overall, the treatment was well tolerated. All patients received planned TRT, and 57 patients (90.5%) were also able to receive 2 cycles of chemotherapy. At a median follow-up of 25.3 months (7.1-52.1 months), the median months of overall, locoregional progression-free, neurological progression-free, and progression-free survival were 28.6, 17.7, 26.4, and 14.6, respectively. Both univariate and multivariate analyses revealed that patients with a T1-T2 thoracic disease burden (P=.001), a nodal stage of N0-N1 (P=.003), and no weight loss (P=.008) exhibited superior survival. Conclusions: In the present series, surgical and radiosurgical treatments directed toward SSBM in NSCLC patients were equally effective. The similarities between the present survival outcomes and those reported in other studies for locally advanced NSCLC patients indicate the potentially curative role of definitive chemoradiation therapy for highly selected patients with SSBM.

  17. Vertebral Compression Fracture (VCF) After Spine Stereotactic Body Radiation Therapy (SBRT): Analysis of Predictive Factors

    SciTech Connect (OSTI)

    Cunha, Marcelo V.R.; Al-Omair, Ameen; Atenafu, Eshetu G.; Masucci, Giuseppina Laura; Letourneau, Daniel; Korol, Renee; Yu, Eugene; Howard, Peter; Lochray, Fiona; Costa, Leodante B. da; Fehlings, Michael G.; Sahgal, Arjun; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario

    2012-11-01

    Purpose: Vertebral compression fractures (VCFs) are increasingly observed after spine stereotactic body radiation therapy (SBRT). The aim of this study was to determine the risk of VCF after spine SBRT and identify clinical and dosimetric factors predictive for VCF. The analysis incorporated the recently described Spinal Instability Neoplastic Score (SINS) criteria. Methods and Materials: The primary endpoint of this study was the development of a de novo VCF (ie, new endplate fracture or collapse deformity) or fracture progression based on an existing fracture at the site of treatment after SBRT. We retrospectively scored 167 spinal segments in 90 patients treated with spine SBRT according to each of the 6 SINS criteria. We also evaluated the presence of paraspinal extension, prior radiation, various dosimetric parameters including dose per fraction ({>=}20 Gy vs <20 Gy), age, and histology. Results: The median follow-up was 7.4 months. We identified 19 fractures (11%): 12 de novo fractures (63%) and 7 cases of fracture progression (37%). The mean time to fracture after SBRT was 3.3 months (range, 0.5-21.6 months). The 1-year fracture-free probability was 87.3%. Multivariate analysis confirmed that alignment (P=.0003), lytic lesions (P=.007), lung (P=.03) and hepatocellular (P<.0001) primary histologies, and dose per fraction of 20 Gy or greater (P=.004) were significant predictors of VCF. Conclusions: The presence of kyphotic/scoliotic deformity and the presence of lytic tumor were the only predictive factors of VCF based on the original 6 SINS criteria. We also report that patients with lung and hepatocellular tumors and treatment with SBRT of 20 Gy or greater in a single fraction are at a higher risk of VCF.

  18. Microsoft PowerPoint - 090402_cops_backup.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goal: Advance the quality of forecasts of orographically-induced convective precipitation by 4D observations and modeling of its life cycle precipitation by 4D observations and modeling of its life cycle Volker Wulfmeyer Institute of Physics and Meteorology (IPM) f y gy ( ) University of Hohenheim, Stuttgart, Germany and the COPS International Science Steering Committee Motivation and strategy Set up and performance Set up and performance First highlights Ongoing and future projects Wulfmeyer et

  19. SU-E-I-98: Dose Comparison for Pulmonary Embolism CT Studies: Single Energy Vs. Dual Energy

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y

    2014-06-01

    Purpose: The purpose of this study was to assess and compare the size specific dose estimate (SSDE), dose length product (DLP) and noise relationship for pulmonary embolism studies evaluated by single source dual energy computed tomography (DECT) against conventional CT (CCT) studies in a busy cancer center and to determine the dose savings provided by DECT. Methods: An IRB-approved retrospective study was performed to determine the CTDIvol and DLP from a subset of patients scanned with both DECT and CCT over the past five years. We were able to identify 30 breast cancer patients (6 male, 24 female, age range 24 to 81) who had both DECT and CCT studies performed. DECT scans were performed with a GE HD 750 scanner (140/80 kVp, 480 mAs and 40 mm) and CCT scans were performed with a GE Lightspeed 16 slice scanner (120 kVp, 352 mAs, 20 mm). Image noise was measured by placing an ROI and recording the standard deviation of the mean HU along the descending aorta. Results: The average DECT patient size specific dose estimate was to be 14.2 1.7 mGy as compared to 22.4 2.7 mGy from CCT PE studies, which is a 37% reduction in the SSDE. The average DECT DLP was 721.8 84.6 mGy-cm as compared to 981.8 106.1 mGy-cm for CCT, which is a 26% decrease. Compared to CCT the image noise was found to decrease by 19% when using DECT for PE studies. Conclusion: DECT SSDE and DLP measurements indicate dose savings and image noise reduction when compared to CCT. In an environment that heavily debates CT patient doses, this study confirms the effectiveness of DECT in PE imaging.

  20. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect (OSTI)

    Hunter, Nancy R.; Valdecanas, David [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Milas, Luka [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thames, Howard D. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mason, Kathy A., E-mail: kmason@mdanderson.org [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  1. RIngle-crystal lithium fluoride detectors

    SciTech Connect (OSTI)

    Nepomnyashchikh, A.I.; Afonin, G.P.; Mironenko, S.N.; Selyauko, A.I.

    1985-10-01

    The use of lithium fluoride as detectors for thermoluminescence dosimetry is discussed. The principal characteristics of detectors of diameters 3, 8, and 10 mm are discussed, including: lower limit of detectable dose, repeated use of detectors, dependence of the thermally stimulated luminescence yield on the radiation dose, and loss of accumulated light sum during storage of the detectors. The detector preserves its characteristics to within + or - 15% after irradiation with a dose of 5 . 10/sup 4/ cGy.

  2. World Watch Institute Feed | Open Energy Information

    Open Energy Info (EERE)

    in more than a dozen languages. For more information, visitGyQ98itsQ5wXa9eKtj6nN7ZSxBHVW5O2QwJEbFEUl8j0zopxW...

  3. Analysis of Dose at the Site of Second Tumor Formation After Radiotherapy to the Central Nervous System

    SciTech Connect (OSTI)

    Galloway, Thomas J.; Indelicato, Daniel J.; Amdur, Robert J.; Morris, Christopher G.; Swanson, Erika L.; Marcus, Robert B.

    2012-01-01

    Purpose: Second tumors are an uncommon complication of multimodality treatment of childhood cancer. The present analysis attempted to correlate the dose received as a component of primary treatment and the site of the eventual development of a second tumor. Methods and Materials: We retrospectively identified 16 patients who had received radiotherapy to sites in the craniospinal axis and subsequently developed a second tumor. We compared the historical fields and port films of the primary treatment with the modern imaging of the second tumor locations. We classified the location of the second tumors as follows: in the boost field; marginal to the boost field, but in a whole-brain field; in a whole-brain field; marginal to the whole brain/primary treatment field; and distant to the field. We divided the dose received into 3 broad categories: high dose (>45 Gy), moderate dose (20-36 Gy), and low dose (<20 Gy). Results: The most common location of the second tumor was in the whole brain field (57%) and in the moderate-dose range (81%). Conclusions: Our data contradict previous publications that suggested that most second tumors develop in tissues that receive a low radiation dose. Almost all the second tumors in our series occurred in tissue within a target volume in the cranium that had received a moderate dose (20-36 Gy). These findings suggest that a major decrease in the brain volume that receives a moderate radiation dose is the only way to substantially decrease the second tumor rate after central nervous system radiotherapy.

  4. Decomposition of PCBs in Oils Using Gamma Radiolysis A Treatability Study - Final Report

    SciTech Connect (OSTI)

    B. J. Mincher; R. E. Arbon

    1996-08-01

    Several legacy hydraulic oil waste streams contaminated with Aroclor 1260 and small amounts of Cesium-137 have been in storage at the Idaho National Engineering Laboratory (INEL) due to the lack of appropriate treatment facilities. The goal of this study was to demonstrate that polychlorinated biphenyls (PCBs) could be selectively decomposed in the oils. Removal of the PCB component to less than the 2 mg/L treatment standard should result in a waste oil that is not regulated by the Toxic Substances Control Act. Irradiation of the oils with high gamma-ray doses produces free electrons in the solution that react with PCBs. The reaction results in dechlorination of the PCBs to produce biphenyl. The gamma-ray source was spent reactor fuel stored in the Advanced Test Reactor canal at the INEL. A dry tube extends into the canal which allowed for positioning of samples in the proximity of the fuel. The gamma-ray dose rates at the samples varied from 10 to 30 kGy/h. This was measured using commercially available FWT-60 dosimeters. Irradiation of samples in a series of progressively increasing absorbed doses allowed the generation of rate constants used to predict absorbed doses necessary to meet the 2 mg/kg treatment standard. Three separate irradiation experiments were performed. The first irradiation used a maximum absorbed dose of 183 kGy. This experiment demonstrated that the PCB concentration decreased and allowed calculation of preliminary rate constants. The second irradiation used a maximum absorbed dose of 760 kGy. From this experiment, accurate rate constants were calculated, and the necessary absorbed dose to achieve the treatment standard was calculated. In the third irradiation of 2,242 kGy, all three waste streams were adequately decontaminated.

  5. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    SciTech Connect (OSTI)

    Chakravarty, Twisha; Crane, Christopher H.; Ajani, Jaffer A.; Mansfield, Paul F.; Briere, Tina M.; Beddar, A. Sam; Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E.; Das, Prajnan

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate

  6. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    SciTech Connect (OSTI)

    Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.; and others

    2013-08-01

    Purpose: To assess the doseresponse relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched casecontrol study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ?5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation doseresponse relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear doseresponse relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  7. Poster Thur Eve 57: Evaluation of laryngeal mucosal dose with conventional linac and TomoTherapy

    SciTech Connect (OSTI)

    Nusrat, H; Lekx, K; Eapen, L

    2014-08-15

    The purpose of this study was to examine whether or not underdosing occurs in the mucosal layer during treatment of glottis cancer. A larynx phantom was produced and regions at risk of recurrence due to suspected underdosing were identified and wells drilled into the phantom for flush placement of TLDs. Seven interest points were chosen. CT simulation was completed prior to the wells being drilled, and again afterwards with the TLD locations indicated using BBs. Treatment plans created for this investigation included: 3DCRT using Elekta-XiO (n=9) and VMAT created using Elekta-Monaco (n=9), both delivered on an Elekta linac; standard TomoTherapy plan (n=11) and a directionally blocked TomoTherapy plan to approximate a 3D-conformal approach (n=5). Imaging dose during TomoTherapy deliveries was accounted for. The average TLD result at each interest point was compared to the planned value using a paired t-test. There was no significant difference between the planned and measured 3DCRT dose (268.9 vs. 267.0 cGy, respectively; p>0.05). Similarly, the planned and measured TomoTherapy treatment did not show any significant differences (271.7 vs 269.7 cGy; p>0.05). In the blocked TomoTherapy plan, significant overdosing was seen (274.5 vs 294.9 cGy; p<0.05) and underdosing was not seen in the VMAT treatment (303.5 vs 321.8 cGy; p>0.05). Further investigation is ongoing to ensure appropriate normalization of results and to investigate the overdosing noted with the blocked TomoTherapy plan. Results from this study suggest that significant underdosing does not occur in the conventional treatment of early glottic cancer using 6MV photons.

  8. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    SciTech Connect (OSTI)

    Cao, Y; Li, R; Chi, Z; Zhu, S

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose received by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.

  9. Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)

    SciTech Connect (OSTI)

    Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

    2009-03-31

    This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

  10. Intensity-Modulated Radiotherapy as Primary Therapy for Prostate Cancer: Report on Acute Toxicity After Dose Escalation With Simultaneous Integrated Boost to Intraprostatic Lesion

    SciTech Connect (OSTI)

    Fonteyne, Valerie Villeirs, Geert; Speleers, Bruno; Neve, Wilfried de; Wagter, Carlos de; Lumen, Nicolas; Meerleer, Gert de

    2008-11-01

    Purpose: To report on the acute toxicity of a third escalation level using intensity-modulated radiotherapy for prostate cancer (PCa) and the acute toxicity resulting from delivery of a simultaneous integrated boost (SIB) to an intraprostatic lesion (IPL) detected on magnetic resonance imaging (MRI), with or without spectroscopy. Methods and Materials: Between January 2002 and March 2007, we treated 230 patients with intensity-modulated radiotherapy to a third escalation level as primary therapy for prostate cancer. If an IPL (defined by MRI or MRI plus spectroscopy) was present, a SIB was delivered to the IPL. To report on acute toxicity, patients were seen weekly during treatment and 1 and 3 months after treatment. Toxicity was scored using the Radiation Therapy Oncology Group toxicity scale, supplemented by an in-house-developed scoring system. Results: The median dose to the planning target volume was 78 Gy. An IPL was found in 118 patients. The median dose to the MRI-detected IPL and MRI plus spectroscopy-detected IPL was 81 Gy and 82 Gy, respectively. No Grade 3 or 4 acute gastrointestinal toxicity developed. Grade 2 acute gastrointestinal toxicity was present in 26 patients (11%). Grade 3 genitourinary toxicity was present in 15 patients (7%), and 95 patients developed Grade 2 acute genitourinary toxicity (41%). No statistically significant increase was found in Grade 2-3 acute gastrointestinal or genitourinary toxicity after a SIB to an IPL. Conclusion: The results of our study have shown that treatment-induced acute toxicity remains low when intensity-modulated radiotherapy to 80 Gy as primary therapy for prostate cancer is used. In addition, a SIB to an IPL did not increase the severity or incidence of acute toxicity.