National Library of Energy BETA

Sample records for legacy tru waste

  1. Environmental and Waste Management (WMO) Legacy TRU Waste Pause |

    Office of Environmental Management (EM)

    Department of Energy Environmental and Waste Management (WMO) Legacy TRU Waste Pause Environmental and Waste Management (WMO) Legacy TRU Waste Pause This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,

  2. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  3. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  4. DOE Achieves Second TRU Waste Cleanup

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. –The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania.

  5. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  6. RH TRU Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-Handled Transuranic Waste Program After seven years and more than 5,000 safe shipments of contact-handled (CH) transuranic (TRU) waste, the Waste Isolation Pilot Plant is now also receiving remote-handled (RH) TRU waste. In October 2006, the New Mexico Environment Department (NMED) approved the U.S. Department of Energy's plans for disposal of RH-TRU waste at WIPP. The Environmental Protection Agency (EPA) gave its approval in 2004. Located in the remote desert of southeastern New Mexico,

  7. DOE Completes TRU Waste Cleanup at Bettis | Department of Energy

    Office of Environmental Management (EM)

    TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU

  8. Los Alamos National Laboratory TRU Waste Update | Department of Energy

    Energy Savers [EERE]

    TRU Waste Update Los Alamos National Laboratory TRU Waste Update Topic: David Nickless presented the members with information on the status of the remaining transuranic waste at Los Alamos National Laboratory. PDF icon TRU Waste Update - July 29, 2015 More Documents & Publications Los Alamos National Laboratory Accident Investigation Board Corrective Action Plan Update Legacy Cleanup Completion Project Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase

  9. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  10. LANL sets TRU waste hauling record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets TRU waste hauling record LANL sets TRU waste hauling record TRU waste consists of clothing, tools, rags, debris, soil, and other items contaminated with radioactive elements, mostly plutonium. October 4, 2011 TRU waste from LANL to WIPP TRU waste from LANL to WIPP Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, October 4, 2011-Los Alamos National Laboratory has set a new LANL record for the amount of transuranic (TRU) waste from past

  11. Microsoft Word - Final_DOE_Cleanup_of_Legacy_TRU_at_SNL_Release.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories CARLSBAD, N.M., May 3, 2012 -The U.S. Department of Energy (DOE) completed cleanup of the Cold War legacy transuranic (TRU) waste at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico when four shipments of remote-handled (RH) TRU waste from Sandia arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M. for permanent disposal on May 2, 2012. The DOE Carlsbad Field

  12. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  13. EA-1962: Analysis for Below Grade Suspect Transuranic (TRU) Waste at Technical Area (TA)-54

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA to evaluate the legacy suspect transuranic (TRU) waste at Area G for the purposes of reclassification of waste type and determination of a final disposal path. Per DOE Order 435.1, Change 1, Radioactive Waste Management, and its associated guide, legacy waste at Los Alamos National Laboratory that contained TRU waste was stored and managed as TRU waste. The waste was given an interim classification for the purposes of applying the most restrictive standard until the waste could be adequately characterized and a final determination on the disposition classification was made.

  14. Transuranic (TRU) Waste

    Broader source: Energy.gov [DOE]

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

  15. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  17. CALORIMETRY OF TRU WASTE MATERIALS

    SciTech Connect (OSTI)

    C. RUDY; ET AL

    2000-08-01

    Calorimetry has been used for accountability measurements of nuclear material in the US. Its high accuracy, insensitivity to matrix effects, and measurement traceability to National Institute of Standards and Technology have made it the primary accountability assay technique for plutonium (Pu) and tritium in the Department of Energy complex. A measurement of Pu isotopic composition by gamma-ray spectroscopy is required to transform the calorimeter measurement into grams Pu. The favorable calorimetry attributes allow it to be used for verification measurements, for production of secondary standards, for bias correction of other faster nondestructive (NDA) methods, or to resolve anomalous measurement results. Presented in this paper are (1) a brief overview of calorimeter advantages and disadvantages, (2) a description of projected large volume calorimeters suitable for waste measurements, and (3) a new technique, direct measurement of transuranic TRU waste alpha-decay activity through calorimetry alone.

  18. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  19. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  20. TRU waste from the Superblock

    SciTech Connect (OSTI)

    Coburn, T.T.

    1997-05-27

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a {gamma}-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  1. RH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  2. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-09-28

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial ground. A mobile assay system will be used to determine if the drum is LLW (Le., contains <100 nCi/g). LLW will remain disposed of in the 218-W-4C Burial Ground. TRU waste will be retrieved and staged in the burial ground until it can be shipped to the CWC. The TRU drums will be stored at the CWC until they can be moved to WRAP. The WRAP facility will prepare the waste for shipment to WIPP for final disposal. For planning purposes, approximately 50% of the 10,000 drums have been estimated to contain LLW.

  3. EA-1962: Analysis for Below Grade Suspect Transuranic (TRU) Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    62: Analysis for Below Grade Suspect Transuranic (TRU) Waste at Technical Area (TA)-54 EA-1962: Analysis for Below Grade Suspect Transuranic (TRU) Waste at Technical Area (TA)-54...

  4. Repackaging Rocky Flats Legacy Transuranic Waste

    SciTech Connect (OSTI)

    McTaggart, Jerri Lynne

    2008-01-15

    Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity. Glovebags work well in facilities that are in the process of D and D or still in full operations because glovebags are very safe and cost effective.

  5. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-08-27

    Phase I retrieval of post-1970 TRU wastes from burial ground 218-W-4C can be done in a safe, efficient, and cost-effective manner. Initiating TRU retrieval by retrieving uncovered drums from Trenches 1, 20, and 29, will allow retrieval to begin under the current SWBG safety authorization basis. The retrieval of buried drums from Trenches 1, 4, 20, and 29, which will require excavation, will commence once the uncovered drum are retrieved. This phased approach allows safety analysis for drum venting and drum module excavation to be completed and approved before the excavation proceeds. In addition, the lessons learned and the operational experience gained from the retrieval of uncovered drums can be applied to the more complicated retrieval of the buried drums. Precedents that have been set at SRS and LANL to perform retrieval without a trench cover, in the open air, should be followed. Open-air retrieval will result in significant cost savings over the original plans for Phase I retrieval (Project W-113). Based on LANL and SRS experience, open-air retrieval will have no adverse impacts to the environment or to the health and safety of workers or the public. Assaying the waste in the SWBG using a mobile assay system, will result in additional cost savings. It is expected that up to 50% of the suspect-TRU wastes will assay as LLW, allowing those waste to remain disposed of in the SWBG. Further processing, with its associated costs, will only occur to the portion of the waste that is verified to be TRU. Retrieval should be done, to the extent possible, under the current SWBG safety authorization basis as a normal part of SWBG operations. The use of existing personnel and existing procedures should be optimized. By working retrieval campaigns, typically during the slow months, it is easier to coordinate the availability of necessary operations personnel, and it is easier to coordinate the availability of a mobile assay vendor.

  6. Neutron multiplication error in TRU waste measurements

    SciTech Connect (OSTI)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.

  7. Transuranic (TRU) Waste Processing Center - Cask Processing Enclosure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transuranic (TRU) Waste Processing Center - Cask Processing Enclosure Transuranic (TRU) Waste Processing Center - Cask Processing Enclosure Addthis Description Wastren Advantage, Inc., the DOE Prime contractor for the TRU Waste Processing Center (TWPC) conceived, designed, and constructed the new Cask Processing Enclosure (CPE) approach based on experience gained to date from Remote Handled (RH) waste processing. The CPE was designed August to October 2011, constructed

  8. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  10. Packing TRU Waste Containers Design | Department of Energy

    Office of Environmental Management (EM)

    Packing TRU Waste Containers Design Packing TRU Waste Containers Design This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various

  11. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    SciTech Connect (OSTI)

    E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

    2009-03-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site’s (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum bronze filters and sample ports to prevent sparking during penetration. A remotely operated cold-drilling process with self-drilling, self-tapping titanium coated spark-resistant filters was used for boxes with wall thickness of up to 6.35 mm (0.25 in). The box headspace was sampled for the presence of flammable gases. To further accelerate the project schedule, an innovative treatment process was used. Several of the OSBs were re-assayed and determined to be mixed low-level waste (MLLW) which allowed treatment, followed by disposal in the Mixed Waste Disposal Unit at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The MLLW boxes were certified using real-time radiography and overpacked into custom-built polyethylene-lined macroencapsulation containers. The polyethylene-lined lid was welded to the poly-lined box using automatically controlled resistance heating through embedded wiring in the lid. The work was performed under the existing Documented Safety Analysis since plastic welding is accomplished at low temperature and does not introduce the risks of other macroencapsulation processes, such as welding stainless steel containers. The macroencapsulation process for MLLW not only accelerated the schedule by reducing the number of boxes requiring size reduction, but it also resulted in significantly improved safety with as low as reasonable achievable levels of exposure to workers plus reduced cost by eliminating the need to perform repackaging in the VERB.

  12. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect (OSTI)

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

  13. Los Alamos National Laboratory TRU waste sampling projects

    SciTech Connect (OSTI)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-02-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC`s and SVOC`s by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ``DOE TRU Waste Quality Assurance Program Plan`` (QAPP) and the ``LANL TRU Waste Quality Assurance Project Plan,`` (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ``WIPP Waste Acceptance Criteria, Rev. 5,`` (WAC).

  14. Occurrence Reporting and Processing System (ORPS) - PISA: TRU Waste Drums

    Energy Savers [EERE]

    Containing Treated Nitrate Salts May Challenge the Safety Analysis | Department of Energy Occurrence Reporting and Processing System (ORPS) - PISA: TRU Waste Drums Containing Treated Nitrate Salts May Challenge the Safety Analysis Occurrence Reporting and Processing System (ORPS) - PISA: TRU Waste Drums Containing Treated Nitrate Salts May Challenge the Safety Analysis The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the

  15. Characterizing cemented TRU waste for RCRA hazardous constituents

    SciTech Connect (OSTI)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A. [and others

    1996-06-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol.

  16. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    SciTech Connect (OSTI)

    FRENCH, M.S.

    2000-02-08

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89 million facility under the Project Hanford Management Contract. This paper describes the operating experiences and results obtained during the first year of full operations at WRAP. Interested audiences include personnel involved in TRU waste characterization activities, TRU waste treatment and disposal facilities and TRU waste certification. The conclusions of this paper are that WRAP has proven itself to be a valuable asset for low-level and TRU waste management.

  17. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  18. DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste

    Office of Environmental Management (EM)

    at Sandia National Laboratories | Department of Energy Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories May 3, 2012 - 12:00pm Addthis Media Contact Deb Gill, U.S. DOE Carlsbad Field Office, (575) 234-7270 CARLSBAD, N.M., May 3, 2012 -The U.S. Department of Energy (DOE) completed cleanup of the Cold War legacy transuranic (TRU) waste

  19. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  20. The Department of Energy Announces Major Cold War Legacy Waste Cleanup

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone | Department of Energy The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone September 28, 2011 - 8:54am Addthis CARLSBAD, NM - The U.S. Department of Energy today announced that the Waste Isolation Pilot Plant (WIPP) received its 10,000th shipment of transuranic (TRU) waste over the weekend. This marks an important milestone in DOE's mission to clean up the country's Cold

  1. Test Plan: WIPP bin-scale CH TRU waste tests

    SciTech Connect (OSTI)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  2. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect (OSTI)

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ?12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  3. Transuranic (TRU) Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 ...

  4. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  5. IPP RH-TRU Waste Study - Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a congressional mandate specified in Public Law 102-579, referred to as the Waste Isolation Pilot Plant Land Withdrawal Act. In addition, the Department considers the...

  6. Los Alamos National Laboratory TRU Waste Status

    Broader source: Energy.gov [DOE]

    At the July 9, 2014 Committee meeting Lee Bishop DOE, Provided Information on the 3706 Campaign and Nitrate Salt Waste Storage at LANL. Information on the Administrative Order Issued by the New Mexico Environment Department was also Discussed.

  7. Microsoft Word - DOE Exceeds TRU Waste Cleanup Goal at LANL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Exceeds 2012 TRU Waste Cleanup Goal at Los Alamos National Laboratory CARLSBAD, N.M., October 3, 2012 -The Waste Isolation Pilot Plant (WIPP) Central Characterization Project (CCP) and Los Alamos National Laboratory (LANL) exceeded a fiscal year 2012 goal of characterizing and shipping 800 cubic meters of transuranic (TRU) waste, fulfilling a commitment to the state of New Mexico. The 800 cubic meters goal was exceeded by more than 100 cubic meters, with the vast majority of the TRU waste

  8. Evaluation of Los Alamos National Laboratory (LANL) PU238 Waste...

    Office of Environmental Management (EM)

    Practices More Documents & Publications Waste Management at Technical Area-55, 406-GEN-R00 Environmental and Waste Management (WMO) Legacy TRU Waste Pause Nitrate Salt...

  9. TRU Waste Management Program. Cost/schedule optimization analysis

    SciTech Connect (OSTI)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

    1985-10-01

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.

  10. Expert System for Building TRU Waste Payloads - 13554

    SciTech Connect (OSTI)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  18. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  10. NR-SRS TRU Waste Shipments Milestone June 4 2013.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Savannah River Site met two new milestone records towards analyzing, preparing, packaging and shipping radioactive transuranic (TRU) waste bound for a disposal site in New...

  11. Impact of TRU waste storage on a stand-alone MRS facility

    SciTech Connect (OSTI)

    Griffin, R.E.; Ganley, J.T.

    1983-11-01

    A study was made of the impact of transuranic (TRU) waste storage on the conceptual design of a stand-alone Monitored Retrievable Storage (MRS) facility. The amount of TRU waste requiring storage is related to the startup dates of the reprocessing plant and the final repository. Current technology is available to store TRU waste from lightwater reactor (LWR) fuel reprocessing and mixed oxide (MOX) fuel refabrication safely and economically. Unit capital costs for TRU waste storage are in the range 7 to 10 $/kg of heavy metal. 7 references, 13 figures, 16 tables.

  12. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP

    Broader source: Energy.gov [DOE]

    With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race.

  13. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    1996-02-09

    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  14. Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities

    Energy Savers [EERE]

    5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities U.S. Department of Energy Washington, D.C. 20585 AREA-SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-5506-2007 ii Available on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ DOE-STD-5506-2007 iii Foreword This Standard provides analytical assumptions and methods, as well as hazard controls

  15. Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL

    SciTech Connect (OSTI)

    Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

    2003-02-01

    The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

  16. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  17. The Department of Energy Announces Major Cold War Legacy Waste Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone Media Contact: (208) 586-4940 For Immediate Release: September 28, 2011 The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, NM - The U.S. Department of Energy today announced that the Waste Isolation Pilot Plant (WIPP) received its 10,000th shipment of transuranic (TRU) waste over the weekend. This marks an important milestone in DOE�s mission to clean up the country�s Cold War

  18. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect (OSTI)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  19. The NUMO Strategy for HLW and TRU Waste Disposal

    SciTech Connect (OSTI)

    Kitayama, K.; Oda, Y. [Nuclear Waste Management Organization of Japan (NUMO), Tokyo (Japan)

    2008-07-01

    Shortly after the Nuclear Waste Management Organization of Japan (NUMO) was established, we initiated an open call to all municipalities, requesting volunteers to host a repository for vitrified HLW. The first volunteer applied for a preliminary literature survey phase last January but, unfortunately, it withdrew the application in April. This failure provided an invaluable lesson for both the relevant authorities and NUMO; subsequently the Atomic Energy Commission of Japan and associated organizations are examining a support plan to back up NUMO's open solicitation. On another front, a recent amendment of 'The Specified Radioactive Waste Final Disposal Act' also allocates specific 'TRU' waste for deep geological disposal, requiring a demonstration of safety to a similar level as that for HLW. To implement the radioactive waste disposal project, NUMO has developed a methodology appropriate to our specific boundary conditions - the NUMO Structured Approach. This takes into account, in particular, our need to balance competing goals, such as operational safety, post-closure safety and cost, during repository tailoring to specific sites. The most important challenge for NUMO is, however, to attract volunteers. We believe that our open and structured R and D program is critical to demonstrate technical competence which, in turn, enhances the credibility of our various public relations activities. (authors)

  20. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E; Nixon, Archie E; Dodge, Robert L; Fife, Keith W; Sandoval, Arnold M; Garcia, Vincent E

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

  1. LANL Shatters Records in First Year of Accelerated TRU Waste Shipping

    Energy Savers [EERE]

    Effort | Department of Energy Shatters Records in First Year of Accelerated TRU Waste Shipping Effort LANL Shatters Records in First Year of Accelerated TRU Waste Shipping Effort December 27, 2012 - 12:00pm Addthis From left, EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, San Ildefonso Pueblo Governor Terry Aguilar, Los Alamos County Council Chair Sharon Stover, New Mexico Governor Susana Martinez, Los Alamos Site Office Manager Kevin Smith, and Laboratory Director

  2. New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP |

    Office of Environmental Management (EM)

    Department of Energy Facility Aids in Lab's Capability to Ship TRU Waste to WIPP New Facility Aids in Lab's Capability to Ship TRU Waste to WIPP December 1, 2011 - 12:00pm Addthis Workers move standard waste boxes to the High-Energy Real Time Radiography facility. Workers move standard waste boxes to the High-Energy Real Time Radiography facility. A standard waste box enters the HE-RTR at Los Alamos National Laboratory. The facility x-rays waste drums that contain high-density items such as

  3. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  4. MWIR-1995 DOE national mixed and TRU waste database users guide

    SciTech Connect (OSTI)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office`s (NTPO`s) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses {open_quotes}stored{close_quotes} streams. In this instance, {open_quotes}stored{close_quotes} streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D&D) activities. Information on future ER/D&D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set.

  5. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    SciTech Connect (OSTI)

    Johnson, J.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.; Snider, C.A. [USDOE Carlsbad Area Office, NM (United States)

    1995-12-31

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State`s Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP`s Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m{sup 3} of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals.

  6. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  7. EM’s Los Alamos TRU Waste Campaign Heads Toward Completion

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – The safe and steady progress in repackaging and shipping legacy waste has resulted in another record-setting year for the EM program at Los Alamos National Laboratory.

  8. DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation

    Office of Environmental Management (EM)

    Pilot Plant Receives 10,000th Shipment | Department of Energy ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE:

  9. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  10. Statistical analysis of radiochemical measurements of TRU radionuclides in REDC waste

    SciTech Connect (OSTI)

    Beauchamp, J.; Downing, D.; Chapman, J.; Fedorov, V.; Nguyen, L.; Parks, C.; Schultz, F.; Yong, L.

    1996-10-01

    This report summarizes results of the study on the isotopic ratios of transuranium elements in waste from the Radiochemical Engineering Development Center actinide-processing streams. The knowledge of the isotopic ratios when combined with results of nondestructive assays, in particular with results of Active-Passive Neutron Examination Assay and Gamma Active Segmented Passive Assay, may lead to significant increase in precision of the determination of TRU elements contained in ORNL generated waste streams.

  11. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  12. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  13. Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology

    Office of Environmental Management (EM)

    Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca

  14. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  15. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  16. System to control contamination during retrieval of buried TRU waste

    DOE Patents [OSTI]

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  17. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  18. Development of hydrogen gas getters for TRU waste

    SciTech Connect (OSTI)

    Kaszuba, J. P. (John P.); Mroz, E. J. (Eugene J.); Peterson, E. (Eric); Stone, M. (Mark); Haga, M. J. (Marc J.)

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzene or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material within the TP-II to ensure that no more than 50% of getter material is consumed during the 60 days; and (3) Adequate hydrogen removal rate from the getter reaction in the absence of the recombination reaction of hydrogen to produce water. This conservative approach provides a measure of safety for waste shipments by ensuring that sufficient getter material is present and by not taking credit for the recombination reaction. The rationale for measuring and reporting the hydrogen removal rate at 50% getter capacity is thus derived. All of the coated getters as well as the uncoated DEB performed well above the performance requirements. Coating the DEB with polymers did not significantly enhance getter performance in the presence of poisons relative to uncoated DEB. The next phase of the project is to evaluate a scaled-up getter package for performance under waste shipping conditions anticipated in the TP-II.

  19. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect (OSTI)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in air) for the duration of the tests. However, catalytic reaction of hydrogen with carbon triple or double bonds in the getter materials did not take place. Instead, catalytic recombination was the predominant gettering mechanism in both getter materials as evidenced by (1) consumption of oxygen in the belljars, (2) production of free water in the belljars, and (3) absence of chemical changes in both getter materials as shown by nuclear magnetic resonance spectra.

  20. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  1. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  2. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  3. GAS-GENERATION EXPERIMENTS FOR LONG-TERM STORAGE OF TRU WASTES AT WIPP

    SciTech Connect (OSTI)

    Felicione, F.S.; Carney, K.P.; Dwight, C.C.; Cummings, D.G.; Foulkrod, L.E.

    2003-02-27

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH-TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH-TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750-ml headspace was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure expected in the repository were it inundated. The temperature was maintained at the expected 30 C. The test program objective was to measure the quantities and species of gases generate d by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6-1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. One vessel measured over 4.2% hydrogen, by volume. Two other vessels generated well over 1% hydrogen, and another was at nearly 1%. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in tests containing carbon steel. Average corrosion penetration rates in carbon-steel of up to 2.3 microns per year were deduced. Conversion of carbon to carbon dioxide was calculated to be up to 4.7 {micro}g-mol/yr/g-carbon.

  4. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    SciTech Connect (OSTI)

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 /sup 10/BF/sub 3/ neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (..cap alpha..,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables.

  5. Project Plan, Status, and Lessons Learned for the LANL 3,706 m{sup 3} TRU Waste Campaign - 13085

    SciTech Connect (OSTI)

    Johns-Hughes, K.W.; Clemmons, J.S.; Cox, D.R.; Hargis, K.M.; Bishop, M.L.

    2013-07-01

    The Los Alamos National Laboratory (LANL) is currently engaged in a campaign to disposition 3,706 m{sup 3} of transuranic (TRU) waste stored above grade at its Technical Area 54 (TA-54) Area G waste management facility before June 30, 2014. This campaign includes complete removal of all non-cemented above-grade TRU waste that was in storage on October 1, 2011, and is defined as 3,706 m{sup 3} of material. TRU waste containers were placed into storage up to 40 years ago, and most of the older containers must be remediated to address compliance issues before the waste can be characterized, certified as meeting the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), and shipped for disposition. More than half of the remaining TRU waste volume stored above grade is contained within oversize boxes that contain waste items that must be repackaged or size reduced. Facilities and major types of equipment needed to remediate and characterize the TRU waste inventory include two additional oversize box processing lines that are being brought into service as Nuclear Hazard Category III facilities in fiscal year (FY) 2013. Multiple work shifts are scheduled for most remediation lines in FY 2013. An integrated risk-based project management schedule for all disposition activities has been developed that is based on a 'Solution Package' approach. Inventories of containers that have issues in common were compiled into about 15 waste categories and about 75 'Solution Packages' that identify all of the activities needed to disposition the inventory of TRU waste in storage. Scheduled activities include all precursor activities to begin remediation, remediation processing, characterization and certification to the WIPP WAC, and shipping of containers to WIPP. Other industrial processing practices that have been adopted to improve efficiency include staging of containers for remediation, characterization, and shipping; establishment of a transportation center; and load management practices for transportation payloads. Progress and accomplishments during FY 2012 are reviewed, and plans for FY 2013 are presented in some detail. Lessons learned on adoption of industrial processing practices are also discussed. (authors)

  6. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    SciTech Connect (OSTI)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)] [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  7. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    SciTech Connect (OSTI)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  8. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect (OSTI)

    Holtzscheiter, E.W. [Westinghouse Savannah River Company, AIKEN, SC (United States); Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  9. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    SciTech Connect (OSTI)

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy`s definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary.

  10. WIPP Documents - National TRU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Label 1 Content 1 Label 2 Content 2 Large file size alert This symbol means the document may be a large file size. National TRU Program Annual Transuranic Waste Inventory Report - 2015 DOE/TRU-15-3425 Rev 0 Effective date 12/15 The information presented in the ATWIR - 2015 serves as a current baseline of the TRU waste inventory for potential disposal at WIPP and may be considered in future Compliance Recertification Applications. The TRU Waste Inventory Profile Reports (Appendices A and B)

  11. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect (OSTI)

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  12. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory’s TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – A project to ship 3,706 cubic meters of transuranic (TRU) waste stored above ground at Los Alamos National Laboratory is ahead of schedule, on budget and has resulted in improved relationships among EM, the state of New Mexico and the National Nuclear Security Administration.

  13. Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE)

    At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

  14. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  15. Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums

    SciTech Connect (OSTI)

    D. T. Clark; A. S. Siahpush; G. L. Anderson

    2004-07-01

    This paper describes a materials and computational model based analysis utilized to design an engineered “overpack” container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based “Bag-Buster” process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the “Ultra-BagBuster” process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpack’s bottom plate and above the overpack’s lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

  16. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect (OSTI)

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  17. 2011-02 "Accelerating TRU Waste Shipments from Area G to WIPP...

    Broader source: Energy.gov (indexed) [DOE]

    recommendation is to help ensure that the rate of removal of Transuranic Waste from Area G is consistent with the completion of milestones in the 2005 Order on Consent. It is hoped...

  18. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment ...

  19. Compliance with Waste Acceptance Criteria of WIPP and NTS for Vitrified Low-Level and TRU Waste Forms

    SciTech Connect (OSTI)

    Harbour, J.R.; Andrews, M.K.

    1998-07-01

    A joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) has been established to evaluate vitrification as an option for the immobilization of waste within ORNL tank farms. This paper presents details of calculations based on current best available analyses of the Oak Ridge Tanks on the limits for waste loadings imposed by the waste acceptance criteria.

  20. Strategies for the cost effective treatment of Oak Ridge legacy wastes

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Huxtable, W.P.; Wilson, D.F.

    1998-03-01

    Research and development treatment strategies for treatment or elimination of several Oak Ridge plant liquid, solid, and legacy wastes are detailed in this report. Treatment strategies for volumetrically contaminated nickel; enriched uranium-contaminated alkali metal fluorides; uranium-contaminated aluminum compressor blades; large, mercury-contaminated lithium isotope separations equipment; lithium process chlorine gas streams; high-concentration aluminum nitrate wastes, and high-volume, low-level nitrate wastes are discussed. Research needed to support engineering development of treatment processes is detailed.

  1. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant...

    Office of Legacy Management (LM)

    is the worlds first underground repository licensed to safely and permanently dispose of transuranic radioactive waste left from the research and production of nuclear weapons. ...

  2. New Facility Saves $20 Million, Accelerates Waste Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility

  3. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect (OSTI)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  4. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  5. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect (OSTI)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  6. TRU decontamination of high-level Purex waste by solvent extraction using a mixed octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide/TBP/NPH (TRUEX) solvent

    SciTech Connect (OSTI)

    Horwitz, E.P.; Kalina, D.G.; Diamond, H.; Kaplan, L.; Vandegrift, G.F.; Leonard, R.A.; Steindler, M.J.; Schulz, W.W.

    1984-01-01

    The TRUEX (transuranium extraction) process was tested on a simulated high-level dissolved sludge waste (DSW). A batch counter-current extraction mode was used for seven extraction and three scrub stages. One additional extraction stage and two scrub stages and all strip stages were performed by batch extraction. The TRUEX solvent consisted of 0.20 M octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide-1.4 M TBP in Conoco (C/sub 12/-C/sub 14/). The feed solution was 1.0 M in HNO/sub 3/, 0.3 M in H/sub 2/C/sub 2/O/sub 4/ and contained mixed (stable) fission products, U, Np, Pu, and Am, and a number of inert constituents, e.g., Fe and Al. The test showed that the process is capable of reducing the TRU concentration in the DSW by a factor of 4 x 10/sup 4/ (to <100 nCi/g of disposed form) and reducing the quantity of TRU waste by two orders of magnitude.

  7. Survey of DOE NDA practices for CH-Tru waste certification--illustrated with a greater than 10,000 drum NDA data base

    SciTech Connect (OSTI)

    Schultz, F.J.; Caldwell, J.T.; Smith, J.R.

    1988-01-01

    We have compiled a greater than 10,000 CH-TRU waste drum data base from seven DOE sites which have utilized such multiple NDA measurements within the past few years. Most of these nondestructive assay (NDA) technique assay result comparisons have been performed on well-characterized, segregated waste categories such as cemented sludges, combustibles, metals, graphite residues, glasses, etc., with well-known plutonium isotopic compositions. Waste segregation and categorization practices vary from one DOE site to another. Perhaps the most systematic approach has been in use for several years at the Rocky Flats Plant (RFP), operated by Rockwell International, and located near Golden, Colorado. Most of the drum assays in our data base result from assays of RFP wastes, with comparisons available between the original RFP assays and PAN assays performed independently at the Idaho National Engineering Laboratory (INEL) Solid Waste Examination Pilot Plant (SWEPP) facility. Most of the RFP assays were performed with hyperpure germanium (HPGe)-based SGS assay units. However, at least one very important waste category, processed first-stage sludges, is assayed at RFP using a sludge batch-sampling procedure, prior to filling of the waste drums. 5 refs., 5 figs.

  8. Preliminary Notice of Violation, Washington TRU Solutions, LLC- EA-2004-08

    Broader source: Energy.gov [DOE]

    Issued to Washington TRU Solutions, LLC, related to the Transportainer Procurement and Fabrication Deficiencies at the Waste Isolation Pilot Plant

  9. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 ...EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste ...

  10. WIPP TRU TeamWorks - About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us TRU TeamWorks is an e-newsletter published for the Waste Isolation Pilot Plant team. Mission Statement: To provide WIPP employees and stakeholders with relevant, timely information that highlights project accomplishments, incorporates messages related to project goals and advances the WIPP viewpoint. Submissions: Have an article suggestion or submittal? Send an e-mail to the TRU TeamWorks staff.

  11. Marchetti New CEO of Washington TRU Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release Marchetti New CEO of Washington TRU Solutions CARLSBAD, N.M., July 31, 2003 - Stephen Marchetti, Executive Vice President of Operations for the Energy and Environment unit of Washington Group International, has been chosen to replace Pres Rahe as Chairman and CEO of Washington TRU Solutions LLC (WTS). WTS, the prime contractor for the U.S. Department of Energy (DOE) at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, is responsible for cleanup and disposal of the

  12. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect (OSTI)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  13. Legacy Management Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to managing its responsibilities associated with the environmental legacy of World War II and the Cold War. This legacy includes radioactive and chemical waste, environmental...

  14. Transuranic contaminated waste form characterization and data base

    SciTech Connect (OSTI)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  15. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    SciTech Connect (OSTI)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  16. DISPOSAL OF TRU WASTE FROM THE PLUTONIUM FINISHING PLANT IN PIPE OVERPACK CONTAINERS TO WIPP INCLUDING NEW SECURITY REQUIREMENTS

    SciTech Connect (OSTI)

    Hopkins, A.M.; Sutter, C.; Hulse, G.; Teal, J.

    2003-02-27

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site or, a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, Hanford incinerator ash and Sand, Slag and Crucible (SS&C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  17. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2005-06-01

    Experiments in combination with diffusion-kinetic modeling incorporating track structure simulations are used to examine the radiation chemistry of aqueous systems containing chlorinated hydrocarbons. Irradiations with both Co-60 gamma rays and alpha particles are employed in order to simulate typical mixed radiation environments encountered in waste management. The goal is to determine fundamental mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management.

  18. High Hydrogen Concentrations Detected In The Underground Vaults For RH-TRU Waste At INEEL Compared With Calculated Values Using The INEEL-Developed Computer Code

    SciTech Connect (OSTI)

    Rajiv Bhatt; Soli Khericha

    2005-02-01

    About 700 remote-handled transuranic (RH-TRU) waste drums are stored in about 144 underground vaults at the Intermediate-Level Transuranic Storage Facility at the Idaho National Environmental and Engineering Laboratory’s (INEEL’s) Radioactive Waste Management Complex (RWMC). These drums were shipped to the INEEL from 1976 through 1996. During recent monitoring, concentrations of hydrogen were found to be in excess of lower explosive limits. The hydrogen concentration in one vault was detected to be as high as 18% (by volume). This condition required evaluation of the safety basis for the facility. The INEEL has developed a computer program to estimate the hydrogen gas generation as a function of time and diffusion through a series of layers (volumes), with a maximum five layers plus a sink/environment. The program solves the first-order diffusion equations as a function of time. The current version of the code is more flexible in terms of user input. The program allows the user to estimate hydrogen concentrations in the different layers of a configuration and then change the configuration after a given time; e.g.; installation of a filter on an unvented drum or placed in a vault or in a shipping cask. The code has been used to predict vault concentrations and to identify potential problems during retrieval and aboveground storage. The code has generally predicted higher hydrogen concentrations than the measured values, particularly for the drums older than 20 year, which could be due to uncertainty and conservative assumptions in drum age, heat generation rate, hydrogen generation rate, Geff, and diffusion rates through the layers.

  19. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste.

  20. Architectural Framework for Addressing Legacy Waste from the Cold War - 13611

    SciTech Connect (OSTI)

    Love, Gregory A.; Glazner, Christopher G.; Steckley, Sam

    2013-07-01

    We present an architectural framework for the use of a hybrid simulation model of enterprise-wide operations used to develop system-level insight into the U.S. Department of Energy's (DOE) environmental cleanup of legacy nuclear waste at the Savannah River Site. We use this framework for quickly exploring policy and architectural options, analyzing plans, addressing management challenges and developing mitigation strategies for DOE Office of Environmental Management (EM). The socio-technical complexity of EM's mission compels the use of a qualitative approach to complement a more a quantitative discrete event modeling effort. We use this model-based analysis to pinpoint pressure and leverage points and develop a shared conceptual understanding of the problem space and platform for communication among stakeholders across the enterprise in a timely manner. This approach affords the opportunity to discuss problems using a unified conceptual perspective and is also general enough that it applies to a broad range of capital investment/production operations problems. (authors)

  1. Fabrication of a Sludge-Conditioning System for Processing Legacy Wastes from the Gunite and Associated Tanks

    SciTech Connect (OSTI)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-08-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS.

  2. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU

  3. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2004-12-01

    Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 and HCl from chlorinated hydrocarbons. 60Co gamma-radiolysis experiments and stochastic kinetic modeling have been used to investigated the radiation-induced yield of H2 and Cl- from aqueous solutions of 1,2-dichloroethane (1,2-DCE) and 1,1-dichloroethane (1,1-DCE) over the concentration range 1-80 mM. In deoxygenated solution, the yield of H2 from both 1,2-DCE and 1,1-DCE solutions decreases as the concentration of DCE is increased. The decrease in the H2 yield shows that the reaction of H atom with DCE does not lead to the production of H2. This observation is unexpected and reflects the reverse of the effect seen in the gas phase, where the reaction of H atom with 1,2-DCE and 1,1-DCE leads to the production of H2. The yield of Cl- from 1,2-DCE and 1,1-DCE solutions increases slightly from 2.8 ions/100eV to 3.6 over the concentration range 10-50 mM, demonstrating the increased competition of the DCE with intra-track processes. Comparison of the measured yields of Cl- with the predictions of stochastic kinetic modeling shows that the reactions of eaq- with 1,2-DCE and with 1,1-DCE are quantitative, and that the reaction of H atom with both DCEs leads to the production of Cl- (and Haq+). In aerated solution, the yield of Cl- from 1,2-DCE and from 1,1-DCE solutions is very significantly higher ({approx} x 3-4) than from deoxygenated solution. Furthermore, the observed yield is both dose and dose rate dependent. The mechanisms for Cl- production in aerated aqueous solutions of 1,2-DCE and of 1,1-DCE are currently under investigation. Rate coefficients for the reaction of eaq- and -OH with chlorinated hydrocarbons. There is considerable disagreement over the rate coefficients for the reaction of the primary radiation-produced reducing and oxidizing radicals from water, eaq- and -OH respectively, with 1,2-DCE and with 1,1-DCE. Electron pulse-radiolysis experiments monitoring the decay of eaq- have been used to measure the rate coefficients: 1,2 DCE eaq- + CH2Cl-CH2Cl ' CH2Cl-CH2- + Cl- k1 = 2.3 x 109 dm3 mole-1 s-1 1,1 DCE eaq- + CH3Cl-CHCl2 ' CH3-CHCl- + Cl- k2 = 3.5 x 109 dm3 mole-1 s-1 while competition kinetic experiments were employed to determine the rate coefficients: 1,2 DCE -OH + CH2Cl-CH2Cl ' CH2Cl-CHCl- + H2O k3 = 1.8 x 108 dm3 mole-1 s-1 1,1 DCE -OH + CH3Cl-CHCl2 ' CH3-CCl2- + H2O k4 = 1.1 x 108 dm3 mole-1 s-1 The values obtained are similar to those measured by Asmus and co-workers, but there is a significant discrepancy from the estimate of Getoff and co-workers for k1. Rate coefficient for the reaction of OH with thiocyanide ion. The rate coefficient for the reaction of the -OH radical with a chlorinated hydrocarbon is obtained by a competition experiment, in which the change in the radiation-induced yield of (SCN)2-- from an aqueous SCN- solution is monitored on the addition of the hydrocarbon. The mechanism for the radiation-induced formation of (SCN)2-- from a SCN- is complex and involves a number of equilibria. Careful electron pulse radiolysis experiments have been performed and analyzed, employing the full, complex reaction mechanism, to re-evaluated the rate coefficient for the fundamental reaction -OH + SCN- ' (HOSCN)-- k5 = 1.4 x 1010 dm3 mole-1 s-1 This reaction is central to the experimental determination of the rate coefficient of a solute with OH using the

  4. Resuming Operations at WIPP and the National TRU Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy WIPP and the National TRU Program Resuming Operations at WIPP and the National TRU Program Presentation from the 2015 DOE National Cleanup Workshop by Phil Breidenbach, Project Manager, Nuclear Waste Partnership, LLC. PDF icon Resuming Operations at WIPP and the National TRU Program More Documents & Publications Voluntary Protection Program Onsite Review, Nuclear Waste Partnership, LLC - March 2015 Operating Experience Summary - 2015-01 - November 20, 2015 Before the House

  5. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory, Oak Ridge, Tennessee | Department of Energy 305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at

  6. TRASH TO TREASURE: CONVERTING COLD WAR LEGACY WASTE INTO WEAPONS AGAINST CANCER

    SciTech Connect (OSTI)

    Nicholas, R.G.; Lacy, N.H.; Butz, T.R.; Brandon, N.E.

    2004-10-06

    As part of its commitment to clean up Cold War legacy sites, the U.S. Department of Energy (DOE) has initiated an exciting and unique project to dispose of its inventory of uranium-233 (233U) stored at Oak Ridge National Laboratory (ORNL), and extract isotopes that show great promise in the treatment of deadly cancers. In addition to increasing the supply of potentially useful medical isotopes, the project will rid DOE of a nuclear concern and cut surveillance and security costs. For more than 30 years, DOE's ORNL has stored over 1,200 containers of fissile 233U, originally produced for several defense-related projects, including a pilot study that looked at using 233U as a commercial reactor fuel. This uranium, designated as special nuclear material, requires expensive security, safety, and environmental controls. It has been stored at an ORNL facility, Building 3019A, that dates back to the Manhattan Project. Down-blending the material to a safer form, rather than continuing to store it, will eliminate a $15 million a year financial liability for the DOE and increase the supply of medical isotopes by 5,700 percent. During the down-blending process, thorium-229 (229Th) will be extracted. The thorium will then be used to extract actinium-225 (225Ac), which will ultimately supply its progeny, bismuth-213 (213Bi), for on-going cancer research. The research includes Phase II clinical trials for the treatment of acute myelogenous leukemia at Sloan-Kettering Memorial Cancer Center in New York, as well as other serious cancers of the lungs, pancreas, and kidneys using a technique known as alpha-particle radioimmunotherapy. Alpha-particle radioimmunotherapy is based on the emission of alpha particles by radionuclides. 213Bi is attached to a monoclonal antibody that targets specific cells. The bismuth then delivers a high-powered but short-range radiation dose, effectively killing the cancerous cells but sparing the surrounding tissue. Production of the actinium and bismuth would be a private venture at no cost to the government. Isotek Systems, LLC, was commissioned by the DOE to execute the project, known as the 233U Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown Project. Isotek is a partnership between Duratek Federal Services, Burns and Roe Enterprises, and Nuclear Fuel Services. By pooling their pioneering experiences in nuclear engineering and design, nuclear recycling, and waste management, the partnership has developed a novel process to meet this clean-up milestone. The project is not only important for its cancer treatment potential, but also for setting the stage for reducing global threats through the down-blending of materials.

  7. Physics Features of TRU-Fueled VHTRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  8. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workers lift a waste box from a TruPact II container at the Waste Isolation Pilot Plant. Workers lift a waste box from a TruPact II container at the Waste Isolation Pilot Plant. ...

  9. Washington TRU Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Washington TRU Solutions Inc Jump to: navigation, search Name: Washington TRU Solutions, Inc. Place: Carlsbad, New Mexico Zip: 88220 Product: New Mexico-based managing and...

  10. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  11. ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS

    SciTech Connect (OSTI)

    DAYLEY, L

    2004-06-24

    This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and frequency of postulated credible accident scenarios, this study presents a plan and schedule for accomplishing necessary venting for segregated unvented TRU drums. A recommended method for venting TRU drums is proposed. Upon revision of the authorization basis document to include TRU drum venting, and successful completion of readiness activities; TRU drum venting will be implemented in the LLBG.

  12. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elation over the first waste shipment was quickly replaced by hard economics: more drums needed to be characterized and shipping schedules needed leveling. Meanwhile,...

  13. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership, extends nightly from the day after Thanksgiving until New Year's Eve and requires about 350 volunteer hours. Pictured above is NWP Central Characterization...

  14. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Page 4 of 382 Table of Figures Figure 1-1. U.S. Department of Energy TRU Waste Generator Sites ... 17 Figure 2-1. TRU Waste Inventory Process Flowchart...

  15. Microsoft Word - Transmittal of the Certification Audit Report for the Hanford TRU Program.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    389:UFC 2300.00 Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 October 15, 2008 Mr. Steve Zappe, Project Leader Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Certification Audit Report for the Hanford TRU Program Dear Mr. Zappe: Enclosed is the Hanford TRU Program Audit Report for the processes performed to characterize and certify waste as required

  16. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and here, but it is interesting to see the unloading aspect of the waste," Mobile Loader Edward Anaya said. Anaya visited WIPP on one previous occasion, but this was his first...

  17. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect (OSTI)

    Lussiez, G.; Hickman, S.; Anast, K. R.; Oliver, W. B.

    2004-01-01

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  18. TruRead | Open Energy Information

    Open Energy Info (EERE)

    TruRead Jump to: navigation, search Name: TruRead Place: Cheshire, United Kingdom Zip: SK9 5AG Sector: Services Product: Provides integrated services for end-to-end collection and...

  19. Westinghouse TRU Solutions Launches New Web Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRU Solutions LLC Launches New Web Site CARLSBAD, N.M., February 2, 2001 - Westinghouse TRU Solutions LLC (WTS) today launched its new Web site. WTS is the new management and ...

  20. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  1. DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate

    Energy Savers [EERE]

    WIPP | Department of Energy Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP January 18, 2005 - 9:55am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that it has decided to exercise the five year option in the Washington TRU Solutions LLC ("WTS") contract to continue managing and operating the Department's Waste Isolation Pilot Plant (WIPP),

  2. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2013 WIPP Quick Facts (As of 1-23-13) 11,112 Shipments received since opening (10,483 CH and 629 RH) 85,498 Cubic meters of waste disposed (85,185 CH and 313 RH) 165,172 Containers disposed in the underground (164,545 CH and 627 RH) WIPP employee honored by American Red Cross WIPP's Bob Walker was among a handful of honorees at the American Red Cross' Southeastern New Mexico Real Heroes Breakfast & Awards held January 10 in Hobbs. The organization awarded Real Heroes in various

  3. RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17.

  4. Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Site recently surpassed American Recovery and Reinvestment Act goals to accelerate the cleanup of legacy waste and fuels.

  5. DOE - Office of Legacy Management -- Niagara Falls Storage Site...

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Assessment of Historical Knolls Atomic Power Laboratory Waste Storage...

  6. Managing Legacy Records for Formerly Utilized Sites Remedial Action Program

    Office of Environmental Management (EM)

    Sites | Department of Energy Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008) PDF icon Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites More Documents & Publications FUSRAP Overview Recent Developments in DOE FUSRAP Process for

  7. Transuranic (TRU) Waste Site Certification/ Recertification

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  8. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two types of TRU waste, Contact-Handled (CH) and Remote-Handled (RH). Fifteen 55-gallon drums of RH-TRU waste were removed from BAPL between Sept. 19 and 21 using RH-72B shipping...

  9. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  10. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  11. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Environmental Management (EM)

    2 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  12. Transuranic contaminated waste form characterization and data base

    SciTech Connect (OSTI)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  13. Microsoft Word - ARRA INVESTMENT RELEASE REVISED FINAL Aug 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were cleaned of legacy TRU waste during its first 10 years. Through the Recovery Act investment, eight additional sites will be cleaned of legacy TRU waste during the three year...

  14. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    SciTech Connect (OSTI)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.; Petrovic, B.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

  15. DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE Joe Davis, 202/586-4940 Tuesday, January 18, 2004 DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that it has decided to exercise the five year option in the Washington TRU Solutions LLC ("WTS") contract to continue managing and operating the Department's Waste Isolation Pilot Plant (WIPP), located in New Mexico. The option DOE exercised is a

  16. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect (OSTI)

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  17. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  18. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  19. DOE Exercises 5 Year Option on Washington TRU Solutions Contract...

    Energy Savers [EERE]

    DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP DOE Exercises 5 Year Option on Washington TRU Solutions Contract to Operate WIPP January 18, 2005 -...

  20. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters | Department of Energy Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters This presentation discusses the TRU temperature profile. PDF icon deer08_bruenke.pdf More Documents & Publications Verifying TRU Passive DPF Cold Ambient Performance Active Diesel Emission Control Technology for Transport Refrigeration Units Engine-External

  1. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    SciTech Connect (OSTI)

    Waugh, W.J.; Miller, D.E.; Morris, S.A.; Sheader, L.R.; Glenn, E.P.; Moore, D.; Carroll, K.C.; Benally, L.; Roanhorse, M.; Bush, R.P.; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  2. Lab sets new record for waste volume removed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this important milestone goes to the many team members who made it possible," said Lee Bishop, TRU waste manager at the Department of Energy's National Nuclear Security...

  3. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    contract. TRU waste exists in a variety of forms ranging from unprocessed laboratory trash, such as tools, glassware, and gloves, to solidified sludges from wastewater...

  4. Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste...

    Office of Environmental Management (EM)

    Continue implementation of the LANL Framework Agreement * Continue progress on "3706 Campaign" * Optimize TRU waste shipments to WIPP * LANL, Idaho, Savannah River, ANL * Idaho: *...

  5. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  6. DOE - Office of Legacy Management -- Park

    Office of Legacy Management (LM)

    West Virginia Parkersburg, West Virginia, Disposal Site A Nuclear Waste Policy Act Section 151 Site parkersburg_map The Parkersburg Disposal Site was remediated by the owner under the U.S. Nuclear Regulatory Commission Site Decommissioning Management Program and transferred to the federal government under Section 151 of the Nuclear Waste Policy Act. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and

  7. Office of Legacy Management

    Office of Legacy Management (LM)

    Energy Office of Legacy Management JUL 1 0 2008 Alonso Ramirez, Scientific Director EI Verde Research Station Institute for Tropical Ecosystem Studies University of Puerto Rico...

  8. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste

  9. DOE Cites Washington TRU Solutions for Nuclear Safety Violations |

    Energy Savers [EERE]

    Department of Energy TRU Solutions for Nuclear Safety Violations DOE Cites Washington TRU Solutions for Nuclear Safety Violations December 22, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Washington TRU Solutions (WTS) that it will fine the company $192,500 for violations of the department's nuclear safety requirements. The Preliminary Notice of Violation (PNOV) issued today cites a number of deficiencies that led to a series of low-level plutonium

  10. Enforcement Letter, Washington TRU Solutions - September 8, 2006...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRU Solutions, LLC related to Quality Assurance Deficiencies associated with the Super High-Efficiency Neutron Counter Non-Destructive Assay System Refurbishment at the...

  11. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active...

    Broader source: Energy.gov (indexed) [DOE]

    Verifying TRU Passive DPF Cold Ambient Performance Active Diesel Emission Control Technology for Transport Refrigeration Units Engine-External HC-Dosing for Regeneration of Diesel ...

  12. Westinghouse TRU Solutions LLC Earns Corporate Award for Mining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earns Corporate Award for Mining Operations CARLSBAD, N.M., May 3, 2001 - Washington Group International has selected Westinghouse TRU Solutions LLC (WTS) for a 2000 Eagle Award....

  13. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    SciTech Connect (OSTI)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M.

    2013-07-01

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  14. Mr. Todd Sellmer Washington TRU Solutions LLC

    National Nuclear Security Administration (NNSA)

    '<uCL.EAR REGULATORY COMM!S.s;O'- 'NA3H1NGTON :::: C 20555-C0i!' August C' 2009 Mr. Todd Sellmer Washington TRU Solutions LLC P.O Box 2078 Carlsbad. NM 88221 SUBJECT CERTIFICATE OF COMPLIANCE NO 9218 FOR THE MODEL NO TRUPACT- " PACKAGE Dear Mr Sellmer' As requested by your application on behalf of the Department of Energy (DOE) dated July 2 ~ 2009. enclosed is Certificate of Compliance No. 9218. RevIsion No. 20, for the Model No TRUPACT-II package. Changes made to the enclosed

  15. Waste Isolation Pilot Plant Update

    Office of Environmental Management (EM)

    Update J. R. Stroble Director, National TRU Program U.S. Department of Energy Carlsbad Field Office National Transportation Stakeholder Forum May 11, 2011 Denver, Colorado 2 2 Shipments received at WIPP to date: 9,493 Contact-handled: 9,019 Remote-handled: 474 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 44 84 366 947 818 1,002 98 8 997 1,144 730 1,032 Total Shipments by Calendar Year (Including intersite shipments) 1,194 CH TRU waste shipments only CH and RH TRU waste

  16. COMPREHENSIVE LEGACY MANAGEMENT

    Office of Legacy Management (LM)

    Fernald Preserve, Fernald, Ohio Comprehensive Legacy Management and Institutional Controls Plan Volumes I and II January 2015 LMS/FER/S03496-8.0 Revision 8.0 Final This page intentionally left blank LMS/FER/S03496-8.0 Comprehensive Legacy Management and Institutional Controls Plan Volumes I and II Fernald Preserve Fernald, Ohio January 2015 Revision 8 Final This page intentionally left blank Volume I Legacy Management Plan January 2015 U.S. Department of Energy Revision 8 Final This page

  17. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  18. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  19. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  20. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  1. Tru-ly Clean - What Does It Mean?

    SciTech Connect (OSTI)

    Hopkins, A.

    2008-07-01

    The evolution and genesis of the definition of transuranic waste (known as TRU) and its application to the cleanup criteria applied to soils contaminated with transuranics, specifically plutonium, has been a matter of discussion at contaminated sites in the United States and elsewhere. Cleanup decisions and the processes that led up to those decisions have varied at several plutonium contaminated sites within the United States and without the pacific region. The sites with radionuclide soil action levels include Bikini and Enewetak Atolls, Republic of the Marshall Islands; Johnston Atoll, Hawaii; the Hanford Site in Washington State; the Nevada Test Site; the Rocky Flats Environmental Technology Site in Colorado; the Chariot Site in north Alaska; and the Maralinga Site in Australia. The soil-action level developed for Rocky Flats by the U.S. Department of Energy, U.S. Environmental Protection Agency, and the Colorado Department of Public Health and Environment for plutonium is one of the higher soil-action levels approved by regulatory agencies that is considered protective for future use of land at a cleanup site. The Republic of the Marshall Islands has adopted a relatively conservative cleanup standard to accommodate the subsistence lifestyle of the islanders, while the Rocky Flats Environmental Technology Site has been transferred to the U.S. Department of the Interior to be used as a fish and wildlife refuge, a land use that resulted in a less conservative plutonium soil cleanup level. (authors)

  2. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect (OSTI)

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  3. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the facility is the largest...

  4. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, ... WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste enough ...

  5. Transuranic Waste Processing Center Contract Awarded to Wastren Advantage, Inc.

    Broader source: Energy.gov [DOE]

    The U. S. Department of Energy announces the award of a contract to Wastren Advantage, Inc. (WAI) to manage waste management activities at the Oak Ridge Transuranic (TRU) Waste Processing Center.

  6. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Office of Environmental Management (EM)

    (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the...

  7. Low-Level Waste Disposal Facility Federal Review Group Manual

    Broader source: Energy.gov [DOE]

    This Revision 3 of the Low-Level Waste Disposal  Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

  8. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  9. TRU-DOENV--787Rev3.indd

    National Nuclear Security Administration (NNSA)

    Background T ransuranic radioactive waste is one of several types of waste handled by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Offi ce at the Nevada Test Site. Transuranic waste contains man-made radioactive elements heavier than uranium, such as plutonium, hence the name "trans" or "beyond" uranium. Most of the transuranic waste managed at the Nevada Test Site was generated as part of a nuclear weapons research and development

  10. DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite

  11. DOE Seeks Independent Evaluation of Remote-Handled Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste

  12. Verifying TRU Passive DPF Cold Ambient Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRU Passive DPF Cold Ambient Performance Verifying TRU Passive DPF Cold Ambient Performance Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_lucht.pdf More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines Emissions Reduction

  13. Central Characterization Program (CCP) TRU Nonconforming Item...

    Office of Environmental Management (EM)

    More Documents & Publications Results of Oxidizing Solids Testing Underground Flow Measurement and Particle Release Test Nitrate Salt Bearing Transuranic Waste Container Monitoring...

  14. WIPP TRU TeamWorks - Acronym List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FSM Facility Shift Manager GET General Employee Training HalfPACT NRC-certified packaging, capable of transporting seven 55-gallon drums or one standard waste box Hazmat...

  15. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  16. Settlement Agreement on TRU Mixed Waste Storage at Nevada Test...

    Office of Environmental Management (EM)

    contained within this Agreement. * The State covenants not to initiate or maintain any civil claim or action against DOE for the alleged violations addressed by this Agreement,...

  17. Oak Ridge National Laboratory TRU Waste Processing Center Tank...

    Office of Environmental Management (EM)

    water at any time * Low dose rate (1 Rhr on contact, much lower than 2004 Supernate campaign) * Robustsolid monolith that is remote handled, high alpha LLW * Non-hazardous at...

  18. WIPP RH-TRU Waste Study - Notice To Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the United States of America. Use of NTP WWW server is intended only for the retrieval of information available through NTP WWW documents. Only authorized WIPP...

  19. Training Underway for TRU Waste Employees Hired For Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the facility. Most of the new hires are currently in 90-day training period that includes classroom and hands-on practical exercises on methods for characterizing, sorting, and...

  20. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  1. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect (OSTI)

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  2. Lab sets new record for waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New record for waste shipments Lab sets new record for waste shipments LANL completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. August 20, 2010 LANL's shipment of transuranic waste leaves Los Alamos. LANL's shipment of transuranic waste leaves Los Alamos. Contact Fred deSousa Communications Office (505) 500-5672 Email "Removing this waste from Los Alamos is crucial to our plans for overall

  3. Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL

    SciTech Connect (OSTI)

    Khericha, S.; Bhatt, R.; Liekhus, K.

    2003-01-14

    The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

  4. Westinghouse TRU Solutions LLC Assumes WIPP Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant (WIPP). Heading up the new management team is Henry F. "Hank" Herrera, President and General Manager of WTS. A retired U.S. Navy Rear Admiral, Herrera...

  5. Phase 2, Solid waste retrieval strategy

    SciTech Connect (OSTI)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  6. CsIX/TRU Grout Feasibility Study

    SciTech Connect (OSTI)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    1998-11-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

  7. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  8. Los Alamos Legacy Clean-up Completion Project Bridge Contract | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Jack Craig DOE HQ, Provided Information on the Bridge Contract for the Shift from NNSA Oversight to EM Oversight for LANL Environmental Clean-up. PDF icon Bridge Contract - December 10, 2014 More Documents & Publications Los Alamos National Laboratory TRU Waste Update Accident Investigation Report - Radiological Release

  9. WIPP contractor receives VPP Legacy of Stars Award 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Operating Contractor Recognized for Continuous Safety Performance CARLSBAD, N.M., September 20, 2013 - The U.S. Department of Energy (DOE) recognized Nuclear Waste Partnership LLC (NWP), the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor, with the Voluntary Protection Program (VPP) Legacy of Stars Award in latter August 2013. "Safety is central to everything we do, and achieving this elite designation validates our work and the safety-focused

  10. Linking Legacies F2002-00544

    Office of Environmental Management (EM)

    Linking Legacies F2002-00544 Fizeau. This 11-kiloton atmospheric nuclear explosion, code-named "Fizeau," was one of 210 atmospheric nuclear tests conducted by the United States. Of the 1,054 nuclear tests explosions conducted by the U.S., 904 were detonated at the Nevada Test Site. All U.S. nuclear explosions since 1962 have been underground. Event Fizeau, Operation Plumbbob, Yucca Flat, Nevada Test Site, Neuada. 9:45 A.M., September 14, 1957. Barrels of transuranic waste sit on a

  11. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect (OSTI)

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  12. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's Marketplace Los Alamos National Laboratory performed a ...

  13. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  14. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  15. CRAD, Management- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  16. CRAD, Training- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  17. Legacy Cleanup Completion Project

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 DOE National Cleanup Workshop by Christine Gelles, Associate Deputy Assistant Secretary, Waste Management EM HQ.

  18. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  19. Idaho Site Taps Old World Process to Treat Nuclear Waste

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments.

  20. A Legacy of Benefit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Legacy of Benefit A Legacy of Benefit Over more than three decades, FE research and development has established a legacy of significant achievement and return of value and benefits for the public funds invested. PDF icon Fossil Energy Research Benefits - A Legacy of Benefit More Documents & Publications Carbon Capture and Storage Return on Investment Fossil Energy FY 2013 Budget-in-Brief

  1. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    SciTech Connect (OSTI)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated TRUs against unlawful diversion from within a processing facility. To achieve this, a comprehensive strategy was implemented to incorporate traditional detectors and advanced Tensioned Metastable Fluid (TMFD) metastable fluid detectors (developed, in part, under this project) into a novel detector assembly coupled to the UREX+ centrifugal contactor array. The sections below provide a brief summary of the technical achievements completed during this project. The principal outcomes are documented in more complete details contained the doctoral dissertations and masters theses, journal papers, conference proceedings and additional items for more than the 35 publications that are listed in the program bibliography in Section 3.

  2. Microsoft Word - Argonne Release Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achieves Second TRU Waste Cleanup Goal in Two Weeks CARLSBAD, N.M., October 6, 2011 -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This

  3. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  4. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Community Relations Plan Web Page Click Here Current Contracts Carlsbad Field Office The U.S. Department of Energy Carlsbad Field Office has responsibility for the Waste Isolation Pilot Plant and the NationalTransuranic (TRU) Program. The office's mission is to provide safe, compliant, and efficient characterization, transportation, and disposal of defense-related TRU waste. Its vision is to enable a nuclear future for our country by providing safe and environmentally responsible waste

  5. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container, the ARROW-PAK{trademark} System. (1) The ARROW-PAK{trademark} is a macroencapsulation treatment technology, developed by Boh Environmental, LLC, New Orleans, Louisiana. This technology has been designed to withstand any unexpected hydrogen deflagration (i.e. no consequence) and other benefits such as criticality control.

  6. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect (OSTI)

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  7. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of

    Energy Savers [EERE]

    Energy Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW)

  8. Weidlinger-Navarro selected for waste staging facility design support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weidlinger-Navarro selected for waste staging facility design support Small firm selected for design support of new waste staging facility Weidlinger-Navarro will support the preliminary and final design of the 5-acre complex, where waste containers will be staged. January 31, 2011 Transuranic waste staging facility Firm selected for architectural and engineering work for the Lab's transuranic (TRU) waste staging facility. Contact Small Business Office (505) 667-4419 Email New waste staging

  9. WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M., August 1, 2011 – The U.S. Department of Energy’s (DOE’s) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP).

  10. Preliminary Notice of Violation, Washington TRU Solutions, LLC- EA-2005-08

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to Washington TRU Solutions, LLC, related to Radiological Uptakes at the Mobile Visual Examination and Repackaging Facility at Lawrence Livermore National Laboratory

  11. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  12. Legacy Management FUSRAP Sites | Department of Energy

    Energy Savers [EERE]

    Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Long-Term Surveillance and Maintenance (LTS&M) of Remediated FUSRAP Sites The DOE Office of Legacy Management (LM) established LTS&M requirements for remediated FUSRAP sites. DOE evaluates the final site conditions of a remediated site on the basis of risk for different future uses. DOE then confirms that LTS&M requirements will maintain protectiveness. Most Formerly Utilized Sites Remedial

  13. Categorical Exclusion Determinations: Legacy Management | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Legacy Management Categorical Exclusion Determinations: Legacy Management Categorical Exclusion Determinations issued by Legacy Mangement. DOCUMENTS AVAILABLE FOR DOWNLOAD August 26, 2014 CX-012726: Categorical Exclusion Determination Installation and Redeveloment of Groundwater Monitoring Wells at the4 Salmon, Mississippi Site CX(s) Applied: B3.1 Date: 41877 Location(s): Mississippi Offices(s): Legacy Management July 10, 2014 CX-012400: Categorical Exclusion Determination Vapor

  14. Sustainable Disposal Cell Covers: Legacy Management Practices,

    Energy Savers [EERE]

    Improvements, and Long-Term Performance | Department of Energy Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance PDF icon Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance More

  15. 2012 Annual Planning Summary for Legacy Management

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Legacy Management.

  16. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 10-year WIPP Hazardous Waste Facility Permit Renewal. He has also served in an acting role as the Director of the Office of Site Operations and Director of the National TRU...

  17. EIS-0026-S2: Waste Isolation Pilot Plant Disposal Phase, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a...

  18. LANL reaches waste shipment milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communications Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important

  19. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  20. WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy has received the first of eight planned defense-related remote-handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country,"

  1. Waste Isolation Pilot Plant Recovery Plan Revision 0 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing safety, health, and environmental protection. The recovery and resumption of TRU

  2. Hanford site transuranic waste sampling plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-13

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

  3. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  4. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way to a permanent repository near Carlsbad, NM. June 26, 2012 Governor Martinez applauding the 1014th TRU waste shipment New Mexico Governor Susana Martinez and other dignitaries applaud as the 1,014th shipment of transuranic waste leaves Los Alamos National Laboratory. Contact Patti Jones Communications Office (505)

  5. LANL sets waste shipping record for fourth consecutive year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste shipping record LANL sets waste shipping record for fourth consecutive year The Laboratory's 172nd shipment of TRU waste this year left Los Alamos bound for WIPP on August 2. August 6, 2012 Los Alamos National Laboratory has set another record for shipments of transuranic waste in a single fiscal year. Los Alamos National Laboratory has set another record for shipments of transuranic waste in a single fiscal year. Contact Colleen Curran Communications Office (505) 664-0344 Email Lab has

  6. Lab sets new record for waste volume removed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Sets New Record for Waste Volume Removed Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab sets new record for waste volume removed The Transuranic Waste Program has met its commitment to ship 800 cubic meters of TRU waste to the Waste Isolation Pilot Plant during fiscal year 2012. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  7. January 23, 2007: WIPP receives first shipment of waste | Department of

    Energy Savers [EERE]

    Energy 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007 The Department's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, receives (pdf) its first shipment of remote-handled (RH) transuranic (TRU) radioactive waste. The waste, which consisted of three 30-gallon drums of radioactive debris waste and originated at DOE's Idaho National Laboratory, was

  8. WIPP Hazardous Waste Facility Permit - 2008 Update

    SciTech Connect (OSTI)

    Kehrman, R.F.; Most, W.A.

    2008-07-01

    Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

  9. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    SciTech Connect (OSTI)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A. [and others

    1997-02-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described.

  10. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  11. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  12. DOE Identifies its Preferred Alternative for Certain Hanford Tank Wastes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing its preferred alternative for wastes contained in underground radioactive waste storage tanks evaluated in the Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Final TC & WM EIS, DOE/EIS-0391, December 2012). With regard to those wastes that, in the future, may be properly and legally classified as mixed transuranic waste (mixed TRU waste). DOE's preferred alternative is to retrieve, treat, package, and characterize and certify the wastes for disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, a geologic repository for the disposal of mixed TRU waste generated by atomic energy defense activities.

  13. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect (OSTI)

    Roggenthen, D. K.; McFeeters, T. L.; Nieweg, R. G.; Blakeslee, J. J.

    1993-03-01

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  14. Waste Isolation Pilot Plant Recovery Plan

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  15. Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important

  16. Lab Ahead of Schedule Processing Waste in Large Boxes | Department of

    Office of Environmental Management (EM)

    Energy Lab Ahead of Schedule Processing Waste in Large Boxes Lab Ahead of Schedule Processing Waste in Large Boxes March 30, 2012 - 12:00pm Addthis A framework agreement between DOE and the State of New Mexico calls for the Lab’s TRU Waste Program to ship 3,706 cubic meters of combustible or dispersible transuranic waste to WIPP for permanent disposal by June 30, 2014. A framework agreement between DOE and the State of New Mexico calls for the Lab's TRU Waste Program to ship 3,706 cubic

  17. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect (OSTI)

    None

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  18. Methods for removing transuranic elements from waste solutions

    SciTech Connect (OSTI)

    Slater, S.A.; Chamberlain, D.B.; Connor, C.; Sedlet, J.; Srinivasan, B.; Vandegrift, G.F.

    1994-11-01

    This report outlines a treatment scheme for separating and concentrating the transuranic (TRU) elements present in aqueous waste solutions stored at Argonne National Laboratory (ANL). The treatment method selected is carrier precipitation. Potential carriers will be evaluated in future laboratory work, beginning with ferric hydroxide and magnetite. The process will result in a supernatant with alpha activity low enough that it can be treated in the existing evaporator/concentrator at ANL. The separated TRU waste will be packaged for shipment to the Waste Isolation Pilot Plant.

  19. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect (OSTI)

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  20. Microsoft Word - Tran Waste final report 2-8-05.doc

    Office of Environmental Management (EM)

    Transuranic Waste Management at Los Alamos National Laboratory DOE/IG-0673 February 2005 REPORT ON TRANSURANIC WASTE MANAGEMENT AT LOS ALAMOS NATIONAL LABORATORY TABLE OF CONTENTS Legacy Transuranic Waste Disposal Details of Finding 1 Recommendations and Comments 4 Appendices 1. Objective, Scope, and Methodology 6 2. Transuranic Waste Storage 8 3. Prior Audit Reports 10 4. Management Comments 11 Legacy Transuranic Waste Disposal Page 1 Details of Finding Background Los Alamos National Laboratory

  1. CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP

    SciTech Connect (OSTI)

    Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

  2. Melter development needs assessment for RWMC buried wastes

    SciTech Connect (OSTI)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  3. Melter development needs assessment for RWMC buried wastes

    SciTech Connect (OSTI)

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  4. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE

    Broader source: Energy.gov [DOE]

    Idaho - The Waste Disposition Project Team at the Department of Energy’s Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management’s commitment to environmental clean up.

  5. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  6. Universal requisition for waste data collection

    SciTech Connect (OSTI)

    Nisbet, B.; Gage, M.

    1995-05-01

    Lawrence Livermore National Laboratory (LLNL) has developed a data management tool for information gathering that encompasses all types of waste generated by the site. It is referred to as the Universal Requisition. It can be used to record information for the following types of waste: non-hazardous, hazardous, low level radioactive, mixed, transuranic (TRU), and TRU mixed wastestreams. It provides the salient information needed for the safe handling, storage, and disposal of waste, and satisfies our regulatory, record keeping, and reporting requirements. There are forty two numbered fields on the requisition and several other fields for signatures, compatibility codes, internal tracking numbers, and other information. Not all of these fields are applicable to every type of waste. As an aid to using the Universal requisition, templates with the applicable fields highlighted in color were produced and distributed. There are six different waste type templates. Each is highlighted in a different color.

  7. DOE - Office of Legacy Management -- Fernald

    Office of Legacy Management (LM)

    Ohio Fernald Preserve, Ohio Key Documents and Links Fernald Preserve, Harrison, Ohio, Fact Sheet pdf_icon STAKEHOLDER REVIEW: Draft 2016 Comprehensive Legacy Management and Institutional Controls Plan (LMICP)-Revision 9; includes Summary of Significant Changes pdf_icon 2015 Comprehensive Legacy Management and Institutional Controls Plan (LMICP): Volume I-Legacy Management Plan pdf_icon 2015 Volume II-Institutional Controls Plan pdf_icon 2015 Attachment A pdf_icon 2015 Attachment B pdf_icon 2015

  8. DOE - Office of Legacy Management -- Ashtabula

    Office of Legacy Management (LM)

    for maintaining records for the Ashtabula site was transferred to DOE's Office of Legacy Management in 2010. The site requires records management and stakeholder support. For...

  9. Office of Legacy Management | Department of Energy

    Office of Legacy Management (LM)

    Office of Legacy Management Abandoned Uranium Mines Abandoned Uranium Mines Read more Amchitka, Alaska, Site Amchitka, Alaska, Site Read more Mexican Hat, Utah, Disposal Site...

  10. DOE - Office of Legacy Management -- CEER

    Office of Legacy Management (LM)

    for maintaining records for the CEER site transferred to DOE's Office of Legacy Management in 2006. The site requires records management and stakeholder support. For...

  11. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Boiling Nuclear Superheater (BONUS) Decommissioned Reactor Site...

  12. 2011 Annual Planning Summary for Legacy Management (LM) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Legacy Management (LM) 2011 Annual Planning Summary for Legacy Management (LM) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Legacy Management (LM). PDF icon 2011 Annual Planning Summary for Legacy Management (LM) More Documents & Publications 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS) 2013 Annual Planning Summary for the Office of Legacy Management 2012

  13. Legacy: Order (2015-CE-14025) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy: Order (2015-CE-14025) Legacy: Order (2015-CE-14025) February 11, 2015 DOE ordered The Legacy Companies to pay a $8,000 civil penalty after finding Legacy had failed to certify that refrigerator Maxx-Ice brand basic model MCR3U complies with the applicable energy conservation standards. PDF icon Legacy: Order (2015-CE-14025) More Documents & Publications Legacy: Proposed Penalty (2015-CE-14025) Maxlite: Order (2015-CE-27018) Electrolux: Order (2015-CE-14020)

  14. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Waste Isolation Pilot Plant Recovery Plan This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing

  15. Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy

    Energy Savers [EERE]

    Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save Taxpayers Billions GOLDEN, CO. - A major environmental victory was achieved at the Rocky Flats Site in Golden, Colo., today when the final remaining shipment of radioactive, transuranic (TRU) waste left the property on a truck bound for an underground waste repository in New Mexico. This major milestone is another step

  16. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's

  17. 2011 Annual Planning Summary for Office of Legacy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary for Legacy Management (LM) 2013 Annual Planning Summary for the Office of Legacy Management 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey...

  18. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  19. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect (OSTI)

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  20. Transuranic Waste Processing Center Oak Ridge Site Specific Advisory Board May 14, 2014

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project Director Oak Ridge Office of Environmental Management www.energy.gov/EM 2 ETTP ORNL Y-12 City of Oak Ridge Oak Ridge Reservation TWPC www.energy.gov/EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste contaminated with man-made elements heavier than uranium with half-lives greater than 20 years * The Oak

  1. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect (OSTI)

    Lee, Yoon Hee; Lee, Kunjai

    2012-07-01

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  2. WRAP Module 1 waste characterization plan

    SciTech Connect (OSTI)

    Mayancsik, B.A.

    1995-01-23

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility`s function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste.

  3. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  4. Commercial waste treatment program annual progress report for FY 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  5. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  6. Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste Strategies.042413

    Office of Environmental Management (EM)

    Chair's Meeting Waste Disposition Strategies Update www.energy.gov/EM 1 Waste Disposition Strategies Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management April 25, 2013 * Recent Program Accomplishments * FY13 Waste Management Priorities * FY14 Waste Management Priorities * Los Alamos Update * LLW/MLLW Disposition Options Discussion Outline www.energy.gov/EM 2 * Hanford TRU Tank Disposition Initiative * GTCC EIS * Mercury Supplemental EIS *

  7. Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy

    Energy Savers [EERE]

    9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. PDF icon Fuel Cycle Research and Development Program PDF icon Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology PDF icon Tank Waste System Integrated Project Team PDF icon Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory PDF icon Integrated Facilities Disposition

  8. Legacy Claims, PIA, Bechtel Jacobs Company, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Claims, PIA, Bechtel Jacobs Company, LLC Legacy Claims, PIA, Bechtel Jacobs Company, LLC Legacy Claims, PIA, Bechtel Jacobs Company, LLC PDF icon Legacy Claims, PIA, Bechtel Jacobs Company, LLC More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC

  9. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  10. Overview of the Government of Canada Nuclear Legacy Liabilities Program - 13551

    SciTech Connect (OSTI)

    Metcalfe, D.; McCauley, D.; Miller, J.; Brooks, S.

    2013-07-01

    Nuclear legacy liabilities have resulted from more than 60 years of nuclear research and development carried out on behalf of Canada. The liabilities are located at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories in Ontario and Whiteshell Laboratories in Manitoba, as well as three shutdown prototype reactors in Ontario and Quebec that are being maintained in a safe storage state. Estimated at about $7.4 billion (current day dollars), these liabilities consist of disused nuclear facilities and associated infrastructure, a wide variety of buried and stored waste, and contaminated lands. In 2006, the Government of Canada adopted a long-term strategy to deal with the nuclear legacy liabilities and initiated a five-year, $520 million start-up phase, thereby creating the Nuclear Legacy Liabilities Program (NLLP). The Government of Canada renewed the NLLP in 2011 with a $439-million three-year second phase that ends March 31, 2014. The projects and activities carried out under the Program focus on infrastructure decommissioning, environmental restoration, improving the management of legacy radioactive waste, and advancing the long-term strategy. The NLLP is being implemented through a Memorandum of Understanding between Natural Resources Canada (NRCan) and AECL whereby NRCan is responsible for policy direction and oversight, including control of funding, and AECL is responsible for implementing the program of work and holding and administering all licences, facilities and lands. (authors)

  11. 2013 Annual Planning Summary for the Office of Legacy Management |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Legacy Management 2013 Annual Planning Summary for the Office of Legacy Management The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Office of Legacy Management . PDF icon LM_NEPA-APS-2013.pdf More Documents & Publications LM Annual NEPA Planning Summary 2014 2011 Annual Planning Summary for Legacy Management (LM) 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See

  12. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect (OSTI)

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  13. LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons

    Office of Environmental Management (EM)

    production being shipped to WIPP | Department of Energy LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP May 31, 2011 - 12:00pm Addthis Media Contact Fred deSousa 505-665-3430 fdesousa@lanl.gov LOS ALAMOS, New Mexico - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from

  14. Washington TRU Solutions LLC Announces New Name and New General...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in geochemistry from Columbia University. He and his wife, Beth, have two sons ages 17 and 21. Media Contact Bobby St. John (505) 234-7348 Susan Scott (505) 234-2704 Waste...

  15. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect (OSTI)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  16. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Event Phase II | Department of Energy Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there was an incident in the underground (U/G) repository at the Waste Isolation Pilot Plant (WIPP), which resulted in the release of americium and plutonium from one or more transuranic (TRU) waste containers into the U/G mine and the environment. The accident

  17. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  18. Reduced waste generation technical work plan

    SciTech Connect (OSTI)

    Not Available

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction.

  19. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  20. Legacy: Proposed Penalty (2015-CE-14025)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that The Legacy Companies failed to certify refrigerator Maxx Ice-brand basic model MCR3U as compliant with the applicable energy conservation standards.

  1. DOE - Office of Legacy Management -- Directions

    Office of Legacy Management (LM)

    Mailing: U.S. Department of Energy 10995 Hamilton-Cleves Hwy. Harrison, OH 45030 U.S. Department of Energy Office of Legacy Management Contractor Navarro Research and Engineering, ...

  2. Intermediate depth burial of classified transuranic wastes in arid alluvium

    SciTech Connect (OSTI)

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States). Environmental Risk and Decision Analysis Dept.; Crowe, B.M. [Los Alamos National Lab., NM (United States). Geologic Integration Group; Di Sanza, F. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office

    1999-04-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE`s Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency`s (EPA`s) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA`s 40 CFR 191 requirements. This paper describes DOE`s actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA`s requirements, and are, therefore, protective of human health.

  3. DOE - Office of Legacy Management -- Falls

    Office of Legacy Management (LM)

    Texas Falls City, Texas, Disposal Site UMTRCA Title I site falls_map The Falls City Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Falls City site, view the fact

  4. DOE - Office of Legacy Management -- Hallam

    Office of Legacy Management (LM)

    Nebraska Hallam, Nebraska, Decommissioned Reactor Site A D&D Program Site hallam_map As part of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Hallam Decommissioned Reactor Site and ensures compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal DOE policies. The site transferred to the Office of Legacy Management in 2003 and requires routine

  5. DOE - Office of Legacy Management -- Lowman

    Office of Legacy Management (LM)

    Idaho Lowman, Idaho, Disposal Site UMTRCA Title I site lowman_map The Lowman disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Lowman site, view the fact sheet. Site

  6. DOE - Office of Legacy Management -- AMB

    Office of Legacy Management (LM)

    New Mexico Ambrosia Lake, New Mexico, Disposal Site UMTRCA Title I site ambr_map The Ambrosia Lake Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Ambrosia Lake site, view the fact

  7. DOE - Office of Legacy Management -- Burrell

    Office of Legacy Management (LM)

    Pennsylvania Burrell, Pennsylvania, Disposal Site UMTRCA Title I site bur_map The Burrell Disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Burrell site, view the fact

  8. DOE - Office of Legacy Management -- Canon

    Office of Legacy Management (LM)

    Pennsylvania Canonsburg, Pennsylvania, Disposal Site UMTRCA Title I site can_map The Canonsburg disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Canonsburg site, view

  9. DOE - Office of Legacy Management -- Maybell

    Office of Legacy Management (LM)

    Maybell, Colorado, Disposal Site UMTRCA Title I site maybell_map The Maybell Disposal Site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Maybell site, view the fact sheet. Site

  10. DOE - Office of Legacy Management -- Piqua

    Office of Legacy Management (LM)

    Ohio Piqua, Ohio, Decommissioned Reactor Site A D&D Program Site piqua_map As part of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Piqua Decommissioned Reactor Site and ensures compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal DOE policies. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and

  11. DOE - Office of Legacy Management -- Riverton

    Office of Legacy Management (LM)

    Wyoming Riverton, Wyoming, Processing Site An UMTRCA Title I site riverton_map The Riverton Processing Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Riverton site, view the fact sheet.

  12. DOE - Office of Legacy Management -- Ship

    Office of Legacy Management (LM)

    New Mexico Shiprock, New Mexico, Disposal Site UMTRCA Title I site shiprock_map The Shiprock Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Shiprock site, view the

  13. DOE - Office of Legacy Management -- Spook

    Office of Legacy Management (LM)

    Wyoming Spook, Wyoming, Disposal Site UMTRCA Title I site spook_map The Spook disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Spook site, view the fact sheet. Site

  14. DOE - Office of Legacy Management -- Tuba

    Office of Legacy Management (LM)

    Arizona Tuba City, Arizona, Disposal Site UMTRCA Title I site tuba_map The Tuba City Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Tuba City site, view the fact

  15. DOE - Office of Legacy Management -- GJO

    Office of Legacy Management (LM)

    Junction Colorado, Site A D&D Program Site gjo_map As part of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Grand Junction Site and ensures compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal DOE policies. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities,

  16. Waste Isolation Pilot Plant (WIPP) Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant (WIPP) Recovery Waste Isolation Pilot Plant (WIPP) Recovery The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. Two incidents occurred in February 2014 that led to the current shutdown of the

  17. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  18. QA Objectives for Nondestructive Assay at the Waste Receiving & Processing (WRAP) Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.

    2000-08-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  19. QA Objectives for Nondestructive Assay at the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.; WILLS, C.E.

    2000-03-24

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOEMPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  20. DOE Issues Draft Request for Proposals Seeking Contractor to Manage, Operate Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati -- The U.S. Department of Energy (DOE) issued a Draft Request for Proposal (RFP) seeking a management and operations contractor to maintain the Waste Isolation Pilot Plan (WIPP) and manage the DOE National Transuranic Waste (TRU) Program in Carlsbad, New Mexico.

  1. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5/28/2014 The Responsible Manager has determined that the following organizations' review/concurrence is required for the initial document and for major revisions a same type and level review is required. Review documentation is contained in the Document History File: EWMO Engineering LANL TRU Programs - Shipping and Safe Storage Disposition LANL TRU Programs - Drum Disposition Project LANL

  2. Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-10-26

    The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries.

  3. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013.

  4. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect (OSTI)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)

  5. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 November 2013 www.energy.gov/EM 2 * Waste Management Accomplishments and Priorities * National TRU Program Update * LLW/MLLW Disposal Update * Other Programmatic Updates * Disposition Maps - Current Tools Discussion Outline www.energy.gov/EM 3 FY13 Waste Management Accomplishments * WIPP: Emplaced 5,065 cubic meters of

  6. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  7. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    SciTech Connect (OSTI)

    Gregory J. Shott; Vefa Yucel

    2009-07-16

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

  8. CRAD, Safety Basis- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  9. CRAD, Conduct of Operations- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November, 2003 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, TRU ALPHA LLWT Project.

  10. CRAD, Radiological Controls- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Radiation Protection Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  11. CRAD, Quality Assurance- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Quality Assurance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  12. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239. Higher breeding ratio of MOX fuel and TRU fuel types at equilibrium condition are estimated from converted fertile material during reactor operation into fissile material of plutonium such as converted uranium fuel (converted U-238 into Pu-239) or additional converted fuel from MA into Pu-238 and changes into Pu-239 by capturing neutron. Loading LWR SF gives better fuel breeding capability and increase inventory of MA for doping material of MOX fuel; however, it requires more supply MA inventory for TRU fuel type.

  13. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Broader source: Energy.gov (indexed) [DOE]

    Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009...

  14. Energy Department Awards Small Business Contract for Legacy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    health and the environment at over 100 legacy sites across the country," Michael Owen, Director of the Office of Legacy Management, said. "We look forward to working with our...

  15. Executing Legacy Clean-up at LANL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executing Legacy Clean-up at LANL Executing Legacy Clean-up at LANL Topic: DOE presented on the proposed new campaign approach to clean-up at Los Alamos National Laboratory, and ...

  16. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  17. INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY | Department of Energy

    Energy Savers [EERE]

    INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY The City of Indianapolis, Indiana, used its status as host of the 2012 Super Bowl to address inefficiencies in the area's older housing stock and leave behind a legacy of energy efficiency. Seeking to overcome market barriers to residential and commercial energy upgrades and build upon the neighborhood improvement efforts that were part of its

  18. Legacy Management 2011-2020 Strategic Plan | Department of Energy

    Office of Environmental Management (EM)

    Legacy Management 2011-2020 Strategic Plan Legacy Management 2011-2020 Strategic Plan Topic: Tom Longo DOE, Provided Information on DOEs Long Term Stewardship Plan and Office of Legacy Management. PDF icon LM Strategic Plan - August 13, 2014 More Documents & Publications Update on DOE/NNSA Long Term Stewardship Programs Site Transition Summary: Clean-up Completion to Long Term Stewardship Office of Legacy Management the First Decade 2003-2013

  19. Settlement Agreement on TRU Mixed Waste Storage at Nevada Test Site

    Office of Environmental Management (EM)

  20. Content-Handled Transuranic (CH-TRU) Waste Content Codes (CH-TRUCON)

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  1. TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP security officers with Santa Fe Protective Services (SFPS) Inc. will soon add guns to their security belts. Many employees remember the early days at WIPP when security...

  2. EP-AREAG-G-FO-DOP-124 Nitrate Salt Bearing TRU Waste Container Monitoring.pdf

    Office of Environmental Management (EM)

  3. Managing Legacy Materials at WETF | Department of Energy

    Office of Environmental Management (EM)

    Legacy Materials at WETF Managing Legacy Materials at WETF Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Managing Legacy Materials at WETF More Documents & Publications Enterprise Assessments Review, Los Alamos National Laboratory - November 2014 DOE-HDBK-1129-2008 FPD's Perspective Photos - Los Alamos National Labratory - NISA

  4. Overview of VMT Reduction and Legacy Fleet Improvement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy VMT Reduction and Legacy Fleet Improvement Overview of VMT Reduction and Legacy Fleet Improvement 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss082_kalish_2012_o.pdf More Documents & Publications Legacy Fleet Improvements Thermoelectrics: The New Green Automotive Technology EPAct State and Alternative Fuel Provider Fleets

  5. Plasma filtering techniques for nuclear waste remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  6. Microsoft Word - Draft M-91 4-23 commentsmergedocx-nw.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic (TRU) waste is radioactive waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes, with half-lives greater than 20 years, per gram of waste (alpha particles are given off by the decay of many elements, e.g., uranium, plutonium, and radon). Legacy TRU waste is that waste in storage as of January, 2003. Transuranic Mixed (TRUM) waste is TRU waste that contains both radiological and hazardous (e.g., chemical) components that are subject to RCRA or the Dangerous

  7. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  8. Legacy Management Contacts | Department of Energy

    Energy Savers [EERE]

    Legacy Management Contacts Legacy Management Contacts Title Name Phone Fax LM Director David Geiser (202) 586-7550 (202) 586-8403 Human Resource Management Patricia Poole-Shirriel Team Leader (202) 586-0402 (202) 586-1540 Office of Business Operations Acting Director Tom Pauling (202) 586-1782 (202) 586-1540 Benefits Continuity Team Patrick Ring Team Leader (202) 586-1835 (202) 586-1540 Planning, Budget, and Acquisition Team Jane Powell Team Leader (202) 586-3924 (202) 586-1540 Archives and

  9. PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION

    SciTech Connect (OSTI)

    Goldston, W.

    2010-11-30

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

  10. LM-04-XXXX Office of Legacy Management

    Office of Environmental Management (EM)

    LM-04-XXXX Office of Legacy Management Information and Records Management Transition Guidance March 2004 LM Information and Records Management Transition Guidance March 2004 Contents Page ii Table of Contents Page Executive Summary................................................................................................................... iii 1.0 Introduction and Purpose ................................................................................................... 1 2.0 The Life Cycle

  11. DOE - Office of Legacy Management -- Chariot

    Office of Legacy Management (LM)

    Alaska Chariot, Alaska, Site A Nevada Offsite chariotmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Chariot Site in 2008. The Chariot site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Chariot site, view the fact sheet. Site Documents and Links Contact Us

  12. DOE - Office of Legacy Management -- Geothermal

    Office of Legacy Management (LM)

    Geothermal Test Facility, California A Oakland Operations Office site geothermal_map The Geothermal Test Facility site was a research laboratory formerly operated under the DOE Oakland Operations Office, California. After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the Geothermal Test

  13. Comprehensive Legacy Management and Institutional Controls Plan

    Office of Legacy Management (LM)

    Attachment A Operations and Maintenance Master Plan for Aquifer Restoration and Wastewater Treatment This page intentionally left blank U.S. Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. No. S03496-8.0-Final Attachment A-Operations and Maintenance Master Plan January 2015 Page i Contents Abbreviations ...................................................................................................................................v 1.0 Introduction

  14. DOE complex buried waste characterization assessment

    SciTech Connect (OSTI)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  15. Conceptual study of measures against heat generation for TRU fuel fabrication system

    SciTech Connect (OSTI)

    Kawaguchi, Koichi; Namekawa, Takashi

    2007-07-01

    To lower the reprocessing cost and the environmental burden, the Japan Atomic Energy Agency (JAEA) has developed low decontamination TRU fuel fabrication system. TRU fuel contains MA of 1.2 to 5 wt% and its decay heat is estimated a few tens W/kg-HM. As the heat affects fuel quality through oxidation of fuel material and members, it is necessary to remove decay heat. In this work, authors designed concepts of the measures against heat generation at typical equipments using with the thermal hydraulics analysis technique. As a result, it is shown that it is possible to cool fuel materials with specific heat generation up to 20 W/kg-HM enough, though more detailed study is required for comprehensive equipments. (authors)

  16. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  17. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    SciTech Connect (OSTI)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  18. Solid Waste Assurance Program Implementation Plan

    SciTech Connect (OSTI)

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.

  19. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

  20. The Department of Energy Announces Major Cold War Legacy Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tires, was needed to transport the concrete hot cell structure to the landfill and a D9 Cat was used to tow the truck and trailer up a slight incline at the final end of the...

  1. General Atomics Final Drum of Legacy Mixed Wastes.

    Office of Legacy Management (LM)

  2. HYDROGEN AND VOC RETENTION IN WASTE BOXES

    SciTech Connect (OSTI)

    PACE ME; MARUSICH RM

    2008-11-21

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741, 2003) identifies derived safety controls to prevent or mitigate the risks of a single-container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes. The study evaluates the accumulation of hydrogen and VOCs within the waste box and the transport of these gases and vapors out of the waste box. To perform the analysis, there were numerous and major assumptions made regarding the generation rate and the transport pathway dimensions and their number. Since there is little actual data with regards to these assumptions, analyses of three potential configurations were performed to obtain some indication of the bounds of the issue (the concentration of hydrogen or flammable VOCs within a waste box). A brief description of each of the three cases along with the results of the analysis is summarized.

  3. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    SciTech Connect (OSTI)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-05-01

    Los Alamos National Laboratory (LANL) has implemented mobile and portable characterization and repackaging systems to characterize transuranic (TRU) waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the Department of Energy complex through a centralized-distributed services model will result in similar advantages complex-wide.

  4. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    SciTech Connect (OSTI)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-02-01

    Los Alamos National Laboratory has implemented mobile and portable characterization and repackaging systems to characterize TRU waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to: (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and, (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the DOE complex through a centralized-distributed services model will result in similar advantages complex-wide.

  5. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  6. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect (OSTI)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  7. DOE - Office of Legacy Management -- Maxey

    Office of Legacy Management (LM)

    Kentucky Maxey Flats, Kentucky, Site A CERCLA site maxey_map Remediation at the Maxey Flats site was conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The site transferred to the Office of Legacy Management in 2004 and requires records-related activities and stakeholder support. For more information about the Maxey Flats site, view the fact sheet. Site Documents and Links Contact Us Last Updated: 8/5

  8. DOE - Office of Legacy Management -- Pinellas

    Office of Legacy Management (LM)

    Florida Pinellas County, Florida, Site Applying Innovative Solutions to Environmental Restoration A CERCLA and/or RCRA Site pinellas_map Remediation at the Pinellas County Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. The site transferred to the Office of Legacy Management in 2004 and requires operation and maintenance of remedial action systems, routine

  9. DOE - Office of Legacy Management -- Salmon2

    Office of Legacy Management (LM)

    Mississippi Salmon, Mississippi, Site A Nevada Offsite salmon_map The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Salmon Site in 2008. Responsibilities include long-term surveillance and maintenance of the subsurface where residue remains from the nuclear detonation tests conducted during the Cold War-era, maintaining institutional controls, archiving records, and responding to stakeholder inquiries. For more information about the

  10. DOE - Office of Legacy Management -- Sherwood

    Office of Legacy Management (LM)

    Washington Sherwood, Washington, Disposal Site UMTRCA Title II site sherwood_map The Sherwood Disposal Site was a uranium processing site addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Sherwood

  11. DOE - Office of Legacy Management -- Amchitka

    Office of Legacy Management (LM)

    Alaska Amchitka, Alaska, Site A Nevada Offsite amchitkamap2.jpg The DOE Office of Legacy Management assumed responsibility for all activities associated with subsurface completion and long-term surveillance and maintenance at the Amchitka site in 2008. The Amchitka site requires records-related activities, stakeholder support, and an inspection and maintenance trip every 5 years. For more information about the Amchitka site, view the fact sheet. Site Documents and Links Contact Us Amchitka

  12. DOE - Office of Legacy Management -- Blue

    Office of Legacy Management (LM)

    Mexico Bluewater, New Mexico, Disposal Site UMTRCA Title II site bluewater_map The Bluewater disposal site was a uranium-ore-processing site addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and maintenance, groundwater monitoring, records-related activities, and stakeholder support. For more

  13. DOE - Office of Legacy Management -- Central

    Office of Legacy Management (LM)

    Nevada Central Nevada Test Area (CNTA), Nevada, Site A Nevada Offsite centralmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Central Nevada Test Area (CNTA) Site in 2008. The CNTA site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the CNTA site, view the fact sheet. Site Documents and Links Contact Us Central Nevada Test Area (CNTA) Site Mapping and

  14. DOE - Office of Legacy Management -- Fernald

    Office of Legacy Management (LM)

    Fernald Preserve, Ohio A CERCLA site Fernald Aerial Remediation at the Fernald Preserve was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The site transferred to the Office of Legacy Management in 2006 and requires operation and maintenance of remedial action systems, environmental monitoring, routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Fernald

  15. DOE - Office of Legacy Management -- Gasbuggy

    Office of Legacy Management (LM)

    New Mexico Gasbuggy, New Mexico, Site A Nevada Offsite gasbuggy_map The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Gasbuggy Site in 2008. The Gasbuggy site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Gasbuggy site, view the fact sheet. Site Documents and Links Contact Us Gasbuggy Site Mapping and Monitoring (GEMS) Last Updated: 2/2

  16. DOE - Office of Legacy Management -- Gnome

    Office of Legacy Management (LM)

    New Mexico Gnome-Coach, New Mexico, Site A Nevada Offsite gnomemap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Gnome-Coach Site in 2008. The Gnome-Coach site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Gnome-Coach site, view the fact sheet. Site Documents and Links Contact Us Gnome-Coach Site Mapping and Monitoring (GEMS)

  17. DOE - Office of Legacy Management -- LEHR

    Office of Legacy Management (LM)

    California Laboratory for Energy-Related Health Research (LEHR), California, Site A CERCLA site lehr_map Remediation at the Laboratory for Energy-Related Health Research (LEHR) site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The site transferred to the Office of Legacy Management in 2006 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about

  18. DOE - Office of Legacy Management -- Lbar

    Office of Legacy Management (LM)

    New Mexico L-Bar, New Mexico, Disposal Site UMTRCA Title II site lbar_map The L-Bar disposal site was a uranium-ore-processing site addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and maintenance, groundwater monitoring, records-related activities, and stakeholder support. For more information

  19. DOE - Office of Legacy Management -- MURR

    Office of Legacy Management (LM)

    Missouri Missouri University Research Reactor (MURR), Missouri, Site An Oakland Operations Office site murr_map The Missouri University Research Reactor (MURR) site was a research laboratory formerly operated under the DOE Oakland Operations Office, California. After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the MURR site, view the fact sheet. Site Documents and Links

  20. DOE - Office of Legacy Management -- Monticello

    Office of Legacy Management (LM)

    Utah Monticello, Utah, Disposal and Processing Sites A CERCLA and/or RCRA Site monticello_map Remediation at the Monticello Sites was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. The sites transferred to the Office of Legacy Management in 2003 and require operation and maintenance of remedial action systems, routine inspection and maintenance, records-related

  1. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    Ohio Mound, Ohio, Site A CERCLA and/or RCRA Site Mound2014 Remediation of the Mound, Ohio, Site was conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The site long-term monitoring responsibility transferred to the Office of Legacy Management(LM) in 2010 and requires operation and maintenance of a pump and treatment system, groundwater monitoring, institutional controls monitoring, records-related activities, and stakeholder support.

  2. DOE - Office of Legacy Management -- Rio

    Office of Legacy Management (LM)

    Colorado Rio Blanco, Colorado, Site A Nevada Offsite rioblanco_map The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Rio Blanco site in 2008. The Rio Blanco site requires monitoring of nearby natural gas wells, groundwater wells, and surface water locations; routine inspection and maintenance; records-related activities; and stakeholder support. For more information about the Rio Blanco site, view the fact sheet. Site Documents and Links

  3. DOE - Office of Legacy Management -- Rulison

    Office of Legacy Management (LM)

    Rulison, Colorado, Site A Nevada Offsite rulison_map The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Rulison site in 2008. The Rulison site requires monitoring of nearby natural gas wells, groundwater wells, and surface water locations; routine inspection and maintenance; records-related activities; and stakeholder support. For more information about the Rulison site, view the fact sheet. Site Documents and Links Contact Us Rulison

  4. DOE - Office of Legacy Management -- Shirley

    Office of Legacy Management (LM)

    Wyoming Shirley Basin South, Wyoming, Disposal Site UMTRCA Title II site shirley_map The Shirley Basin South disposal site was a uranium-ore-processing site addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and maintenance, groundwater monitoring, records-related activities, and stakeholder

  5. DOE - Office of Legacy Management -- Shoal

    Office of Legacy Management (LM)

    Nevada Shoal, Nevada, Site A Nevada Offsite shoalmap The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Shoal Site in 2008. The Shoal site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Shoal site, view the fact sheet. Site Documents and Links Contact Us Shoal Site Mapping and Monitoring (GEMS) Last Updated: 2/22/2016

  6. DOE - Office of Legacy Management -- Weldon

    Office of Legacy Management (LM)

    Missouri Weldon Spring, Missouri, Site A CERCLA site weldon_map Remediation at the Weldon Spring Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The Weldon Spring Site was transferred to the Office of Legacy Management (LM) in 2003. LM conducts long-term surveillance and maintenance at the site which includes routine inspections, site maintenance, records-related activities, stakeholder support, and operation of an

  7. DOE - Office of Legacy Management -- Edge

    Office of Legacy Management (LM)

    South Dakota Edgemont, South Dakota, Disposal Site UMTRCA Title II site edgemont_map The Edgemont Disposal Site was a uranium processing site addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). The site transferred to the Office of Legacy Management in 2003 and is administered under the provisions of a general NRC license. The site requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the

  8. DOE - Office of Legacy Management -- CERCLA Home

    Office of Legacy Management (LM)

    Office of Site Operations > Programs & Facilities > CERCLA Home Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Search CERCLA Collections Request Documents CERCLA Help What is CERCLA? The Office of Legacy Management currently manages seven sites where remediation was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. These sites were

  9. DOE - Office of Legacy Management -- GJD

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site gjd_map The Grand Junction disposal site is a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site. Responsibility for custody and long-term management of the site transferred to DOE's Office of Legacy Management in 2003. Management responsibilities include routine inspection and maintenance of the disposal site, records-related activities, and stakeholder support. For more information about the Grand Junction disposal site, view the fact sheet.

  10. DOE - Office of Legacy Management -- GJP

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site gjp_map The Grand Junction processing site is a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site. Responsibility for management and long-term custody of the site's contaminated groundwater transferred to DOE's Office of Legacy Management in 2003. Management requirements include routine inspection and maintenance of groundwater monitoring wells, records-related activities, and stakeholder support. For more information about the Grand Junction

  11. Office of Legacy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Legacy Management Abandoned Uranium Mines Abandoned Uranium Mines Read more Amchitka, Alaska, Site Amchitka, Alaska, Site Read more Mexican Hat, Utah, Disposal Site Mexican Hat, Utah, Disposal Site Read more Tuba City, Arizona, Disposal Site Tuba City, Arizona, Disposal Site Read more Rifle, Colorado, Disposal Site Rifle, Colorado, Disposal Site Read more Announcements We invite you to review the draft LM 2016-2025 Strategic Plan which is now posted for public comment. We are updating

  12. Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

    2010-11-01

    All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot separate U from TRU, it is then impossible to make X% TRU for fast reactors with UOX-51 used fuel with 1.3% TRU. AIROX and melt refining can serve in the recycle loop for about 3 recycles, at which point the accumulated impurities displace fertile uranium and the fuel can no longer be as critical as the original fast reactor fuel recipe. UREX+1 and electrochemical can serve in either capacity; key impurities appear to be lanthanides and several transition metals.

  13. 2014 Annual Planning Summary for the Office of Legacy Management |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Legacy Management 2014 Annual Planning Summary for the Office of Legacy Management The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Office of Legacy Management.. PDF icon LM-NEPA-APS-2014.pdf More Documents & Publications 2014 Annual Planning Summary for the Oak Ridge Office of Environmental Management 2014 Annual Planning Summary for the NNSA Production Office 2014 Annual Planning Summary for the

  14. Colorado Environmental Coalition v. Office of Legacy Management, Civil

    Office of Environmental Management (EM)

    Action No. 08-cv-01624 (February 27, 2012) | Department of Energy February 27, 2012) Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (February 27, 2012) U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). PDF icon U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil

  15. Plasma filtering techniques for nuclear waste remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed overmore » a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.« less

  16. DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract.

  17. DOE Awards Task Order for Disposal of Los Alamos National Lab Waste

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract.

  18. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  19. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  20. Office of Legacy Management the First Decade 2003-2013

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Provided an Overview of the Last Ten Years of Legacy Management Across the DOE Complex.

  1. Office of Legacy Management FY 2013 Consolidated Energy Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Consolidated Energy Data Report (CEDR) Office of Legacy Management FY 2013 Consolidated Energy Data Report (CEDR) The Consolidated Energy Data Report (CEDR) consists of 27...

  2. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning location data were...

  3. DOE - Office of Legacy Management -- Bonus_Framework

    Office of Legacy Management (LM)

    and Decommissioning (D&D) Program and Nevada Offsites Project, the Office of Legacy Management ensures compliance with DOE Order 5400.1, "General Environmental Protection...

  4. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives ...

  5. DOE - Office of Legacy Management -- Riverton Mill Site - WY...

    Office of Legacy Management (LM)

    Control Act (UMTRCA) Title I Site April Gil, PhD Environment Team Lead Office of Legacy Management (LM) May 2, 20122 Status and Action Summary Surface Remediation ...

  6. DOE - Office of Legacy Management -- Shiprock Mill Site - NM...

    Office of Legacy Management (LM)

    ... Evaluation of the Trench 2 Groundwater Remediation System at the Shiprock, New Mexico, Legacy Management Site March 2009 Supplement to the Baseline Risk Assessment of Ground Water ...

  7. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small

    Office of Environmental Management (EM)

    Non-Road Engines, Report 1 … Updated Feb 2009 | Department of Energy Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009 PDF

  8. Economic evaluation of volume reduction for Defense transuranic waste

    SciTech Connect (OSTI)

    Brown, C.M.

    1981-07-01

    This study evaluates the economics of volume reduction of retrievably stored and newly generated DOE transuranic waste by comparing the costs of reduction of the waste with the savings possible in transportation and disposal of the waste. The report develops a general approach to the comparison of TRU waste volume reduction costs and cost savings, establishes an initial set of cost data, and develops conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled newly generated, and retrievably stored DOE transuranic waste. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal, and transportation savings with volume reduction and the volume reduction techniques and savings.

  9. Radionuclide inventory for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report updates the information previously submitted in the draft report DOE/WIPP 88-005, Radionuclide Source Term for the WIPP, dated 1987 (reference 1). The information in this report provides the projected radionuclide inventory at the WIPP based on the projected waste receipts through the year 2013. The information is based on the 1991 TRU Program Data submittals for the Integrated Data Base (DOE/RW-0006, Rev. 7) from each of the DOE sites generating or storing TRU waste for shipment to the WIPP. The data is based on existing characterization data on the waste in interim storage, waste estimates based on projected programs during the 1991 through 2013 time period, projected treatment processes required to meet WIPP Waste Acceptance Criteria (WAC), and a projection of the waste that will be declared low level waste when it is assayed as part of the certification program for waste shipments to WIPP. This data will serve as a standard reference for WIPP programs requiring radionuclide data, including safety programs, performance assessment, and regulatory compliance. These projections will continue to be periodically updated as the waste data estimates are refined by the generator sites as they participate in the annual update of the Integrated Data Base (IDB).

  10. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  11. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  12. 2014 Waste Management Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Conference 2014 Waste Management Conference April 9, 2014 - 11:06am Addthis What does this project do? Goal 2. Preserve, protect, and share records and information When you hear about the U.S. Department of Energy (DOE) Office of Legacy Management (LM), what comes to mind? Is it long-term surveillance and maintenance (LTS&M) activities such as conducting environmental monitoring, performing annual inspections, or maintaining protective remedies? Is it managing records and

  13. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  14. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  15. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  16. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect (OSTI)

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  17. Waste Isolation Pilot Plant 2003 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

  18. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  19. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  20. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR {section} 761.75[c])

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2002-03-19

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) {section} 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available from the WIPP website. To facilitate the disposal of TRU wastes containing PCBs, the owner/operators are hereby submitting this initial report containing information required pursuant to the Chemical Waste Landfill Approval requirements in 40 CFR {section} 761.75(c). Although WIPP is defined as a miscellaneous unit and not a landfill by the New Mexico Hazardous Waste Act, WIPP meets or exceeds all applicable technical standards for chemical waste landfills by virtue of its design and programs as indicated in the Engineering Report (Attachment B). The layout of this initial report is consistent with requirements (i.e., Sections 2.0 through 12.0 following the sequence of 40 CFR {section} 761.75[c][i] -[ix] with sections added to discuss the Contingency and Training Plans; and Attachment B of this initial report addresses the requirements of 40 CFR {section} 761.75[b][1] through [9] in this order). This initial report includes a description of three proposed changes that will be subject to ''conditional approval.'' The first will allow the disposal of remote-handled (RH) PCB/TRU waste at WIPP. The second will allow the establishment of a central confirmation facility at WIPP. The third will allow for an increase in contact-handled Working Copy Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 (CH) waste storage capacities. These proposed changes are discussed further in Section 3.3 of this initial report. ''Conditional approval'' of these requests would allow these activities at WIPP contingent upon: - Approval of the HWFP modification (NMED) and Compliance Certification Application (CCA) change request (Environmental Protection Agency [EPA]) - Inspection of facility prior to implementing the change (if deemed necessary by the EPA) - Written approval from the EPA This initial report also includes the following three requests for waivers to the technical requirements for Chemical Waste Landfills pursuant to 40 CFR {section} 761.75(c)(4): - Hydrologic Conditions (40 CFR {section} 761.75[b][3]) - Monitoring Systems (40 CFR {sect

  1. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect (OSTI)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  2. 55-Gallon Drum Attenuation Corrections for Waste Assay Measurements

    SciTech Connect (OSTI)

    Casella, V.R.

    2002-04-03

    The present study shows how the percent attenuation for low-level waste (LLW), carbon-steel 55-gallon drums (44 and 46 mil) and for transuranic (TRU) DOT Type 7A 55-gallon drums (approximately 61 mil) changes with gamma energy from 60 keV to 1400 keV. Attenuation for these drums is in the range of 5 to 15 percent at energies from 400 to 1400 keV and from 15 to 35 percent at energies from 120 to 400 keV. At 60 keV, these drums attenuate 70-80 percent of the gamma rays. Correction factors were determined in order to correct for gamma attenuation of a TRU drum if a calibration is performed with a LLW drum. These correction factors increase the activities of the TRU drum by from 10 percent to 2 percent in the energy range of 165 to 1400 keV, with an increase of about 50 percent at 60 keV. Correction factors for TRU drums and for analyses without a drum were used to adjust the percent yield for frequently measured gamma rays, so that the assay libraries could be modified to provide the drum attenuation corrections.

  3. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg.1 Santa Fe, NM 87505-6303 Subject: Transmittal of the Final Audit Report for CBFO Audit A-14-26 , SNL/CCP TRU Waste Characterization and Certification Activities Dear Mr. Kieling : This letter transmits the Final Audit Report for the Carlsbad Field Office (CBFO) Audit A-14-26 of the Sandia National Laboratories/Central Characterization Program (SNL/CCP) performing characterization and certification activities as required

  4. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    Isolation Pilot Plant Update J.R. Stroble, CBFO For the Northern New Mexico Citizens Advisory Board January 27, 2016 www.energy.gov/EM 2 Corrective Actions The DOE TRU Waste Complex has implemented several changes since the 2014 radiological release incident at WIPP. Based on the Accident Investigation Report and subsequent evaluations, DOE has implemented several Corrective Actions that will prevent such incidents from occurring throughout the Life Cycle of WIPP. Five organizations have

  5. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect (OSTI)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  6. A Shining Example of Dr. King's legacy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Shining Example of Dr. King's legacy A Shining Example of Dr. King's legacy January 9, 2013 - 11:27am Addthis A Shining Example of Dr. King’s legacy Kathy Chambers Senior Science and Technical Information Specialist, OSTI Editor's Note: This blog was originally posted on OSTI's blog. As America celebrates Martin Luther King's birthday and focuses on how far this nation has come for all people, the Energy Department's .EDUconnections is pleased to honor Delaware State University (DSU). DSU

  7. Energy Department Awards Small Business Contract for Legacy Management Work

    Energy Savers [EERE]

    to S.M. Stoller Corporation | Department of Energy Small Business Contract for Legacy Management Work to S.M. Stoller Corporation Energy Department Awards Small Business Contract for Legacy Management Work to S.M. Stoller Corporation July 2, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the award of a prime contract for the Department's Office of Legacy Management (LM) Support Services work to S.M. Stoller Corporation for surveillance and

  8. DOE Awards Legacy Cleanup Contract | Department of Energy

    Office of Environmental Management (EM)

    Legacy Cleanup Contract DOE Awards Legacy Cleanup Contract September 23, 2015 - 6:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) today announced the award of a Cost-Plus-Award Fee contract to Los Alamos National Security, LLC (LANS) of Los Alamos, NM. This bridge contract is for the Office of Environmental Management (EM) funded legacy cleanup activities at the Los Alamos National Laboratory (LANL). LANS is

  9. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect (OSTI)

    Sean M. McDeavitt

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Distribution Analysis, and Reaction Rate Studies of a Hydride-Dehydride Process” ?

  10. First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP | Department of Energy First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP March 2, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy (DOE) achieved a major environmental cleanup milestone this week with the first shipment of Remote-Handled Transuranic (TRU) Waste leaving DOE's Oak Ridge Reservation and arriving safely at the Waste Isolation Pilot Plant

  11. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  12. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  13. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  14. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANNUAL TRANSURANIC WASTE INVENTORY REPORT - 2015 (Data Cutoff Date 12/31/2014) DOE/TRU-15-3425 Revision 0 December 2015 U.S. Department of Energy Carlsbad Field Office This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Phone: (865) 576-8401 Additional information about this document may be obtained by calling 1-800-336-9477. Unlimited, publicly available full-text scientific and technical reports

  15. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    SciTech Connect (OSTI)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussions with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.

  16. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  17. INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDIANAPOLIS LEAVES A LEGACY OF ENERGY EFFICIENCY The City of Indianapolis, Indiana, used its status as host of the 2012 Super Bowl to address inefficiencies in the area's older ...

  18. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a...

  19. DOE - Office of Legacy Management -- Maywood Site - NJ 10

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Aerial Photograph of the Maywood, New Jersey, Site NJ.10-1 - DOE Letter;...

  20. DOE - Office of Legacy Management -- Abandoned Uranium Mines

    Office of Legacy Management (LM)

    Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management completed a report on defense-related uranium mines in consultation with...

  1. DOE - Office of Legacy Management -- El_Verde

    Office of Legacy Management (LM)

    Rico El Verde, Puerto Rico, Site Other Regulatory Framework elverde The DOE Office of Legacy Management assumed responsibility for a tree in Study Area 4 of El Verde site in 2005....

  2. DOE - Office of Legacy Management -- Colonie - NY 06

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. NY.06-1 - DOE Report (DOEOR20722-53); Colonie Interim Storage Site...

  3. Supercompaction and Repackaging Facility for Rocky Flats Plant transuranic waste

    SciTech Connect (OSTI)

    Barthel, J.M.

    1988-01-01

    The Supercompaction and Repackaging Facility (SaRF) for processing Rocky Flats Plant (RFP) generated transuranic (TRU) waste was conceptualized and has received funding of $1.9 million. The SaRF is scheduled for completion in September, 1989 and will eliminate a labor intensive manual repackaging effort. The semi-automated glovebox-contained SaRF is being designed to process 63,500 cubic feet of TRU waste annually for disposal at the Waste Isolation Pilot Plant (WIPP). Waste will enter the process through an airlock or drum dump and the combustible waste will be precompacted. Drums will be pierced to allow air to escape during supercompaction. Each drum will be supercompacted and transferred to a load out station for final packaging into a 55 gallon drum. Preliminary evaluations indicate an average 5 to 1 volume reduction, 2 to 1 increased processing rate, and 50% reduction in manpower. The SaRF will produce a significant annual savings in labor, material, shipping, and burial costs over the projected 15 year life, and also improve operator safety, reduce personnel exposure, and improve the quality of the waste product. 1 ref., 10 figs., 3 tabs.

  4. Legacy Clean-up Completion Project Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bob Pfaff provided the members with information regarding the status of the Fiscal Year 2016 Budget request. Information included in the presentation also covered strategic planning and the remaining workscope in the Los Alamos National Laboratory Legacy Clean-up Project. PDF icon FY'16 Overview - July 29, 2015 More Documents & Publications Executing Legacy Clean-up at LANL NNMCAB Board Minutes: July 29, 2015 Taos Department of Energy Accomplishments

  5. Mound Museum Volunteers: Preserving a Laboratory's Legacy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mound Museum Volunteers: Preserving a Laboratory's Legacy Mound Museum Volunteers: Preserving a Laboratory's Legacy April 17, 2013 - 11:39am Addthis Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as this group from Iowa who are interested in the history of the Mound site. Ray Seiler, Mound Science and Energy Museum President, is one of the many museum volunteers who routinely talks to visitors, such as

  6. Standing by Ohio: Cleaning Up our Environmental Legacy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Standing by Ohio: Cleaning Up our Environmental Legacy Standing by Ohio: Cleaning Up our Environmental Legacy September 14, 2010 - 12:46pm Addthis Deputy Secretary Daniel Poneman observes instrumentation in the X-333 Process Building Control Room during his visit to the Portsmouth Gaseous Diffusion Plant. | DOE photo Deputy Secretary Daniel Poneman observes instrumentation in the X-333 Process Building Control Room during his visit to the Portsmouth Gaseous Diffusion Plant. | DOE

  7. Environmental Remediation program completes legacy mercury cleanup near

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smith's Marketplace Stories » Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's Marketplace Los Alamos National Laboratory performed a high-angle canyon-side cleanup on U.S. Department of Energy property just south of Smith's Marketplace. May 1, 2015 A telescoping crane hoists a spider excavator over Los Alamos Canyon before placing it on the canyon slope to excavate historically contaminated soil. In ongoing efforts to reduce the

  8. DOE - Office of Legacy Management -- GrnRiv

    Office of Legacy Management (LM)

    Utah Green River, Utah, Disposal Site UMTRCA Title I site grn_map The Green River disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Green River site, view the fact sheet.

  9. DOE - Office of Legacy Management -- Lake_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site laked_map The Lakeview Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Lakeview site, view the fact sheet. Site Documents and Links

  10. DOE - Office of Legacy Management -- Lake_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site lakep_map The Lakeview processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Lakeview site, view the fact sheet. Site Documents and Links Contact

  11. DOE - Office of Legacy Management -- Maybell_West(2)

    Office of Legacy Management (LM)

    Maybell West, Colorado, Disposal Site UMTRCA Title II site Maybell West The Maybell West disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2010 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Maybell West site, view the

  12. DOE - Office of Legacy Management -- MexHat

    Office of Legacy Management (LM)

    Utah Mexican Hat, Utah, Disposal Site UMTRCA Title I site mex_map The Mexican Hat disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Mexican Hat site, view the fact sheet.

  13. DOE - Office of Legacy Management -- MonValley

    Office of Legacy Management (LM)

    Arizona Monument Valley, Arizona, Processing Site UMTRCA Title I site monval_map The Monument Valley Processing Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Monument Valley site, view the fact sheet. Site History Site

  14. DOE - Office of Legacy Management -- SiteA

    Office of Legacy Management (LM)

    Illinois Site A/Plot M, Illinois, Decommissioned Reactor Site A D&D Program Site sitea_map As part of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Site A/Plot M Decommissioned Reactor Site and ensures compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal DOE policies. The site transferred to the Office of Legacy Management in 2003 and requires

  15. DOE - Office of Legacy Management -- Dur_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site durd_map The Durango Disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Durango site, view the fact sheet. Site Documents and Links

  16. DOE - Office of Legacy Management -- Dur_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site durp_map The Durango processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Durango site, view the fact sheet. Site Documents and Links Contact Us

  17. DOE - Office of Legacy Management -- Gun_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site gund_map The Gunnison Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Gunnison site, view the fact sheet. Site Documents and Links

  18. DOE - Office of Legacy Management -- Gun_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site gunp_map The Gunnison Processing Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Gunnison site, view the fact sheet. Site Documents and Links Contact

  19. DOE - Office of Legacy Management -- Nat_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site natd_map The Naturita Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Naturita site, view the fact sheet. Site Documents and Links

  20. DOE - Office of Legacy Management -- Nat_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site natp_map The Naturita processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Naturita site, view the fact sheet. Site Documents and Links Contact

  1. DOE - Office of Legacy Management -- Rifle_D

    Office of Legacy Management (LM)

    Rifle, Colorado, Disposal Site UMTRCA Title I site rifled_map The Rifle Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Rifle site, view the fact sheet. Site Documents

  2. DOE - Office of Legacy Management -- Rifle_Old

    Office of Legacy Management (LM)

    Old Rifle, Colorado, Processing Site UMTRCA Title I site rifleold_map The Old Rifle processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Old Rifle site, view the fact sheet. Site

  3. DOE - Office of Legacy Management -- SLC_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site slcd_map The Salt Lake City disposal site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Salt Lake City site, view the fact sheet. Site Documents

  4. DOE - Office of Legacy Management -- SLC_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site slcp_map The Salt Lake City processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Salt Lake City site, view the fact sheet. Site Documents and

  5. DOE - Office of Legacy Management -- Slick_D

    Office of Legacy Management (LM)

    Disposal Site UMTRCA Title I site slickd_map The Slick Rock Disposal Site, an Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I disposal site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Slick Rock site, view the fact sheet. Site Documents and

  6. DOE - Office of Legacy Management -- Slick_P

    Office of Legacy Management (LM)

    Processing Site UMTRCA Title I site Slick Rock P updated The Slick Rock processing site, a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I site, is licensed to DOE for long-term custody and managed by the Office of Legacy Management. The site transferred to the Office of Legacy Management in 2003 and requires routine inspection and maintenance, records-related activities, and stakeholder support. For more information about the Slick Rock site, view the fact sheet. Site Documents and

  7. Nuclear-waste-management. Quarterly progress report, July-September 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  8. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect (OSTI)

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  9. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  10. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  11. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  12. LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites | Department of

    Office of Environmental Management (EM)

    Energy Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites October 16, 2012 - 1:51pm Addthis LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites What does this project do? Goal 1. Protect human health and the environment The U.S. Department of Energy

  13. Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  14. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and {sup 90}Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste.

  15. Preliminary assessment of candidate immobilization technologies for retrieved single-shell tank wastes

    SciTech Connect (OSTI)

    Wiemers, K.D.; Mendel, J.E.; Kruger, A.A.; Bunnell, L.R.; Mellinger, G.B.

    1992-01-01

    This report describes the initial work that has been performed to select technologies for immobilization of wastes that may be retrieved from Hanford single-shell tanks (SSTs). Two classes of waste will require immobilization. One is the combined high-level waste/transuranic (HLW/TRU) fraction, the other the low-level waste (LLW) fraction. A number of potential immobilization technologies are identified for each class of waste. Immobilization technologies were initially selected based on a number of considerations, including (1) the waste loading that could likely be achieved within the constraint of producing acceptable waste forms, (2) process flexibility (primarily compatibility with anticipated waste variability), (3) process complexity, and (4) state of development. Immobilization technologies selected for further development include the following: for HLW/TRU waste -- borosilicate glass, lead-iron phosphate glass, glass-calcine composites, glass-ceramics, and cement based forms; for non-denitrated LLW -- grout, laxtex-modified concrete, and polyethylene; and for denitrated LLW -- silicate glass, phosphate glass, and clay calcination or tailored ceramic in various matrices.

  16. 2011-07 "Maximum Utilization of WIPP by Increasing MDA G TRU Shipments" |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy recommendation is to ensure optimization of WIPP shipment schedules while helping to keep commitments to Consent Order milestones at MDA-G. PDF icon Rec 2011-07 - July 27, 2011 More Documents & Publications 2011-09 "New Urgency for Increased TRU Shipments from MDA G" Department of Energy Response to NNMCAB Recommendation 2011-07 Department of Energy Response to NNMCAB Recommendation 2011-02

  17. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

  18. U.S. Department of Energy Office of Legacy Management Legacy Uranium Mine Site Reclamation - Lessons Learned - 12384

    SciTech Connect (OSTI)

    Kilpatrick, Laura E.; Cotter, Ed

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features contained within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that collectively contain over 220 legacy (abandoned) uranium mine sites. This contrasts to the millions of hectares administered by the BLM, the U.S. Forest Service, and other federal, tribal, and state agencies that contain thousands of such sites. DOE believes that the processes it has used provide a practical and cost-effective approach to abandoned uranium mine-site reclamation. Although the Federal Acquisition Regulations preclude DOE from competing with private industry, DOE is available to assist other governmental and tribal agencies in their reclamation efforts. (authors)

  19. Laboratory increases shipments of waste to WIPP repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab increases shipments to WIPP repository Laboratory increases shipments of waste to WIPP repository The campaign will eliminate LANL's existing backlog of approximately 1,500 drums of legacy transuranic waste awaiting shipment to WIPP. February 11, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  20. Recovery Act Begins Box Remediation Operations at F Canyon

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico.